STS Transformee en Z
Short Description
Download STS Transformee en Z...
Description
Section technicien supérieur Cours de mathématiques
Chapitre 11
Transformées en Z
La transformée en Z est un outil mathématique de traitement du signal, qui est l’équivalent discret de la transformée de Laplace. Elle est utilisée entre autres pour le calcul de filtres numériques à réponse impulsionnelle infinie et en automatique pour modéliser des systèmes dynamiques de manière discrète.
Aymar de Saint-Seine Année scolaire 2011–2012
Cours de mathématiques
STS
1. Signaux discrets 1.1. Introduction Supposons qu’un signal soit caractérisé par une fonction f continue sur l’intervalle ] − ∞; +∞[. On peut échantillonner le signal au pas ∆t. On va ainsi mesurer f (0), f (∆t), f (2∆t), · · · On peut alors considérer la suite (f (n∆t)), pour n ∈ Z. Si ∆t est suffisamment petit, la connaissance de cette suite donne une idée assez précise du signal continu t 7→ f (t). On dit alors qu’on a discrétisé le signal continu au pas ∆t. signal discrétisé signal original b
b
b
b
b
b
−∆t
0
∆t
2∆t
3∆t
4∆t
5∆t
b
−∆t
0
∆t
2∆t
3∆t
4∆t
5∆t
Dans la pratique, une unité de temps étant choisi, on peut supposer ∆t = 1 (s, ms, µs, . . .). Exemple : On considère le signal continu caractérisé par la fonction f (t) = 2t. On l’échantillonne au pas d’unité 1 ms. La suite des échantillons est {· · · ; −2; 0; 2; 4; 6 · · · }. Si αn est le terme général de cette suite, on a αn = 2n. Comme on écrit f (t) pour une fonction, on écrira α(n) pour les termes d’une suite (au lieu de αn .)
1.2. Exemples de signaux discret Définition 1 : Suite de Dirac ou suite canonique
La suite canonique, ou suite de Dirac ou impulsion unité discrète, notée d, est définie par : ( d(n) = 0 si n ∈ Z⋆ ; d(0) = 1.
Illustration : Suite de Dirac ou suite canonique
1 b
b
b
b
b
b
b
−6 −5 −4 −3 −2 −1 −1
1
b
b
b
b
b
1
2
3
4
5
b
Chapitre 11
Transformées en Z
Théorème 1 : Echelon unité discret
L’échelon unité discret, noté e, est défini par : (
e(n) = 1 si n ∈ N ; e(n) = 0 si n ∈ Z⋆− .
Son équivalent pour les fonctions est U (t).
Illustration : Echelon unité discret
1 b
b
b
b
b
b
b
b
b
b
b
1
2
3
4
5
b
b
−6 −5 −4 −3 −2 −1 −1 Théorème 2 : Rampe unité causale
La rampe unité causale, notée r, est définie par : (
r(n) = n si n ∈ N ; r(n) = 0 si n ∈ Z⋆− .
Son équivalent pour les fonctions est tU (t).
Illustration : Rampe unité causale
5 b
4 b
3 b
2 b
1 b
b
b
b
b
b
b
b
−6 −5 −4 −3 −2 −1 −1
1
2
3
4
5
Théorème 3 : Signal géométrique causal
Le signal géométrique causal, noté f , est défini, pour a ∈ R⋆ , par : (
http://lyceeenligne.free.fr
f (n) = an si n ∈ N ; f (n) = 0 si n ∈ Z⋆− .
2
Cours de mathématiques
STS
Illustration : représentation graphique avec a = 0, 5.
1 b
b
b
b b b
b
b
b
b
b
b
−6 −5 −4 −3 −2 −1
1
2
3
4
b
5
1.3. Opération sur les signaux discrets Tout comme pour les fonctions, on peut additionner, multiplier par un nombre ou entre eux les signaux discrets. Exemple : Le signal d(n) + r(n) est représenté par 5 b
4 b
3 b
2 1 b
b
b
b
b
b
b
b
b
−6 −5 −4 −3 −2 −1 −1
1
2
3
Définition 2 : Signal retardé de k
Soit s(n) un signal causal. Le signal retardé de k est s(n − k) × e(n − k). L’équivalent pour les fonctions est f (t − τ )U (t − τ ).
Exemples : 3
4
5
Chapitre 11
Transformées en Z
1. L’impulsion unité discrète retardée de k, notée dk est définie par : (
dk (n) = 0 pour n 6= k ; dk (n) = 1 pour n = k.
Illustration : représentation graphique de d3 .
1 b
b
b
b
b
b
b
b
−6 −5 −4 −3 −2 −1 −1
b
b
1
2
3
b
b
4
5
b
2. L’echelon unité retardé de k est définie par : (
ek (n) = 0 pour n < k ; ek (n) = 1 pour n > k.
Illustration : représentation graphique de l’echelon unité retardé de 3.
1 b
b
b
b
b
b
b
−6 −5 −4 −3 −2 −1 −1
b
b
1
2
b
b
b
3
4
5
b
2. Transformée en z 2.1. Définition La transformée de Laplace transforme un signal continu (donné par une fonction) en une autre fonction. L’intêret mathématique est de pouvoir ainsi résoudre des équations différentielle. On cherche à trouver pour les signaux discrets l’équivalent de la transformation de Laplace pour les signaux continus. signal continu : F (p) =
signal discret :
+∞ X
e−pk f (k) =
k=0
http://lyceeenligne.free.fr
+∞ X
Z
+∞ 0
e−pt f (t)dt
s(k)z −k car s(k) = f (k) et en posant z = ep
k=0
4
Cours de mathématiques
STS
Définition 3 : Transformée en z
La transformée en z d’une suite (sn )n∈N est la fonction de la variable réelle ou complexe z, définie par : +∞ +∞ X X 1 sn n ). s(n)z −n (= (Zs)(z) = z n=0 n=0
La transformée en z transforme un signal discret (donné par une suite) en une fonction. L’intêret mathématique sera de pourvoir ainsi résoudre des équations aux différences, plus connues sous le nom de suites récurentes.
Remarques : • La série associée à la transformée en z d’un signal causal n’est pas forcement convergente pour toute valeur de z. Conformément au programme de BTS, nous ne nous attarderons sur ce problème et nous admettrons la convergence pour les valeurs étudiées. • Soit un signal analogique causal t 7→ s(t). Si on échantillonne au pas ∆t = Te , sa transformée en z est :
+∞ X
(Zs)(z) =
n=0
2.2. Transformées en z usuelles 5
s(nTe )z −n
Chapitre 11
Transformées en Z
Théorème 4 : Transformées en z des suites usuelles
1. La transformée en z de la suite canonique, ou suite de Dirac, ou impulsion unité discrète est : (Zd)(z) = 1. 2. La transformée en z de l’impulsion unité discrète retardée de k est : (Zdk )(z) = z −k . 3. La transformée en z de l’échelon unité discret est : (Ze)(z) =
z si |z| > 1. z−1
4. La transformée en z de la rampe unité causale est : (Zr)(z) =
z si |z| > 1. (z − 1)2
5. La transformée en z du signal causal discret x(n) = n2 est : (Zx)(z) =
z(z + 1) si |z| > 1. (z − 1)3
6. La transformée en z du signal géométrique causal est : (Zf )(z) =
z si |z| > |a|. z−a
Démonstration : 1. Par définition, (Zd)(z) =
+∞ X
d(n)z −n = d(0)z 0 = 1.
n=0 +∞ X
2. Par définition, (Zdk )(z) =
dk (n)z −n = d(k)z −k = z −k .
n=0
3. Par définition, on a (Ze)(z) =
+∞ X
1×z
−n
n=0
=
+∞ X
n=0
1 z
n
.
1 Il s’agit donc d’une série dont le terme général est une suite géométrique de raison . z 1 1 z . Cette série converge si | | < 1, donc si |z| > 1 et on a : (Ze)(z) = = z z−1 1 − z1 4. Par définition, on a (Zr)(z) =
+∞ X
nz −n .
n=0
Par ailleurs, on sait que pour |z| > 1, on a
+∞ X
z −n =
n=0
z . z−1
En dérivant membre à membre cette égalité, on obtient
+∞ X
−nz −n−1 =
n=0
En multipliant les deux membres par −z, il vient
+∞ X
n=0
http://lyceeenligne.free.fr
6
nz −n =
z . (z − 1)2
−1 . (z − 1)2
Cours de mathématiques
STS
5. admis. +∞ X
+∞ X
a n . 6. Par définition, on a (Zf )(z) = a z = z n=0 n=0 Il s’agit donc d’une série dont le terme général est une suite géométrique de raison z 1 . Cette série converge si | az | < 1, donc si |z| > |a| et on a : (Zf )(z) = a = 1− z z−a n −n
a z.
2.3. Propriétés de la transformation en z Théorème 5 : Linéarité
Soit x et y deux signaux discrets causaux et k un nombre réel. On a : (Z(x + y))(z) = (Zx)(z) + (Zy)(z) (Z(λx))(z) = λ(Zx)(z) avec λ ∈ R.
Exemple : La transformée en z de d(n) + 2r(n) est (Z(d + 2r))(z) = (Zd)(z) + 2(Zr)(z) = 2z 1+ . (z − 1)2 Théorème 6 : Retard
Soit x un signal discret causal. Le signal retardé de n0 (n0 ∈ N⋆ ) est le signal y défini par y(n) = x(n − n0 )e(n − n0 ). On a : (Zy)(z) = z −n0 (Zx)(z). Comparer avec Laplace : e−τ p F (p).
Démonstration : (Zy)(z) =
+∞ X
x(n − n0 )e(n − n0 )z −n .
n=0
Puisque que e(n − n0 ) est nul si n < n0 , on a : (Zy)(z) =
+∞ X
x(n − n0 )z −n .
n=n0
En posant p = n − n0 , on a (p ∈ N) : (Zy)(z) =
+∞ X
x(p)z −n0 −p = z −n0
+∞ X
x(p)z −p .
p=0
p=0
En changeant p en n (variable muette), on trouve : (Zy)(z) = z −n0
+∞ X
x(n)z −n = z −n0 (Zx)(z).
n=0
7
Chapitre 11
Transformées en Z
Exemple : La transformée en z de la rampe retardée de 3 est : 1 z = . (Zr(n − 3) × e(n − 3)) (z) = z −3 (Zr)(z) = z −3 × (z − 1)2 z 2 (z − 1)2 Théorème 7 : Avance
Soit x un signal discret causal. Le signal avancé de n0 (n0 ∈ N⋆ ) est le signal y défini par y(n) = x(n + n0 ). On a : (Zy)(x) = z
n0
"
(Zx)(z) −
nX 0 −1
x(n)z
−n
n=0
#
.
En particulier : si n0 = 1 : (Zx)(n + 1) = z [(Zx)(z) − x(0)] ; i
h
si n0 = 2 : (Zx)(n + 2) = z 2 (Zx)(z) − x(0) − x(1)z −1 .
Démonstration : (Zy)(z) =
+∞ X
x(n + n0 )z −n .
n=0
Le changement de variable p = n + n0 donne : (Zy)(x) =
+∞ X
x(p)z −(p−n0 ) = z n0
p=n0
+∞ X
x(p)z −p
p=n0
En changeant p en n (variable muette), on trouve : (Zy)(x) = z
n0
" +∞ X
x(n)z
−n
−
n=n 0 −1 X
x(n)z
n=0
n=0
−n
#
.
Exemple : La transformée en z de la rampe avancée de 3 est : h
(Zr(n + 3))(z) = z 3 (Zr)(z) − r(0) − r(1)z −1 − r(2)z −2 "
z = z3 − 0 − 1z −1 − 2z −2 (z − 1)2 z4 = − z 2 − 2z (z − 1)2
#
i
Théorème 8 : Produit par un signal géométrique causal
Soit x un signal discret causal. Son produit par un signal géométrique causal est le signal y défini par y(n) = an x(n) où a ∈ R⋆ . On a : z (Zy)(z) = (Zx)( ). a
http://lyceeenligne.free.fr
8
Cours de mathématiques
STS
Démonstration : D’une part : (Zy)(z) =
+∞ X
an x(n)z −n =
n=0
d’autre part (Zx)(z) =
+∞ X
x(n)z −n donc (Zx)( az ) =
n=0
+∞ X
z x(n)( )−n ; a n=0
+∞ X
z x(n)( )−n . a n=0
Exemple : Si x(n) = e(n) et a = 2 alors y(n) = 2n e(n). z z . Le théorème indique que (Zy)(z) = z 2 = −1 z−2 2 On retrouve bien la formule de la transformée en z pour 2n .
2.4. Théorèmes de la valeur initiale et de la valeur finale Théorème 9 : Théorème de la valeur initiale
x(0) = lim (Zx)(z) |z|→+∞
Théorème 10 : Théorème de la valeur finale
lim x(n) = lim (z − 1)(Zx)(z)
n→+∞
|z|→1
z . Exemple : On peut vérifier ces deux théorèmes sur e(n). On a (Ze)(z) = z−1 z Théorème de la valeur initiale : e(0) = 1 et lim = 1. |z|7→+∞ z − 1 z Théorème de la valeur finale : lim e(n) = 1 et lim (z − 1) = 1. n7→+∞ |z|7→1 z−1
3. Applications : Résolution d’équations récurrentes La démarche générale comporte trois étapes : • On applique la transformée en z à l’équation récurente ; • On déduit l’expression de (Zu) ; • On recherche l’original de (Zu) pour avoir l’expression de un . 9
Chapitre 11
Transformées en Z
Exercice résolu 1 : Résoudre un+1 = un + 2 avec u0 = 3. Solution : u(n + 1) = u(n) + 2 2z z−1 2z (Zu)(z) + z−1 2z + 3z z−1 2z 3z + 2 (z − 1) z−1 2n + 3
z[(Zu)(z) − u(0)] = (Zu)(z) + z[(Zu)(z) − 3] = (Zu)(z)(z − 1) = (Zu)(z) = un =
Remarque : cette résolution est inutile, puisqu’on connait la formule un = u0 + nr (suite arithmétique). Elle est seulement donnée pour montrer un exemple très simple.
Exercice résolu 2 : Résoudre un+1 = 31 un + 2 avec u0 = 1. Solution :
1 2z (Zu)(z) + 3 z−1 1 2z (Zu)(z)(z − ) = +z 3 z−1 2z z (Zu)(z) = 1 + (z − 1)(z − 3 ) z − z[(Zu)(z) − 1] =
1 3
et en décomposant en éléments simples : z −1 3 + 1 + z−1 z− 3 z − 13 z z = 3z −1 × − z −1 × z−1 z−
(Zu)(z) =
1 3
+
On en déduit donc que : 1 1 un = 3e(n − 1) − ( )n−1 e(n − 1) + ( )n 3 3
http://lyceeenligne.free.fr
10
z z−
1 3
Cours de mathématiques
STS
Suite de la solution : Et donc si n ≥ 1, on a : 1 1 un = 3 − ( )n−1 + ( )n 3 3 1 n 1 1 −1 = 3 − ( ) × ( ) + ( )n 3 3 3 1 n 1 n = 3−3× ( ) +( ) 3 3 1 n = 3 − 2( ) 3 On vérifie que la formule est aussi vraie pour n = 0. Exercice résolu 3 : Résoudre un+2 = 2un+1 + 3un avec u0 = 1 et u1 = 2. Solution : z 2 [(Zu)(z) − 1 − 2z −1 ] (Zu)(z)(z 2 − 2z − 3) (Zu)(z)(z 2 − 2z − 3) (Zu)(z)(z 2 − 2z − 3) z2 (Zu)(z) = 2 z − 2z − 3
= = = =
2z[(Zu)(z) − 1] + 3(Zu)(z) z 2 − z 2 × (−2z −1 ) − 2z z 2 + 2z − 2z z2
Il faut donc décomposer en éléments simples. On obtient : 9 4
(Zu)(z) = 1 +
−
1 4
z−3 z+1 9 z 1 z (Zu)(z) = 1 + z −1 × − z −1 × 4 z−3 4 z+1 9 1 un = d(n) + × 3n−1 e(n − 1) − × (−1)n−1 e(n − 1) 4 4 donc, si n ≥ 1, on a : 1 9 × 3n−1 − × (−1)n−1 4 4 3 1 = × 3n + (−1)n 4 4
un = un On vérifie pour n = 0, u0 =
3 4
+
1 4
= 1.
4. Exercices 4.1. Signaux discrets causaux 11.1 Représenter graphiquement chacun des signaux discrets causaux suivants :
11
Chapitre 11
Transformées en Z
1. e(n − 2) ;
3. r(n − 2) ;
2. d(n − 1) ;
4. r(n + 2) ;
11.2 Donner les écritures de chacune des suites causales représentées graphiquement ci-dessous : 2 b
b
2 b
1 b
b
1 b
b
b
b
b
−2 −1 1 2 3 4 5 −1 x(n) = 0 pour n > 4
b
b
b
1
2
3
b
b
4
5
b
b
−2 −1 −1
b
b
b b
b
2
b
b
1 b
1
b
−2 −1 1 2 3 4 5 −1 x(n) = 0 pour n > 4
−2 x(n) = 0 pour n > 4
1
b
b
b
b
2
b
b
1 b
b
b
b
b
2 b
b
b
−2 −1 1 2 3 4 5 −1 x(n) = 0 pour n > 4
3
−2 −1 −1
b
b
2 1
b
3
b
b
4
5
b
−2 −1 −1 b
−2
b
1
2
b
b
b
3
4
5
b
b
−3 x(n) = 0 pour n > 4
−2 x(n) = 0 pour n > 4
4.2. Calcul de transformées 11.3 Déterminer les transformées en z des suites causales définies par : 1. x(n) = n2 + 3n + 2 ; 3. x(n) = (n − 3)e(n − 3) ; 4. x(n) = (n + 2)2 .
2. x(n) = n2n ;
11.4 Déterminer les transformées en z des suites causales définies par : 1. x(n) = (2n + 1)e(n) ; 4. x(n) = 4n ne(n) ; 2. x(n) = 5n e(n) ;
5. x(n) = 3n−2 (n − 2)e(n − 2) ;
3. x(n) = (n + 2)e(n) ;
6. x(n) = 3n n2 e(n) ;
11.5 Déterminer les transformées en z des suites causales définies par : http://lyceeenligne.free.fr
12
b
Cours de mathématiques
1. 2. 3. 4. 5. 6. 7. 8.
STS
5 8 9. x(n) = ( n + )e(n) ; 3 8 10. x(n) = (2n + 1)3n e(n) ;
x(n) = (4n − 3)e(n) ; x(n) = n(−1)n e(n) ; x(n) = (n − 1)e(n − 1) ; x(n) = n2 2n e(n) ; x(n) = (n + 2)2 e(n + 2) ; x(n) = (2n2 − 3n + 5)e(n) ; x(n) = (n − 3)2 e(n − 3) ; x(n) = n2 (−2)n e(n) ;
11. x(n) = (n − 2)2 e(n − 2) ; 12. x(n) = (n + 4)e(n) ; 13. x(n) = (n + 1)2 e(n + 1) ; 14. x(n) = (n − 1)2 e(n − 1) ; 15. x(n) = (n + 3)e(n).
11.6 Déterminer les transformées en z des suites causales trouvées à l’exercice 2. 11.7 Soient les signaux causaux discrets définis par : x1 (n) = ne(n) x4 (n) = (n + 1)e(n)
; ;
x2 (n) = ne(n − 1) x5 (n) = (n + 1)e(n − 1)
;
x3 (n) = ne(n − 2) ;
x6 (n) = (n + 1)e(n − 2).
Déterminer leurs transformées en z en écrivant les signaux sous la forme xi (n) = (n − a)e(n − a) + be(n − a).
4.3. Recherche d’originaux 11.8 Trouver les originaux de : z ; − 1)2 2 ; 6. (Zx)(z) = z−3 z 7. (Zx)(z) = ; (2z − 1)2 3 8. (Zx)(z) = . (z − 2)2
4z ; z−1 3z 2. (Zx)(z) = ; (z − 1)2 2z ; 3. (Zx)(z) = z+1 z 4. (Zx)(z) = ; 2z + 1
5. (Zx)(z) =
1. (Zx)(z) =
( 2z
11.9 Trouver les originaux de : 3 ; z−2 z 6. (Zx)(z) = ; (3z − 1)2 2 7. (Zx)(z) = ; (z − 3)2 2z . 8. (Zx)(z) = (z − 2)2
6z ; (z − 1)2 z 2. (Zx)(z) = ; z+3 z ; 3. (Zx)(z) = 4z + 1 z 4. (Zx)(z) = z ; ( 3 − 1)2
5. (Zx)(z) =
1. (Zx)(z) =
11.10 Soit x un signal discret causal dont la transformée en z est définie par (Zx)(z) =
2z où |z| > 3. (z − 1)(z − 3) 13
Chapitre 11
Transformées en Z
1. Déterminer deux constantes a et b telles que, pour tout z vérifiant |z| > 3 : a b 1 = + . (z − 1)(z − 3) z−1 z−3 2. En déduire le signal x. 11.11 Soit x un signal discret causal dont la transformée en z est définie par (Zx)(z) =
z où |z| > 4. z 2 − 6z + 8
1. Factoriser z 2 − 6z + 8. 2. Déterminer deux constantes a et b telles que, pour tout z vérifiant |z| > 3 : z2
a b 1 = + . − 6z + 8 z−2 z−4
3. En déduire le signal x. 11.12 Trouver les originaux de chacune des fonctions suivantes. On pourra utiliser une F (z) . décomposition en éléments simples de F (z) ou z z−1 3z 2 ; 1. F (z) = ; 4. F (z) = 2 z+3 z −z−2 z 2. F (z) = ; z3 (z − 1)(z − 2) 5. F (z) = . (z − 1)2 (z + 4) 2 z 3. F (z) = 2 ; z − 3z + 2
4.4. Résolution d’équations aux différences 11.13 Soit l’équation aux différences : (
y(n + 1) − 2y(n) = 0 y(0) = 1.
1. Calculer y(1), y(2), y(3). 2. Résoudre l’équation aux différences à l’aide de la transformée en z et retrouver les résultats de la première question. 11.14 Résoudre l’équation aux différences à l’aide de la transformée en z (
y(n + 1) − y(n) = (2n + 1)e(n) y(0) = y0 .
11.15 Résoudre l’équation aux différences à l’aide de la transformée en z (
y(n + 2) − 2y(n + 1) + y(n) = 2e(n) y(0) = 0 ; y(1) = 1.
http://lyceeenligne.free.fr
14
Cours de mathématiques
STS
11.16 Résoudre l’équation aux différences à l’aide de la transformée en z (
y(n + 2) − 4y(n) = 4d(n − 2)e(n − 2) y(0) = y(1) = 0.
11.17 Soit l’équation aux différences y(n) + y(n − 1) = e(n) où y est un signal causal discret et u la suite échelon unité. 1. En écrivant l’équation pour n = 0 et en utilisant le fait que le signal est causal, calculer y(0). 2. On pose Y (z) = Z(y(n)). En appliquant la transformée en z aux deux membres de l’équation, déterminer Y (z). Y (z) en éléments simples. 3. Décomposer z 4. En déduire y(n). 11.18 Soit l’équation aux différences y(n) − 2y(n − 1) = ne(n) où y est un signal causal discret et u la suite échelon unité. 1. En écrivant l’équation pour n = 0 et en utilisant le fait que le signal est causal, calculer y(0). 2. On pose Y (z) = Z(y(n)). En appliquant la transformée en z aux deux membres de z2 . l’équation, montrer que Y (z) = (z − 1)2 (z − 2) 3. Déterminer trois constantes a, b et c telles que : a b c z = + + . 2 2 (z − 1) (z − 2) z − 1 (z − 1) z−2 4. En déduire y(n).
4.5. Annales 11.19 France 2004. Dans tout cet exercice, le nombre n est un entier relatif. La suite n 7→ e(n) représente l’échelon discrétisé causal défini par : (
e(n) = 0 pour n < 0 e(n) = 1 pour n > 0
On considère un filtre numérique dans lequel le signal d’entrée est n 7→ e(n) et le signal de sortie est un signal discret causal noté n 7→ x(n). Ce filtre est régi par l’équation récurrente : x(n) − 2x(n − 1) = e(n) (E)
Partie 1 Dans cette partie, on résout l’équation récurrente (E) sans utilisation de la transformation en Z. 15
Chapitre 11
1.
Transformées en Z
a. Justifier que x(0) = 1. b. Calculer x(1), x(2) et x(3).
2. Pour tout entier naturel n l’équation (E) s’écrit : x(n) − 2x(n − 1) = 1 (E) a. On considère la suite y définie pour tout entier naturel n par : y(n) = x(n) + 1 Montrer que la suite y est une suite géométrique de raison 2. Donner l’expression de y(n) en fonction de de l’entier naturel n. b. En déduire, pour tout entier naturel n, l’expression de x(n). Vérifier que l’on retrouve les mêmes valeurs de x(0), x(1), x(2) et x(3) qu’à la question 1.
Partie 2 Dans cette partie on résout l’équation récurrente (E) en utilisant la transformation en Z. 1. On rappelle que x(0) = 1. On se place dans le cas où n > 1 et on admet que le signal n 7→ x(n), solution de l’équation récurrente (E), a une transformation en Z notée (Zx)(z). a. Montrer que pour tout z différent de 0, de 1 et de 2 on a : (Zx)(z) =
z2 (z − 1)(z − 2)
b. Montrer que pour tout z différent de 0, de 1 et de 2 on a : (Zx)(z) −1 2 = + z z−1 z−2 c. En déduire par lecture inverse du dictionnaire d’images, le signal de sortie n 7→ x(n) pour n > 1. 2. Représenter dans un repère orthogonal, pour les nombres entiers n tels que −2 6 n 6 3, le signal de sortie n 7→ x(n). Prendre comme unités graphiques 2 cm sur l’axe des abscisses et 0, 5 cm sur l’axe des ordonnées. 11.20 France 2006. Le but de cet exercice est d’étudier quelques propriétés d’un filtre numérique N et de comparer des effets de ce filtre avec ceux d’un filtre analogique A. Partie I On rappelle que tout signal discret causal est nul pour tout entier strictement négatif. Soient x(n) et y(n) les termes généraux respectifs de deux signaux discrets causaux représentant, respectivement, l’entrée et la sortie d’un filtre numérique N. Ce filtre est conçu de telle sorte que, pour tout nombre entier n positif ou nul, on a : y(n) − y(n − 2) = 0, 04 x(n − 1). http://lyceeenligne.free.fr
16
Cours de mathématiques
STS
1. On note Zx et Zy les transformées respectives des signaux causaux x et y. Montrer que, pour tout nombre complexe z différent de −1 et 1, on a : (Zy) (z) =
0, 04z (Zx) (z) (z − 1)(z + 1)
2. On suppose que le signal d’entrée est l’échelon unité discret : x(n) = e(n) avec e(n) =
(
0 1
si n < 0 si n > 0
a. Montrer que, pour tout nombre complexe z différent de −1 et 1, on a : 0, 04z 2 (Zy) (z) = (z − 1)2 (z + 1) b. Calculer les constantes réelles A, B et C telles que : 0, 04z A B C = + + 2 2 (z − 1) (z + 1) (z − 1) z−1 z+1 c. En remarquant que : (Zy) (z) 0, 04z = z (z − 1)2 (z + 1) montrer que, pour tout entier n positif ou nul, on a : y(n) = 0, 02n + 0, 01 (1 − (−1)n ) d. Déterminer y(2k) puis y(2k + 1) pour tout nombre entier naturel k. e. En déduire que pour tout nombre entier naturel k, on a : y(2k + 1) = y(2k + 2). f. Représenter graphiquement les termes du signal causal y lorsque le nombre entier n est compris entre −2 et 5. Partie II On rappelle que la fonction échelon unité, notée U, est définie par : (
U(t) = 0 U(t) = 1
si t < 0 si t > 0
Soit la fonction f définie pour tout nombre réel t par : f (t) = sin(20t)U(t) On note F la transformée de Laplace de la fonction f . Le signal de sortie du filtre analogique A est représenté par la fonction s dont la transformée de Laplace S est telle que : F (p) S(p) = p 1. Justifier que, pour tout nombre réel t positif ou nul, on a : s(t) = 17
Z
0
t
f (u)du
Chapitre 11
Transformées en Z
2. En déduire que, pour tout nombre réel t positif ou nul, on a : s(t) =
1 − cos(20t) 20
3. Donner sans justification la valeur maximale et la valeur minimale de la fonction s. 4. Tracer, sur le graphique du document réponse, l’allure de la courbe représentative de la fonction s. Il n’est pas demandé d’étudier la fonction s.
La figure du document réponse montre une simulation du résultat obtenu en sortie du filtre numérique soumis à une version échantillonnée de la fonction f , lorsque la période d’échantillonnnage est 0, 02. Document à rendre avec la copie
11.21 France 2008. On considère un système analogique « entrée-sortie » dans lequel le signal d’entrée est représenté par une fonction e et celui de sortie par une fonction s. Une fonction définie sur R est dite causale si elle est nulle sur l’intervalle ] − ∞ ; 0[. Les fonctions e et s sont des fonctions causales et on suppose qu’elles admettent des transformées de Laplace notées respectivement E et S. On rappelle que la fonction échelon unité U est définie sur R par : (
U(t) = 0 si t < 0 U(t) = 1 si t > 0
1. La fonction de transfert H du système est définie par S(p) = H(p) × E(p). 1 et e(t) = U(t). On suppose , dans le cadre de cette étude, que H(p) = 1+2p http://lyceeenligne.free.fr
18
Cours de mathématiques
STS
a. Déterminer S(p). b. Déterminer les réels α et β tels que S(p) =
α p
+
β
1. p+ 2
c. En déduire s(t). 2. On se propose d’approcher la fonction de transfert analogique H par la fonction de 1−z −1 10z−10 transfert numérique F telle que F (z) = H 10 1+z . = H −1 z+1 L’entrée et la sortie du système numérique sont modélisés respectivement par deux signaux causaux discrets x et y, admettant des transformées en Z notées respectivement X et Y . On se place toujours dans le cas où le signal d’entrée du système analogique est U(t). Le signal d’entrée du système analogique est échantillonné au pas de 0, 2. Ainsi, le signal d’entrée x du système numérique est défini par x(n) = U(0, 2n) pour tout nombre entier naturel n. Les transformées en Z des signaux x et y vérifient Y (z) = F (z) × X(z). a. Montrer que F (z) =
z+1 . 21z−19
b. Déterminer X(z). !
z z 20 c. Vérifier que Y (z) = − 19 . z − 1 21 z − 21 En déduire l’expression y(n), pour tout nombre entier naturel n. 3. Compléter le tableau en donnant des valeurs approchées à 10−3 près des résultats demandés. n y(n) t = 0, 2n s(t) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 La méthode utilisée dans l’exercice 1, pour discrétiser le système analogique, est souvent appelée transformation bilinéaire. Dans le cadre de l’exemple étudié, nous observons que cette transformation préserve la stabilité du système et que les signaux de sortie analogique et numérique convergent vers la même limite.
19
Table des matières 1
2
3 4
Signaux discrets . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 1.2 Exemples de signaux discret . . . . . . . . . . . . . 1.3 Opération sur les signaux discrets . . . . . . . . . . Transformée en z . . . . . . . . . . . . . . . . . . . . . . . 2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . 2.2 Transformées en z usuelles . . . . . . . . . . . . . . 2.3 Propriétés de la transformation en z . . . . . . . . . 2.4 Théorèmes de la valeur initiale et de la valeur finale
Applications : Résolution d’équations récurrentes Exercices . . . . . . . . . . . . . . 4.1 Signaux discrets causaux . 4.2 Calcul de transformées . . 4.3 Recherche d’originaux . . 4.4 Résolution d’équations aux 4.5 Annales . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . différences . . . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
1 1 1 3 4 4 5 7 9 9 11 11 12 13 14 15
View more...
Comments