Suites numériques

August 15, 2018 | Author: kadour2005 | Category: Sequence, Monotonic Function, Real Analysis, Mathematical Structures, Elementary Mathematics
Share Embed Donate


Short Description

Description : Suites numériques...

Description

(un )

(vn )





 < 

un =

un < v n

un =

(un )

∈Z

N

(un )

1 n

  √ 

un = 1 +

n

n2 + n + 1 n

1

k

n2

(a, b)



(un )

(vn )

un

→a

vn

(vn ) (un )



n N, un  a vn un + vn a+b





 

b

1/n

un =

(un + vn )

(un

(vn )

(vn )

sin n n+( 1)n+1 n ( 1)n n+( 1)n

un =

 

−v

n)



n

un = un =

S n =

lim max(u max(un , vn )

→+∞

n

(vn )

S n =

→0

n

k

k =1 n

S n =

n

nn



√   −

k =1 n

u2n + un vn + vn2

n! nn

2 + ( 1)n

n

S n =



k =1

1

k =1 n

(vn ) (un )

n 1 n+1

(un ) un =

S n = (un )

 



→b

n

(un )

n

(un )

− un = − − − (un )

n



√n2 +1 un = nn− + n2 −1

k =1

un = sin n1 R2

−− −

− √n2 − n + 1 √2 un =

(un )

3n ( 2)n 3n +( 2)n

un =

n2 +k 2

S n =

n n2 +k 2

S n =

√1k 2n

 

1

k=n+1 n k =1

( 1)n−k k!

k2

√n1 +k 2

k =0

(un )

(vn )

0  un



1 0  vn



1

un vn

→1

lim

lim

→+∞ n→+∞

m

1 m

−  1

n

n

lim

lim

→+∞ m→+∞

1 m

−  1

n

lim

→+∞

n

1 n

−  1

n

√u → 

(un )

n

< 1 > 1

un un  =1

→0 → +∞

n

z

|z | < 1

∈C

n



lim

→+∞ k=0

n

un+1 un

(un ) < 1 > 1

un un  =1

→0 → +∞

(un )

n

S n =

∈N

  

k =1  p  p+1 x x  p

 p > 1 (S n ) S 2 n = S n

n

a

n

∈R sin

a

 2n

∈N

P n =

P n =

1 2n



k=1

S n =

 (vn ) v v2n  u + 2 vn 



k

k =1

n

···+u

n

n

n

vn = sup u p

(un )

vn = sup u p

k

wn = inf  u p  pn

 pn

(vn )

lim P n

(wn )

R

n



n k

−1 n

n

n

n

lim S n

u1 +

 pn

cos 2a





vn =

(un )

 

−1

n+p n∈N u = ∈ N\ {0, 1} n 2)u +2 = (n ( n + 2)u 2)u +1 ∀n ∈ N (n + p + 2)u 1 S  = − (1 − (n + p + 1)u 1)u +1 ) 1 ( n + p)u (v ) ∀n ∈ N v = (n n

.

 p  p 1   p   p−1 xx

H  = ∈N ∀n ∈ N , H 2 − H  n



 p





( 1)k−1

(S n )

 

k=0

n

  

sin a

n

un =

1 n+k

k

→

n

n

1 + z2

n

n

 p

n

k =1

n

1 k

 1 2

lim H n = +



n



n

S n =



uk

k=1

(H n )

n H n

n

p

n



(un )

→ +∞



∈N

n(un+1

n

H n =



k =1

−u )→1 n

1 k

un

→ +∞

3×5×···×(2n−1) un = 1× 2×4×6×···×(2n) un (un ) vn = (n ( n + 1)u 1)u2n

∈ R+2 ∀n ∈ N, u +1 = √u (a, b)

(vn )

lim un

n

(un )



2 ab  a + b (un ) (vn ) u +v n vn , vn+1 = 2 n  1 un  vn un  un+1 vn+1 (vn ) n

u0 = a, v0 = b

n

 vn

a

θ

]0, π/2[ ∈ ]0,

n

θ

n

M (a, b) M ( M (a, a) M ( M (a, 0) M ( M (λa,λb) λa,λb)

θ

n

un = 2 sin 2 vn = 2 tan 2 (un ) (vn ) n



S n =

k=1

1 k2

S n = S n +

(S n )

(S n )

(un )

n

S n =

∈N

λ

∈ R+

(un ) (un )

1 n

(u2n )

π2 6



(un ) (un )

n

∈ R+

M ( M (a, b)

n

n



∈N

a

(u2n ), (u2n+1 )

(u3n )

( 1)k uk

−

k =0

(S 2n )

cos n

(S 2n+1 )

(S n )

sin n n

an =



k =0

1 k!

n

bn = (an )



k =0

1 k!

+

1 n.n!

= an +

1 n.n!

(bn )

= aq <

< bq

p q

p

∈/ Q

∈ Z, q ∈ N



un

(un ) 0



∀n, p ∈ N



0  un+ p

n+ p

 np

b

(un ), (vn ), (wn ), (tn ) wn 1 n

1

, n2 ,

ln n ln n n

,

n2

,

√ n, n , n ln n, n ln n,

1 n ln n

2

∼t

un

n

un + wn

∼v

n

+ tn

2

un =

2

2n3 ln n+1 n2 +1



un = (n ( n + 3ln n) −(n+1)

1

n!+ n 2n +3n

ln(n2 +1) n+1

 

x

un = 1



un = cos n1

 

ln(n ln(n + 1)

un = n ln 1 +

1

n2 +1



ln(n) − ln(n

R



un = 1 + sin

1 n n



un =

x

=n

n

+

xn

∈N

(x n )

n

(un )

  

n



n

un un = ln sin n1

0 (un )

∼1

n2 +n+1 un = √ 3 n2 −n+1

√ (u √) = n+1− n−1

1 n+1

un = n−1 un = sin √n1+1



un =

un =

un + un+1

+

(un )

(un )

−√n +1 ln n−2n

n3

n

n2 ln n

(un )

un =

∼v

√  n n+1 √ n

(n+1)

E n E n (xn )

x + ln x = n

E n E n (xn )

x + tan x = n

x xn

∈ R+



+ (x n )



n

n

un = 0! + 1! + 2! +

∈N n

S n =



k =1

√1k

√n1+1

un = S n

2

√

n+1 (S n ) 2 n



− √

· · · + n! =

− √n



(S n )





k =0

k!

un ! n

√1n n

(un )

E n E n (xn )

xn ln x = 1 xn

x xn

/2,, π /2[ ∈ ]−π/2

xn



x 1

∈ R+



n xn

∈N

E n : xn + xn−1 + E n



1 2, 1

∈ 

(un )n0 u0 = 0 u0 = 0

(xn ) yn+1 = x

n

zn

··· + x =1

(x n ) (xn )

(zn )n0

n

n

u0 = 0, 0 , u1 = 1 + 4i 4i

n

un

(yn )

∀n ∈ N, x +1 = n

+yn 2

xn

−y

(un )n0 (un )n0 (un )n0

zn = xn + i.yn

∀n ∈ N, z +1 = 13 (z n

(zn )

n

+ 2¯zn ) z0

θ

u0 = 1 v0 = 2

θ

]0, π [ ∈ ]0,

2

n

n

n



4 u +1 − 4u ∀n ∈ N, u +2 = 4u 3 u +1 − u ∀n ∈ N, 2u +2 = 3u ∀n ∈ N, u +2 = u +1 − u n

n

n

n

n

n

n

n

n

(un )

∈R ∀n ∈ N, u +2 − 2cos θu n

n+1

+ un = 0. 0.

∈N



(un )

ρ> 0

n

vn+1 = 2u 2 un + 3v 3vn (un vn )

(un )

| |

n

∀n ∈ N, u +2 = (3 − 2i)u +1 − (5 − 5i)u

u0 = 1, 1 , u1 = 0 u0 = 1, 1 , u1 = 1 u0 = 1, 1 , u1 = 2

u0 = u1 = 1

(un ) (vn ) un+1 = 3u 3 un + 2v 2vn

zn + zn

∈ C ∀n ∈ N, z +1 =

n

2

(yn )

(zn )

z0

(un )n0

2u + 1 ∀n ∈ N, u +1 = 2u ∀n ∈ N, u +1 = 2+1

(xn )

lim zn

→+∞

n

R+

xn

(vn )

a



(un ) (un ) un+1

(zn )

z0 = ρ



∀n ∈ N, z +1 = n

zn + zn

| |

2

  n

R+

−u

n

u0 = a

∀n ∈ N, u +1 = n

k =0

uk

(un ) un =

    − n+

(n

1) +

(un ) un+1 un  n lim un

→+∞

n

··· +

n1

√ 2+ 1 +∞

 

− √n

u0 = 1

(un )

u0 = a

u0

0< a 0

∈ R ∀n ∈ N, u +1 = u

n

v0

n

∀ ∈ N, u +1 = 12

=

n u0 >

u0



∀n ∈ N, u +1 = 1 + ln u

(un )

u0

∈ R ∀n ∈ N, u +1 =

n

n

un

u0 > 0 n (un ) vn+1

−√ √aa

un un +

√a

n



un +

vn

| u −√√a |  2u0.v02 a

ln x + x = 0

2u0 .v02

n

→∞ 0

n

x> 0 α (un )

α (un )

u0 > 0

(un )

u0 = a (un )

∀n ∈ N, u +1 = 2+1 n

un

∈ [−2, 2] ∀n ∈ N, u +1 = √2 − u ∀n ∈ N, u ∈ [−2, 2] (u ) lim |u − 1| = 0 lim u n

n

n

n

( un

| − 1|)

n

n

    1+

1+

√1 + · · · = 1 +



vn

n

−1

a un

n

n

un (un )

(un ) 2 n = un+1

∀n ∈ N, u +2u

(un )

∀n ∈ N, v

+1

(un )

n

n

2

n

|u | < 1

u0 = a > 0, u1 = b > 0 (un )

n

.

n

(un )

∀n ∈ N, u +1

1

∀n ∈ N, u +1 = 2 −u u

u0 = a

un un = o(n) (un )

(un )

(un )

a

1 1+

1 1+

√a

1/n

sin n1

+

m= 2 un N, n  n1 , vn > m n  max(n max(n0 , n1)

∃n1 ∈ ∀

→ < m

∃n0 ∈ N, ∀n  n0, u

n

 

n

n 1 n+1



1 xnn ln xn  n ln  +  =1

n

n

π

xn

2

− x → +∞

π

→2

(xn )

n

→ x0

R+

f n (xn+1) = x 1+1 [1, [1, + [ n



f (1/2) f (1/2) = xnn+1 + (xn )  = lim xn

···

x2 < 1 xn



x2



v0 =

−1

< 1



1

un

→ +∞

[1, [1, + [

R

x2

−x+1



∆=

−3 < 0

 = 2 + 1

uk

(un )

k=0

(un )

1 2

un+1





0

n



+



(un ) f  : x 1 + ln x [1, [1, + [ n  1 un+1 un = ln(u ln(un ) ln(u ln(un−1 ) (un ) u0 = 1 + ln u0 u0 g(x) = x 1 + ln x x g  (x) = x1 1  0 ]1, ]1, + [ (un ) 1

→

∼u

g

 

n =1 un+1 =

=



un+1

u1

√  n → +∞

un un+1 =

 +

−1

n

n

uk +

√a > 0

−1=

un

    k=0

0=

n

n

uk =

k =0

  u1 =

un u un+1 un = u +1 +u un+1 un = u +1 /1u +1



uk

k =0

(un )n1

||



    − n

n  1 un+1

u0 = a, u1 = a2 , u2 = a4 a 0 (un ) (un )  =0 (un ) u0 > 0 + u0 < 0 (un )

− − −



n





un

n

− −

x

→ − 1

un vn = ln(u ln(un )

− u −1



R

g 

=



(un )







(un )

−1

f  : x

(un )

|u +1 − √a| = 12 u | −√ n1 n

(un )

un

f  : x

→

R+



1 2+

=

|u +1 − | = n



1 2+un

R+

− 2+1





vn+1 =

(un )

−1 + √2 − |  1 |u −  | = (2+| )(2+ ) 4 |u − | = 41 |u0 − |

0

n

a



n

n



n

un

n

f  : x

→

[−2, 2] [0, [0, 2] ⊂ [−2, 2] → √2 − x [0, 2] √  ∈ [0, [0, 2] →√ ∀n  1, u ∈ [0, = 2−u = 2− 2 +  − 2 = 0

x un

n

un+1 n  =1 = 2 0  =1 un+1 1 = 1+|u√2−−1u|  un 1 α0 α> 0 1 + 2 un = |u|u+1−−1|1|



|

− |

n

| − 1|) √2 − u → 0 →1 u →1

| − |

n

√ − | u − 1| → 0

n

n

n

+

− | | −|| | | |un+1|  2|−|u a|| n

( un

n

|u | < 1 n

un

|u | |2−u |

|u | 2−|u | < 1

 |u +1|   |u | (|u |) |u |  2−|1 | |a| → 0 n

n

n

n

n

n

n

n

un u2 n

+

  a

n

n

n =0 un < 1

| |

n

|u |  |a| u →0 n

n

= + √ 2 (u − a) a = 2|u | =





1

1

−1

u1

+a n +a

=

n

2 au −2√ √ +2 au

n

√a|  2u v



f (un ) f  (un )

= un

n

a  un

√a −√ a

2

ln − ln1/ ++1 = (1−+1 1 2  C f  (x) = + 1 

un a

= vn2

− √a| n

vn = v02

R+

R

un+1 =

√1 + u

un )

un

un un un

un

x

f  (x) =

x2

n =

√1 + 

∈N



1+ 5 2

|u +1 − | = √1 + u − √1 + 



−1

α

u0 = 1 0

n

1 2

−√a|

un

= 2u 2 u0 v02

f (u0 )f  (u0 )  0

→2

− u = 0

un+1 a

un un +

un

2

α = f −1 (0) (un )



u0 > 0

−√a

√ [ a, +∞[ √ = a

n

0 n

=

2

0

un

n

(un ) (un ) un

a 

→ ln x + x

un+1 = un

ba

R+

1 2

n

−√

2

µ = ln a

[ a, + [

a x

x+ 

un a un

a

−√ √a = + a

n

un n0 un+1 = 2 unun un+1  2 unun

un+1 un+1

λ = ln ab (un )



a un

=

|u − √a|  v |u

=

un un

un > 0 =0

n

√ ∞   →    − √  | || | | − √ | √| √ √ | − | | − |  → 1 2

un

1 2+x

n

b a

n

un

(un )

− 2v +1 + v

(vn ) (r 1)2 = 0 λ, µ R, vn = λn + µ v0 = ln a v1 = ln b n un = v = n ln +ln a = a ab

n

x g (0) = 0

vn+2



n

=

√1 +|uu +− √| 1 +   |u 2− | n n

|u − |  21 |u0 − | n

n

n

n

un

→

    1+

(vn ) (vn )

√1 + · · · = 

1+

v0 = 1



|v +1 − | = n





n  = 1 +

1

1 vn

− 1





vn

→

n

n

1 1+

1 1+

=

vn+1 = 1 +

1 vn

 =  n

n

> 1 1+

1 

|v − |  |v − |  |v | 

|v − |  1 |v0 − | n

∈N

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF