STRUCTURAL DRAWING AND CALCULATION

March 14, 2017 | Author: Punya Suresh | Category: N/A
Share Embed Donate


Short Description

architecture, structural drawing and calculation of a small villa....

Description

A

B

C

D

E

F

G

H

J

I

K

L

M

N

2380 10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

10

10

GRC SCREEN.

V

1 200

+ 60 CM.

STORE

300 x 180

BATH 180 x 250

2

GRC SCREEN.

2

D3

180

180

D3

BED ROOM - 2

3

3 D3

140

140

600 x 500 arch

4

KITCHEN

4

400 1680

1680

400

600 x 700

820 x 600 GRC SCREEN.

6

BATH

V

260 x 180

5

DRESS

V

TOILET

WASH

260 x 200

190 x 200

GRC SCREEN.

200

6 200

20

FAMILY HALL 20

5

200

1

D4

7

7 D3

WASH

D3

180 x 160

550 x 500

180 x 230

+ 75 CM.

200 x 260

BED ROOM

520

520

MAJLIS

600 x 500

FOYER

L.MAJLIS

TOILET

D1

550 x 500

V

10

8 10

8 ENTR.

480 x 200 + 60 CM.

± 0.00 cm. LVL.

10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

2380

A

B

C

D

E

F

G

H

I

GROUND FLOOR PLAN

J

K

L

M

N

A

B

C

D

E

F

G

H

J

I

K

L

M

N

2380 10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

10

10

GRC SCREEN.

V

1 200

+ 60 CM.

STORE

300 x 180

BATH 180 x 250

2

GRC SCREEN.

2

D3

180

180

D3

BED ROOM - 2

3

3 D3

140

140

600 x 500 arch

4

KITCHEN

4

400 1680

1680

400

600 x 700

820 x 600 GRC SCREEN.

6

BATH

V

260 x 180

5

DRESS

V

TOILET

WASH

260 x 200

190 x 200

GRC SCREEN.

200

6 200

20

FAMILY HALL 20

5

200

1

D4

7

7 D3

WASH

D3

180 x 160

550 x 500

180 x 230

+ 75 CM.

200 x 260

BED ROOM

520

520

MAJLIS

600 x 500

FOYER

L.MAJLIS

TOILET

D1

550 x 500

V

10

8 10

8 ENTR.

480 x 200 + 60 CM.

± 0.00 cm. LVL.

10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

2380

A

B

C

D

E

F

G

H

I

GROUND FLOOR PLAN

J

K

L

M

N

A

B

C

D

E

F

G

H

I

J

K

L

M

N

2380 160

140

150

50

570

200

20

180

150

150

140

180

10

10

270

10

10

1

1

PE

2 SL OP E

180

180

O SL

SLOPE

2

200

200

( 1 Nos.) CENTRAL DISH ANTENA

140

3 140

3 4

4

200

SLOPE

1680

PE

5 6

200

20

SL O

6

20

1680

E OP SL

5

400

400

STEEL LADDER WITH COVER.

SLOPE

7

7 S LO

PE

SL OP

520

520

E

10

8 10

8

10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

2380

A

B

C

D

E

F

G

H

TERRACE FLOOR PLAN

I

J

K

L

M

N

SCHEDULE OF FOOTINGS P. C. C.

TYPE

A

B

C

D

E

F

G

H

I

J

K

L

M

N

2380 160

140

150

50

570

200

20

180

150

150

140

180

10

LONG BARS

D

L

B

D

140

10

120

120

30

Y14 @ 20 C/C

Y14 @ 20 C/C

F2

170

150

10

150

130

35

Y14 @ 20 C/C

Y14 @ 20 C/C

F3

190

170

10

170

150

40

Y14 @ 20 C/C

Y14 @ 20 C/C

F4

220

190

10

200

170

45

Y14 @ 18 C/C

Y14 @ 18 C/C

F5

230

200

10

210

180

50

Y14 @ 18 C/C

Y14 @ 18 C/C

F6

240

210

10

220

190

50

Y14 @ 18 C/C

Y14 @ 18 C/C

F7

270

220

10

250

200

50

Y14 @ 15 C/C

Y14 @ 15 C/C

F8

240

240

10

220

220

50

Y14 @ 15 C/C

Y14 @ 15 C/C

F9

270

240

10

250

220

50

Y14 @ 15 C/C

Y14 @ 15 C/C

F10

320

300

10

300

280

60

Y14 @ 15 C/C

Y14 @ 15 C/C

F11

330

310

10

310

290

60

Y14 @ 15 C/C

Y14 @ 15 C/C

F12

350

330

10

330

310

65

Y14 @ 12 C/C

Y14 @ 12 C/C

F13

370

340

10

350

320

65

Y14 @ 12 C/C

Y14 @ 12 C/C

CF1

510

260

10

490

240

60

Y14 @ 12 C/C

Y14 @ 12 C/C

1 C9,F3

C2,F5

200

C2,F5

C2,F4

C2,F4

200

1

180

180

2 C9,F3

C4,F7

140

3 140

3

4

4 C4,F9

C7,F13

C4,F7 400 1680 20

20

1680

400

C6,F11

C1,F3 200

C5

C5

7

C3,F6

C6,F10

C7,F12

150

6 Y 14

Y8 @ 15 C/C

C2

20 x 40

6 Y 16

Y8 @ 15 C/C

C3

20 x 50

8 Y 14

Y8 @ 15 C/C

C4

20 x 60

8 Y 16

Y8 @ 15 C/C

C5

20 x 60

10 Y 16

Y8 @ 15 C/C

C6

20 x 70

10 Y 16

Y8 @ 15 C/C

C7

20 x 80

10 Y 20

Y8 @ 15 C/C

C8

30 DIA

6 Y 14

Y8 @ 15 C/C

C9

AS/DT

6 Y 14

Y8 @ 15 C/C

5

180

180

CF1 140

6 Y 14 Y 8 @ 15 C/C

240 100

20 20

240

8

100

8

20 x 40

7

C1,F1 C3,F7

BINDERS

STEEL

C1

6

C3,F7

C4,F8

GR. FLOOR SIZE

200

6

SCHEDULE OF COLUMNS TYPE

2

5

SHORT BARS

B

140

10

270

10

10

R. C. C.

L

F1

C3,F6

C3,F6

C4,F7

C2,F5

C4,F9

10

10

C1,F4

20

9 10

20

9 10

DETAIL OF COLUMN C9 C8,F2

C8,F2

10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

2380

A

B

C

D

E

F

G

H

FOUNDATION LAYOUT

I

J

K

L

M

N

REMARKS

REMARKS

T /B

SCHEDULE OF PLINTH BEAMS TYPE

SIZE

BOTT STEEL

CURTAIL

P1

20 x 40

2 Y 14

--------

TOP STEEL EXT TOP OVER 2 Y 14

--------

Y8 @ 15 C/C

P2

20 x 40

2 Y 14

--------

2 Y 14

2 Y 14

Y8 @ 15 C/C

P3

20 x 40

2 Y 14

--------

4 Y 14

--------

Y8 @ 15 C/C

P4

20 x 50

2 Y 14

--------

2 Y 14

2 Y 14

Y8 @ 15 C/C

P5

20 x 50

2 Y 14

--------

4 Y 14

--------

Y8 @ 15 C/C

P6

20 x 50

2 Y 14

2 Y 14

2 Y 14

2 Y 14

Y8 @ 15 C/C

P7

20 x 50

2 Y 14

2 Y 14

2 Y 14

--------

Y8 @ 15 C/C

P8

20 x 60

2 Y 14

2 Y 14

2 Y 14

2 Y 14

Y8 @ 15 C/C

STIRRUPS

CONT. SUPP.

A

B

C

D

E

F

G

H

I

J

K

L

M

N

2380 160

140

150

50

570

200

P2

20

180

150

150

140

P3

180

10

10

270

10

10

P1

1 P1

200

P3

200

1

P5

2

2 180

P6 P6

4

X

P8

1No. Y8

3 140

140

Tread

P2

P1

Y 8 @ 15 C/C

4

X

Riser

P2

3

P6

180

P6

P8 P1

STAIR STARTER 400

P2

Starter Beam

10 10 1680

P7

1680

P6

P8

400

P2

Floor Finish level

P6 20

P8

20

5

P6

P8

200

7

P5 180

P6

180

P5

P3

P1

P1

P3

P1

P1

P1

P5

P6

8

8 P6

240

P6

P6

9

P4

240

P6

P4

P1

9 100

P1

10

P8

P5

P6

10

P5

P4

10

P1

100

P1

10

P2

10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

2380

A

B

C

D

E

F

G

PLINTH BEAMS LAYOUT

H

I

J

K

L

M

N

10 PCC M15

5 6

200

6

7

Waist slab as per schedule

P6

SECTION X-X

REMARKS

A

B

C

D

E

F

G

H

I

J

K

L

M

N

2380

200

180

S1

2

B11

B3

1

2

3 140

140

10

S1

B9 S1

4

180

B2

S4

B1 S1

140

B7

3Y14, T&B

B7

180

S4

150

B2

B3

3

150

B1

B3

1

20

10

200

200

570

180

50

B12

150

B1

140

3Y14, T&B

160

B11

270

10

10

B8

4

B9

Y10@15 C/C

B9 B6

B8

7

B1 180

B7

180

B7

S1

200

S1

3Y14, T&B

S4

240

S1

B4

S3

B7

B7

8

S1

B7

B4

S3

B7

8 240

5 6

3Y14, T&B

B16

B1

3Y14, T&B

3Y14, T&B

B1

200

7

400 20

B9

Y12@12 C/C

B1

6 S1

1680

B10/B13 CRANKED

HB1

21

B12

20

5

1680

S5

B4

B3

400

S5

B1 100

9 100

9 B7

B1

10

B6

B5

10

B6

B5

10 B1

10

S1

B2

10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

2380

A

B

C

D

E

F

G

H

I

J

GROUND FLOOR ROOF SLABS & BEAMS LAYOUT

K

L

M

N

A

B

C

D

E

F

G

H

I

J

K

L

M

N

2380

B7

B3

B1

140

10

B2

S1

1

S1

2 B9

B1

3

S1

B8

4

B9

400 20

B9

7

SF

Y10@15 C/C

B6

B8

7

B1 180

B7

180

B7

S1

200

S1

3Y14, T&B

S4

240

S1

B4

S3

B7

B7

8

S1

B7

B4

S3

B7

8 240

5 6

3Y14, T&B

B16

B1

3Y14, T&B

B1

S1

B9

Y12@12 C/C

3Y14, T&B

20

6

1680

SF

B12

B1

1680

B4

HB1

21 S5

200

S5

B10/B13 CRANKED

B3

400

SF

5

180

S1

3Y14, T&B

S1

140

140

200 180

S4

150

B5

S1

2

4

150

B1

B3

3

180

10

B3

1

20

200

200

180

570

B12

50

B1

150

B11

140

B11

160

B7

270

10

10

B1 100

9 100

9 B7

B1

10

B6

B5

10

B6

B5

10 B1

10

S1

B2

10

270

160

140

150

50

570

200

20

180

150

150

140

180

10

2380

A

B

C

D

E

F

G

H

I

J

FIRST FLOOR ROOF SLABS & BEAMS LAYOUT

K

L

M

N

SCHEDULE OF ROOF BEAMS TYPE

SIZE

BOTT STEEL

CURTAIL

TOP STEEL EXT TOP OVER

STIRRUPS

REMARKS

CONT. SUPP.

G

H

I

J

420 20

180

10

10

200

10

10

B7

2 Y 14

--------

2 Y 14

--------

Y8 @ 15 C/C

20 x 50

2 Y 16

--------

2 Y 16

--------

Y8 @ 15 C/C

B3

20 x 50

2 Y 14

--------

2 Y 14

2 Y 14

Y8 @ 15 C/C

B4

20 x 50

2 Y 16

1 Y 16

2 Y 16

2 Y 16

Y8 @ 15 C/C

B5

20 x 60

2 Y 16

--------

2 Y 16

2 Y 16

Y8 @ 15 C/C

B6

20 x 60

2 Y 16

--------

4 Y 16

--------

Y8 @ 15 C/C

B7

20 x 60

2 Y 16

2 Y 16

2 Y 16

2 Y 16

Y8 @ 15 C/C

B8

20 x 60

2 Y 16

2 Y 16

2 Y 20

2 Y 20

Y8 @ 15 C/C

B9

20 x 70

3 Y 16

2 Y 16

2 Y 20

2 Y 20

Y10 @ 15 C/C

2 Y 12 FB

B10

20 x 80

2 Y 20

2 Y 20

2 Y 20

2 Y 20

Y10 @ 15 C/C

4 Y 12 FB

B11

20 x 60

2 Y 16

--------

4 Y 20

--------

Y8 @ 15 C/C

B12

20 x 70

2 Y 20

2 Y 16

2 Y 16

2 Y 16

Y8 @ 15 C/C

2 Y 12 FB

B13

20 x 70

4 Y 16

--------

4 Y 16

--------

Y8 @ 15 C/C

2 Y 12 FB

B14

20 x 70

2 Y 16

2 Y 16

2 Y 16

2 Y 16

Y8 @ 15 C/C

2 Y 12 FB

B15

20 x 70

2 Y 20

2 Y 20

2 Y 16

2 Y 16

Y10 @ 15 C/C

2 Y 12 FB

B16

20 x 50

2 Y 14

--------

4 Y 14

--------

Y8 @ 15 C/C

HB1

100 x 40

10 Y 25

--------

10 Y 14

--------

Y10 @ 15 C/C

B15

B14

640 20

640

S2

20

5

20 x 40

B2

400

4

400

4

B1

5

200

6 200

6

B7

10

200

20

180

10

420

G

H

THICK

SHORT BARS

LONG BARS

S1

130

Y10 @ 15 C/C

Y10 @ 15 C/C

REMARKS

S2

160

Y10 @ 15 C/C

Y10 @ 15 C/C

S3

180

Y10 @ 15 C/C

Y10 @ 15 C/C

S4

180

Y10 @ 12 C/C

Y10 @ 15 C/C

S5

210

Y12 @ 12 C/C

Y10 @ 12 C/C

T /B

SF

210

Y12 @ 14 C/C

Y16 @ 14 C/C

T /B

10

7 10

7

SCHEDULE OF SLABS TYPE

I

J

STAIRCASE ROOF SLAB & BEAMS LAYOUT

6- LEGGED

Project:

Page - 1 of 2

Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :

S1 Quick Check : OK for Deflection

Span : Short span, Lx: Long span , Ly:

2000 mm 4000 mm

Short steel - T10 @ 150 Long steel - T10 @ 150

Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2

Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :

3.25 2.00 0.00 4.00

Total Dead load (DL):

2 9.25 kN/m

Total Live load (LL):

2 2.00 kN/m

Ult. Load (1.4DL+1.6LL):

- Assumed Slab thickness, D = 130 (Unit wt. of Conc. = 25 kN/m 3)

mm

2 16.15 kN/m

Slab Analysis : Ly/Lx = Type of panel :

2.00 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous

Short span coeff, Bsx : for negative BM : for positive span BM :

0.000 0.111

Corresponding BM : at support = at mid span =

0.00 kN-m/m (for short - top steel) 7.17 kN-m/m (for short - bottom steel)

Long Span coeff, Bsy : for negative BM : for positive span BM :

0.000 0.056

Corresponding BM : at support = at mid span =

0.00 kN-m/m (for long - top steel) 3.62 kN-m/m (for long - bottom steel)

Project :

0.000

Page - 2 of 2

Slab No : S1 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :

130 mm 105 mm

Cover : Bar size (short) : Bar size (long) :

Calculation of reinforcements: BM b

d

fy

Short steel : bottom: top:

7.171 0.000

1000 1000

105 460 105 460

Long steel : bottom: top:

3.618 0.000

1000 1000

95 460 95 460

Short span : b= d= fck = fy = Ult BM = Mu/bd2 =

2000 1000 105 25 460 7.171 0.650

mm mm mm kN/m 2 kN/m 2 kN-m

pt reqd. = As,reqd. = As,provd. = Service stress fs =

0.153 161 524 94

% mm 2 mm 2 N/mm 2

fck

Mu bd2

25 0.65 25 0.00

20 mm 10 mm; (area of one bar = 10 mm; (area of one bar =

2 79 mm ) 2 79 mm )

pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm 0.153 0.000

161 0

169 169

10 @ 10 @

150 150

524 524

25 0.40 0.093 89 169 10 @ 150 25 0.00 0.000 0 169 10 @ 150 Refer section - 3.4.4.4 (page - 20), BS8110.

524 524

Deflection Check :

MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10

Modification Factor for Tension Reinf., MF : 2.00 Permissible L/d ratio :

; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0

Basic L/d x Modification for Tension steel

Perm. L/d =

20

Perm. L/d =

40.00

X

2.00

Actual L/d ratio = 19.05 - SAFE

- Limited to 2.0

Project:

Page - 1 of 2

Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :

S2 Quick Check : OK for Deflection

Span : Short span, Lx: Long span , Ly:

4200 mm 6200 mm

Short steel - T10 @ 150 Long steel - T10 @ 150

Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2

Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :

4.00 2.00 0.00 0.00

Total Dead load (DL):

2 6.00 kN/m

Total Live load (LL):

2 2.00 kN/m

Ult. Load (1.4DL+1.6LL):

- Assumed Slab thickness, D = 160 (Unit wt. of Conc. = 25 kN/m 3)

mm

2 11.60 kN/m

Slab Analysis : Ly/Lx = Type of panel :

1.48 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous

Short span coeff, Bsx : for negative BM : for positive span BM :

0.000 0.092

Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 18.83 kN-m/m (for short - bottom steel)

Long Span coeff, Bsy : for negative BM : for positive span BM :

0.000 0.056

Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 11.46 kN-m/m (for long - bottom steel)

Project :

0.000

Page - 2 of 2

Slab No : S2 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :

160 mm 135 mm

Cover : Bar size (short) : Bar size (long) :

Calculation of reinforcements: BM b

d

fy

fck

Mu bd2

20 mm 10 mm; (area of one bar = 10 mm; (area of one bar =

2 79 mm ) 2 79 mm )

pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm

Short steel : bottom: top:

18.825 0.000

1000 1000

135 460 135 460

25 1.03 25 0.00

150 150

524 524

Long steel : bottom: top:

11.459 0.000

1000 1000

125 460 125 460

25 0.73 0.174 217 208 10 @ 150 25 0.00 0.000 0 208 10 @ 150 Refer section - 3.4.4.4 (page - 20), BS8110.

524 524

4200 1000 135 25 460 18.825 1.033

mm mm mm kN/m 2 kN/m 2 kN-m

0.248 335 524 196

% mm 2 mm 2 N/mm 2

0.248 0.000

335 0

208 208

10 @ 10 @

Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =

MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10

Modification Factor for Tension Reinf., MF : 1.76 Permissible L/d ratio :

; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0

Basic L/d x Modification for Tension steel

Perm. L/d =

20

Perm. L/d =

35.20

X

1.76

Actual L/d ratio = 31.11 - SAFE

- Limited to 2.0

Project:

Page - 1 of 2

Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :

S3 Quick Check : OK for Deflection

Span : Short span, Lx: Long span , Ly:

5200 mm 5700 mm

Short steel - T10 @ 150 Long steel - T10 @ 150

Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2

Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :

4.50 2.00 0.00 0.00

Total Dead load (DL):

2 6.50 kN/m

Total Live load (LL):

2 2.00 kN/m

Ult. Load (1.4DL+1.6LL):

- Assumed Slab thickness, D = 180 (Unit wt. of Conc. = 25 kN/m 3)

mm

2 12.30 kN/m

Slab Analysis : Ly/Lx = Type of panel :

1.10 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous

Short span coeff, Bsx : for negative BM : for positive span BM :

0.000 0.067

Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 22.28 kN-m/m (for short - bottom steel)

Long Span coeff, Bsy : for negative BM : for positive span BM :

0.000 0.056

Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 18.63 kN-m/m (for long - bottom steel)

Project :

0.000

Page - 2 of 2

Slab No : S3 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :

180 mm 155 mm

Cover : Bar size (short) : Bar size (long) :

Calculation of reinforcements: BM b

d

fy

fck

Mu bd2

20 mm 10 mm; (area of one bar = 10 mm; (area of one bar =

2 79 mm ) 2 79 mm )

pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm

Short steel : bottom: top:

22.284 0.000

1000 1000

155 460 155 460

25 0.93 25 0.00

150 150

524 524

Long steel : bottom: top:

18.625 0.000

1000 1000

145 460 145 460

25 0.89 0.211 307 234 10 @ 150 25 0.00 0.000 0 234 10 @ 150 Refer section - 3.4.4.4 (page - 20), BS8110.

524 524

5200 1000 155 25 460 22.284 0.928

mm mm mm kN/m 2 kN/m 2 kN-m

0.222 344 524 201

% mm 2 mm 2 N/mm 2

0.222 0.000

344 0

234 234

10 @ 10 @

Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =

MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10

Modification Factor for Tension Reinf., MF : 1.81 Permissible L/d ratio :

; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0

Basic L/d x Modification for Tension steel

Perm. L/d =

20

Perm. L/d =

36.14

X

1.81

Actual L/d ratio = 33.55 - SAFE

- Limited to 2.0

Project:

Page - 1 of 2

Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :

S4 Quick Check : OK for Deflection

Span : Short span, Lx: Long span , Ly:

5200 mm 6200 mm

Short steel - T10 @ 120 Long steel - T10 @ 150

Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2

Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :

4.50 2.00 0.00 0.00

Total Dead load (DL):

2 6.50 kN/m

Total Live load (LL):

2 2.00 kN/m

Ult. Load (1.4DL+1.6LL):

- Assumed Slab thickness, D = 180 (Unit wt. of Conc. = 25 kN/m 3)

mm

2 12.30 kN/m

Slab Analysis : Ly/Lx = Type of panel :

1.19 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous

Short span coeff, Bsx : for negative BM : for positive span BM :

0.000 0.074

Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 24.61 kN-m/m (for short - bottom steel)

Long Span coeff, Bsy : for negative BM : for positive span BM :

0.000 0.056

Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 18.63 kN-m/m (for long - bottom steel)

Project :

0.000

Page - 2 of 2

Slab No : S4 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :

180 mm 155 mm

Cover : Bar size (short) : Bar size (long) :

Calculation of reinforcements: BM b

d

fy

fck

Mu bd2

20 mm 10 mm; (area of one bar = 10 mm; (area of one bar =

2 79 mm ) 2 79 mm )

pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm

Short steel : bottom: top:

24.612 0.000

1000 1000

155 460 155 460

25 1.02 25 0.00

120 150

654 524

Long steel : bottom: top:

18.625 0.000

1000 1000

145 460 145 460

25 0.89 0.211 307 234 10 @ 150 25 0.00 0.000 0 234 10 @ 150 Refer section - 3.4.4.4 (page - 20), BS8110.

524 524

5200 1000 155 25 460 24.612 1.024

mm mm mm kN/m 2 kN/m 2 kN-m

0.246 382 654 179

% mm 2 mm 2 N/mm 2

0.246 0.000

382 0

234 234

10 @ 10 @

Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =

MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10

Modification Factor for Tension Reinf., MF : 1.84 Permissible L/d ratio :

; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0

Basic L/d x Modification for Tension steel

Perm. L/d =

20

Perm. L/d =

36.83

X

1.84

Actual L/d ratio = 33.55 - SAFE

- Limited to 2.0

Project:

Page - 1 of 2

Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :

S5 Quick Check : OK for Deflection

Span : Short span, Lx: Long span , Ly:

6200 mm 7200 mm

Short steel - T12 @ 120 Long steel - T12 @ 120

Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2

Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :

5.25 2.00 0.00 0.00

Total Dead load (DL):

2 7.25 kN/m

Total Live load (LL):

2 2.00 kN/m

Ult. Load (1.4DL+1.6LL):

- Assumed Slab thickness, D = 210 (Unit wt. of Conc. = 25 kN/m 3)

mm

2 13.35 kN/m

Slab Analysis : Ly/Lx = Type of panel :

1.16 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous

Short span coeff, Bsx : for negative BM : for positive span BM :

0.000 0.074

Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 37.97 kN-m/m (for short - bottom steel)

Long Span coeff, Bsy : for negative BM : for positive span BM :

0.000 0.056

Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 28.74 kN-m/m (for long - bottom steel)

Project :

0.000

Page - 2 of 2

Slab No : S5 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :

210 mm 184 mm

Cover : Bar size (short) : Bar size (long) :

Calculation of reinforcements: BM b

d

fy

fck

Mu bd2

20 mm 12 mm; (area of one bar = 12 mm; (area of one bar =

2 113 mm ) 2 113 mm )

pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm

Short steel : bottom: top:

37.975 0.000

1000 1000

184 460 184 460

25 1.12 25 0.00

120 120

942 942

Long steel : bottom: top:

28.738 0.000

1000 1000

172 460 172 460

25 0.97 0.233 400 273 12 @ 120 25 0.00 0.000 0 273 12 @ 120 Refer section - 3.4.4.4 (page - 20), BS8110.

942 942

6200 1000 184 25 460 37.975 1.122

mm mm mm kN/m 2 kN/m 2 kN-m

0.271 499 942 162

% mm 2 mm 2 N/mm 2

0.271 0.000

499 0

273 273

12 @ 12 @

Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =

MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10

Modification Factor for Tension Reinf., MF : 1.85 Permissible L/d ratio :

; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0

Basic L/d x Modification for Tension steel

Perm. L/d =

20

Perm. L/d =

36.95

X

1.85

Actual L/d ratio = 33.70 - SAFE

- Limited to 2.0

Project:

Page - 1 of 2

Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :

S5 Quick Check : OK for Deflection

Span : Short span, Lx: Long span , Ly:

6200 mm 6200 mm

Short steel - T12 @ 120 Long steel - T12 @ 120

Loads : Self wt. of slab : Floor/roof finishes : Partition walls : Other Services : Total Dead load (DL): Total Live load (LL): Ult. Load (1.4DL+1.6LL):

5.25 2.00 0.00 4.00

kN/m 2 kN/m 2 kN/m 2 kN/m 2

- Assumed Slab thickness, D = 210 (Unit wt. of Conc. = 25 kN/m 3)

mm

2 11.25 kN/m 2 2.00 kN/m 2 18.95 kN/m

Slab Analysis : Ly/Lx = Type of panel :

1.00 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous

Short span coeff, Bsx : for negative BM : for positive span BM :

0.000 0.055

Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 40.06 kN-m/m (for short - bottom steel)

Long Span coeff, Bsy : for negative BM : for positive span BM :

0.000 0.056

Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 40.79 kN-m/m (for long - bottom steel)

Project :

0.000

Page - 2 of 2

Slab No : S5 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :

210 mm 184 mm

Cover : Bar size (short) : Bar size (long) :

Calculation of reinforcements: BM b

d

fy

fck

Mu bd2

20 mm 12 mm; (area of one bar = 12 mm; (area of one bar =

2 113 mm ) 2 113 mm )

pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm

Short steel : bottom: top:

40.064 0.000

1000 1000

184 460 184 460

25 1.18 25 0.00

120 120

942 942

Long steel : bottom: top:

40.793 0.000

1000 1000

172 460 172 460

25 1.38 0.338 581 273 12 @ 120 25 0.00 0.000 0 273 12 @ 120 Refer section - 3.4.4.4 (page - 20), BS8110.

942 942

6200 1000 184 25 460 40.064 1.183

mm mm mm kN/m 2 kN/m 2 kN-m

0.287 528 942 172

% mm 2 mm 2 N/mm 2

0.287 0.000

528 0

273 273

12 @ 12 @

Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =

MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10

Modification Factor for Tension Reinf., MF : 1.77 Permissible L/d ratio :

; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0

Basic L/d x Modification for Tension steel

Perm. L/d =

20

Perm. L/d =

35.42

X

1.77

Actual L/d ratio = 33.70 - SAFE

- Limited to 2.0

DESIGN OF STAIR CASE WAIST SLAB SF Loading on the stair. Thickness of waist slab(assumed) = 20.00 cm 2 Self wight of the waist slab = 5.00 kN/m 2 Bottom finish = 0.50 kN/m 2 Top finish = 1.00 kN/m Tread of the step(assumed) Rise of the step(assumed) Load from steps Total dead load Load on plan area Live load Total load Factored load Span

= 25.00 cm = 15.00 cm 2 = 0.47 kN/m 2 = 6.97 kN/m 2 = 8.13 kN/m 2 = 3.00 kN/m 2 = 11.13 kN/m = 1.5*DL + 1.5*LL = =

2 16.69 kN/m

6.2 m

21

6.2 m Factored Bending Moment Depth required Thickness of slab provided Area of steel required Diameter of bar provided Spacing of bar required Provide a spacing of Area of steel provided Check for deflection :Basic L/D = Service stress on steel (fs) Modification factor

2 = w l /8 = 80.20 kNm = 170.46 mm = 21 cm 2 = 1321.68 mm = 16 mm = 15.20 cm = 14 cm c/c 2 = 1435.43 mm

20 = 5 x fy x Area of steel rqd / 8 x Area of steel prvd. 2 = 238.82 N/mm 2 = 0.55+{(477-fs)/(120[0.9+Mu/bd ]) 12

LONG COLUMN

C1

MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =

=

20.00 mm 19.13 mm

(Since eminPu)

GRID K = Column Size Assumed

a= 400

Maximum Lmit State Load (Pu) = Floor Height(lf)

0.85

b = 200

3.40 M

700.00 KN Depth of beam assumed(D)

0.50

Un supported length of Column (lun) = (lf -D) =

2.90 M

Effective length of Column (leff) = K lun

2.47 M

C2

M =

2465 mm

SLENDERNESS RATIO (leff)/b = 12.325 MINIMUM ECCENTRICITY 0.05 x a = emin = (lun/500) + (a/30) =

, Since (leff)/b >12

LONG COLUMN 20.00 mm 19.13 mm

O.K

(Since eminPu)

REF .

Sheet No

GRID Assumed, columns are effectively held in position and restrained against rotation at one end, and the other end partially restrained against rotation but not held in position

K = 0.85 Column Size Assumed

a= 500

Maximum Lmit State Load (Pu) = Floor Height(lf)

a

b = 200 3.40 M

b

875.00 KN Depth of beam assumed(D)

0.50 M

Un supported length of Column (lun) = (lf -D) =

2.90 M

Effective length of Column (leff) = K lun

2.47 M

=

2465 mm

SLENDERNESS RATIO (leff)/b =

12.325

.

, Since (leff)/b >12

LONG COLUMN

C3

MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =

=

25.00 mm 22.47 mm

(Since eminPu)

GRID K = Column Size Assumed

a= 600

Maximum Lmit State Load (Pu) = Floor Height(lf)

0.85

b = 200

3.40 M

1035.00 KN Depth of beam assumed(D)

0.50

Un supported length of Column (lun) = (lf -D) =

2.90 M

Effective length of Column (leff) = K lun

2.47 M

C4

M =

2465 mm

SLENDERNESS RATIO (leff)/b = 12.325 MINIMUM ECCENTRICITY 0.05 x a = emin = (lun/500) + (a/30) =

, Since (leff)/b >12

LONG COLUMN 30.00 mm 25.80 mm

O.K

(Since eminPu)

REF .

Sheet No

GRID Assumed, columns are effectively held in position and restrained against rotation at one end, and the other end partially restrained against rotation but not held in position

K = 0.85 Column Size Assumed

a

b = 200

a= 600

Maximum Lmit State Load (Pu) = Floor Height(lf)

3.40 M

b

1160.00 KN Depth of beam assumed(D)

0.50 M

Un supported length of Column (lun) = (lf -D) =

2.90 M

Effective length of Column (leff) = K lun

2.47 M

=

2465 mm

SLENDERNESS RATIO (leff)/b =

12.325

.

, Since (leff)/b >12

LONG COLUMN

C5

MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =

=

30.00 mm 25.80 mm

(Since eminPu)

GRID K = Column Size Assumed

a= 700

Maximum Lmit State Load (Pu) = Floor Height(lf)

0.85

b = 200

3.40 M

1697.00 KN Depth of beam assumed(D)

0.50

Un supported length of Column (lun) = (lf -D) =

2.90 M

Effective length of Column (leff) = K lun

2.47 M

C6

M =

2465 mm

SLENDERNESS RATIO (leff)/b = 12.325 MINIMUM ECCENTRICITY 0.05 x a = emin = (lun/500) + (a/30) =

, Since (leff)/b >12

LONG COLUMN 35.00 mm 29.13 mm

O.K

(Since eminPu)

REF .

Sheet No

GRID Assumed, columns are effectively held in position and restrained against rotation at one end, and the other end partially restrained against rotation but not held in position

K = 0.85 Column Size Assumed

a

b = 200

a= 800

Maximum Lmit State Load (Pu) = Floor Height(lf)

3.40 M

b

2123.00 KN Depth of beam assumed(D)

0.50 M

Un supported length of Column (lun) = (lf -D) =

2.90 M

Effective length of Column (leff) = K lun

2.47 M

=

2465 mm

SLENDERNESS RATIO (leff)/b =

12.325

.

, Since (leff)/b >12

LONG COLUMN

C7

MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =

=

40.00 mm 32.47 mm

(Since eminPu)

GRID K = Column Size Assumed

a= 400

Maximum Lmit State Load (Pu) = Floor Height(lf)

0.85

b = 176

3.40 M

375.00 KN Depth of beam assumed(D)

0.50

Un supported length of Column (lun) = (lf -D) =

2.90 M

Effective length of Column (leff) = K lun

2.47 M

C8

M =

2465 mm

SLENDERNESS RATIO (leff)/b = 14.0056818 MINIMUM ECCENTRICITY 0.05 x a = emin = (lun/500) + (a/30) =

, Since (leff)/b >12

LONG COLUMN 20.00 mm 19.13 mm

O.K

(Since eminPu)

REF .

Sheet No

GRID Assumed, columns are effectively held in position and restrained against rotation at one end, and the other end partially restrained against rotation but not held in position

K = 0.85 Column Size Assumed

a= 400

Maximum Lmit State Load (Pu) = Floor Height(lf)

a

b = 200 3.40 M

b

500.00 KN Depth of beam assumed(D)

0.50 M

Un supported length of Column (lun) = (lf -D) =

2.90 M

Effective length of Column (leff) = K lun

2.47 M

=

2465 mm

SLENDERNESS RATIO (leff)/b =

12.325

.

, Since (leff)/b >12

LONG COLUMN

C9

MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =

=

20.00 mm 19.13 mm

(Since eminPu)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

285.00 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

190.00 KN 209.00 KN

S.B.C

150.00 KN/M2 1.39 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

1.20

Fy =

460

Column size ( a x b) N/mm 2

B

1.20

Fc =

25

N/mm 2

1.44 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 400 mm =

d

240 mm

B1

440 mm

L1

640 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 = DESIGN Cantilever Projections, (L-b)/2 = Maximum Projection considered (a1)

K/0.90 =

=

0.01908918 ,

0.44 N/mm 2 0.50 1.00 1.00 1.250 N/mm 2

(B-b)/2 = m

0.50

0.2816

=

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

186.48

Z=

228.00

=

228.00 271 mm 2 14 @ 153860.00 2 769 mm 0.32 >

0.11 > 0.12%(Min) 200

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

397.50 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

265.00 KN 291.50 KN

S.B.C

150.00 KN/M2 1.94 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

1.50

Fy =

460

Column size ( a x b) N/mm 2

B

1.30

Fc =

25

N/mm 2

1.95 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 500 mm =

d

290 mm

B1

490 mm

L1

790 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 = DESIGN Cantilever Projections, (L-b)/2 = Maximum Projection considered (a1)

K/0.90 =

=

0.01629369 ,

0.43 N/mm 2 0.40 0.90 0.90 1.125 N/mm 2

(B-b)/2 = m

0.55

0.3871

=

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

225.33

Z=

275.50

=

275.00 280 mm 2 14 @ 153860.00 2 769 mm 0.27 >

0.10 > 0.12%(Min) 200

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

510.00 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

340.00 KN 374.00 KN

S.B.C

150.00 KN/M2 2.49 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

1.70

Fy =

460

Column size ( a x b) N/mm 2

B

1.50

Fc =

25

N/mm 2

2.55 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 500 mm =

d

340 mm

B1

540 mm

L1

840 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 = DESIGN Cantilever Projections, (L-b)/2 = Maximum Projection considered (a1)

K/0.90 =

=

0.01163014 ,

0.45 N/mm 2 0.40 0.90 0.90 1.125 N/mm 2

(B-b)/2 = m

0.55

0.4536

=

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

264.18

Z=

323.00

=

323.00 234 mm 2 14 @ 153860.00 2 769 mm 0.23 >

0.07 > 0.12%(Min) 200

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

687.00 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

458.00 KN 503.80 KN

S.B.C

150.00 KN/M2 3.36 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

2.00

Fy =

460

Column size ( a x b) N/mm 2

B

1.70

Fc =

25

N/mm 2

3.40 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 500 mm =

d

390 mm

B1

590 mm

L1

890 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 = DESIGN Cantilever Projections, (L-b)/2 = Maximum Projection considered (a1)

K/0.90 =

=

0.01660575 ,

0.50 N/mm 2 0.40 0.90 0.90 1.125 N/mm 2

(B-b)/2 = m

0.75

0.5251

=

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

303.03

Z=

370.50

=

370.00 384 mm 2 14 @ 153860.00 2 855 mm 0.22 >

0.10 > 0.12%(Min) 180

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

732.00 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

488.00 KN 536.80 KN

S.B.C

150.00 KN/M2 3.58 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

2.10

Fy =

460

Column size ( a x b) N/mm 2

B

1.80

Fc =

25

N/mm 2

3.78 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

640 mm

L1

1040 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.01422595 ,

0.41 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

0.80

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

341.88

Z=

418.00

=

418.00 370 mm 2 14 @ 153860.00 2 855 mm 0.19 >

0.08 > 0.12%(Min) 180

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

840.00 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

560.00 KN 616.00 KN

S.B.C

150.00 KN/M2 4.11 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

2.20

Fy =

460

Column size ( a x b) N/mm 2

B

1.90

Fc =

25

N/mm 2

4.18 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

640 mm

L1

1040 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.01666568 ,

0.48 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

0.85

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

341.88

Z=

418.00

=

418.00 434 mm 2 14 @ 153860.00 2 769 mm 0.17 >

0.10 > 0.12%(Min) 200

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

1020.00 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

680.00 KN 748.00 KN

S.B.C

150.00 KN/M2 4.99 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

2.50

Fy =

460

Column size ( a x b) N/mm 2

B

2.00

Fc =

25

N/mm 2

5.00 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

640 mm

L1

1040 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.01896694 ,

0.60 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

0.90

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

341.88

Z=

418.00

=

418.00 494 mm 2 14 @ 153860.00 2 1026 mm 0.23 >

0.11 > 0.12%(Min) 150

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

952.50 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

635.00 KN 698.50 KN

S.B.C

150.00 KN/M2 4.66 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

2.20

Fy =

460

Column size ( a x b) N/mm 2

B

2.20

Fc =

25

N/mm 2

4.84 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

640 mm

L1

1040 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.02258925 ,

0.56 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

1.00

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

341.88

Z=

418.00

=

418.00 588 mm 2 14 @ 153860.00 2 1026 mm 0.23 >

0.13 > 0.12%(Min) 150

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

b d/2

1087.50 KN

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

725.00 KN 797.50 KN

S.B.C

150.00 KN/M2 5.32 M2

Area of footing required = (1.1x Ws)/S.B.C Provide

2.50

Fy =

460

Column size ( a x b) N/mm 2

B

2.20

Fc =

25

N/mm 2

5.50 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

640 mm

L1

1040 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.02269597 ,

0.65 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

1.00

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

341.88

Z=

418.00

=

418.00 591 mm 2 14 @ 153860.00 2 1026 mm 0.23 >

0.13 > 0.12%(Min) 150

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

L

3.00

Fy =

460

Column size ( a x b) N/mm 2

B

2.80

Fc =

25

N/mm 2

8.40 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

740 mm

L1

1140 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.02568927 ,

0.74 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

1.30

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

419.58

Z=

513.00

=

513.00 821 mm 2 14 @ 153860.00 2 1026 mm 0.19 >

0.15 > 0.12%(Min) 150

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

L

3.10

Fy =

460

Column size ( a x b) N/mm 2

B

2.90

Fc =

25

N/mm 2

8.99 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

740 mm

L1

1140 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.02762329 ,

0.80 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

1.35

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

419.58

Z=

513.00

=

513.00 883 mm 2 14 @ 153860.00 2 1026 mm 0.19 >

0.16 > 0.12%(Min) 150

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

L

3.30

Fy =

460

Column size ( a x b) N/mm 2

B

3.10

Fc =

25

N/mm 2

10.23 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

790 mm

L1

1190 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.02727711 ,

0.81 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

1.45

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

458.43

Z=

560.50

=

560.00 953 mm 2 14 @ 153860.00 2 1184 mm 0.20 >

0.16 > 0.12%(Min) 130

mm c/c

O.K 0.22 > 0.12(Min)

REF .

Sheet No

GRID L L1 Limit state load

=

W

Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =

L

3.50

Fy =

460

Column size ( a x b) N/mm 2

B

3.20

Fc =

25

N/mm 2

11.20 m 2

=

SHEAR CHECK Consider column of size

(

=

200 mm = 600 mm =

d

790 mm

L1

1190 mm

Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =

K/0.90 =

=

0.02870173 ,

0.88 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2

(B-b)/2 = m

1.50

Limitted to 1.00) Dis O.K

, Since ( Vv 0.04275 & 0.156

Z=

458.43

Z=

560.50

=

560.00 1003 mm 2 14 @ 153860.00 2 1184 mm 0.20 >

0.17 > 0.12%(Min) 130

mm c/c

O.K 0.22 > 0.12(Min)

REF GRID

Sheet No

Service load ( Ws) = w1

=

810.00 KN

w2

=

777.00 KN w1

w2 b

Limit state load

A

w1 w2 C/C Distance of columns (b) Total load ( W ) = w1+ w2

= = = =

1215.00 1165.50 2.00 2380.50

Service load ( Ws) = (W1+W2) = Weight of footing + Service load = 1.1 x Ws = S.B.C Area of footing required = (1.1x Ws)/S.B.C Provide L 4.90 B 2.40 D 0.60 C.G of column load ( x* )

B

KN KN M KN

1587.00 KN

a1

1745.70 KN 2 150.00 m 11.64

x*

a2

0.98 1.47

2 11.76 m 2 0.98 m

1.43

O.K

CF 1

Projection (a1) = (L/2) - x* = Projection (a2) = ( L - a1- b ) = Net upward soil pressure (Po) = W/(LxB ) ( limit state)

1.47 M 1.43 M 202.42 KN/m2

Net upward soil pressure per metre for complete width (Pn) = (B x Po)

485.82 KN/M 1215

1,166

S.F.DIAGRAM S.F @ Left of A =( Pn xa1) S.F @ Right of A = (Pn x a1) - w1 =

714.54 KN

S.F @ Right of B =(Pn x a2) S.F @ Left of B = ( Pn x a2) - w2 = S.F @ Zero point ( Xo), ( from left) Distance of "C" from A = (X1)

694.33 KN

A

B

500.46 KN 1.47

2.00

1.43

471.17 KN 2.50 M 1.03 M

714.54 KN 1.03

471.17

C 694.33 B.M DIAGRAM Moment @ A {Pn x (a1 x a1) /2} Moment @ B { Pn x ( a2 x a2) /2}

500.46 = =

525.47 KN-M

= =

(Pn x Xo x Xo)/2 Moment @ C = { Pn x (Xo x Xo)/2} -( w1 x X1) = SAGGING MOMENT

496.17 KN-M 1519.32 267.69 KN-M

KN

Sheet No

Contd …..CF 1

1

267.69 KNM

525.47 KNM

496.17

SHEAR CHECK W1 = Breadth = Depth =

Consider column of size

Load on column Effective depth of footing ( D - efective Cover) =

B1/D1

1165.50 0.20 m

1165.00 KN =

d

540 mm

B1 L1 Pf V (Vv) = V/(Pf xd)

Perimeter Punching shear force Punching shear stress

1215.00 W2 = 200 mm = 600 mm

0.74 1.14 3.76 994.24 0.49

=

=

M M M KN N/mm2

0.33

Ks = ( 0.50 + B1/D1)

0.83 N/mm2 0.83 N/mm2

= Ks =

Permissible shear stress (Vc) (0.50 + B1/D1) x 0.25* (25)1/2 =

=

1.038 N/mm2

Limitted to 1.00)

D IS O.K , Since Vv

0.19 % > .0.15 (Min.) 130

mm c/c on both direction

O.K 0.15

270.00 KNM 2 1257 mm 2 524 mm

Ast

Try

Y Ast %age

14 @ 153860.00 2 1026 mm 0.19

>

0.10 % < 0.15(Min) 150 O.K 0.15%

Sheet No

Contd ….CF 1

TRANSVERSE REINFORCEMENT Cantilever projection beyond column (a2) Consider 1.00m along the length of footing B.M = (Pox a2 x a2)/2 Area of steel

227.73 KNM 2 1060 mm

Ast Y Ast

1.50

14

@

153860.00 2 1184 mm 0.22 >

0.20 130

mm c/c on both direction

O.K 0.15 (Min)

2

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF