STRUCTURAL DRAWING AND CALCULATION
March 14, 2017 | Author: Punya Suresh | Category: N/A
Short Description
architecture, structural drawing and calculation of a small villa....
Description
A
B
C
D
E
F
G
H
J
I
K
L
M
N
2380 10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
10
10
GRC SCREEN.
V
1 200
+ 60 CM.
STORE
300 x 180
BATH 180 x 250
2
GRC SCREEN.
2
D3
180
180
D3
BED ROOM - 2
3
3 D3
140
140
600 x 500 arch
4
KITCHEN
4
400 1680
1680
400
600 x 700
820 x 600 GRC SCREEN.
6
BATH
V
260 x 180
5
DRESS
V
TOILET
WASH
260 x 200
190 x 200
GRC SCREEN.
200
6 200
20
FAMILY HALL 20
5
200
1
D4
7
7 D3
WASH
D3
180 x 160
550 x 500
180 x 230
+ 75 CM.
200 x 260
BED ROOM
520
520
MAJLIS
600 x 500
FOYER
L.MAJLIS
TOILET
D1
550 x 500
V
10
8 10
8 ENTR.
480 x 200 + 60 CM.
± 0.00 cm. LVL.
10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
2380
A
B
C
D
E
F
G
H
I
GROUND FLOOR PLAN
J
K
L
M
N
A
B
C
D
E
F
G
H
J
I
K
L
M
N
2380 10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
10
10
GRC SCREEN.
V
1 200
+ 60 CM.
STORE
300 x 180
BATH 180 x 250
2
GRC SCREEN.
2
D3
180
180
D3
BED ROOM - 2
3
3 D3
140
140
600 x 500 arch
4
KITCHEN
4
400 1680
1680
400
600 x 700
820 x 600 GRC SCREEN.
6
BATH
V
260 x 180
5
DRESS
V
TOILET
WASH
260 x 200
190 x 200
GRC SCREEN.
200
6 200
20
FAMILY HALL 20
5
200
1
D4
7
7 D3
WASH
D3
180 x 160
550 x 500
180 x 230
+ 75 CM.
200 x 260
BED ROOM
520
520
MAJLIS
600 x 500
FOYER
L.MAJLIS
TOILET
D1
550 x 500
V
10
8 10
8 ENTR.
480 x 200 + 60 CM.
± 0.00 cm. LVL.
10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
2380
A
B
C
D
E
F
G
H
I
GROUND FLOOR PLAN
J
K
L
M
N
A
B
C
D
E
F
G
H
I
J
K
L
M
N
2380 160
140
150
50
570
200
20
180
150
150
140
180
10
10
270
10
10
1
1
PE
2 SL OP E
180
180
O SL
SLOPE
2
200
200
( 1 Nos.) CENTRAL DISH ANTENA
140
3 140
3 4
4
200
SLOPE
1680
PE
5 6
200
20
SL O
6
20
1680
E OP SL
5
400
400
STEEL LADDER WITH COVER.
SLOPE
7
7 S LO
PE
SL OP
520
520
E
10
8 10
8
10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
2380
A
B
C
D
E
F
G
H
TERRACE FLOOR PLAN
I
J
K
L
M
N
SCHEDULE OF FOOTINGS P. C. C.
TYPE
A
B
C
D
E
F
G
H
I
J
K
L
M
N
2380 160
140
150
50
570
200
20
180
150
150
140
180
10
LONG BARS
D
L
B
D
140
10
120
120
30
Y14 @ 20 C/C
Y14 @ 20 C/C
F2
170
150
10
150
130
35
Y14 @ 20 C/C
Y14 @ 20 C/C
F3
190
170
10
170
150
40
Y14 @ 20 C/C
Y14 @ 20 C/C
F4
220
190
10
200
170
45
Y14 @ 18 C/C
Y14 @ 18 C/C
F5
230
200
10
210
180
50
Y14 @ 18 C/C
Y14 @ 18 C/C
F6
240
210
10
220
190
50
Y14 @ 18 C/C
Y14 @ 18 C/C
F7
270
220
10
250
200
50
Y14 @ 15 C/C
Y14 @ 15 C/C
F8
240
240
10
220
220
50
Y14 @ 15 C/C
Y14 @ 15 C/C
F9
270
240
10
250
220
50
Y14 @ 15 C/C
Y14 @ 15 C/C
F10
320
300
10
300
280
60
Y14 @ 15 C/C
Y14 @ 15 C/C
F11
330
310
10
310
290
60
Y14 @ 15 C/C
Y14 @ 15 C/C
F12
350
330
10
330
310
65
Y14 @ 12 C/C
Y14 @ 12 C/C
F13
370
340
10
350
320
65
Y14 @ 12 C/C
Y14 @ 12 C/C
CF1
510
260
10
490
240
60
Y14 @ 12 C/C
Y14 @ 12 C/C
1 C9,F3
C2,F5
200
C2,F5
C2,F4
C2,F4
200
1
180
180
2 C9,F3
C4,F7
140
3 140
3
4
4 C4,F9
C7,F13
C4,F7 400 1680 20
20
1680
400
C6,F11
C1,F3 200
C5
C5
7
C3,F6
C6,F10
C7,F12
150
6 Y 14
Y8 @ 15 C/C
C2
20 x 40
6 Y 16
Y8 @ 15 C/C
C3
20 x 50
8 Y 14
Y8 @ 15 C/C
C4
20 x 60
8 Y 16
Y8 @ 15 C/C
C5
20 x 60
10 Y 16
Y8 @ 15 C/C
C6
20 x 70
10 Y 16
Y8 @ 15 C/C
C7
20 x 80
10 Y 20
Y8 @ 15 C/C
C8
30 DIA
6 Y 14
Y8 @ 15 C/C
C9
AS/DT
6 Y 14
Y8 @ 15 C/C
5
180
180
CF1 140
6 Y 14 Y 8 @ 15 C/C
240 100
20 20
240
8
100
8
20 x 40
7
C1,F1 C3,F7
BINDERS
STEEL
C1
6
C3,F7
C4,F8
GR. FLOOR SIZE
200
6
SCHEDULE OF COLUMNS TYPE
2
5
SHORT BARS
B
140
10
270
10
10
R. C. C.
L
F1
C3,F6
C3,F6
C4,F7
C2,F5
C4,F9
10
10
C1,F4
20
9 10
20
9 10
DETAIL OF COLUMN C9 C8,F2
C8,F2
10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
2380
A
B
C
D
E
F
G
H
FOUNDATION LAYOUT
I
J
K
L
M
N
REMARKS
REMARKS
T /B
SCHEDULE OF PLINTH BEAMS TYPE
SIZE
BOTT STEEL
CURTAIL
P1
20 x 40
2 Y 14
--------
TOP STEEL EXT TOP OVER 2 Y 14
--------
Y8 @ 15 C/C
P2
20 x 40
2 Y 14
--------
2 Y 14
2 Y 14
Y8 @ 15 C/C
P3
20 x 40
2 Y 14
--------
4 Y 14
--------
Y8 @ 15 C/C
P4
20 x 50
2 Y 14
--------
2 Y 14
2 Y 14
Y8 @ 15 C/C
P5
20 x 50
2 Y 14
--------
4 Y 14
--------
Y8 @ 15 C/C
P6
20 x 50
2 Y 14
2 Y 14
2 Y 14
2 Y 14
Y8 @ 15 C/C
P7
20 x 50
2 Y 14
2 Y 14
2 Y 14
--------
Y8 @ 15 C/C
P8
20 x 60
2 Y 14
2 Y 14
2 Y 14
2 Y 14
Y8 @ 15 C/C
STIRRUPS
CONT. SUPP.
A
B
C
D
E
F
G
H
I
J
K
L
M
N
2380 160
140
150
50
570
200
P2
20
180
150
150
140
P3
180
10
10
270
10
10
P1
1 P1
200
P3
200
1
P5
2
2 180
P6 P6
4
X
P8
1No. Y8
3 140
140
Tread
P2
P1
Y 8 @ 15 C/C
4
X
Riser
P2
3
P6
180
P6
P8 P1
STAIR STARTER 400
P2
Starter Beam
10 10 1680
P7
1680
P6
P8
400
P2
Floor Finish level
P6 20
P8
20
5
P6
P8
200
7
P5 180
P6
180
P5
P3
P1
P1
P3
P1
P1
P1
P5
P6
8
8 P6
240
P6
P6
9
P4
240
P6
P4
P1
9 100
P1
10
P8
P5
P6
10
P5
P4
10
P1
100
P1
10
P2
10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
2380
A
B
C
D
E
F
G
PLINTH BEAMS LAYOUT
H
I
J
K
L
M
N
10 PCC M15
5 6
200
6
7
Waist slab as per schedule
P6
SECTION X-X
REMARKS
A
B
C
D
E
F
G
H
I
J
K
L
M
N
2380
200
180
S1
2
B11
B3
1
2
3 140
140
10
S1
B9 S1
4
180
B2
S4
B1 S1
140
B7
3Y14, T&B
B7
180
S4
150
B2
B3
3
150
B1
B3
1
20
10
200
200
570
180
50
B12
150
B1
140
3Y14, T&B
160
B11
270
10
10
B8
4
B9
Y10@15 C/C
B9 B6
B8
7
B1 180
B7
180
B7
S1
200
S1
3Y14, T&B
S4
240
S1
B4
S3
B7
B7
8
S1
B7
B4
S3
B7
8 240
5 6
3Y14, T&B
B16
B1
3Y14, T&B
3Y14, T&B
B1
200
7
400 20
B9
Y12@12 C/C
B1
6 S1
1680
B10/B13 CRANKED
HB1
21
B12
20
5
1680
S5
B4
B3
400
S5
B1 100
9 100
9 B7
B1
10
B6
B5
10
B6
B5
10 B1
10
S1
B2
10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
2380
A
B
C
D
E
F
G
H
I
J
GROUND FLOOR ROOF SLABS & BEAMS LAYOUT
K
L
M
N
A
B
C
D
E
F
G
H
I
J
K
L
M
N
2380
B7
B3
B1
140
10
B2
S1
1
S1
2 B9
B1
3
S1
B8
4
B9
400 20
B9
7
SF
Y10@15 C/C
B6
B8
7
B1 180
B7
180
B7
S1
200
S1
3Y14, T&B
S4
240
S1
B4
S3
B7
B7
8
S1
B7
B4
S3
B7
8 240
5 6
3Y14, T&B
B16
B1
3Y14, T&B
B1
S1
B9
Y12@12 C/C
3Y14, T&B
20
6
1680
SF
B12
B1
1680
B4
HB1
21 S5
200
S5
B10/B13 CRANKED
B3
400
SF
5
180
S1
3Y14, T&B
S1
140
140
200 180
S4
150
B5
S1
2
4
150
B1
B3
3
180
10
B3
1
20
200
200
180
570
B12
50
B1
150
B11
140
B11
160
B7
270
10
10
B1 100
9 100
9 B7
B1
10
B6
B5
10
B6
B5
10 B1
10
S1
B2
10
270
160
140
150
50
570
200
20
180
150
150
140
180
10
2380
A
B
C
D
E
F
G
H
I
J
FIRST FLOOR ROOF SLABS & BEAMS LAYOUT
K
L
M
N
SCHEDULE OF ROOF BEAMS TYPE
SIZE
BOTT STEEL
CURTAIL
TOP STEEL EXT TOP OVER
STIRRUPS
REMARKS
CONT. SUPP.
G
H
I
J
420 20
180
10
10
200
10
10
B7
2 Y 14
--------
2 Y 14
--------
Y8 @ 15 C/C
20 x 50
2 Y 16
--------
2 Y 16
--------
Y8 @ 15 C/C
B3
20 x 50
2 Y 14
--------
2 Y 14
2 Y 14
Y8 @ 15 C/C
B4
20 x 50
2 Y 16
1 Y 16
2 Y 16
2 Y 16
Y8 @ 15 C/C
B5
20 x 60
2 Y 16
--------
2 Y 16
2 Y 16
Y8 @ 15 C/C
B6
20 x 60
2 Y 16
--------
4 Y 16
--------
Y8 @ 15 C/C
B7
20 x 60
2 Y 16
2 Y 16
2 Y 16
2 Y 16
Y8 @ 15 C/C
B8
20 x 60
2 Y 16
2 Y 16
2 Y 20
2 Y 20
Y8 @ 15 C/C
B9
20 x 70
3 Y 16
2 Y 16
2 Y 20
2 Y 20
Y10 @ 15 C/C
2 Y 12 FB
B10
20 x 80
2 Y 20
2 Y 20
2 Y 20
2 Y 20
Y10 @ 15 C/C
4 Y 12 FB
B11
20 x 60
2 Y 16
--------
4 Y 20
--------
Y8 @ 15 C/C
B12
20 x 70
2 Y 20
2 Y 16
2 Y 16
2 Y 16
Y8 @ 15 C/C
2 Y 12 FB
B13
20 x 70
4 Y 16
--------
4 Y 16
--------
Y8 @ 15 C/C
2 Y 12 FB
B14
20 x 70
2 Y 16
2 Y 16
2 Y 16
2 Y 16
Y8 @ 15 C/C
2 Y 12 FB
B15
20 x 70
2 Y 20
2 Y 20
2 Y 16
2 Y 16
Y10 @ 15 C/C
2 Y 12 FB
B16
20 x 50
2 Y 14
--------
4 Y 14
--------
Y8 @ 15 C/C
HB1
100 x 40
10 Y 25
--------
10 Y 14
--------
Y10 @ 15 C/C
B15
B14
640 20
640
S2
20
5
20 x 40
B2
400
4
400
4
B1
5
200
6 200
6
B7
10
200
20
180
10
420
G
H
THICK
SHORT BARS
LONG BARS
S1
130
Y10 @ 15 C/C
Y10 @ 15 C/C
REMARKS
S2
160
Y10 @ 15 C/C
Y10 @ 15 C/C
S3
180
Y10 @ 15 C/C
Y10 @ 15 C/C
S4
180
Y10 @ 12 C/C
Y10 @ 15 C/C
S5
210
Y12 @ 12 C/C
Y10 @ 12 C/C
T /B
SF
210
Y12 @ 14 C/C
Y16 @ 14 C/C
T /B
10
7 10
7
SCHEDULE OF SLABS TYPE
I
J
STAIRCASE ROOF SLAB & BEAMS LAYOUT
6- LEGGED
Project:
Page - 1 of 2
Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :
S1 Quick Check : OK for Deflection
Span : Short span, Lx: Long span , Ly:
2000 mm 4000 mm
Short steel - T10 @ 150 Long steel - T10 @ 150
Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2
Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :
3.25 2.00 0.00 4.00
Total Dead load (DL):
2 9.25 kN/m
Total Live load (LL):
2 2.00 kN/m
Ult. Load (1.4DL+1.6LL):
- Assumed Slab thickness, D = 130 (Unit wt. of Conc. = 25 kN/m 3)
mm
2 16.15 kN/m
Slab Analysis : Ly/Lx = Type of panel :
2.00 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous
Short span coeff, Bsx : for negative BM : for positive span BM :
0.000 0.111
Corresponding BM : at support = at mid span =
0.00 kN-m/m (for short - top steel) 7.17 kN-m/m (for short - bottom steel)
Long Span coeff, Bsy : for negative BM : for positive span BM :
0.000 0.056
Corresponding BM : at support = at mid span =
0.00 kN-m/m (for long - top steel) 3.62 kN-m/m (for long - bottom steel)
Project :
0.000
Page - 2 of 2
Slab No : S1 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :
130 mm 105 mm
Cover : Bar size (short) : Bar size (long) :
Calculation of reinforcements: BM b
d
fy
Short steel : bottom: top:
7.171 0.000
1000 1000
105 460 105 460
Long steel : bottom: top:
3.618 0.000
1000 1000
95 460 95 460
Short span : b= d= fck = fy = Ult BM = Mu/bd2 =
2000 1000 105 25 460 7.171 0.650
mm mm mm kN/m 2 kN/m 2 kN-m
pt reqd. = As,reqd. = As,provd. = Service stress fs =
0.153 161 524 94
% mm 2 mm 2 N/mm 2
fck
Mu bd2
25 0.65 25 0.00
20 mm 10 mm; (area of one bar = 10 mm; (area of one bar =
2 79 mm ) 2 79 mm )
pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm 0.153 0.000
161 0
169 169
10 @ 10 @
150 150
524 524
25 0.40 0.093 89 169 10 @ 150 25 0.00 0.000 0 169 10 @ 150 Refer section - 3.4.4.4 (page - 20), BS8110.
524 524
Deflection Check :
MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10
Modification Factor for Tension Reinf., MF : 2.00 Permissible L/d ratio :
; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0
Basic L/d x Modification for Tension steel
Perm. L/d =
20
Perm. L/d =
40.00
X
2.00
Actual L/d ratio = 19.05 - SAFE
- Limited to 2.0
Project:
Page - 1 of 2
Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :
S2 Quick Check : OK for Deflection
Span : Short span, Lx: Long span , Ly:
4200 mm 6200 mm
Short steel - T10 @ 150 Long steel - T10 @ 150
Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2
Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :
4.00 2.00 0.00 0.00
Total Dead load (DL):
2 6.00 kN/m
Total Live load (LL):
2 2.00 kN/m
Ult. Load (1.4DL+1.6LL):
- Assumed Slab thickness, D = 160 (Unit wt. of Conc. = 25 kN/m 3)
mm
2 11.60 kN/m
Slab Analysis : Ly/Lx = Type of panel :
1.48 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous
Short span coeff, Bsx : for negative BM : for positive span BM :
0.000 0.092
Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 18.83 kN-m/m (for short - bottom steel)
Long Span coeff, Bsy : for negative BM : for positive span BM :
0.000 0.056
Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 11.46 kN-m/m (for long - bottom steel)
Project :
0.000
Page - 2 of 2
Slab No : S2 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :
160 mm 135 mm
Cover : Bar size (short) : Bar size (long) :
Calculation of reinforcements: BM b
d
fy
fck
Mu bd2
20 mm 10 mm; (area of one bar = 10 mm; (area of one bar =
2 79 mm ) 2 79 mm )
pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm
Short steel : bottom: top:
18.825 0.000
1000 1000
135 460 135 460
25 1.03 25 0.00
150 150
524 524
Long steel : bottom: top:
11.459 0.000
1000 1000
125 460 125 460
25 0.73 0.174 217 208 10 @ 150 25 0.00 0.000 0 208 10 @ 150 Refer section - 3.4.4.4 (page - 20), BS8110.
524 524
4200 1000 135 25 460 18.825 1.033
mm mm mm kN/m 2 kN/m 2 kN-m
0.248 335 524 196
% mm 2 mm 2 N/mm 2
0.248 0.000
335 0
208 208
10 @ 10 @
Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =
MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10
Modification Factor for Tension Reinf., MF : 1.76 Permissible L/d ratio :
; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0
Basic L/d x Modification for Tension steel
Perm. L/d =
20
Perm. L/d =
35.20
X
1.76
Actual L/d ratio = 31.11 - SAFE
- Limited to 2.0
Project:
Page - 1 of 2
Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :
S3 Quick Check : OK for Deflection
Span : Short span, Lx: Long span , Ly:
5200 mm 5700 mm
Short steel - T10 @ 150 Long steel - T10 @ 150
Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2
Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :
4.50 2.00 0.00 0.00
Total Dead load (DL):
2 6.50 kN/m
Total Live load (LL):
2 2.00 kN/m
Ult. Load (1.4DL+1.6LL):
- Assumed Slab thickness, D = 180 (Unit wt. of Conc. = 25 kN/m 3)
mm
2 12.30 kN/m
Slab Analysis : Ly/Lx = Type of panel :
1.10 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous
Short span coeff, Bsx : for negative BM : for positive span BM :
0.000 0.067
Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 22.28 kN-m/m (for short - bottom steel)
Long Span coeff, Bsy : for negative BM : for positive span BM :
0.000 0.056
Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 18.63 kN-m/m (for long - bottom steel)
Project :
0.000
Page - 2 of 2
Slab No : S3 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :
180 mm 155 mm
Cover : Bar size (short) : Bar size (long) :
Calculation of reinforcements: BM b
d
fy
fck
Mu bd2
20 mm 10 mm; (area of one bar = 10 mm; (area of one bar =
2 79 mm ) 2 79 mm )
pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm
Short steel : bottom: top:
22.284 0.000
1000 1000
155 460 155 460
25 0.93 25 0.00
150 150
524 524
Long steel : bottom: top:
18.625 0.000
1000 1000
145 460 145 460
25 0.89 0.211 307 234 10 @ 150 25 0.00 0.000 0 234 10 @ 150 Refer section - 3.4.4.4 (page - 20), BS8110.
524 524
5200 1000 155 25 460 22.284 0.928
mm mm mm kN/m 2 kN/m 2 kN-m
0.222 344 524 201
% mm 2 mm 2 N/mm 2
0.222 0.000
344 0
234 234
10 @ 10 @
Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =
MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10
Modification Factor for Tension Reinf., MF : 1.81 Permissible L/d ratio :
; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0
Basic L/d x Modification for Tension steel
Perm. L/d =
20
Perm. L/d =
36.14
X
1.81
Actual L/d ratio = 33.55 - SAFE
- Limited to 2.0
Project:
Page - 1 of 2
Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :
S4 Quick Check : OK for Deflection
Span : Short span, Lx: Long span , Ly:
5200 mm 6200 mm
Short steel - T10 @ 120 Long steel - T10 @ 150
Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2
Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :
4.50 2.00 0.00 0.00
Total Dead load (DL):
2 6.50 kN/m
Total Live load (LL):
2 2.00 kN/m
Ult. Load (1.4DL+1.6LL):
- Assumed Slab thickness, D = 180 (Unit wt. of Conc. = 25 kN/m 3)
mm
2 12.30 kN/m
Slab Analysis : Ly/Lx = Type of panel :
1.19 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous
Short span coeff, Bsx : for negative BM : for positive span BM :
0.000 0.074
Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 24.61 kN-m/m (for short - bottom steel)
Long Span coeff, Bsy : for negative BM : for positive span BM :
0.000 0.056
Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 18.63 kN-m/m (for long - bottom steel)
Project :
0.000
Page - 2 of 2
Slab No : S4 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :
180 mm 155 mm
Cover : Bar size (short) : Bar size (long) :
Calculation of reinforcements: BM b
d
fy
fck
Mu bd2
20 mm 10 mm; (area of one bar = 10 mm; (area of one bar =
2 79 mm ) 2 79 mm )
pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm
Short steel : bottom: top:
24.612 0.000
1000 1000
155 460 155 460
25 1.02 25 0.00
120 150
654 524
Long steel : bottom: top:
18.625 0.000
1000 1000
145 460 145 460
25 0.89 0.211 307 234 10 @ 150 25 0.00 0.000 0 234 10 @ 150 Refer section - 3.4.4.4 (page - 20), BS8110.
524 524
5200 1000 155 25 460 24.612 1.024
mm mm mm kN/m 2 kN/m 2 kN-m
0.246 382 654 179
% mm 2 mm 2 N/mm 2
0.246 0.000
382 0
234 234
10 @ 10 @
Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =
MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10
Modification Factor for Tension Reinf., MF : 1.84 Permissible L/d ratio :
; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0
Basic L/d x Modification for Tension steel
Perm. L/d =
20
Perm. L/d =
36.83
X
1.84
Actual L/d ratio = 33.55 - SAFE
- Limited to 2.0
Project:
Page - 1 of 2
Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :
S5 Quick Check : OK for Deflection
Span : Short span, Lx: Long span , Ly:
6200 mm 7200 mm
Short steel - T12 @ 120 Long steel - T12 @ 120
Loads : kN/m 2 kN/m 2 kN/m 2 kN/m 2
Self wt. of slab : Floor/roof finishes : Partition walls : Other Services :
5.25 2.00 0.00 0.00
Total Dead load (DL):
2 7.25 kN/m
Total Live load (LL):
2 2.00 kN/m
Ult. Load (1.4DL+1.6LL):
- Assumed Slab thickness, D = 210 (Unit wt. of Conc. = 25 kN/m 3)
mm
2 13.35 kN/m
Slab Analysis : Ly/Lx = Type of panel :
1.16 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous
Short span coeff, Bsx : for negative BM : for positive span BM :
0.000 0.074
Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 37.97 kN-m/m (for short - bottom steel)
Long Span coeff, Bsy : for negative BM : for positive span BM :
0.000 0.056
Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 28.74 kN-m/m (for long - bottom steel)
Project :
0.000
Page - 2 of 2
Slab No : S5 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :
210 mm 184 mm
Cover : Bar size (short) : Bar size (long) :
Calculation of reinforcements: BM b
d
fy
fck
Mu bd2
20 mm 12 mm; (area of one bar = 12 mm; (area of one bar =
2 113 mm ) 2 113 mm )
pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm
Short steel : bottom: top:
37.975 0.000
1000 1000
184 460 184 460
25 1.12 25 0.00
120 120
942 942
Long steel : bottom: top:
28.738 0.000
1000 1000
172 460 172 460
25 0.97 0.233 400 273 12 @ 120 25 0.00 0.000 0 273 12 @ 120 Refer section - 3.4.4.4 (page - 20), BS8110.
942 942
6200 1000 184 25 460 37.975 1.122
mm mm mm kN/m 2 kN/m 2 kN-m
0.271 499 942 162
% mm 2 mm 2 N/mm 2
0.271 0.000
499 0
273 273
12 @ 12 @
Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =
MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10
Modification Factor for Tension Reinf., MF : 1.85 Permissible L/d ratio :
; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0
Basic L/d x Modification for Tension steel
Perm. L/d =
20
Perm. L/d =
36.95
X
1.85
Actual L/d ratio = 33.70 - SAFE
- Limited to 2.0
Project:
Page - 1 of 2
Design of two -way slab with provision for torsion at corners : As per BS 8110 : Part I :1997 Ref : Section 3.5.3 of BS 8110 : Part I : 1997 Slab Designation :
S5 Quick Check : OK for Deflection
Span : Short span, Lx: Long span , Ly:
6200 mm 6200 mm
Short steel - T12 @ 120 Long steel - T12 @ 120
Loads : Self wt. of slab : Floor/roof finishes : Partition walls : Other Services : Total Dead load (DL): Total Live load (LL): Ult. Load (1.4DL+1.6LL):
5.25 2.00 0.00 4.00
kN/m 2 kN/m 2 kN/m 2 kN/m 2
- Assumed Slab thickness, D = 210 (Unit wt. of Conc. = 25 kN/m 3)
mm
2 11.25 kN/m 2 2.00 kN/m 2 18.95 kN/m
Slab Analysis : Ly/Lx = Type of panel :
1.00 - refer Table - 3.14, page - 31 9 - Four Edges Discontinuous
Short span coeff, Bsx : for negative BM : for positive span BM :
0.000 0.055
Corresponding BM : at support = 0.00 kN-m/m (for short - top steel) at mid span = 40.06 kN-m/m (for short - bottom steel)
Long Span coeff, Bsy : for negative BM : for positive span BM :
0.000 0.056
Corresponding BM : at support = 0.00 kN-m/m (for long - top steel) at mid span = 40.79 kN-m/m (for long - bottom steel)
Project :
0.000
Page - 2 of 2
Slab No : S5 0.000 Reinforcement Calculation : Overall depth D : Effect.depth d :
210 mm 184 mm
Cover : Bar size (short) : Bar size (long) :
Calculation of reinforcements: BM b
d
fy
fck
Mu bd2
20 mm 12 mm; (area of one bar = 12 mm; (area of one bar =
2 113 mm ) 2 113 mm )
pt req. Ast,reqd. Min.Ast Ast provided Ast,provd. 2 2 2 mm mm % dia @ spac mm
Short steel : bottom: top:
40.064 0.000
1000 1000
184 460 184 460
25 1.18 25 0.00
120 120
942 942
Long steel : bottom: top:
40.793 0.000
1000 1000
172 460 172 460
25 1.38 0.338 581 273 12 @ 120 25 0.00 0.000 0 273 12 @ 120 Refer section - 3.4.4.4 (page - 20), BS8110.
942 942
6200 1000 184 25 460 40.064 1.183
mm mm mm kN/m 2 kN/m 2 kN-m
0.287 528 942 172
% mm 2 mm 2 N/mm 2
0.287 0.000
528 0
273 273
12 @ 12 @
Deflection Check : Short span : b= d= fck = fy = Ult BM = Mu/bd2 = pt reqd. = As,reqd. = As,provd. = Service stress fs =
MF = 0.55 + (477 - fs)/(120 x [0.9 + Mu/bd2]) - Refer Table-3.10
Modification Factor for Tension Reinf., MF : 1.77 Permissible L/d ratio :
; fs = 2/3 fy (Ast reqd/Ast provd) / βb, where βb = 1.0
Basic L/d x Modification for Tension steel
Perm. L/d =
20
Perm. L/d =
35.42
X
1.77
Actual L/d ratio = 33.70 - SAFE
- Limited to 2.0
DESIGN OF STAIR CASE WAIST SLAB SF Loading on the stair. Thickness of waist slab(assumed) = 20.00 cm 2 Self wight of the waist slab = 5.00 kN/m 2 Bottom finish = 0.50 kN/m 2 Top finish = 1.00 kN/m Tread of the step(assumed) Rise of the step(assumed) Load from steps Total dead load Load on plan area Live load Total load Factored load Span
= 25.00 cm = 15.00 cm 2 = 0.47 kN/m 2 = 6.97 kN/m 2 = 8.13 kN/m 2 = 3.00 kN/m 2 = 11.13 kN/m = 1.5*DL + 1.5*LL = =
2 16.69 kN/m
6.2 m
21
6.2 m Factored Bending Moment Depth required Thickness of slab provided Area of steel required Diameter of bar provided Spacing of bar required Provide a spacing of Area of steel provided Check for deflection :Basic L/D = Service stress on steel (fs) Modification factor
2 = w l /8 = 80.20 kNm = 170.46 mm = 21 cm 2 = 1321.68 mm = 16 mm = 15.20 cm = 14 cm c/c 2 = 1435.43 mm
20 = 5 x fy x Area of steel rqd / 8 x Area of steel prvd. 2 = 238.82 N/mm 2 = 0.55+{(477-fs)/(120[0.9+Mu/bd ]) 12
LONG COLUMN
C1
MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =
=
20.00 mm 19.13 mm
(Since eminPu)
GRID K = Column Size Assumed
a= 400
Maximum Lmit State Load (Pu) = Floor Height(lf)
0.85
b = 200
3.40 M
700.00 KN Depth of beam assumed(D)
0.50
Un supported length of Column (lun) = (lf -D) =
2.90 M
Effective length of Column (leff) = K lun
2.47 M
C2
M =
2465 mm
SLENDERNESS RATIO (leff)/b = 12.325 MINIMUM ECCENTRICITY 0.05 x a = emin = (lun/500) + (a/30) =
, Since (leff)/b >12
LONG COLUMN 20.00 mm 19.13 mm
O.K
(Since eminPu)
REF .
Sheet No
GRID Assumed, columns are effectively held in position and restrained against rotation at one end, and the other end partially restrained against rotation but not held in position
K = 0.85 Column Size Assumed
a= 500
Maximum Lmit State Load (Pu) = Floor Height(lf)
a
b = 200 3.40 M
b
875.00 KN Depth of beam assumed(D)
0.50 M
Un supported length of Column (lun) = (lf -D) =
2.90 M
Effective length of Column (leff) = K lun
2.47 M
=
2465 mm
SLENDERNESS RATIO (leff)/b =
12.325
.
, Since (leff)/b >12
LONG COLUMN
C3
MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =
=
25.00 mm 22.47 mm
(Since eminPu)
GRID K = Column Size Assumed
a= 600
Maximum Lmit State Load (Pu) = Floor Height(lf)
0.85
b = 200
3.40 M
1035.00 KN Depth of beam assumed(D)
0.50
Un supported length of Column (lun) = (lf -D) =
2.90 M
Effective length of Column (leff) = K lun
2.47 M
C4
M =
2465 mm
SLENDERNESS RATIO (leff)/b = 12.325 MINIMUM ECCENTRICITY 0.05 x a = emin = (lun/500) + (a/30) =
, Since (leff)/b >12
LONG COLUMN 30.00 mm 25.80 mm
O.K
(Since eminPu)
REF .
Sheet No
GRID Assumed, columns are effectively held in position and restrained against rotation at one end, and the other end partially restrained against rotation but not held in position
K = 0.85 Column Size Assumed
a
b = 200
a= 600
Maximum Lmit State Load (Pu) = Floor Height(lf)
3.40 M
b
1160.00 KN Depth of beam assumed(D)
0.50 M
Un supported length of Column (lun) = (lf -D) =
2.90 M
Effective length of Column (leff) = K lun
2.47 M
=
2465 mm
SLENDERNESS RATIO (leff)/b =
12.325
.
, Since (leff)/b >12
LONG COLUMN
C5
MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =
=
30.00 mm 25.80 mm
(Since eminPu)
GRID K = Column Size Assumed
a= 700
Maximum Lmit State Load (Pu) = Floor Height(lf)
0.85
b = 200
3.40 M
1697.00 KN Depth of beam assumed(D)
0.50
Un supported length of Column (lun) = (lf -D) =
2.90 M
Effective length of Column (leff) = K lun
2.47 M
C6
M =
2465 mm
SLENDERNESS RATIO (leff)/b = 12.325 MINIMUM ECCENTRICITY 0.05 x a = emin = (lun/500) + (a/30) =
, Since (leff)/b >12
LONG COLUMN 35.00 mm 29.13 mm
O.K
(Since eminPu)
REF .
Sheet No
GRID Assumed, columns are effectively held in position and restrained against rotation at one end, and the other end partially restrained against rotation but not held in position
K = 0.85 Column Size Assumed
a
b = 200
a= 800
Maximum Lmit State Load (Pu) = Floor Height(lf)
3.40 M
b
2123.00 KN Depth of beam assumed(D)
0.50 M
Un supported length of Column (lun) = (lf -D) =
2.90 M
Effective length of Column (leff) = K lun
2.47 M
=
2465 mm
SLENDERNESS RATIO (leff)/b =
12.325
.
, Since (leff)/b >12
LONG COLUMN
C7
MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =
=
40.00 mm 32.47 mm
(Since eminPu)
GRID K = Column Size Assumed
a= 400
Maximum Lmit State Load (Pu) = Floor Height(lf)
0.85
b = 176
3.40 M
375.00 KN Depth of beam assumed(D)
0.50
Un supported length of Column (lun) = (lf -D) =
2.90 M
Effective length of Column (leff) = K lun
2.47 M
C8
M =
2465 mm
SLENDERNESS RATIO (leff)/b = 14.0056818 MINIMUM ECCENTRICITY 0.05 x a = emin = (lun/500) + (a/30) =
, Since (leff)/b >12
LONG COLUMN 20.00 mm 19.13 mm
O.K
(Since eminPu)
REF .
Sheet No
GRID Assumed, columns are effectively held in position and restrained against rotation at one end, and the other end partially restrained against rotation but not held in position
K = 0.85 Column Size Assumed
a= 400
Maximum Lmit State Load (Pu) = Floor Height(lf)
a
b = 200 3.40 M
b
500.00 KN Depth of beam assumed(D)
0.50 M
Un supported length of Column (lun) = (lf -D) =
2.90 M
Effective length of Column (leff) = K lun
2.47 M
=
2465 mm
SLENDERNESS RATIO (leff)/b =
12.325
.
, Since (leff)/b >12
LONG COLUMN
C9
MINIMUM ECCENTRICITY 0.05 x a emin = (lun/500) + (a/30) =
=
20.00 mm 19.13 mm
(Since eminPu)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
285.00 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
190.00 KN 209.00 KN
S.B.C
150.00 KN/M2 1.39 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
1.20
Fy =
460
Column size ( a x b) N/mm 2
B
1.20
Fc =
25
N/mm 2
1.44 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 400 mm =
d
240 mm
B1
440 mm
L1
640 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 = DESIGN Cantilever Projections, (L-b)/2 = Maximum Projection considered (a1)
K/0.90 =
=
0.01908918 ,
0.44 N/mm 2 0.50 1.00 1.00 1.250 N/mm 2
(B-b)/2 = m
0.50
0.2816
=
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
186.48
Z=
228.00
=
228.00 271 mm 2 14 @ 153860.00 2 769 mm 0.32 >
0.11 > 0.12%(Min) 200
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
397.50 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
265.00 KN 291.50 KN
S.B.C
150.00 KN/M2 1.94 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
1.50
Fy =
460
Column size ( a x b) N/mm 2
B
1.30
Fc =
25
N/mm 2
1.95 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 500 mm =
d
290 mm
B1
490 mm
L1
790 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 = DESIGN Cantilever Projections, (L-b)/2 = Maximum Projection considered (a1)
K/0.90 =
=
0.01629369 ,
0.43 N/mm 2 0.40 0.90 0.90 1.125 N/mm 2
(B-b)/2 = m
0.55
0.3871
=
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
225.33
Z=
275.50
=
275.00 280 mm 2 14 @ 153860.00 2 769 mm 0.27 >
0.10 > 0.12%(Min) 200
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
510.00 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
340.00 KN 374.00 KN
S.B.C
150.00 KN/M2 2.49 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
1.70
Fy =
460
Column size ( a x b) N/mm 2
B
1.50
Fc =
25
N/mm 2
2.55 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 500 mm =
d
340 mm
B1
540 mm
L1
840 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 = DESIGN Cantilever Projections, (L-b)/2 = Maximum Projection considered (a1)
K/0.90 =
=
0.01163014 ,
0.45 N/mm 2 0.40 0.90 0.90 1.125 N/mm 2
(B-b)/2 = m
0.55
0.4536
=
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
264.18
Z=
323.00
=
323.00 234 mm 2 14 @ 153860.00 2 769 mm 0.23 >
0.07 > 0.12%(Min) 200
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
687.00 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
458.00 KN 503.80 KN
S.B.C
150.00 KN/M2 3.36 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
2.00
Fy =
460
Column size ( a x b) N/mm 2
B
1.70
Fc =
25
N/mm 2
3.40 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 500 mm =
d
390 mm
B1
590 mm
L1
890 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 = DESIGN Cantilever Projections, (L-b)/2 = Maximum Projection considered (a1)
K/0.90 =
=
0.01660575 ,
0.50 N/mm 2 0.40 0.90 0.90 1.125 N/mm 2
(B-b)/2 = m
0.75
0.5251
=
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
303.03
Z=
370.50
=
370.00 384 mm 2 14 @ 153860.00 2 855 mm 0.22 >
0.10 > 0.12%(Min) 180
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
732.00 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
488.00 KN 536.80 KN
S.B.C
150.00 KN/M2 3.58 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
2.10
Fy =
460
Column size ( a x b) N/mm 2
B
1.80
Fc =
25
N/mm 2
3.78 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
640 mm
L1
1040 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.01422595 ,
0.41 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
0.80
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
341.88
Z=
418.00
=
418.00 370 mm 2 14 @ 153860.00 2 855 mm 0.19 >
0.08 > 0.12%(Min) 180
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
840.00 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
560.00 KN 616.00 KN
S.B.C
150.00 KN/M2 4.11 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
2.20
Fy =
460
Column size ( a x b) N/mm 2
B
1.90
Fc =
25
N/mm 2
4.18 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
640 mm
L1
1040 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.01666568 ,
0.48 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
0.85
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
341.88
Z=
418.00
=
418.00 434 mm 2 14 @ 153860.00 2 769 mm 0.17 >
0.10 > 0.12%(Min) 200
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
1020.00 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
680.00 KN 748.00 KN
S.B.C
150.00 KN/M2 4.99 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
2.50
Fy =
460
Column size ( a x b) N/mm 2
B
2.00
Fc =
25
N/mm 2
5.00 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
640 mm
L1
1040 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.01896694 ,
0.60 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
0.90
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
341.88
Z=
418.00
=
418.00 494 mm 2 14 @ 153860.00 2 1026 mm 0.23 >
0.11 > 0.12%(Min) 150
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
952.50 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
635.00 KN 698.50 KN
S.B.C
150.00 KN/M2 4.66 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
2.20
Fy =
460
Column size ( a x b) N/mm 2
B
2.20
Fc =
25
N/mm 2
4.84 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
640 mm
L1
1040 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.02258925 ,
0.56 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
1.00
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
341.88
Z=
418.00
=
418.00 588 mm 2 14 @ 153860.00 2 1026 mm 0.23 >
0.13 > 0.12%(Min) 150
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
b d/2
1087.50 KN
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
725.00 KN 797.50 KN
S.B.C
150.00 KN/M2 5.32 M2
Area of footing required = (1.1x Ws)/S.B.C Provide
2.50
Fy =
460
Column size ( a x b) N/mm 2
B
2.20
Fc =
25
N/mm 2
5.50 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
640 mm
L1
1040 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.02269597 ,
0.65 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
1.00
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
341.88
Z=
418.00
=
418.00 591 mm 2 14 @ 153860.00 2 1026 mm 0.23 >
0.13 > 0.12%(Min) 150
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
L
3.00
Fy =
460
Column size ( a x b) N/mm 2
B
2.80
Fc =
25
N/mm 2
8.40 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
740 mm
L1
1140 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.02568927 ,
0.74 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
1.30
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
419.58
Z=
513.00
=
513.00 821 mm 2 14 @ 153860.00 2 1026 mm 0.19 >
0.15 > 0.12%(Min) 150
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
L
3.10
Fy =
460
Column size ( a x b) N/mm 2
B
2.90
Fc =
25
N/mm 2
8.99 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
740 mm
L1
1140 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.02762329 ,
0.80 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
1.35
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
419.58
Z=
513.00
=
513.00 883 mm 2 14 @ 153860.00 2 1026 mm 0.19 >
0.16 > 0.12%(Min) 150
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
L
3.30
Fy =
460
Column size ( a x b) N/mm 2
B
3.10
Fc =
25
N/mm 2
10.23 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
790 mm
L1
1190 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.02727711 ,
0.81 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
1.45
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
458.43
Z=
560.50
=
560.00 953 mm 2 14 @ 153860.00 2 1184 mm 0.20 >
0.16 > 0.12%(Min) 130
mm c/c
O.K 0.22 > 0.12(Min)
REF .
Sheet No
GRID L L1 Limit state load
=
W
Service load ( Ws) Ws = Weight of footing + Service load = 1.1 x Ws =
L
3.50
Fy =
460
Column size ( a x b) N/mm 2
B
3.20
Fc =
25
N/mm 2
11.20 m 2
=
SHEAR CHECK Consider column of size
(
=
200 mm = 600 mm =
d
790 mm
L1
1190 mm
Perimeter Pf Punching shear force (V) = Po( LxB - L1xB1) Punching shear stress (Vv) = V/(Pf xd) = B1/D1 = Ks = ( 0.50 + B1/D1) = Ks = Permissible shear stress (Vc) = (0.50 + B1/D1) x 0.25* (25)1/2 =
K/0.90 =
=
0.02870173 ,
0.88 N/mm 2 0.33 0.83 0.83 1.038 N/mm 2
(B-b)/2 = m
1.50
Limitted to 1.00) Dis O.K
, Since ( Vv 0.04275 & 0.156
Z=
458.43
Z=
560.50
=
560.00 1003 mm 2 14 @ 153860.00 2 1184 mm 0.20 >
0.17 > 0.12%(Min) 130
mm c/c
O.K 0.22 > 0.12(Min)
REF GRID
Sheet No
Service load ( Ws) = w1
=
810.00 KN
w2
=
777.00 KN w1
w2 b
Limit state load
A
w1 w2 C/C Distance of columns (b) Total load ( W ) = w1+ w2
= = = =
1215.00 1165.50 2.00 2380.50
Service load ( Ws) = (W1+W2) = Weight of footing + Service load = 1.1 x Ws = S.B.C Area of footing required = (1.1x Ws)/S.B.C Provide L 4.90 B 2.40 D 0.60 C.G of column load ( x* )
B
KN KN M KN
1587.00 KN
a1
1745.70 KN 2 150.00 m 11.64
x*
a2
0.98 1.47
2 11.76 m 2 0.98 m
1.43
O.K
CF 1
Projection (a1) = (L/2) - x* = Projection (a2) = ( L - a1- b ) = Net upward soil pressure (Po) = W/(LxB ) ( limit state)
1.47 M 1.43 M 202.42 KN/m2
Net upward soil pressure per metre for complete width (Pn) = (B x Po)
485.82 KN/M 1215
1,166
S.F.DIAGRAM S.F @ Left of A =( Pn xa1) S.F @ Right of A = (Pn x a1) - w1 =
714.54 KN
S.F @ Right of B =(Pn x a2) S.F @ Left of B = ( Pn x a2) - w2 = S.F @ Zero point ( Xo), ( from left) Distance of "C" from A = (X1)
694.33 KN
A
B
500.46 KN 1.47
2.00
1.43
471.17 KN 2.50 M 1.03 M
714.54 KN 1.03
471.17
C 694.33 B.M DIAGRAM Moment @ A {Pn x (a1 x a1) /2} Moment @ B { Pn x ( a2 x a2) /2}
500.46 = =
525.47 KN-M
= =
(Pn x Xo x Xo)/2 Moment @ C = { Pn x (Xo x Xo)/2} -( w1 x X1) = SAGGING MOMENT
496.17 KN-M 1519.32 267.69 KN-M
KN
Sheet No
Contd …..CF 1
1
267.69 KNM
525.47 KNM
496.17
SHEAR CHECK W1 = Breadth = Depth =
Consider column of size
Load on column Effective depth of footing ( D - efective Cover) =
B1/D1
1165.50 0.20 m
1165.00 KN =
d
540 mm
B1 L1 Pf V (Vv) = V/(Pf xd)
Perimeter Punching shear force Punching shear stress
1215.00 W2 = 200 mm = 600 mm
0.74 1.14 3.76 994.24 0.49
=
=
M M M KN N/mm2
0.33
Ks = ( 0.50 + B1/D1)
0.83 N/mm2 0.83 N/mm2
= Ks =
Permissible shear stress (Vc) (0.50 + B1/D1) x 0.25* (25)1/2 =
=
1.038 N/mm2
Limitted to 1.00)
D IS O.K , Since Vv
0.19 % > .0.15 (Min.) 130
mm c/c on both direction
O.K 0.15
270.00 KNM 2 1257 mm 2 524 mm
Ast
Try
Y Ast %age
14 @ 153860.00 2 1026 mm 0.19
>
0.10 % < 0.15(Min) 150 O.K 0.15%
Sheet No
Contd ….CF 1
TRANSVERSE REINFORCEMENT Cantilever projection beyond column (a2) Consider 1.00m along the length of footing B.M = (Pox a2 x a2)/2 Area of steel
227.73 KNM 2 1060 mm
Ast Y Ast
1.50
14
@
153860.00 2 1184 mm 0.22 >
0.20 130
mm c/c on both direction
O.K 0.15 (Min)
2
View more...
Comments