STUDENT'S COPY MODULE 4
August 26, 2017 | Author: Jamaliah Daud | Category: N/A
Short Description
Download STUDENT'S COPY MODULE 4...
Description
PPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMI
ADDITIONAL MATHEMATICS FORM 4 MODULE 4 PPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMIPPSMI
INDICES & LOGARITHMS
MINISTRY OF EDUCATION MALAYSIA
MODULE 4: INDICES & LOGARITHMS Arahan: 1 Modul ini mengandungi empat puluh lima soalan. Semua soalan adalah dalam bahasa Inggeris. 2 Modul merangkumi lima konstruk yang diuji K3 - Memahami istilah matematik dalam bahasa Inggeris K5 - Menguasai konstruk pengetahuan K6 - Menguasai konstruk kefahaman K7 - Menguasai konstruk kemahiran K8 - Mengungkapkan idea/informasi dalam bahasa Inggeris 3 Murid hendaklah menulis maklumat diri dalam kertas jawapan objektif disediakan. Murid juga perlu memastikan maklumat konstruk, nombor soalan dan jumlah soalan seperti yang dibaca oleh guru di dalam ruangan disediakan dalam kertas jawapan objektif sebelum ujian. 4 Bagi soalan objektif, anda perlu menandakan jawapan dengan menghitamkan pilihan jawapan pada pilihan jawapan A , B , C atau D pada kertas jawapan objektif. Contoh: Antara berikut, yang manakah haiwan? A. A
Pokok
B.
B
Kambing C
C.
D
Kereta
D.
Pe n
E
5 Untuk soalan subjektif, jawapan hendaklah ditulis pada kertas berasingan yang disediakan oleh guru. 6 Jawab semua soalan.
Modul ini mengandungi 15 halaman bercetak
2
1
2
53 is known as _________, A
Index number
B
logarithm
C
indices
D
base
Which of the following represent a fractional index ? A
1 2 (5) 3
B
53
C
1 54
D
3 ( )2 2
2
3
4
What is zero index ? A
a0 = 1, a z 0
B
a0 = 1, a = 0
C
a1 = 0, a z 0
D
a1 = 0, a = 0
What does a n mean if n is a positive integer ? A
a multiply by n .
B
n multiply by a .
C
a multiplies itself for n times.
D
n multiply itself for a times.
3
5
6
7
8
9
What does number 5 represent in 5 n ? A
index
B
base
C
logarithm
D
antilogarithm
What is common logarithm ? A
A log with base 10
B
A log with index 10
C
A log with base 2
D
A log with index 2
In what form 103 = 1000 is written? A
index form.
B
indices form.
C
logarithmic form
D
general form
What does y represent in the equation log y N x ? A
base.
B
factor.
C
integer.
D
index.
What does number 5 represent in 25 A
base.
B
indices.
C
integer.
D
index.
32
4
10
11
12
13
Determine the base in log q p A
p
B
q
C
r
r
Which of the following represent a common log ? A
log 2 10
B
log 4 10
C
log8 10
D
log10 10
Change log4 7 from the base 4 to the base 10. A
log10 4 log10 7
B
log 10
C
log10 7 log10 4
D
log 10
4 7
7 4 2 3
Rewrite 125 as cube root of 125. A B
3 2
2 3
125
125
C
2
1253
D
3
125 2
5
14
15
0
Find the value of 8 . A
0
B
1
C
8
D
80
Change 5-2 to the fractional form. A B C D
16
17
1 25 1 2 -5 1 5 -2 1 52
Express
1 in index notation. 1000
A
10
4
B
10
-4
C
10 3
D
10 -3
Find the simplest form for 7n + 1 x 72n A
7 3 n 1
B
7 2 n ( n 1)
C
72n
D
7 n 1 2 n
2
1
6
18
19
20
21
If log a N x then N a x Change log q p r into index form. A
p
rq
B
p
qr
C
r
qp
D
r
pq
Find the value of log A
0
B
1
C
10
D
100
10
10 .
Find the value of log 2 - 8 . A
zero
B
negative
C
undefined
D
unknown
Which of the following is true ? 2 3
A
2
B
2 2 = 0.25
C
23 = 6
D
2
1 2
= 2.67
=2
7
22
4
5 2
i.
is equal to § 21 · 5 ¨4 ¸ ¨ ¸ © ¹ 1 2
ii.
4
iii.
§ 51 · ¨4 ¸ ¨ ¸ © ¹
iv.
4
5
2
2
1 5
Which of the following is the correct answer?
23
24
A
i and ii
B
i and iii
C
ii and iv
D
iii and i
Express log a 2 + log a 5 as a single logarithm. A
log a 7
B
log a 10
C
log 10 7
D
log 10 10
Simplify 5 1 y 5 2 . A
53
B
52
C
52
D
5 1
1
8
25
Rewrite 8
A B C D 26
27
2 3
1
u 16 2
2
(4 ) 3
(2 )
(8
2
(2
-3
2 3
2 3
in index form with the same base. 1 4 2
u (4 )
1 4 2
u (2 ) 1 3
2
) u (8 )
1 2
2 3
) u ( 2 4 ) -1
Change log5 8 from base 5 to other base. A
log10 5 log10 8
B
1 log8 5
C
log 5 8 log8 5
D
1 log 5 8
Change
log 2 45 using laws of logarithms.
A
log 2 3 u log 2 3 u log 2 5
B
log 10 3 log10 3 log10 5
C
log 2 3 log 2 3 log 2 5
D
log 10 3 u log10 3 u log 10 5
9
28
29
30
31
Without using a scientific calculator, calculate the value of log 5 A
3
B
3
C
1 3
D
1 . 125
1 3
Calculate the value of log 3 0.0562 by using a scientific calculator. A
3.260
B
1.250
C
2.620
D
0.3816
Given log10 2 0.3010 and log10 3 the value of log106 A
0.1761
B
0.1436
C
0.7782
D
0.7781
0.4771, without using scientific calculator, find
§ 4 · ¸¸ . © 3p ¹
Using the laws of logarithm, simplify log 2 ¨¨ A
log 2 4 log 2 3 log 2 p
B
log 2 4 log 2 3 - log 2 p
C
log 2 4 - log 2 3 log 2 p
D
log 2 4 - log 2 3 - log 2 p
10
32
33
34
35
Given log 5 M A
3
B
5
C
6
D
9
2 log 5 3 , find the value of M .
Without using a scientific calculator, calculate the value of log 2 2 4 . A
8
B
4
C
4
D
8
Simplify log a p 2 2 log a pq log a q 2 using laws of logarithms. A
§ p 2q 2 · ¸ log a ¨¨ 2 ¸ p q © ¹
B
§ p 2q 2 · ¸¸ log a ¨¨ © 2 pq ¹
C
§ p2 q2 · ¸ log a ¨¨ 2 ¸ © ( pq ) ¹
D
§ p2q2 log a ¨¨ 2 © ( pq )
· ¸¸ ¹
Without using a calculator, evaluate 2 log10 5 + log10 4 A
2
B
10
C
40
D
100
11
36
37
Without using the scientific calculator, evaluate A
3
B
1 3
C
2 3
D
3 2
Given
log b
= =
log b b N
1 2
§1· b - log a ¨ ¸ ©a¹
- log a 1 log a a
Determine the value of N ?
A
B
3 2
C
D
1 2
3 2 1 2
12
log 9 27 .
38
x
5
logM x
N
Given
logM x
1 log 5 9 2
log5 9
x
1 2
3
From the given steps in solving
39
M=9,N=
B
M=
C
M = 5, N =
D
M = 10, N =
x
3 uP 3
log 5 9
1 ,N= 2
x
x
3 (9 - 1)
1 log 5 9 2
log 5 9
3x 2 - 3x 216
216
can be solve as below:
216
(3x )8
216 Q
3x x
3
33
What is P and Q ? A
3 and 24 x
B
3 and 3 x
C
3 2 and 24 x
D
3 2 and 3 x
, find M and N.
1 log 5 9 2
A
The equation
5
1 log 5 9 2
216 27 216 27 13
40
The logarithmic equation log 2 (2 x 1) log 2 ( x 5) following steps:
log 2 (2 x 1) log 2 ( x 5)
§ 2x 1 · log 2 ¨ ¸ © x 5 ¹
3 can be solved by the
3
3
K
2 x 1 8( x 5) 2 x 1 8 x 40
: : :
x =L Find K and L .
41
A
2x 1 x -5
2 3 and 41
B
2x 1 x -5
2 3 and - 41
C
2x 1 x -5
3 2 and 41
D
2x 1 x -5
3 2 and - 41
Given log 27 n
6
6
6
6
2 . How can we find the value of n ? 3
A
Change the logarithm equation to index equation.
B
Change the index equation to logarithm equation.
C
Use the laws of logarithm.
D
Use the laws of indices.
14
42
43
44
45
How to solve the equation 3 x
2 ?
A
Use indices on both sides.
B
Use indices on one side only.
C
Use logarithm on both sides.
D
Use logarithm on one side only.
Which of the following is the best way to solve 2 x
64 ?
A
Change the base.
B
Divide 64 both side by 2 and simplify .
C
Square root of 64 .
D
Express in the same base and compare the indices.
How to read loga x completely? A
log of x to the base of a
B
log of a to the base of x
C
log x .
D
log a
How to read a x ? A B C D
x to the power of a a to the power of x x index a a index x
END OF QUESTIONS PAPER
15
KEMENTERIAN PELAJARAN M ALAYSIA
KERTAS JAWAPAN OBJEKTIF Ujian Diagnostik
Nama Pelajar: Tahun/ Tingkatan :
4
Mata Pelajaran: MATEMATIK TAMBAHAN Modul:
Nama Sekolah:
4
GUNAKAN PENSIL 2B ATAU BB SAHAJA. TENTUKAN TIAP-TIAP TANDA ITU HITAM DAN MEMENUHI KESELURUHAN RUANG.
PADAMKAN HINGGA HABIS MANA-MANA TANDA YANG ANDA UBAH
SILA HITAMKAN JAWAPAN DI BAWAH MENGIKUT HURUF JAWAPAN YANG ANDA PILIH 1
A
2
A
E
31
A
D
E
32
A
B
C
3
A
B
C
B
C
D
E
33
A
B
C
4
A
B
C
D
E
34
A
B
5
A
B
C
D
E
35
A
6
A
B
C
D
E
36
A
7
A
B
C
D
E
37
8
A
B
C
D
E
9
A
B
C
D
E
B
C
D
10
A
B
C
D
E
11
A
B
C
D
E
E
46
A
B
C
D
E
D
E
47
A
B
C
D
E
D
E
48
A
B
C
D
E
C
D
E
49
A
B
C
D
E
B
C
D
E
50
A
B
C
D
E
B
C
D
E
51
A
B
C
D
E
38
A
B
C
D
39
A
B
C
40
A
B
C
41
B
C
D
A
1 52
B
C
D
E
A
B
C
D
E
E
53
A
B
C
D
E
D
E
54
A
B
C
D
E
D
E
55
A
B
C
D
E
A
B
C
D
E
56
A
B
C
D
E
A
B
C
D
E
57
A
B
C
D
E
12
A
B
C
D
E
1 42
13
A
B
C
D
E
43
A
B
C
D
E
58
A
B
C
D
E
14
A
B
C
D
E
44
A
B
C
D
E
59
A
B
C
D
E
15
A
B
C
D
E
45
A
B
C
D
E
60
A
B
C
D
E
16
A
B
C
D
E
17
A
B
C
D
E
18
A
B
C
D
E
19
A
B
C
D
E
20
A
B
C
D
E
21
A
B
C
D
E
22
A
B
C
D
E
23
A
B
C
D
E
24
A
B
C
D
E
25
A
B
C
D
E
6
26
A
B
C
D
E
7
27
A
B
C
D
E
28
A
B
C
D
E
29
A
B
C
D
E
30
A
B
C
D
E
Konstruk
No. Soalan
Jumlah Soalan
1
K3
1-6
6
2
K5
7 - 20
14
3
K6
21 - 33
13
4
K7
34 - 40
7
5
K8
41 - 45
5
8 9 10
Bilangan Soalan Gagal Dijawab
Kegunaan Guru
View more...
Comments