Structural Design to BS 5950-51998 Section Properties and Load Tables.pdf
Short Description
Download Structural Design to BS 5950-51998 Section Properties and Load Tables.pdf...
Description
Building Design Using Cold Formed Steel Sections
Structural Design to BS 5950-5:1998 Section Properties and Load Tables
R M LAWSON BSc(Eng), PhD, ACGI, CEng MICE, MIStructE K F CHUNG BEng, PhD, DIC, MIStructE, CEng, MHKIE S O POPO-OLA BSc(Eng), MEng, PhD, DIC
SCI PUBLICATION P276
Published by: The Steel Construction Institute Silwood Park Ascot Berkshire SL5 7QN Tel: 01344 623345 Fax: 01344 622944
© 2002 The Steel Construction Institute Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page. Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use. Publications supplied to the Members of the Institute at a discount are not for resale by them. Publication Number: SCI-P276 ISBN 1 85942 119 9 British Library Cataloguing-in-Publication Data. A catalogue record for this book is available from the British Library.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
ii
18 April 2002
FOREWORD The authors of this publication are Dr R M Lawson and Dr S O Popo-Ola of The Steel Construction Institute, and Dr K F Chung of Hong Kong Polytechnic University. Dr Chung and Dr Popo-Ola were responsible for preparation of the design tables. The work was funded by Corus Colors (formerly, British Steel Strip Products). This publication is a revised edition of the 1992 publication Design of structures using cold formed steel sections (SCI-P-089). It gives general information on the design of cold formed steel sections to BS 5950-5: 1998 (now revised from the 1985 version), and includes new design tables for a wide range of cold formed steel sections used in general building construction. The following individuals and organisations helped in the preparation of this publication: Mr R Colver
Ayrshire Steel Framing
Mr V French
Ayrshire Metal Products (Daventry) Ltd
Mr B Johnson
Structural Sections Ltd
Mr I McCarthy
Metsec Ltd
Mr T Harper
Ward Building Components Ltd
Mr P Reid
Hi-Span Ltd
Mr J Jones
Albion Ltd
This publication is one of a general series on ‘Building Design using Cold Formed Steel Sections’. The series includes: C
Light Steel Framing in Residential Construction (P301, 2001)
C
Durability of Light Steel Framing in Residential Buildings (P262, 2000)
C
Case Studies on Light Steel Framing (P176, 1997)
C
Construction Detailing and Practice (P165, 1997)
C
Architects’ Guide (P130, 1994)
C
Fire Protection (P129, 1993)
C
Acoustic Insulation (P128, 1993)
C
Worked Examples (P125, 1993).
Other titles on light steel applications in modular construction by the SCI are: C
Modular Construction using Light Steel Framing: Residential Buildings (P302, 2001)
C
Case Studies on Modular Construction (P271, 1999)
C
Building Design Using Modular Construction: An Architect’s Guide (P272, 1991).
The section property data, member design tables and associated information are intended to be used at the scheme design stage. For more comprehensive data concerning particular sections and their availability, the reader is advised to contact manufacturers directly. All sections that are included can be obtained from the manufacturers listed in the Appendix. For more information on steel grades and coatings, contact Corus directly (see Appendix). P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
iii
18 April 2002
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
iv
18 April 2002
CONTENTS Page No SUMMARY
vii
1
AIM OF THE PUBLICATION 1.1 Design tables 1.2 Limit state design
2
INTRODUCTION TO USE OF COLD FORMED SECTIONS 2.1 Materials 2.2 Methods of forming 2.3 Methods of protection 2.4 Common shapes of sections 2.5 Common applications 2.6 Fire protection
3 3 4 5 5 6 12
3
INTRODUCTION TO DESIGN OF COLD FORMED SECTIONS 3.1 Behaviour of thin plates in compression 3.2 Behaviour of webs 3.3 Behaviour of members in bending 3.4 Behaviour of members in compression 3.5 Serviceability limits
13 13 17 20 25 28
4
APPLICATION OF COLD FORMED SECTIONS IN BUILDING 4.1 Purlins and side rails 4.2 Floor joists 4.3 Stud walling 4.4 Trusses 4.5 Structural Frames 4.6 Curtain walling and over-cladding 4.7 Housing 4.8 Modular construction 4.9 Frameless structures 4.10 Connections
29 29 30 32 33 34 37 39 40 40 41
5
SECTION PROPERTIES OF COLD FORMED SECTIONS 5.1 Notation used in section property tables 5.2 Summary of assumptions in deriving the section property tables
47 51 52
6
LOAD AND PERFORMANCE CHARACTERISTICS OF COLD FORMED SECTIONS 54 6.1 Generic sections 54 6.2 Load capacity tables for beams 55 6.3 Load capacity tables for columns 55 6.4 Guidance on selection of cold formed steel sections 57 6.5 Example of use of load-span tables for beams 58
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
v
1 2 2
18 April 2002
7
REFERENCES
59
8
BIBLIOGRAHY
61
APPENDIX A: Contact Information
SECTION PROPERTY TABLES C Sections Z Sections
LOAD CAPACITY TABLES FOR BEAMS - S280 Generic C Sections Generic Z Sections LOAD CAPACITY TABLES FOR COLUMNS - S280 Generic C Sections
LOAD CAPACITY TABLES FOR BEAMS - S350 Generic C Sections Generic Z Sections LOAD CAPACITY TABLES FOR COLUMNS - S350 Generic C Sections
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
vi
70 Yellow Pages
A-1 A-3 A-35
Pink Pages
B-1 B-1 B-21 B-41 B-41
Green Pages
C-1 C-1 C-21 C-41 C-41
18 April 2002
SUMMARY This publication reviews the design and application of cold formed steel sections in building construction. The design of these sections conforms to BS 5950-5: 1998: Code of practice for design of cold formed thin gauge sections. Applications that are covered relate to steel frames, trusses and secondary members in commercial, industrial and domestic buildings. The main part of the publication presents design tables for general use of cold formed sections. This data is tabulated in two parts: section properties, and load tables. Section properties can be used in general applications, whereas load tables can be used in direct selection of beam and column sizes. The cold formed steel sections listed in this publication can be readily obtained from manufacturers in the UK. Other references to the use of cold formed steel are also given. Berechnung von tragwerken aus kaltgeformten stahlprofilen Zusammenfassung Diese Veröffentlichung gibt einen Überblick über die Bemessung und Anwendung von kaltverformten Stahlprofilen im Bauwesen. Die Bemessung dieser Profile entspricht BS 5950, Teil 5: “Code of practice for design of cold formed sections”, Ausgabe 1998. Die behandelten Anwendungsfälle beziehen sich auf Stahltragwerke, Fachwerke und nichttragende Bauteile im Verwaltungs, Industrie- und Wohnungs-bau. Der Hauptteil dieser Veröffentlichung stellt Bemessungstabellen für den allgemeinen Gebrauch von kaltverformten Profilen vor. Dieses Daten sind in zwei Teilen tabelliert: Querschnittsgrö$en Belastungstabellen. Die Querschnittsgrö$en können allgemein verwendet werden, während die Belastungstabellen der direkten wahl der Träger- und Stützenprofile dienen. Die in dieser Veröffentlichung enthaltenen, kaltverformten Profile können von Herstellern im Vereinigten Königreich bezogen werden. Andere Verweise zur Anwendung von kaltverformtem Stahl sind ebenso enthalten. Dimensionnement de structures en profils en acier formé á froid Résumé Cette publication passe en revue les méthodes de dimensionnement et les principales applications des profils en acier formé á froid dans la construction. Le dimensionnement de ces profils est en accord avec la BS 5950: Partie 5: 1998 - Recommandations pour le calcul des profils formé à froid. Les applications présentées ont trait aux cadres et portiques en acier ainsi qu’aux éléments secondaires utilisés dans les bâtiments industriels, commerciaux ou pour habitation. La partie principale de la publication présente des tables de dimensionnement pour les applications habituelles des profils formé à froid. Ces informations sont réparties en deux catégories: les propriétés des sections et les tables donnant les charges de dimensionnement des éléments. Les propriétés géométriques des P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
vii
18 April 2002
sections peuvent être utilisées dans toutes les applications. Les informations relatives au dimensionnement des éléments permettent un choix rapide des profils à utiliser en tant que poutres ou colonnes. Les profils en acier formé á froid repris dans la publication peuvent être aisément obtenus prés des producteurs du Royaume-University. D’autres références relatives à l’utilisation des profils en acier formé á froid sont également mentionnées. Proyecto de estructuras usando secciones de acero conformado en frio Resumen Esta publicación revisa el proyecto y aplicación de secciones de acero conformado en frio a la construcción de edificios. El proyecto de estas secciones de acero se ajusta a la BS 5950: Parte 5: 1998: “Norma de buena práctica para el proyecto de secciones de acero conformadas en frio”. Las aplicaciones cubiertas se refieren a pórticos de acero, cerchas y piezas secundarias en edificios comerciales, industriales y de habitación. La parte principal de la publicación presenta tablas de diseño para uso general de secciones. Los datos se tabulan en dos partes: propiedades de las secciones y cargas de proyecto de piezas. Las primeras son de uso general mientras que las segundas pueden utilizarse para la elección directa de las proporciones de vigas y columnas. Las secciones de acero conformado un frio descritas en esta publicación pueden obtenerse fácilmente de los fabricantes del Reino Unido. También se dan otras referencias para el uso de secciones conformadas en frio. Progettazione di strutture realizzate con profili in acciaio sagomati a freddo Sommario In questa pubblicazione viene presentato il dimensionamento e l’utilizzo di profili in acciaio sagomati a freddo. La progettazione di tali elementi in acciaio risulta conforme alla normativa BS5950: Parte 5, 1998, `Guida alla progettazione di profili sagomati a freddo’. Le applicazioni che vengono presentate sono relative a strutture intelaiate, a travature reticolari ed elementi secondari per strutture ad uso commerciale, civile ed industriale. Nella parte principale di questa pubblicazione sono riportate le tabelle progettuali per differenti utilizzi dei profili sagomati a freddo. Questi dati sono tabulati in due differenti parti: la prima e’ relativa alle caratteristiche geometriche dei profili e la seconda riporta i valori dei carichi di progetto degli elementi. Le caratteristiche dei profili possono essere utilizzate in applicazioni di carattere generale mentre una scelta diretta delle dimensioni di travi e colonne puo’ essere fatta sulla base delle caratteristiche portanti degli elementi. Le sezioni dei profili sagomati a freddo riportati in questa pubblicazione possono essere ottenute in brevi tempi da qualsiasi stabilimento del regno Unito. Vengono inoltre forniti diversi riferimenti per l’utilizzo dei profili in acciaio.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
viii
18 April 2002
NOTATION A cross-sectional area of section b plate width between corners or stiffeners be effective plate width in compression B width of the section Cb coefficient representing variation of bending moment along a member D depth of web of section 2
E modulus of elasticity of steel (205 kN/mm ) es eccentricity of line of application of axial force from centroid of section I
second moment of area of section (subscript x or y indicates major or minor axis direction of bending)
K plate buckling coefficient L length of member Le effective length of member My elastic moment resistance of the section N support width (mm) py design strength of steel pcr critical buckling stress in plate po reduced stress in section determined by web properties Q factor representing reduced performance of section in compression r corner radius ry radius of gyration in y (minor) axis direction of bending t
net steel thickness
Us ultimate strength of steel Ys yield stress of steel " effective length factor including torsional flexural buckling 8 slenderness of member 8y slenderness corresponding to B E/Y s L Poisson’s ratio for steel (= 0.3)
Note:
For notation used in section property tables, see Section 5.1.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
ix
18 April 2002
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
x
18 April 2002
1 AIM OF THE PUBLICATION This design guide is aimed at practitioners in the building industry who may have limited experience of the structural design of light steel framing using cold formed steel sections. The publication presents an overview of the design principles for ‘cold formed’ steel sections in accordance with [1] BS 5950-5:1998 (revised from the 1985 version). Cold formed steel sections are generally produced by cold rolling from galvanized steel strip. Most structural engineers are familiar with the application of cold formed steel sections (also known as cold rolled sections) in purlins and side-rails, which are highly engineered products for specific applications. The general use of cold formed sections as primary members of light steel framing requires a more simplified design process appropriate to their applications as beams, floor joists, columns, stud walling, members of roof trusses and sub-frames. A wide range of uses of cold formed sections and light steel framing has been realised in recent years, and common applications are in: C
housing
C
medium-rise apartment buildings
C
mezzanine floors
C
roof trusses, including ‘over-roofing’ in renovation projects
C
sub-frames for cladding, including ‘over-cladding’ in renovation projects
C
framework of modular units
C
separating and infill walls
C
canopies.
This design guide concentrates on the general use of cold formed steel sections in these structural applications. The information is presented under three broad headings: 1. An introduction to the design of cold formed sections. It is appreciated that the design of these sections may appear to be more complicated than that of hot rolled sections. It is therefore important to understand the design principles and also the practical considerations of the structural use of these sections. 2. A review of the application of cold formed sections in buildings, concentrating on the main design features and details. This also necessitates a discussion on methods of cutting, joining and attachment of other members and materials, which are fundamental to the practical use of these thinner sections. 3. A series of tables on section properties and loads for the range of cold formed sections that are readily available for general building use. The section properties have been calculated based on first principles, in accordance with BS 5950-5. The load tables (also determined in accordance with BS 5950-5) can be used to obtain the required member sizes for specific applications.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
1
18 April 2002
1.1
Design tables
Section properties are presented for the gross and the effective sections on the yellow pages (i.e. as influenced by local buckling under compression). These properties may be used by structural engineers when designing members for general application. Alternatively, designers may refer to the load-span tables for beams or load-height tables for columns, which give the member resistances directly (see pink pages and green pages for grades S280 and S350, respectively). The tables in this design guide may be used for general application of generic C and Z sections as floors and walls. Manufacturers often design their sections for specific uses, such as purlins, and establish the member performance based on test data rather than calculations to BS 5950-5. This means that manufacturers’ data may be more beneficial in certain cases. Member resistance tables (in terms of working load capacity) are presented for generic C or Z sections only. These load tables are useful for selection of member sizes and are intended to be used for initial or scheme design. However, for final design, the data provided by the manufacturer of the selected sections should be used. Manufacturers should be contacted directly with regard to availability, cutting to length, hole punching, etc. A list of UK manufacturers and further sources of information are presented in Appendix A.
1.2
Limit state design [1]
In BS 5950-5 , the loads to be used in design are calculated from the working loads multiplied by factors of 1.6 for imposed load and 1.4 for dead loads (including self weight). These factored loads are used to determine the moments and forces in the members, which are then compared to the resistance of the members. Resistances may be as determined for all relevant modes of failure, such as buckling, connection or local failure etc. The methods of determining the member resistance and load bearing capacity of cold formed sections are presented in Section 3. Additional checks on deflections are made for working loads (i.e. for load factors of 1.0) in order to ensure adequate performance in service. Light weight floors should also be checked for their vibration response to normal activities (see Section 6.1). The methods in BS 5950 are not based on working load or permissible stress design, although a global factor of safety of 1.6 may be used conservatively to determine maximum working loads that the structure can support. The load capacity tables are presented in terms of working loads.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
2
18 April 2002
2 INTRODUCTION TO USE OF COLD FORMED SECTIONS 2.1
Materials
Sheet steel used in cold formed sections is typically 0.9 to 3.2 mm thick (although thinner steels are used in roofing and decking applications). It is usually supplied pre-galvanized in accordance with European Standard [2] EN 10147 (issued by BSI in 1991 as BS EN 10147 as a replacement for [3] BS 2989 ). Galvanizing gives adequate protection for internal members, including those adjacent to the boundaries of building envelopes, such as purlins. The expected design life of galvanized products in this environment exceeds 60 years (see Section 2.3). Steel strip is produced by cold reducing hot rolled coil steel with further annealing processes to improve the ductility of the material. It is a quality controlled product with known and easily tested properties. Grade S280 steel (formerly Z28) is a quality of steel specified as having a guaranteed minimum 2 yield strength of 280 N/mm . Grades S280 and S350 steels are the most commonly specified grades, although it is often found that the actual yield strength is considerably higher than the specified minimum. Steel with a non-guaranteed yield strength may be used in some applications, provided that the strength of the material is determined by tensile tests taken from the coil from which the material was cut.
Stress
During ‘cold forming’ of a section, the increase in yield strength of the steel increases, due to cold working by the process of “strain hardening”, as illustrated in Figure 2.1. The increase in yield strength by cold working may be significant (> 10%) for highly stiffened sections with many bends. Strictly, the yield point is not a clearly defined transition point, as it is for hot rolled steels. The proof strength (at 0.2% strain) is often used as an effective “yield” value.
Increase of yield stress due to strain hardening
Ultimate strength Yield point after cold working
Initial loading
Further loading after cold working
Loss of ductility
Ductility after cold working
Fracture
Strain
due to cold working
Figure 2.1
The influence of cold forming on the stress-strain diagram of strip steel
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
3
18 April 2002
Ductility is defined on the basis of minimum elongation at fracture over a certain gauge length. This is specified for S280 steel as a minimum of 20% (2) elongation for a gauge length of 50 mm . Ductility reduces with cold working. Cold working also has the effect of reducing the ratio of the ultimate to the yield strength of the material.
2.2
Methods of forming
Manufacturers purchase strip steel in coils, normally of 1 m to 1.25 m width. The sheets are then cut (slit) longitudinally to the correct width for the section being produced and then fed into a series of roll formers. These rolls are set in pairs moving in an opposite direction so that the sheet is drawn through and its shape is gradually modified along the line of rolls. The number of rolls needed to form the finished shape depends on the complexity of the section. The overall length of the roll forming machinery can be over 30 m (see Figure 2.2). Setting-up costs are high if special rolls are needed. Adjustable rolls are often used, which permit a rapid change of section depth or width. Roll forming is therefore most economic where large quantities of the same section are produced at one time. The lengths of the members can be pre-programmed and cut accurately. Holes for attachments and services can also be punched either before or after forming. An alternative method of cold forming is by press-braking. This is normally only practicable for short lengths (up to 6 m, depending on the size of the machine used) and for relatively simple shapes. This method can be advantageous for small production runs, because of its lower setting-up costs.
Figure 2.2 Roll forms used for cold formed sections and sheeting
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
4
18 April 2002
2.3
Methods of protection
Hot dip galvanizing (zinc coating) of preformed strip steel offers protection by sacrificial loss of the zinc surface which occurs preferentially to corrosion of the steel. Guidance on thickness of galvanizing is given in Galvatite Technical [4] Manual . The specified sheet thickness includes galvanizing. A zinc coating 2 of 275 g/m (total on both faces) is the standard (G275) specification for internal environments, and corresponds to a total zinc thickness of about 0.04 mm. G100 to G600 coatings can also be obtained but these are generally non-standard. The thicker coatings are used in applications where moisture may be present over a long period. Zinc coatings can also be applied by hot dipping of the sections after manufacture. Galvanized steel has good durability because, unlike paint, scratches do not initiate local corrosion of the steel. Similarly, cut ends do not corrode, except where the rate of zinc loss on the adjacent surfaces is high. In some applications it may be necessary to apply zinc-rich paint to the exposed steel. [5] ‘White rust’ or wet storage stains may occur if galvanized sections are stored in bundles in moist conditions, but this does not normally affect their long term performance. Correct storage of bundles of sheets or sections is therefore important. A recent SCI publication Durability of light steel framing in residential [6] building shows that the design life of galvanized steel in ‘warm frame’ applications is at least 200 years, provided that the external envelope is properly maintained. Zinc-aluminium coatings also have high corrosion resistance and are sometimes used in sheeting applications, but rarely on sections. Organic coatings are not used for sections. Powder paint coatings, in addition to galvanizing, are often used for specialist products such as lintels.
2.4
Common shapes of sections
Cold formed sections are used in many industries and are often specially shaped to suit particular applications. In building applications, the most common sections are the C and the Z sections. There are a wide range of variants of these basic shapes, including those with edge lips, internal stiffeners and bends in the webs. Other sections are the ‘top-hat’ section and the modified I section. The common range of cold formed sections that are marketed is illustrated in Figure 2.3. The sections can also be joined together back to back or toe to toe to form compound sections. The reason for edge lips and internal stiffeners is because unstiffened wide and thin plates are not able to resist significant compression, and consequently the sections are structurally inefficient. However, a highly stiffened section is less easy to form and is often less practicable from the point of view of connection to other members. Therefore, a compromise between structural efficiency and practicability is often necessary.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
5
18 April 2002
Z sections
Lipped Z
Zeta
C sections
Plain
Lipped
Sigma
Special sections
Top hat
Modified
sections
Eaves beam
Compound sections
Figure 2.3
2.5
Examples of cold formed steel sections
Common applications
Cold formed steel sections are used widely in building applications. Decking is also used in composite floors, and in flat roofs. Roof and wall sheeting are well established and are generally sold as colour-coated products with various forms of organic surface coatings. The main advantages of using cold formed sections are: C
high load resistance for a given section depth
C
long span capability (up to 10 m)
C
dimensional accuracy
C
long term durability in internal environments
C
freedom from long term creep and shrinkage
C
capability to be formed to a particular shape for specific applications
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
6
18 April 2002
C
lightness, which is particularly important for buildings in poor ground conditions
C
no wet trades, as a ‘dry envelope’ is quickly achieved using light steel framing
C
ease of construction, as members are delivered to site cut to length and with pre-punched holes, requiring no further fabrication
C
ability to be prefabricated into sub-frames as wall panels etc;
C
robustness, but sufficiently light for site handling
C
connections are strong and easily made in factory or on site.
Examples of the structural use of cold formed sections are as follows: Roof and wall members A major use of cold formed steel in the UK is as purlins and side rails to support the cladding in industrial-type buildings (see Figure 2.4). Purlins are generally based on the Z section (and its variants), which facilitates incorporation of sleeves and overlaps to improve the structural efficiency of the members in multi-span applications.
Figure 2.4
Cold formed sections used as roof purlins
Light steel framing An increasing market for cold formed steel sections is in site-assembled frames and panels for walls and roofs, and for stand-alone buildings. This approach has been used in a wide range of light industrial and commercial buildings and also in mezzanine floors of existing buildings (see Figure 2.5). Housing In modern house construction, storey-high wall panels are factory-built and assembled on site by ‘platform’ construction. The panels are sufficiently light to be handled on site. External insulation is used in order to create a ‘warm frame’. Brickwork is attached by wall ties in vertical tracks fixed through the insulation to the wall studs. Four light steel framing systems are available in the P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
7
18 April 2002
housing sector in the UK. A major series of load tests has been carried out to establish the global action of light steel frames to vertical and horizontal loads (see Figure 2.6).
Figure 2.5
Cold formed sections used in site-assembled framing
Figure 2.6
Light steel framing for housing (Corus Framing’s Surebuild system)
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
8
18 April 2002
Lintels A significant market for cold-formed sections is for specially shaped steel lintels used over doors and windows inlow-rise masonry walls. These products are often powder-coated for extra corrosion protection in cavity conditions. Floor joists Cold formed sections may be used as an alternative to timber joists in floors of modest span in domestic and small commercial buildings. Spans of up to 5 m can be readily achieved for C or sigma-shaped sections. Lattice joists may be used for longer spanning applications. Systems for commercial buildings A prefabricated panel system using cold formed sections and lattice joists has been developed for use in buildings up to 4 storeys height (see Figure 2.7). Although primarily developed for commercial buildings, this system has wide application in such as educational and apartment buildings. Roof trusses Roof trusses may be manufactured using cold formed sections for both new construction and renovation projects. They may be of the traditional ‘Fink’ or ‘Pratt’ truss form, or alternatively, they may be designed as ‘open’ roof trusses for habitable use. ‘Over-roofing’ of existing flat roofs is also a large market for [7] long span trusses (see Figure 2.8). Separating walls and partitions Separating walls in framed buildings may be designed using C sections and multiple layers of plasterboard to provide a high level of acoustic insulation and fire resistance. Space trusses A three-dimensional space truss based on a 3 m square module using cold formed C sections is marketed in the UK by Spacedecks Ltd.. Infill walling and over-cladding A modern application of cold formed sections is in infill walls to support cladding to multi-storey steel buildings, and as mullions and transoms in standard glazing systems. ‘Over-cladding’ systems have been developed for use [8] in building renovation . Prefabricated modular buildings Prefabricated modular units are a new application of the use of cold formed sections. The units are manufactured and fitted-out in factory-controlled conditions. When installed on site with their services and cladding, the units form whole or part buildings with a high level of acoustic insulation and [9] structural integrity . They are also designed structurally for the stresses imposed during lifting and transportation. Other applications are as prefabricated ‘toilet pod’ units in multi-storey buildings.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
9
18 April 2002
Figure 2.7
Cold formed lattice joists and modular wall panels
Figure 2.8
Roof truss used in over-roofing
Frameless steel buildings Steel folded plates, barrel vaults and truncated pyramid roofs are examples of systems that have been developed as so-called frameless buildings (i.e. those without beams and which rely partly on stressed skin action). Storage racking Storage racking systems for use in warehouses and industrial buildings are made from cold formed steel sections. Most have special clip attachments, or bolted joints engineered for easy assembly, as shown in Figure 2.9.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
10
18 April 2002
Composite decking A major structural use of strip steel is in composite decking in floors which are designed to act compositely with the in-situ concrete placed on it. Composite decking is usually designed to be unpropped during construction, and typical spans are 3 to 3.6 m. This application, which is illustrated in Figure 2.10, is [10] [11] well covered in other publications . More recently, deep decking has been developed to achieve spans of 5 to 9 m in Slimdeck construction.
Figure 2.9
Typical storage racking system
Figure 2.10 Steel decking used in composite slab
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
11
18 April 2002
Applications in general civil engineering include: C
Lighting and transmission towers These towers are often made from thin tubular or angle sections that may be cold formed.
C
Motorway crash barriers These relatively thin steel members are primarily designed for strength, but also have properties of energy absorbtion under impact by permitting gross deformation.
C
Silos for agricultural use Silo walls are often stiffened and supported by cold formed steel sections.
C
Culverts Curved profiled sheets are often used as culverts and storm pipes.
Other major non-structural applications in building include such diverse uses as garage doors, and ducting for heating and ventilating systems.
2.6
Fire protection
Fire protection to cold formed sections in planar floors or walls is usually provided by special fire-resistant gypsum plasterboards placed in one or two layers to form the finished surface. Fire resistance periods of 30 or 60 minutes can be achieved by this simple method of protection provided joints between the boards are staggered. Longer members such as beams and columns can also be “boxed-out” using standard board protection, as in Figure 2.11. However, the required thickness of fire protection is usually greater than that for hot rolled sections because the [12] thinner steel elements heat up more rapidly .
Figure 2.11
Box fire protection to columns using C sections
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
12
18 April 2002
3 INTRODUCTION TO DESIGN OF COLD FORMED SECTIONS The main difference between the behaviour of cold formed sections and hot rolled steel sections is that thin plate elements tend to buckle locally under compression. Cold formed cross-sections are therefore usually classified as ‘slender’ because they cannot generally reach their full compression resistance based on the amount of material in the cross-section. Therefore, effective section properties should be used in structural calculations. The benefits of cold forming on material properties may be taken into account. A design formula for the increase in average yield strength is presented in BS 5950-5, Clause 3.4, and this increase in strength is typically 3 to 10%, depending on the number of bends in the section. For S280 and S350 steel grades, the design strength of the steel, py is taken as the yield strength, Ys as modified by Clause 3.4.
3.1
Behaviour of thin plates in compression
3.1.1 Elastic buckling The full compression resistance of a perfectly flat plate supported on two longitudinal edges can be developed for a width-to-thickness ratio of about 40. At greater widths, buckles form elastically causing a loss in the overall compressive resistance of the plate. This is due to the inability of the more flexible central portion to resist as much compression as the outer portions which are partly stabilised by the edge supports. The critical compression stress at which elastic buckling of the plate occurs is given by the expression: pcr = .
K B2 E 12 (1 & v 2)
t b
2
2
185 × 103 5 (t/b) N/mm
2
(1)
where: b is the plate width, and t is the steel thickness. The term 5, referred to as the buckling coefficient, represents the influence of the boundary conditions and the stress pattern on plate buckling. Normally, plates are considered to be infinitely long but have various support conditions along their longitudinal edges. The two common cases are, firstly, simple supports along both edges, and, secondly, one simple support and the other free edge. In the first case 5 is 4, whereas in the second, 5 reduces dramatically to 0.425. This indicates that plates with free edges do not perform well under local buckling. These cases are illustrated in Figure 3.1.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
13
18 April 2002
pcr
Buckled shape e edg ted r o p Sup
e edg ted r o p Sup
Junction remains straight
pcr
Edge is free to displace
pcr
Adequate lip
Figure 3.1
pcr
Buckled shape
No edge lip
Local buckling of plates with different boundary conditions
The value of 5 may be enhanced considerably when the rotational stiffness provided by the adjacent plates is included, or, alternatively, when the loading conditions do not result in uniform compression. Different cases for sections in bending and pure compression are given in Appendix B of BS 5950-5.
3.1.2 Post-critical behaviour Plate elements are not perfectly flat, and therefore begin to deform out-of-plane gradually with increasing load, rather than buckle instantaneously at the critical buckling stress. This means that the non-uniform stress state exists throughout the loading regime, and tends to cause the plate element to fail at loads less than the critical buckling value. This is a dominant effect in the b/t range from 30 to 60 (for plates simply supported on both edges). However, there are opposing effects for plate elements with higher b/t ratios. Firstly, “membrane” or in-plane tensions are generated which resist further buckling, and secondly, the zone of compression yielding extends from the longitudinal supports to encompass a greater width of the plate elements. These post-critical effects cause an increase in the load-carrying capacity of wide plate elements (b/t > 60) relative to that given by Equation (1). The parameter which is used to express the behaviour of plate elements in compression is the “effective width”. This is the notional width which is assumed to act at the yield strength of the steel. The remaining portion of the plate element is assumed not to contribute to the compression resistance, as illustrated in Figure 3.2. Simplified equivalent stresses
Actual stress distribution
beff /2 b beff /2 Ys
≈b
≈b
Ys
Ys
Figure 3.2 Illustration of effective width of compression plate
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
14
18 April 2002
The effective width concept can be modified to take the above factors into account. A semi-empirical formula for the effective width, beff, of a plate element under compression is presented in BS 5950-5, Clause 4.3, as follows: beff b
1 % 14
=
fc
4 &0.2
1/2
& 0.35
pcr
(2)
Where, fc is the compressive stress in the plate element, and pcr is the critical buckling stress of the plate element, as defined previously. fc is limited to a value of Ys , which is the design strength of the steel. The relationship given by Equation (2) is plotted in Figure 3.3. Also shown in this figure is the equivalent elastic buckling curve determined from Equation (1) [13] [14] and the corresponding AISI (American) requirements . The full compression resistance of a real (slightly non-flat) plate element supported on two longitudinal edges can be developed at a b/t ratio of less than approximately 30, and this therefore represents the most efficient spacing between stiffeners or folds in a cross-section. Values of effective width for plate elements of increasing b/t ratios are presented in Table 3.1 (taken from BS 5950-5). 1.0 b eff b
BS 5950:Part5 AISI/EC3 Part 1.3 Elastic Buckling
0.8
0.6
0.4
0.2
0
0
50
100
150
200
250
b/t
Figure 3.3
2
Ratio of effective width to flat width (Ys = 280 N/mm ) of compression plate with simple edge supports
3.1.3 Influence of stiffeners There are two types of stiffeners: those at the edge of a plate element, and those internally within a plate element. They are known respectively as ‘edge’ and ‘intermediate’ stiffeners, in the form of lips and folds, as illustrated in Figure 3.4. A rule of thumb is that edge stiffeners comprising a simple ‘lip’ or right angle bend should not be less in depth than one-fifth of the width of adjacent plate element, if they are to be fully effective in providing longitudinal support.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
15
18 April 2002
Table 3.1
Effective widths of compression plate elements supported on two longitudinal edges (Table 5 of BS 5950-5: 1998, reproduced with the permission of the British Standards Institution)
b/t
beff/b
b/t
beff/b
b/t
beff/b
b/t
beff/b
20 21 22 23 24 25
1.000 1.000 1.000 1.000 0.999 0.999
60 61 62 63 64 65
0.673 0.662 0.652 0.641 0.631 0.621
100 105 110 115 120 125
0.405 0.387 0.370 0.355 0.341 0.328
300 305 310 315 320 325
0.151 0.149 0.147 0.145 0.143 0.141
26 27 28 29 30
0.998 0.997 0.996 0.994 0.992
66 67 68 69 70
0.612 0.603 0.594 0.585 0.577
130 135 140 145 150
0.316 0.305 0.295 0.286 0.277
330 335 340 345 350
0.139 0.138 0.136 0.134 0.133
31 32 33 34 35
0.989 0.985 0.981 0.976 0.969
71 72 73 74 75
0.569 0.561 0.553 0.545 0.538
155 160 165 170 175
0.269 0.262 0.254 0.248 0.241
355 360 365 370 375
0.131 0.130 0.128 0.127 0.125
36 37 38 39 40
0.962 0.955 0.946 0.936 0.926
76 77 78 79 80
0.531 0.524 0.517 0.511 0.504
180 185 190 195 200
0.235 0.230 0.224 0.219 0.215
380 385 390 395 400
0.124 0.122 0.121 0.120 0.119
41 42 43 44 45
0.915 0.903 0.891 0.878 0.865
81 82 83 84 85
0.498 0.492 0.486 0.480 0.475
205 210 215 220 225
0.210 0.206 0.201 0.197 0.194
405 410 415 420 425
0.117 0.116 0.115 0.114 0.113
46 47 48 49 50
0.852 0.838 0.824 0.811 0.797
86 87 88 89 90
0.469 0.464 0.459 0.454 0.449
230 235 240 245 250
0.190 0.186 0.183 0.180 0.177
430 435 440 445 450
0.112 0.111 0.109 0.108 0.107
51 52 53 54 55
0.784 0.771 0.757 0.745 0.732
91 92 93 94 95
0.444 0.439 0.435 0.430 0.426
255 260 265 270 275
0.174 0.171 0.168 0.165 0.163
455 460 465 470 475
0.106 0.106 0.105 0.104 0.103
56 57 58 59 60
0.720 0.708 0.696 0.684 0.673
96 97 98 99 100
0.421 0.417 0.413 0.409 0.405
280 285 290 295 300
0.160 0.158 0.156 0.153 0.151
480 485 490 495 500
0.102 0.101 0.100 0.099 0.098 2
NOTE: These effective widths are based on the limit state of strength for steel with Ys = 280 N/mm and having a buckling coefficient K = 4. For steels with other values of Ys or sections having K … 4, see Clause 4.4.1 of BS 5950-5.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
16
18 April 2002
A simple formula for the minimum size of stiffener is given in BS 5950-5. If the stiffener is adequate, the plate element may then be treated as simply supported along both longitudinal edges, with a 5 value of 4. In BS 5950-5, edge stiffeners failing to meet this limit are considered to be ineffective and are disregarded, leading to much reduced effective section properties. Unstiffened element
Simple lip
Internal element
a) Section with unstiffened elements
Figure 3.4
Compound lip
b) Sections with elements stiffened by lips
Intermediate stiffener
c) Section with intermediately stiffened element
Types of element and stiffeners
Intermediate stiffeners are intended to reduce the flat width of the plate elements so that the section operates more effectively. They usually comprise folds in the section. Again, a simple formula for the minimum size of stiffener is given in BS 5950-5, Clause 4.7.1. Because these stiffeners stabilise two adjacent plate elements, they have to be relatively robust (i.e. stiff). Typically, a V shaped fold of height not less than one-fifth of the width of the adjacent plate element on one side of the stiffener will generally offer effective support. Thus, for a compression flange of 150 mm width, a single intermediate fold of 15 mm depth should be satisfactory. An additional problem with intermediate stiffeners is that the stiffened compression plate element tends to buckle towards the neutral axis of the section in bending (a phenomenon known as flange curling). This means that the effectiveness of very wide compression elements with multi-stiffeners is reduced due to this deformation. Account is taken of this effect in BS 5950-5, Clauses 4.7.2 and 4.7.3.
3.2
Behaviour of webs
Webs of cross-sections are subject to shear, bending and local compression at their supports. It is often found that these local effects dominate the design of cold formed sections. In purlin design, for example, the sections are supported by cleats attached to the webs rather than sitting directly on the supports which may reduce their effectiveness.
3.2.1 Web shear Slender webs normally fail in shear by shear buckling. The buckling coefficient 5 in Equation (1) for a simply supported plate in pure shear tends to a value of 5.35. This leads to a critical shear stress qcr given by BS 5950-5, Clause 5.4.3 as: qcr =
106
t D
2
N/mm 2
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
(3)
17
18 April 2002
qcr is compared to the average shear stress acting across the full web depth. Additionally, the average shear stress should not exceed 0.6 Ys representing the limiting stress at which shear yielding occurs. In irregular sections, the maximum shear stress should not exceed 0.7 Ys.
3.2.2 Web bending Webs of sections in bending are subject to varying compressive stress, reducing from a maximum at the junction with the flange to zero at the elastic neutral axis position. Very deep webs can be influenced by local buckling in compression. However, the varying stress in the web leads to a deeper plate element before buckling than for a plate element under pure compression. This is reflected in the theoretical value of the buckling coefficient 5 of 23.9 (rather than 4). The effective width concept is also used to determine the post-buckling bending resistance of deep webs by considering two separate zones adjacent to the neutral axis and to the compression flange. This behaviour is illustrated in Figure 3.5(b). b eff /2
b eff /2
Ys
b eff /2 Compression Ys
b eff /2
Ys
Ys
Yc
Yc
Neutral axis
Tension a) Effective width of compression flange and fully effective web b eff /2
b eff /2
po
b) Effective width of web in compression b eff /2
po
b eff /2
Ys
Ys
Yc
Yc Neutral axis
Ys c) Reduced stress, po in fully effective web
Figure 3.5
d) Full yielding of web in tension (non-symmetric section)
Effective width models for cold formed sections in bending
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
18
18 April 2002
In BS 5950-5, an alternative approach is used, whereby the maximum compressive stress in the web is determined. This is given by the term po calculated as in Clause 5.2.2.2 of BS 5950-5 (see Figure 3.5(c)): p0 ' 1.13 & 0.0019
Dw
Ys
t
280
½
py
(4)
where Dw is the depth of the web
3.2.3 Web crushing Local failure at supports, or at locations of point loads, can occur as shown in Figure 3.6. This reduces the load-carrying resistance of the member. It is taken into account by an empirical formula representing the web crushing load. A
A
Cleat
Section A - A
Figure 3.6
Use of cleat to avoid crushing
Web crushing at a support
This effect is largely a function of the width of the support, the thickness of the steel, and the height/thickness ratio of the section. The crushing load Pw (in kN) of a single vertical web with stiffened flanges is given in BS 5950-5, Clause 5.3, as: Pw = t2 k (1.33 ! 0.33 k)(1.15 ! 0.15 r/t)(2060 ! 3.8 D/t) (1 + 0.01 N/t) x 10!3
(5)
where: t D N r k
is the steel thickness (mm) is the section depth is the support width is the corner radius between the web and flange. = Ys /228.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
19
18 April 2002
Equation (4) applies where the reaction (or point load) is applied close to the end of the member and where the web is free to move laterally. The equivalent value for an internal support reaction or point load is approximately 50% higher than that given by this equation. It follows that the support reaction or point load should not exceed the web crushing resistance. This can be best achieved by increasing the width of the supports or the thickness of the steel section. Enhanced capacities are given for double C sections with back to back webs, or webs with both flanges held in [1] position (see Table 8 of BS 5950-5 ). Interaction between co-existent bending and web crushing may be taken into account using the relationship of the form indicated in Figure 3.7. This means that the bending resistance of continuous members may be reduced at internal supports, unless wet crushing is prevented by use of a stiffening element, e.g. an angle cleat. 1.0 M Mmax
Acceptable zone 0.4
0
Figure 3.7
3.3
0
0.45
P Pw
1.0
Influence of combined moment, M and web reaction, P for double C sections
Behaviour of members in bending
3.3.1 Moment resistance of section The effective properties of sections in bending may be taken into account from first principles by considering the effective widths of the compression elements, as illustrated in Figure 3.5. The neutral axis of the section is determined by balancing tension and compression. The section modulus is then calculated knowing the elastic neutral axis position. The effective bending resistance is obtained by multiplying the elastic section modulus by the design strength of the steel. Both the neutral axis position and the section modulus are therefore functions of the operating stress of the compression flange. For symmetric sections, the effective section modulus of the compression plate is not greater than that in tension and therefore compression yielding occurs P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
20
18 April 2002
first. However, for some non-symmetric sections, tension yielding may occur first causing plastification in the tension flange. This local yielding, as illustrated in Figure 3.5(d) is permitted, provided the compression plate does not yield.
3.3.2 Influence of section shape Z-shaped sections displace laterally when loaded through their webs, because the principal axis of bending is at an angle to the vertical axis through the web. These sections are normally used as roof purlins, so that the orientation of the principal axis counteracts that of the roof slope, as in Figure 3.8(a). Some sections are specially formed to reduce the angular difference between the principal and vertical axes to about 5E. Fixing to rigid flooring or deep sheeting also assists in preventing lateral displacement. Load Load
Principal axis of bending close to vertical Shear centre
Shear centre
Twisting about shear centre
pe slo f o Ro
a) Z sections as purlins
Figure 3.8
b) C sections
Behaviour of different sections under bending
C sections twist when loaded through their webs because the shear centre of the section is located outside the web (see Figure 3.8(b)). This is alleviated by placing two sections back to back, or by providing lateral restraints to both flanges. Fixing to rigid flooring also reduces twisting, depending on the location and spacing of the fixings. The shape of C sections can be modified to a zeta shape to bring the shear centre closer to the web. Non-symmetric sections, as shown in Figure 3.5(d), may displace laterally under major axis bending. These transverse bending stresses should be considered in addition to primary bending stresses unless lateral movement is prevented.
3.3.3 Continuous members For simply-supported members, it is the sagging (positive) moment conditions that determine the bending resistance of the member. For members that are continuous over one or more internal supports, moments are determined elastically (i.e. using moment distribution or other elastic methods). Plastic hinge analysis is not permitted because the ‘slender’ sections are not able to maintain their full bending resistance when rotations exceed the point at which the section reaches yield. There is, however, some residual bending resistance at large rotations as shown in Figure 3.9. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
21
18 April 2002
Elastic moment Load
Support
Moments following redistribution a) Redistribution of moments for 'plastic' sections
Elastic moment capacity Moment
Idealised behaviour Actual behaviour of 'slender' section
Rotation b) Moment - rotation characteristics of 'slender' sections
Figure 3.9
Illustration of influence of section type on behaviour of continuous beams
Design on the basis of elastic analysis means that the conditions at the internal supports of continuous members often dominate the overall design (see the relationship between moment and web crushing in Figure 3.7). In some cases, this can lead to the conclusion that simply-supported members are stronger than continuous members! Some purlin systems utilise the flexibility of sleeved or overlapping purlins at the supports in order to achieve some ‘elastic’ redistribution of moment, and hence to lead to more efficient design of the members (see Section 4.1). In order to make an accurate prediction of the amount of redistribution that will take place, it is necessary to know the moment-rotation behaviour of the sleeved or overlapped section in hogging. This should be determined by testing.
3.3.4 Lateral torsional buckling The above approach assumes that the members are laterally restrained i.e. they cannot fail by lateral buckling. This is the case where simply supported members are attached to floors etc. so that the compression flange is prevented from displacing sideways (or laterally). Where the lateral restraints are sufficiently wide apart, lateral torsional buckling may occur. This effect is illustrated in Figure 3.10. The elastic lateral buckling resistance moment of an equal flange I-section or a symmetrical C section bent in the plane of the web is given in Clause 5.6.2.2 by the formula: P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
22
18 April 2002
B2 AED 1 Cb 1 % 20 2 (LE/ry)2
ME =
LE ry
t × D
2
0.5
(6)
where: LE is the distance between points of lateral restraint ry is the radius of gyration of the section in the lateral direction Cb is the factor representing the shape of the bending moment diagram (unity for constant moment). Loading y z Support u x
φ
Figure 3.10 Deformations u and N associated with lateral-torsional buckling Account may also be taken of the support conditions in modifying the effective length LE. The ratio LE/ry defines the slenderness, 8 of the member. As the slenderness reduces, so ME increases, and eventually the bending resistance, Mc of the section is reached. Equation (5) may be converted to an effective slenderness, 8LT of the beam according to the expression: 8LT =
uv8
where u v
(7) is approximately equal to 0.9 for C or I sections, =
1 1 % 20
t 8 D
2
0.25
(8)
The effective slenderness may be non-dimensionalised to give the modified slenderness ratio, & 8 LT, by dividing by 8y where 8y = B E/Y s (see Section 3.4.1).
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
23
18 April 2002
As the D/t ratio of these sections is very large, it follows that v tends to unity. For a simply supported beam, its effective slenderness 8LT may be taken as 0.98 as a safe approximation. This reflects the beneficial effects of non-uniform stress and torsional stiffness on lateral torsional buckling of the section in comparison to a strut of slenderness 8. The relationship between the modified slenderness ratio of the member and the bending resistance, Mb of the section is shown in Figure 3.11. This is based on the Perry-Robertson approach, as defined in BS 5950-5. The full bending resistance of the section can only be reached when 8 is less than 40 Cb.
Moment ratio (M b /M c,Rd )
1.2 BS 5950 - 5 1.0 Elastic lateral torsional buckling
ECCS TC7
0.8 0.6
EC3 Part 1.3
0.4
BS 5950 - 1
0.2 0
0
0.5
1.0
1.5
2.0
Modified slenderness ratio ( λ LT) Modulus of elasticity E = 205 kN/mm² Design strength Y s= 280 N/mm²
Figure 3.11
Shape factor = 1.1
Design curves for cold formed sections used as beams
Similar formulae may be developed for singly symmetric sections such as C sections. However, in this case, the shear centre of a C section does not coincide with the plane of the web. Therefore loads applied through the web cause twisting of the section (see Figure 3.8(b)). In principle, therefore, single C sections should be restrained against torsion if they are to be used effectively. If not, then in-plane “warping” stresses due to torsion are created which should be added to bending stresses. The hogging (negative) moment region of continuous members requires special consideration, because it is usually more difficult to restrain the lower flange of the section than the upper flange. It is often assumed that the point of zero moment may be considered as a point of effective restraint, and that the part of the beam in hogging may be treated as a member with a linear variation of moment. If this gives a bending moment resistance less than the applied moment, then additional lateral restraints are needed. It should be noted, however, that treating the point of zero moment as a point of effective restraint is only appropriate when adequate torsional restraint is provided at the support (see Clause 5.5.5. of BS 5950-1:2000). In purlin design, sag bars are generally used to provide restraint to the lower flange in wind uplift conditions.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
24
18 April 2002
3.4
Behaviour of members in compression
3.4.1 Members in pure compression Members in compression are typically columns loaded by beams, or struts in trusses. Columns are usually only laterally restrained at the beam-column connections, unless they are built into a wall. The design of axially loaded sections may be treated as a series of plates in compression. This leads to an effective area of the cross-section when the effective widths of all the compressive plate elements are combined, as shown in Figure 3.12. This ratio of the effective to the gross area of the section is known as the “Q factor” and it represents the efficiency of the section under axial compression. Therefore, the compressive resistance of the section is: PCS
=
Q A Ys
(9)
where A is the gross (unreduced) cross-sectional area of the column section. Columns generally fail by buckling rather than pure compression, as shown in Figure 3.13. Perfectly straight columns buckle elastically at an “Euler load” given by:
PE =
B2 E Iy 2
=
B2
LE
EA
(10)
82
where 8 is the slenderness of the member between points of lateral restraints (see Section 3.3.4), which is the effective length Le divided by the radius of gyration. The modified slenderness ratio, & 8 is defined as 8/8y, where 8y = B E/Y s in which 8y corresponds to the slenderness of the equivalent perfect strut when acting at the yield strength, Ys.
A Centroid
a) Axial load applied through centroid
B Shear centre
Modified centroid
Eccentricity =A-B
b) Reduced cross-section in compression
Figure 3.12 Analysis of restrained section in compression
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
25
18 April 2002
Floor
A
A
Column
Lateral buckling mode
Torsional - flexural buckling mode
Section A - A Floor
Figure 3.13 Buckling of column in compression between floors Real columns are not perfectly straight; they fail before the Euler buckling load is reached. This is taken into account by a Perry-Robertson type formula which has a solution of the form: Pc '
P E Pcs
(11)
2
N% N &PE Pcs where N =
Pcs % (1 % 0) PE
, Pc is the axial buckling resistance of the 2 column and 0 is an empirical factor accounting for the initial imperfection of the column, given in Clause 6.2.3 of by 0 = 0.002 (8-20). (Therefore, Pc = Pcs when 8 # 20). The variation of load ratio (Pc/Pcs) with slenderness ratio 8 is presented in Figure 3.14.
3.4.2 Singly symmetric sections In sections which are not doubly symmetric about both axes (see Figure 3.12), the centroid of the effective section (B) may be at a different location to the centroid of the gross section (A) through which axial forces are assumed to act. This gives rise to combined bending and compression, which is taken into account by a modified value of PcN such that: PcN =
Mc Pc / (Mc + Pc es )
(12)
where Mc is the pure bending resistance of the section, and es is the eccentricity of the applied load caused by the shift of neutral axis from the gross section to the effective section (see, Clause 6.2.4).
3.4.3 Combined bending and axial loading The interaction between bending and axial load may be taken into account by the following relationship for members which fail by lateral buckling:
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
26
18 April 2002
Fc
%
Pc
Mx Mb
My
%
Cb Mcy (1 & Fc/Pey)
# 1
(13)
where Fc is the axial load applied to the column, and Mx and My are the applied moments in the x and y (major and minor axis) directions (see clause 6.4.3). Mcx and Mcy are the design bending resistance based on an independent analysis in the x and y directions. Cb takes into account the variation of moment along the member (see Equation 6). Pc is determined for an axially loaded member, as above, and PEY is the compression resistance for buckling in the y direction (from Equation 9). This equation takes into account the potentially weakening effects of the combinations of different buckling modes.
3.4.4 Torsional flexural buckling Thin open cross-sections are torsionally weak and may be more susceptible to torsional failure than lateral buckling failure when loaded axially (as illustrated in Figure 3.13). This is especially so for singly symmetric sections, such as C sections, because of the separation of the centroid and shear centre (representing the point about which the member twists). Analysis for torsional flexural buckling is quite complicated and the approach in BS 5950-5 is to modify the effective length for lateral buckling to take into account the possibility of a lower torsional flexural failure mode. This is achieved by the use of the effective length multiplication factor, ". Appropriate " values for a range of common sections are presented in Appendix C of (1) BS 5950-5 .
Load ratio
1.2
BS 5950-5
1.0 Elastic Euler buckling
0.8 0.6 EC3 Annex A
0.4
BS 5950 - 1
0.2 0
0
0.5
1.0
1.5
2.0
Slenderness ratio λ Modulus of elasticity E = 205 kN/mm² Design strength Ys = 280 N/mm²
Figure 3.14 Design curves for cold formed sections as columns
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
27
18 April 2002
3.5
Serviceability limits
3.5.1 Natural frequency The natural frequency of light steel flooring systems should be calculated in order to avoid perceptible vibrations. According to current SCI recommendations, the natural frequency of these floors should exceed 8 Hz when calculated for a load equal to the self weight plus a permanent load of 0.3 2 kN/m . This is equivalent to a static deflection of 5 mm under the same load. Assuming that the permanent load is approximately 33% of the total service load, it follows that the maximum deflection under total design loading should not exceed 15 mm. This deflection limit is equivalent to that for timber construction. The natural frequency limit often controls for floor spans greater than 5 m.
3.5.2 Deflection limits Deflection limits are introduced for floors in order that there is no serious risk of cracking of partitions or other components supported by these floors, or perceptible movement. Traditionally, an upper deflection limit of span/360 is used for floors subject to imposed load, reducing to span/250 when subject to total loads. However, these limits may be too relaxed for light steel floors, particularly in relation to control of vibrations (see above). Because of this, it is proposed that the limit on imposed load deflections should be reduced to span/450, and the limit on total deflection should be reduced to span/350 (but not exceeding 15 mm, as required for control of vibrations). Stricter limits are required for edge beams supporting cladding. For brickwork, total deflection limit of span/500 is often used.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
28
18 April 2002
4 APPLICATION OF COLD FORMED SECTIONS IN BUILDING The following Sections describe typical uses and potential applications of cold formed steel sections in buildings. A common use of these sections is in purlins and side rails in industrial buildings, but there are many new developments of cold formed sections as primary structural members in housing, light industrial and commercial buildings.
4.1
Purlins and side rails
Purlins are usually of Z shape, the argument being that the principal axis of bending of the section is close to vertical when the section is orientated so that the upper flange points up the roof for roof slopes of 10 to 15E, as shown in Figure 3.8(a). This means that vertical roof loads do not cause serious twisting of the sections. However, roof slopes in modern industrial buildings can be as low as 5E, and this has created the need for modified section shapes. The so-called “Zeta” section (see Figure 2.3) is one attempt to provide a section shape more suitable for shallow roofs. C shaped sections and their derivatives have also been developed for roof and wall applications. The web shape can be modified to a sigma shape to reduce the twisting of the section by bringing the shear centre of the section closer to the web. All purlins above a certain length are provided with sag rods which are intended to prevent twisting during erection and to stabilise the lower flange against wind uplift. The upper purlins are usually tied at ridge level. Lateral forces on the members can usually be transferred by ‘diaphragm’ or ‘stressed skin’ action of the roof sheeting. The upper flanges of the purlins are considered to be laterally restrained by the sheeting. The design of purlins has developed to an extent that empirical methods based on testing are often the only economic solution. Purlins are usually designed to be continuous in order to satisfy deflection limits. However, elastic design of continuous members can be unduly onerous, when strictly interpreting the requirements of BS 5950-5 (see Section 3.3.3). This factor has been recognised by the purlin manufacturers and many overlapped and sleeved systems at the supports have been developed. The moment-rotation characteristics of these systems can be “matched” to the performance of the purlin, leading to optimum design of the section. This behaviour is illustrated in Figure 4.1. Overlapping systems provide better hogging bending resistance then sleeved systems. Both provide double web thickness, improving the shear resistance of the section at internal supports. Shear forces are transferred to the supporting rafters by cleats bolted to the webs of the purlins. The cleats are designed so that the lower flange of the purlin does not bear directly on the rafter, and thus web crushing problems are avoided. The shear or bearing strength of the connecting bolts provides the necessary load transfer (see Section 4.10). P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
29
18 April 2002
Side rails are designed in a similar manner and are used in walling applications. Vertical loads are resisted by the use of sag rods or bracing members in the plane of the wall. Sleeve or overlap
w
Joint rotation
L
0.10wL²
Elastic moments
0.08wL²
Redistribution moments allowing for joint flexibility
Figure 4.1
4.2
Redistribution of moments in sleeved or overlap purlin system
Floor joists
Steel floor joists, usually of C section, may be used to replace timber joists in housing and other masonry buildings. The joists may be built into walls or supported on traditional joist hangers (see Figure 4.2). Thicker cold formed sections may also be used to replace lighter hot rolled sections as secondary beams in main frames. Comparisons have been made of the design of cold formed sections with the traditional alternatives. These comparisons have been characterised in terms of four typical applications that may be encountered in domestic and commercial buildings. The section sizes and weights resulting from these designs are presented in Table 4.1. In practice, designs may be controlled by bending resistance or stiffness requirements. In terms of equivalent bending resistance, a series of 175 mm × 37 mm timber joists may be replaced by 100 mm × 40 mm × 1.2 mm thick C sections at the same spacing. Other comparative performances may be taken from Table 4.2. However, in practical applications, floor joists should also be designed for relatively strict deflection and frequency limits which means that they are deeper than for pure bending resistance (see Section 3.5). The cold formed sections can also be manufactured with punched holes in their webs to allow passage of small diameter pipes and other services. The depth of these holes is normally less than half the member depth and has little effect on structural performance. Provision of these holes for services overcomes the problem of notching of timber joists. Attachment of the timber floor-boards increases the stiffness of the light steel sections and provides lateral restraint if fixed at regular intervals.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
30
18 April 2002
Table 4.1
Comparison between section sizes for cold formed steel, hot rolled steel and timber for different applications Domestic building
Section type
Commercial building
Span = 4 m Spacing = 0.6 m
Span = 5 m Spacing = 0.6 m
Span = 5 m Spacing = 1.2 m
Plain C section
150×50×3 W = 5.6
2No. 150×50×3 2No. 150×50×5 W = 11.0 W = 17.8
Lipped C section
165×63×1.6 W = 3.9
220×63×1.8 W = 4.9
2No. 220×63×2.0 W = 10.9
Timber
250×75 W = 10.1
300 ×75 W = 12.1
2No. 300×75 W = 24.2
Hot Rolled Steel
102×51 RSC W = 10.4
127×76 UB W = 13.0
152×89 UB W = 16.0
Span = 6 m Spacing = 1.2 m 2No. 300×65×2.0 W = 15.0 178×102 UB W = 19.0
2
Imposed loading
= 2.5 kN/m for domestic building 2 = 3.5 kN/m for office/commercial building 2 Dead loading = 1.0 kN/m in all cases W = weight in kg/m Data presented for S280 steel or standard timber grade.
Table 4.2
Structural equivalents of cold formed sections
Lipped C section
Timber
D×B×t
D×B
70 × 40 × 1.2
150 × 37
100 × 40 × 1.2
175 × 37
100 × 40 × 1.5
175 × 50
100 × 65 × 1.6
200 × 50
120 × 65 × 1.6
225 × 50
127 × 65 × 1.6
225 × 63
165 × 65 × 2.0
250 × 75
Lipped C sections
Hot rolled steel
D×B×t
Designation
2 No. 220 × 65 × 2.0 (12.5 kg/m)
127 × 76 UB (13.0 kg/m)
2 No. 300 × 65 × 2.4 (17.9 kg/m)
178 × 102 UB (19.0 kg/m)
2 No. 300 × 65 × 3.0 (21.0 kg/m)
203 × 133 UB (25.0 kg/m)
All dimensions in mm; S280 or grade S275 steel; Standard timber grade. Based on equivalent bending resistance.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
31
18 April 2002
Screw
Joint hanger - connection to masonry
C section
C section - C section cleat connection
Bent plate as cleat
Short C section Truss connection Screw
Figure 4.2
4.3
Examples of connections between C sections
Stud walling
Stud walling using C sections of 50 to 100 mm depth is a common form of partition construction in commercial buildings. It is much lighter than traditional blockwork and is quicker and easier to construct. Importantly, it is a “dry” construction and is easily removable.. Plasterboard or similar materials are attached by screws to the stud walling to form the finished surfaces. This adds considerably to the stiffness of the walls. An 80 mm thick stud wall can be used to replace a 100 mm or 120 mm blockwork wall. A tall wall constructed using C section studs is illustrated in Figure 4.3. These walls may be assembled on site or pre-fabricated as storeyhigh panels. Separating walls between compartments and between apartments are designed to achieve a high level of acoustic insulation and fire resistance. This is achieved by using multiple layers of fire-resistant plasterboard attached by resilient bars to the studs, with insulation and quilt placed between the studs. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
32
18 April 2002
An airborne sound reduction of over 53 dB and 60 minutes fire resistance can be easily achieved by this form of construction. Improved acoustic insulation can be achieved by using double stud walls (usually the case in “party walls”, and in special applications, such as cinemas).
Figure 4.3
4.4
Tall wall constructed using C section studs
Trusses
Purpose-made steel trusses have been marketed for many years. As shown in Figure 2.7, they comprise cold formed sections as flanges with bent bars or tubes forming the bracing elements welded to the flanges. These can be designed to span typically 5 m to 20 m (and up to 30 m in special applications) and can be used as roof or floor joists. Roof trusses for housing are rather different in shape, as the roof pitch is commonly in the range of 20 to 45E. The traditional timber truss is of the “Fink” truss form and the truss spacing is compatible with the size of tile battens normally used. Various steel truss systems have been developed. Two generic forms of light steel roof truss may be used: C
Closely spaced roof trusses: the ‘open roof’ truss uses bolted C sections which provide for habitable roof space, as shown in Figure 4.4.
C
Widely spaced roof trusses: the more traditional ‘Fink’ trusses may be spaced wider apart (3 to 5 m) and purlins may span between. The space between the trusses may be used for storage, etc.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
33
18 April 2002
Both roof systems may be used in new-build and in renovation projects by overroofing. The Capella system, shown in Figure 4.5, has been specifically developed for over-roofing in renovation applications. Generally, the connections between the members are bolted because of the relatively high forces that are transferred. Over-roofing is covered in a recent SCI publication [7] Over-roofing of existing buildings using light steel .
Figure 4.4
Open-roof truss for habitable use
Figure 4.5
Widely spaced roof trusses with purlins between the trusses
4.5
Structural Frames
Cold formed sections can be used not only as secondary members but also as beams and columns in primary structural frames. This has proved to be successful in light commercial and industrial buildings and in mezzanine floors. Often it is necessary to use C sections placed back to back in longer span applications to increase their buckling resistance. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
34
18 April 2002
Traditional C and Z sections can be made up into more complex assemblies, as shown in Figure 4.6. The sections are thin enough to facilitate connections by self-tapping screws. Alternatively, C sections can be bolted together to form load bearing frames, as shown in Figure 4.7 for a school building. Bolted connections can be made with ‘autoform’ cleated ends and with pre-punched bolt holes. Typical framing arrangements at junctions of floors and walls are shown in Figure 4.8. The transfer of vertical loads in the walls in ‘platform’ construction can be achieved by stiffening the ends of the floor joists.
Figure 4.6
Use of C sections to form joists, stud columns, and purlins
Figure 4.7
Load-bearing frames entirely composed of bolted C sections
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
35
18 April 2002
Load bearing stud
Edge support
Bottom track
Angle seat
Top track
Floor joist
(a) ‘Balloon’ construction
Load bearing stud
Edge support
Bottom track Closure section Web stiffener Floor joist Top track
(b) ‘Platform’ construction Figure 4.8
Typical framing arrangements at junctions of floors and walls
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
36
[15]
18 April 2002
The “Swagebeam” is a special form of C section that has been developed to enhance the shear and bending resistance of bolted connections between the sections. This is achieved via the bearing action of indentations in the web of the section and of embossments in the web cleats. A typical swagebeam connection in a mezzanine floor is shown in Figure 4.9. This system has been used in rectangular frames and in portal frames (up to 15 m span).
Figure 4.9
4.6
Swagebeam connection
Curtain walling and over-cladding
Curtain walling to multi-storey buildings consists of light frames which support glazing, aluminium or steel panels, or stone veneer. These can be storey high panels which are connected to the floor slabs. Cold formed steel sections can be used for the sub-frame components to the cladding and there are a number of recent examples of buildings where this has been used successfully both in new construction and in renovation (see Figure 4.10). A dry envelope is erected rapidly, which means that the internal fit-out can commence without the cladding being on the ‘critical path’. ‘Over-cladding’ of existing buildings is an important market where light steel sub-frames can be used to span directly between floors. The sub-frames are also designed to allow for adjustments due to site tolerances (see Figure 4.11). A variety of cladding materials may be used, such as composite panels or cassette panels. The design requirements for over-cladding systems are reviewed in an [8] SCI publication Over-cladding of existing buildings using light steel .
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
37
18 April 2002
Figure 4.10 Use of cold formed sections as curtain walling
Figure 4.11 Use of light steel framing as sub-frame in ‘over-cladding’ of existing buildings P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
38
18 April 2002
4.7
Housing
Light steel framing used in low-rise housing has been successful in Australia, Japan, USA, Canada and now in the UK. Currently, four light steel framing systems are used in the housing sector in the UK. Modern methods of light steel framing used in housing may be considered to be of three basic forms: C
discrete members that are assembled on site to form to which cladding is attached. These are similar to ‘frame’ systems covered in Section 4.5.
C
wall panels, prefabricated in storey high units (platform construction). This is a similar form of construction to that used in timber framed housing. The wall panels are insulated externally to create a ‘warm frame’.
C
complete house modules or modular components. Other more sophisticated steel/concrete boxes have been developed for applications in hotels or apartment blocks (see Section 4.8).
In wall panel systems, the individual panels are prefabricated by self-piercing rivets, or welding, and the panels are lifted into place, and bolted together on site (see Figure 4.12).
Figure 4.12 Erection of light steel framing for a two-storey house In the Surebuild system, steel floor joists sit on a Z shaped trimmer section attached to the top of the lower storey wall panels, and the upper panels are attached to the lower panels in so-called ‘platform’ construction. The steel stud wall panels use 75 × 32 mm C sections at 400 mm spacing. These are located on the ‘warm’ internal face of a 35 mm thick insulation board. The internal finish is a fire resistant plasterboard designed to give 30 minutes fire resistance. Heavier or multiple board systems can provide 60 minutes fire resistance. Brickwork is attached by wall ties located in a vertical track which is screwed through the insulation to the wall studs.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
39
18 April 2002
The Metsec Gypframe system uses C sections attached by bolts in countersunk holes. The Gypframe system is erected as two-storey high wall panels and the floor joists are bolted to the webs of the wall studs. It is also constructed as a ‘warm frame’ and insulation is pre-attached to the panels. The other housing systems that are available in the UK are by Ayrshire Steel Framing and Forge Llewellyn Ltd.
4.8
Modular construction
Modular or ‘volumetric’ systems are pre-assembled and generally fitted-out in the factory, so that they are delivered to site as units which are self-supporting and require only minimal site work to complete the assembly of units. The typical framework of a pre-fabricated module is shown in Figure 4.13.
Figure 4.13 Modular construction using light steel framing The units are generally less than 4.5 m wide and up to 12 m long because of the requirements for transportation and lifting. The framework of the modules comprises cold formed C sections, often supplemented by hot rolled sections at the corner posts and bottom beam supports. Some systems are corner supported which means that the braced walls act as deep beams. Others are continuously edge supported. Cladding and roofing is usually attached on-site to form the completed building. Therefore, a variety of architectural features can be achieved. Modular units can [9] also be used in refurbishment .
4.9
Frameless structures
Over the last 20 years, there have been important developments in “frameless” construction, where the members and the cladding interact by “stressed skin” action. The main structural configurations that have been used are the folded [16] plate roof , the truncated pyramid and the barrel vault. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
40
18 April 2002
The folded plate roof behaves as a series of inclined beams spanning between end frames. The fold-line members (cold formed angles) absorb the axial thrusts and tensions, and the sheeted web is in pure shear. From the point of view of aesthetics and structural performance the slope of the roof would normally be between 30 and 45E (to the horizontal) and most efficient spans are between 15 m and 25 m. The truncated pyramid roof, as shown in Figure 4.14, comprises a compression ring and a tension ring with hip members transferring the loads between. The individual sheeted panels are prefabricated and they can be bolted together and lifted into place in a few hours. Gutter outlets are placed along the valleys and down the hollow section columns.
Figure 4.14 Example of truncated pyramid roof using cold formed steel sections
4.10 Connections The common types of fixing between cold formed sections, and between sections and sheeting, are: Type
Usual Application
(a) Bolts
Connecting cold formed sections.
(b) Self-tapping screws
Fastening sheeting to sections (< 6 mm thick) or sheeting to sheeting at sidelaps.
(c) Blind rivets
Fastening sheeting to sheeting at sidelaps.
(d) Powder actuated pins
Fastening sheeting to members (>6 mm thick).
(e) Spot welding
Factory joining of thin steel.
(f) Puddle welding
Site welding of sheeting to sections.
(g) Clinching
Usually factory installed by press-joining.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
41
18 April 2002
(h) Self-piercing rivets
Usually factory installed.
(i) Nailing
Site installed using special nails.
These different types of fixing are reviewed as follows: (a) Bolts: Bolt holes can be punched in cold formed sections; the connections between members are usually arranged so that the bolts are loaded in shear. In almost all cases, the resistance of the connection is determined by the bearing resistance of the thinner steel section, rather than by shear of the bolt. Countersunk bolts can be located in recessed holes punched into the sections. In this way, the bolt head does not protrude and does not affect the fixing of the plasterboard or other lining (see Figure 4.15).
Figure 4.15
Countersunk bolts between wall elements
Autoform ends may also be formed during the cutting and punching process; these facilitate bolting (see Figure 4.16).
Figure 4.16
Creation of autoform ends to C sections
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
42
18 April 2002
In BS 5950-5, Clause 8.2.5.2 the shear resistance of bolted connections is given as: Pu
=
2.1 d t Ys
or Pu
=
(1.65 + 0.45 t) d t Ys
for t # 1 mm
(14)
for 1 mm < t # 3 mm
(15)
where: d is the diameter of bolt (mm) 2 Ys is the design strength of steel in thinner plate (N/mm ) t is the thickness of steel in thinner plate (mm) These shear resistances assume that the bolt end distance is at least 3d and that washers are used under both the head and the nut. The resistances are greater than the equivalent values in BS 5950-1, because of build up of deformed steel in front of the bolt as the thinner section fails in bearing. They also include a partial safety factor, given by the ratio of the ultimate to the yield strength of the steel (approximately 1.4). (b) Self-tapping screws: Self-drilling self-tapping screws are commonly used for connecting thin steel components. A selection of the screws and the drill that may be used is shown in Figure 4.17. The “drill” part of the screw forms a hole in the steel plate and the “tapping” part forms the thread. This is a single operation and gives a relatively strong and stiff form of attachment. “Thin-thick” and “thin-thin” attachments may be made depending on the length of the screw. The diameter of the screws is in the range of 4.2 to 8.0 mm, the most common size being about 6 mm for thin-thick connections. The shear resistance (including partial safety factors) may be obtained from Appendix A of BS 5950-5.
Figure 4.17 Different forms of self-drilling self-tapping screws and the standard drill
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
43
18 April 2002
Typically, for a 6 mm diameter screw through 1 mm thick steel, the shear resistance (including partial safety factors is 3.5 kN (thin-thick fixings) and 2.2 kN (thin-thin fixings). Premature failure of a fixing by pull-out should be avoided by careful detailing. Fixings have also been developed for stand-off applications where insulation materials or timber are to be attached (Figure 4.18).
Figure 4.18 “Stand-off” type fixing for soft insulation materials (c) Blind rivets can be in aluminium or alloyed metal (often termed “monel”). They are fitted from one side into predrilled holes and a mandrel is pulled by a special tool so that the rivet expands into and around the hole. These rivets are commonly of 2.4 to 6.3 mm diameter (dependant on the hole diameter). It is a relatively firm form of attachment with good pull out resistance and is useful for thin-thin attachments, e.g. seams in profiled decking. Again, Appendix A of BS 5950-5 can be used to obtain the shear resistance. The “huck” bolt is a similar system, but is used for thicker materials. As for the blind rivet it is fitted from one side in a pre-drilled hole. Tension is applied to the stem of the bolt by a special tool and a malleable ring is pushed to precompress the plates to be attached. When the correct tension has been applied the outer part of the stem breaks off. (d) ‘Shot-fired’ pins (more correctly powder actuated fasteners) are often used when fastening thin to thick steel. They are usually of 4.2 mm diameter and the powder of cartridge is selected for the thickness of the steel. The shear resistance of this type of fixing is given in Appendix A of BS 5950-5 as: Pu = 3.2 t d Ys
(16)
The enhanced resistance, relative to a bolt of the same diameter, is due to the tight fit and the precompression of the steel around the fixing. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
44
18 April 2002
(e) Spot welding is a technique used mainly in the factory. An arc is created between the tips of the welding tool on either side of the steel elements to be attached. It is therefore most appropriate where the welding tool can be supported and can be moved easily into place to form the weld. The shear resistance of a spot weld (in N) is given in BS 5950-5, Clause 8.5.3 as: Pu =
2.7 t d Y s
(17)
(f) Puddle welding is a common site technique in North America. An arc is created between the manually held welding rod and the bare metal. In order to weld through to the lower sheet or base steel, a hole is often cut in the upper sheet and a weld formed around the cut edges. (g) Clinching is a mechanical process in which two pieces of thin steel are pressed together to form a local embossment in the surface of the steel. Clinched connections are effective in shear but are ineffective in tension. (h) Self piercing rivets have been introduced into the Surebuild system. The machinery requires sufficient access to make the connection, and therefore short ‘gusset’ pieces are often introduced to facilitate these connections between wall studs. (i) Nailing of secondary timber elements to thin steel sections or sheeting is feasible by using a “twist-grip” nail. This is practicable where the steel is 0.7 mm to 1.0 mm thick; thicker materials require too much effort to pierce; thinner materials offer too little pull-out resistance.
4.10.1
Simple connections
Conventionally, connections between cold-formed steel sections comprising two bolts per member are considered as simple (shear resisting) connections. Hot rolled angles are often used, but cleats of this size are generally over-sized for this application. [17]
In a recent experimental investigation , it was demonstrated that cold-formed steel web-cleats may be used for improved buildability. Both bolts and self-drilling self-tapping screws may be used as fasterners for cold-formed steel web cleats, and they are simple and easy for site installation. Typical shear resistances of simple connections with cold-formed steel web cleats range from 9 kN to 20 kN, depending on the material and geometry of the cold-formed steel web-cleats. [17]
A set of design rules is available to assess the shear resistance of simple connections with cold-formed steel web cleats for different connection configurations, depending on the practical spatial orientation of members. Detailing rules on the minimum and the maximum dimensions for the position of fasteners should be observed.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
45
18 April 2002
4.10.2
Moment connections
In modern roof systems, the purlin-rafter connections between cold-formed steel sections are highly engineered for the good structural performance of the continuous purlin members. A number of different connection configurations with sleeves or overlaps have been developed in various proprietary systems, which offer partial continuity along the purlins, thereby achieving considerable economy. Purlin-rafter connections are usually cleated connections in which the bolts are designed to resist shear. For beam-column connections, only a limited range of proprietary systems is available. Mechanical enhancement may be used to increase the moment resistance of the connections by mobilising bearing actions between the profiled webs and profiled gusset plates. (A good example of this is the Swagebeam system.) An experimental investigation on lipped C sections with hot rolled steel gusset [17] plates , beam-column connections and also portal frames was carried out. The webs of the back-to-back C sections were connected by bolts to the gusset plate. The maximum moment that was resisted by these nominally simple connections was up to 85% of the bending resistance of the connected members.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
46
18 April 2002
5 SECTION PROPERTIES OF COLD FORMED SECTIONS Geometrical properties of cold formed sections are presented (see yellow pages) in the following format: C
Gross section properties
C
Effective section properties (including the effects of local buckling).
Gross properties are used to determine the elastic stiffness of members or the moments in continuous structures or frames. Effective properties are used to determine the load carrying capabilities of the sections. The geometry of the various sections included in this design guide are presented in Figures 5.1 and 5.2, and their dimensions are given in Tables 5.1 and 5.2. These sections are available for general use, but the list is not exhaustive. The tables include only those sections available for general structural applications. This ignores the smaller C sections. Gross section properties of the section include: C
Height and thickness (which define the section)
C
Self-weight
C
Cross-sectional area
C
Second moment of area about x and y axes
C
Section modulus about x and y axes
C
Radius of gyration about x and y axes
C
Torsion and warping constants
C
Position of centroid and shear centre.
For Z sections, the second moment of area about the principal axes (u and v) and also the angle, 2 between the principal axis u and the x axis, are also presented. Effective section properties incorporate the influence of local buckling and are used in resistance calculations. Properties are given for: C
Effective area ratio, or Q factor
C
Section modulus about x and y axes
C
Second moment of area about x axes
C
Shift of neutral axis position.
Gross and effective section properties are also given for double (i.e. back to back) C or equivalent sections, but not for Z sections. The effective section modulus and second moment of area are based on a steel 2 2 design strength of 280 N/mm or 350 N/mm , as specified by the relevant manufacturer.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
47
18 April 2002
The “Q factor” is a term which defines the ratio of the effective to the gross cross-sectional area of the section (see Section 3.4.1). The compression resistance, Pcs, is based on the effective section, but ignores the effects of lateral instability. The bending resistance of the section, which is assumed to be laterally restrained, is determined from: Mc =
Z( Do
where Z( is the effective section modulus (for the x or y directions, as appropriate) and po is the bending strength determined by the slenderness of the web. Tension yielding is permitted in the evaluation of Z( for asymmetric bending, which may mean that the value of Z( exceeds the elastic value for the gross section. The section property tables refer to those cold formed steel sections readily available at the time of publication. Sections are continually being modified and improved, and new sections manufactured. The individual companies mentioned should therefore be contacted to establish their latest product range. Manufacturers’ addresses and telephone numbers are given in the Appendix A. The section property data may differ slightly for that given by manufacturers who have carried out load tests to establish the key bending properties. In this publication, more section property data are given than would be included in manufacturers’ tables. Load capacity tables for discrete beams and columns are presented in Section 6 for the generic sections listed in Tables 6.1 and 6.2, these being representative of those manufactured by a number of companies. They should be used for scheme design. Double sections are recommended for columns and heavily loaded beams.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
48
18 April 2002
Table 5.1
Dimensions of C sections included in the section property tables Flange widths (mm)
Section type
Steel grades
Overall depth (mm)
Top ‘B’
Bottom ‘B’
Ayrshire (CW) C Section
Lip (mm)
280 or 350
100 to 240
65
65
13
Ayrshire Swagebeam
280
220 to 300
65
65
18
Ayrshire (St Helens) Plain C Section
280
75 to 175
50
50
-
Hi-span C Section
350
155 to 175
66
66
15
Metsec C Section
350
142 to 342
64 to 97
64 to 97
13 to 20
Metsec Plain C Section
280
52, 100, 152 63 74, 75 80
50 25 38 or 44 48
50 25 38 or 44 48
-
Albion C Section (formerly Millpac)
350
127, 145 165 to 276 230, 300
50 to 62.5 62.5 70
50 to 62.5 62.5
15 15 to 20 20
Metsec Framing SFS Section
350
70 to 300
35 to 54
35 to 60
10 to 15
Structural Sections Ultrabeam
350
145 to 285
50 to 75
50 to 75
12 to 17
Ward Multibeam
390
145 to 350
60
60
14
Ward Multichannel
350
70 to 350
50 to 95
50 to 95
20
Generic C sections
280 or 350
100 to 300
55 to 65
55 to 65
15
y
y
B
t
y
B
t
x
D
x
x
D
x
x
y
Plain C section
y
t
x
y
D
y
Lipped C section
y
B
B
Swagebeam
y
B
t
B
t
t x
x
D
y
x
x
D
y Ultrabeam
Figure 5.1
x
x
D
y
Multichannel
Multibeam
C sections and their derivatives included in section property tables
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
49
18 April 2002
Table 5.2
Dimensions of Z sections included in section property tables
Section type
Steel grades
Flange widths (mm)
Overall depth (mm)
Top ‘B’
Bottom ‘B’
Lip (mm)
Ayrshire Zed Section
280
125 140 to 200 240 300
55 58 76 94
45 49 68 86
15 to 16 15 to 16 15 to 18 15 to 18
Aryshire Zeta Section
280
125 150 to 200
60 72
50 65
18 18
Aryshire Zeta II
350
225 to 285
78
68
18 to 20
Aryshire Zeta III
350
140 to 200
55
45
15 to 16
Hi-span Z Section
350
150 and 170 205 230 and 255
66 66 83
60 60 75
17 to 19 17 to 19 17 to 19
Metsec Z Section
350
142 172 and 202 232 262 302 342
60 65 76 80 90 100
55 60 69 72 82 92
19 to 21 19 to 21 19 to 21 19 to 21 19 to 22 19 to 22
Albion Z Section (formerly Millpac)
350
120 145 and 175 200 and 225 240 and 300
50 50 to 62.5 62.5 to 75 75
50 50 to 62.5 62.5 to 75 75
15 15 to 20 20 20
Structural Sections UltraZed
350
145 170 200 to 285
62.5 67.5 76
56.5 61.5 71
14 to 15.5 14 to 15.5 18
280 to 350
100 to 300
55 to 94
45 to 86
15
Generic Z sections B top
B top
B top
y
y
y
t t
t
x
x D
x D
x
y B bot
y B bot
y B bot
Zeta section
Z section
x D
x
UltraZED section Btop
B top y
y t t
x
x
x D
y Bbot
y B bot Ayrshire Zeta III
Figure 5.2
x D
Ayrshire Z
Z sections and their derivatives included in section property tables
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
50
18 April 2002
5.1
Notation used in section property tables
xx
major axis bending
yy
minor axis bending
B
section width
D
section depth
t
section thickness (including galvanizing)
es
(for C sections) horizontal distance of the shear centre of the section from the web/flange junction
eN
shift of neutral axis
Xcg, Ycg
position of centroid
Xsc, Ysc
(for Z sections) position of shear centre
Ixx
second moment of area (gross or unreduced) for major axis bending
Iyy
second moment of area for minor axis bending
Ixy
product moment of area
Iuu
second moment of area about u axis
Iw
second moment of area about v axis
2
(for Z sections) angle between u and x axes
rxx
radius of gyration in major axis direction
ryy
radius of gyration in minor axis direction
Zxx
section modulus (gross or unreduced) for major axis bending
Zyy
section modulus (gross or unreduced) for minor axis bending
J
torsional constant (pure torsion)
Cw
warping constant
Q
factor representing the effective cross-sectional area ratio for pure compression (at a stress of Ys)
ZXR
effective section modulus for major axis bending (at a stress of Ys)
ZY1R
effective section modulus for minor axis bending (smaller outstand in tension) (at a stress of Ys)
ZY2R
effective section modulus for minor axis bending (larger outstand in compression) (at a stress of Ys
IXR
effective second moment of area (at a stress of Ys,)
Pcs
compressive capacity of short column (in kN)
Mcx
bending capacity of restrained beam in major axis direction (in kNm)
Mcy1
bending capacity of restrained beam in minor axis direction (smaller outstand in tension) (in kNm)
Mcy2
bending capacity restrained beam in minor axis direction (larger outstand in compression) (in kNm)
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
51
18 April 2002
y
Shear centre t
Mid-height of section
D/2
x
es
D/2
x
x cg
Centre of gravity
X sc
y
B
Xsc = es + x cg , Ysc = 0
Figure 5.3
Position of centroid and shear centre for C sections y B top
Shear centre
e
s
D/2
x
Ysc
y cg
xcg
D/2
Centre of gravity
x
X sc Mid-height of section
t
B bot
y
Xsc = es — x cg
Figure 5.4
5.2
Position of centroid and shear centre for Z sections
Summary of assumptions in deriving the section property tables
C
Gross section properties are independent of steel strength and operating stress (i.e. the unreduced section).
C
The actual steel thickness used in calculations is the specified thickness less the galvanizing thickness (0.04 mm).
C
Corner radii (internal) are taken as 2 × section thickness, or as recommended by the manufacturer. The effective width of the flat plates excludes corners. Corners are included in calculating section properties.
C
The horizontal distance of the shear centre of the section from the adjacent web/flange junction may be assumed to be zero for Z sections.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
52
18 April 2002
C
Double (back to back) sections are assumed to act as compound sections.
C
Effective widths of compression plates are calculated using the appropriate value of buckling coefficient, K (K $ 4) as given by Appendix C of BS 5950-5.
C
Effective section properties are calculated for the steel yield strength specified by the manufacturers.
C
The effective section modulus, Zy is calculated for a stress in the compression plate of py. This property is used in calculating the moment capacity of the section. The effects of web buckling are included.
C
Tension yielding is permitted for non-symmetric sections.
C
The effective second moment of area is calculated on the same basis as the section modulus.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
53
18 April 2002
6 LOAD AND PERFORMANCE CHARACTERISTICS OF COLD FORMED SECTIONS This Section refers to a series of Load Capacity Tables (see pink and green pages) giving load carrying capacities of generic cold formed steel sections. Values are given for the based on limitations of both bending resistance and deflection.
6.1
Generic sections
The generic sections are symmetric C and Z sections, with flange widths as given in Table 6.1. The sizes have been selected to be typical of those marketed. Back to back C sections are used as "double" sections. Properties for most of the sections are given for steel grade S280 (pink pages); some sections are also given for steel grade S350 ( green pages). These generic sections are representative of sections of similar size and thickness produced by a number of manufacturers, and can be used for scheme design in a particular application. Manufacturer's data should be used for final design. Table 6.1
Depth (mm)
100 125 125 150 150 165 165 180 180 180 200 200 200 220 220 250 300 300
List of generic lipped C sections of grade S280 and S350 steel included in Load Capacity Tables
Thickness (mm)
1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
Flange Width (mm) 55 55 55 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
Lip (mm)
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
54
S280 Load Capacity Tables (Pink pages)
S350 Load Capacity Tables (Green pages)
Beam
Column
Beam
Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
18 April 2002
Table 6.2
Depth (mm)
List of generic lipped Z sections of grade S250 and S350 steel included in Load Capacity Tables
Thickness (mm)
100 125 125 150 150 165 165 180 180 180 200 200 200 220 220 250 300 300
6.2
1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
Flange Width (mm) Btop
Bbot
55 55 55 58 58 58 58 58 58 58 58 58 58 58 58 76 94 94
45 45 45 49 49 49 49 49 49 49 49 49 49 49 49 68 86 86
Lip (mm)
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
S280 Load Capacity Tables (Pink pages)
S350 Load Capacity Tables (Green pages)
Beam
Column
Beam
Column
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
-
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
-
Load capacity tables for beams
For each section size and steel grade, a single load-span table is given. The table gives values of maximum working load per span for a range of spans and restraint conditions, at the limits of bending resistance, of total deflection and of web crushing. For any particular situation, the minimum of the three values is to be taken as the maximum working load that may be supported by each span of the beam. Deflections tend to govern the choice of section as the span/depth ratio of the member increases.
6.2.1 Bending resistance limits The bending resistance of a beam depends on the distance between points of lateral restraint, as explained in Section 3.3.4. The bending resistance in derived in the tables is that given by BS 5950-5 for the particular section and restraint conditions. Most beams used in floors are continuously restrained, if fixed regularly to the flooring. The load values in the table are the values of total working load per span which, when multiplied by a factor of 1.6 (see Section 1.2), cause a bending moment at midspan that is equal to the bending resistance. (That is WL/8 for distributed loads and WL/4 for point loads.) The factor of 1.6 is conservative in all cases, and becomes increasingly so as the ratio of dead to imposed load increases. No distinction is made between single and multiple spans. This is a ‘safe’ assumption, based conservatively on the same moment at failure. For C sections, values are given for both single and double sections. For Z sections, values are only given for single sections.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
55
18 April 2002
6.2.2 Deflection limits Beam deflections depend on the section stiffness, the beam span, and whether it is simply supported or continuous. Load values in the tables correspond to the total working load per span at which the total deflection is equal to the limits of either span/250 or span/350 (see comment in Section 3.5.2). Deflections are calculated using a section stiffness based on the average of the gross and the effective second moments of area of the section. The working load is unfactored when calculating these deflections. Deflections for the double span case are assumed to be 60% of the value for the single span case. The limit of span/250 corresponds to the 'normal' limitation for beams in roofs. The limit of span/350 should be used for lightweight floors. If it is assumed that the self weight component for floors is about 30% of the total load, this limit correspond to approximately L/450 under imposed load. Furthermore, the deflection under total load should not exceed 15 mm in order to satisfy the natural frequency limit of 8 Hz (see Section 3.5.1).
6.2.3 Web crushing limits Additionally, values are given for each section for the load at which web crushing will occur at supports or at a point load when no web stiffener or cleat is present. The crushing resistance depends on the support width and the lateral restraint to the top flange. Web crushing resistance is in accordance with BS 5950-5, depending on the location of the load and the restraint to the flanges. As for bending resistance, the load values are working loads which, when multiplied by a factor of 1.6, will equal the crushing resistance of the web. For single spans, the total load W is twice the crushing resistance. Continuous or multiple spans result in increased reactions at the internal supports. Thus, an additional stiffening cleat is required for all continuous beam applications.
6.3
Load capacity tables for columns
For each section size and steel grade, a single load-height table is given. The table gives values of the maximum axial working load for a range of effective lengths for both axes of the section. Values are given for single and double C sections. Double sections are assumed to be attached together at regular intervals to form an equivalent I section. No tables are given for Z sections, since they are not normally used to support axial load. The load values in the table are the values of working load which, when multiplied by a factor of 1.6, are equal to the compressive resistance of the column. The column resistance is derived in accordance with BS 5950-5, as discussed in Section 3.4. The factor of 1.6 is conservative in all cases, and becomes increasingly so as the ratio of dead to live load increases. In deriving the axial resistances, torsional restraints are assumed at the positions of the major axis restraints and at the column ends. This affects the torsionalflexural buckling mode of failure. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
56
18 April 2002
For the concentrically loaded case, the load eccentricity is assumed to be zero. For the eccentrically loaded cases, the load is assumed to be applied at the face of the section. For members in walls, the eccentric load is typically taken to be applied at the wall face, but concentrically on the other axis. For isolated columns, load is typically taken to be applied eccentrically to both axes, i.e. at a corner of the section. Values are given for combinations of four different effective lengths about the y-y or minor axis and two different effective lengths about the x-x or major axis. Values are also given for the cases where continuous restraint is provided about each axis, in combination with the range of effective lengths about the other axis. (In the plane of walls, minor axis restraint can be provided by straps.)
6.4
Guidance on selection of cold formed steel sections
For efficient structural performance, the following general guidelines on member selection are given: (1) For compliance with normal deflection limits, the ratios of member span, L to depth, D should be: L/D # 20 L/D # 24 L/D # 30 L/D # 35
simply supported floor beams continuous floor beams simply supported roof beams continuous roof beams.
(2) Restrain the compression (upper) flange of beams by attachment of flooring or roof sheeting or other members. (3) Limit the effects of local buckling by keeping the flange widths to steel thickness ratio (b/t) to within the following limits: b/t # 40 b/t # 12 b/t # 60
lipped sections plain sections (no lips) lipped sections with intermediate stiffener
(4) Limit the effects of web buckling or web crushing by keeping the web depth to thickness ratio, (D/t), within the following limits: Single span: D/t # 120 for single sections under uniformly distributed loads D/t # 80 for single sections under point loads D/t # 150 for double sections back-to-back Double span: D/t # 80 for single sections D/t # 120 for double sections back-to-back (5) Avoid heavy point loads applied directly to the top flange of the member. Allow at least 50 mm end bearing for heavily loaded beams, and 100 mm bearing for internal supports on double span beams (or, preferably, use a stiffening cleat).
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
57
18 April 2002
(6) Restrain studs in their y-y (minor axis) direction at one or two points along their length, or use double C sections). The unsupported height H divided by the member depth should be less than 35. Designs outside the above suggested limits are permitted, but this can result in relatively inefficient structural performance. Designing within these limits does not imply that structural calculations are unnecessary, but rather that the selected section will be structurally efficient for the loads and span conditions under consideration.
6.5
Example of use of load-span tables for beams
Consider a floor spanning 4.5 m, with beams at 600 mm spacing: 2
Imposed load Self weight of floor Total working load
= 2.5 kN/m 2 = 0.5 kN/m (assumed) 2 = 3.0 kN/m
Load on beam
= 3 × 0.6 × 4.5 = 8.1 kN
Choose deep lipped C section with L/D = 20 (approx) - say 200 mm deep For D/t = 120, t = 1.67 ; say 1.8 mm thick: From Table 12: Bending resistance of section: Max. load for full restraint = 10.2 kN ~ OK Deflection of single span beam. For * # L/350: max. load = 7.3 kN, which is not adequate. Deflection of double span beam. For * # L/350: max. load = 12.2 kN, which is adequate. Web crushing: Support width = 50 mm For unrestrained section, max. load = 8.2 kN ~ OK Therefore, 200 mm × 1.8 mm thick C section is adequate, provided that the beams are double span. For single span beams, try 2.0 mm thick section. From Table 13: Bending resistance of beam: Max. load for full restraint = 11.6 kN ~ OK Deflection of single span beam. For * # L/350: max. load = 8.3 kN, which is adequate Web crushing: Support width = 50 mm For unrestrained section, max. load = 10.1 kN ~ OK Therefore, 200 mm × 2.0 mm thick C section is adequate as a single span beam P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
58
18 April 2002
7 REFERENCES 1.
BRITISH STANDARDS INSTITUTION BS 5950-5:1998 Structural use of steelwork in building. Code of practice for design of cold formed thin gauge sections
2.
BRITISH STANDARDS INSTITUTION BS EN 10147: 2000 Continuously hot-dip zinc coated structural strip and sheet. Technical delivery conditions
3.
BRITISH STANDARDS INSTITUTION BS 2989: 1991 Specification for continuously hot-dip zinc coated and iron-zinc alloy coated steel of structural qualities: wide strip, sheet/plate and slit wide strip
4.
Galvatite Technical Manual British Steel Strip Products, 1993 (now Corus Colors)
5.
ANDREW, T. O. White rust on galvanized steel British Steel Product Development Centre, Shotton, 1988
6.
POPO-OLA, S.O., BIDDLE, A.R. and LAWSON, R.M. Durability of light steel framing in residential building (P262) The Steel Construction Institute, 2000
7.
HILLIER, M., LAWSON, R. M. and GORGOLEWSKI, M. Over-roofing of existing buildings using light steel (P246) The Steel Construction Institute, 1998
8.
LAWSON, R. M., PEDRESCHI, R., POPO-OLA, S., and FALKENFLETH, I. Over-cladding of existing buildings using light steel (P247) The Steel Construction Institute, 1998
9.
LAWSON, R. M., GRUBB, P. J., PREWER, J., and TREBILCOCK, P. J. Modular construction using light steel framing: An Architect’s Guide (P272) The Steel Construction Institute,, 1999
10.
LAWSON, R. M. Design of composite slabs and beams with steel decking (P055) The Steel Construction Institute, 1989
11.
COUCHMAN, G. H., MULLETT, D. L. and RACKHAM, J. W. Composite slabs and beams using steel decking: Best practice for design and construction (P300) The Metal Cladding & Roofing Manufacturers Association and The Steel Construction Institute, 2000
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
59
18 April 2002
12.
LAWSON, R. M. Building design using cold formed steel sections: Fire protection (P129) The Steel Construction Institute, 1993
13.
AMERICAN IRON AND STEEL INSTITUTE Specification for the design of cold formed steel structural members AISI, 1986 (including Commentary)
14.
YU, W. W. Cold formed steel structures McGraw Hill, 1973
15.
CANADIAN INSTITUTE OF STEEL CONSTRUCTION Lightweight steel framing CISC, Willowdale, Ontario, 1991
16.
DAVIES, J. M. Light gauge steel folded plate roofs The Steel Construction Institute/Constrado, 1978
17.
CHUNG, K. F. and LAWSON, R. M. Structural performance of shear connections among cold-formed steel members using web cleats of cold-formed steel strips Engineering Structures, 22 (10), 2000 pp 1350-1366. Elsevier Science Ltd
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
60
18 April 2002
8 BIBLIOGRAPHY 1. EUROPEAN CONVENTION FOR CONSTRUCTIONAL STEELWORK European recommendations for the design of light gauge steel members ECCS publication 49, 1987 2. HANCOCK, G. J. Design of cold formed steel structures, 3rd Edition Australian Institute of Steel Construction, 1998 3. DAVIES, J. M. and BRYAN, E. R. Manual of stressed skin diaphragm design Granada, 1982 4. EUROPEAN CONVENTION FOR CONSTRUCTIONAL STEELWORK European recommendations for connections in thin walled structural steel elements ECCS publication, 1981 5. EUROPEAN CONVENTION FOR CONSTRUCTIONAL STEELWORK Mechanical fasteners for use in steel sheeting and sections ECCS publication, 1983 6. CURRIE, D. M. The use of light gauge cold formed steelwork in construction; developments in research and design Building Research Establishment, 1989 7. RHODES, J. (Editor) Design of cold formed steel members Elsevier Applied Science, 1991 8. BRITISH STANDARDS INSTITUTION ENV 1993: Eurocode 3: Design of steel structures DD ENV 1993-1-3:2001 General rules. Supplementary rules for cold formed thin gauge members and sheeting (includes UK NAD) 9. BRITISH STANDARDS INSTITUTION BS 2994: 1976 Specification for cold rolled steel sections 10. BRITISH GYPSUM LIMITED The White Book, 1996 11. Corus Colors C Coil and sheet steel production range C The Colorcoat in Building, 1997
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
61
18 April 2002
SCI publications in Light Steel series GORGOLEWSKI, M. T., GRUBB, P. J., and LAWSON, R. M. Building design using cold formed steel sections: Light steel framing in residential construction (P301) The Steel Construction Institute, 2001 LAWSON R. M., GRUBB, P. J., PREWER, J., and TREBILCOCK, P. Building Design Using Modular Construction: An Architect’s Guide (P272) The Steel Construction Institute, 1999. POPO-OLA, S.O., BIDDLE, A.R. and LAWSON, R.M. Durability of light steel framing in residential building (P262) The Steel Construction Institute, 2000 ROGAN, A. L., and LAWSON, R. M. Value and Benefit Assessment of Light Steel Framing in Housing (P260) The Steel Construction Institute, 1998. LAWSON, R. M., PEDRESCHI, R., POPO-OLA, S., and FALKENFLETH, I. Over-Cladding of Existing Buildings using Light Steel (P247) The Steel Construction Institute, 1998. HILLIER, M. LAWSON R. M., and GORGOLEWSKI, M. Over-Roofing of Existing Buildings using Light Steel (P246) The Steel Construction Institute, 1998. GRUBB, P. J. and LAWSON, R. M. Building Design using Cold Formed Steel Sections: Construction Detailing and Practice (P165) The Steel Construction Institute, 1997. TREBILCOCK, P. J. Building Design using Cold Formed Steel Sections: An Architect’s Guide (P130) The Steel Construction Institute, 1994. LAWSON, R. M. Building Design using Cold Formed Steel Sections: Fire Protection (P129) The Steel Construction Institute, 1993. CLOUGH, R. H. and OGDEN, R. G. Building Design using Cold Formed Steel Sections: Acoustic Insulation (P128) The Steel Construction Institute, 1993 CHUNG, K. F. Building Design using Cold Formed Steel Sections: Worked Examples (P125) The Steel Construction Institute, 1993.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
62
18 April 2002
APPENDIX A Contact Information List of cold formed section manufacturers Albion Sections Ltd Albion Road West Bromwich B70 8BD Telephone: 0121 553 1877 Fax: 0121 523 5507 Website: www.albionsections.co.uk Ayrshire Metal Products (Daventry) Limited Royal Oak Way Daventry NN11 5NR Telephone: Fax: Website:
01327 300990 01327 300885 www.ayrshire.co.uk
Ayrshire Metal Products plc 17 Church Street Irvine KA12 8PH Telephone: Fax: Website:
01294 274171 01294 275447 www.ayrshire.co.uk
Hi-Span Limited Ayton Road Wymondham NR18 0RD Telephone: Fax: Website:
01953 603081 01953 607842 www.hi-span.com
Metsec Limited Birmingham Road Oldbury Warley B69 4HE Telephone: Fax: Website:
0121 601 6000 0121 601 6119 www.metsec.co.uk
Steel Framing Systems (refer to Metsec Limited)
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
63
18 April 2002
Structural Sections Limited PO Box 92 Downing Street Smethwick Warley B66 2PA Telephone: fax: Website:
0121 555 1340 0121 555 1341 www.hadleyindustries.plc.uk
Ward Building Components Limited Sherburn Malton YO17 8PQ Telephone: Fax: Website:
01944 712000 01944 710555 www.wards.co.uk
Framing systems for housing Ayrshire Steel Framing 17 Church Street Irvine KA12 8PH Telephone: Website:
01294 274171 www.ayrshire.co.uk
Fax: 01294 275447
Corus Framing (incorporating Surebuild) Corus Building Systems Whitehead Works Mendalgief Road Newport NP20 2NF Telephone: Website:
01633 244000 Fax: 01633 211231 www.corusgroup.com
Metek UK Ltd Unit 4, Longbrook Trading Estate Ashton Vale Road Ashton Bristol BS3 2HT Telephone: Website:
01179 093893 Fax: 01179 738501 www.metekbuildingsystems.co.uk
First Industries Corbiere Works Bourne End Industrial Estate Hemel Hempstead HP1 2RN Telephone:
01422 878797
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
64
Fax: 01442 878757 18 April 2002
Forge Llewellyn Ltd Unit 13.3.1 The Leather Market Weston Street London SE1 3ER Telephone: Website:
020 7357 7323 Fax: 020 7357 8157 www.forge-llewellyn.co.uk
Metsec Framing (incorporating Gypframe) Bradwell Road Oldbury Warley B69 4HE Telephone: Website:
0121 552 1541 www.metsec.com
Fax: 0121 544 0699
Other sources of information: Corus Colors PO Box 10 Newport Gwent NP19 0XN Telephone: 01633 290022 Cold Rolled Sections Association c/o Robson Rhodes Centre City Tower 7 Hill Street Birmingham B5 4UU Telephone: Fax:
0121 697 6000 0121 697 6113
There are other manufacturers of cold formed steel sections for specific applications, and a comprehensive list can be obtained from the Cold Rolled Sections Association.
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
65
18 April 2002
P:\CMP\Cmp657\pubs\P276\P276-Final.wpd
66
18 April 2002
SECTION PROPERTY TABLES C Sections Note: Section property data are given for commonly available C sections, and for generic C sections, which may be used at the scheme design stage. These properties are calculated in accordance with BS 5950-5 and may differ slightly from manufacturers' data.
A-1
[BLANK PAGE]
A-2
B t
GROSS SECTION PROPERTIES AYRSHIRE CW SECTION Design Yield Strength = 280 N/mm2
x
x
D
SINGLE SECTION D
x
B
mm 100 x 65 120 x 65 127 x 65
140
x
65
155
x
65
170
x
65
185
x
65
200
x
65
220
x
65
240
65
t
Area
mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0
cm 3.79 4.10 4.21 4.72 5.22 4.41 4.95 4.64 5.21 4.88 5.47 5.11 5.74 5.35 6.00 6.65 5.66 6.35 7.04 7.44
2
Weight
Ix x
kg/m 2.97 3.22 3.30 3.70 4.10 3.46 3.88 3.65 4.09 3.83 4.30 4.01 4.51 4.20 4.71 5.22 4.44 4.99 5.53 5.84
cm 64.7 97.9 111.4 124.2 136.7 139.2 155.3 175.9 196.4 217.9 243.4 265.4 296.5 318.6 356.1 392.9 398.9 446.1 492.4 605.9
4
Iy y 4
cm 21.2 22.6 23.1 25.6 28.0 23.8 26.4 24.6 27.3 25.3 28.1 26.0 28.8 26.6 29.5 32.3 27.3 30.3 33.1 33.9
rx x
ry y
Zx x
cm 4.13 4.89 5.14 5.13 5.12 5.62 5.60 6.15 6.14 6.68 6.67 7.20 7.19 7.72 7.70 7.68 8.40 8.38 8.36 9.03
cm 2.37 2.35 2.34 2.33 2.31 2.32 2.31 2.30 2.29 2.28 2.27 2.26 2.24 2.23 2.22 2.20 2.20 2.18 2.17 2.14
cm 12.95 16.32 17.54 19.57 21.54 19.89 22.19 22.71 25.35 25.64 28.64 28.69 32.06 31.86 35.62 39.29 36.27 40.56 44.77 50.50
3
Zy y
J
3
cm 0.0307 0.0332 0.0341 0.0487 0.0669 0.0358 0.0511 0.0377 0.0538 0.0396 0.0565 0.0415 0.0593 0.0434 0.0620 0.0852 0.0459 0.0656 0.0902 0.0952
y
B
Cw 4
cm 5.04 5.16 5.20 5.76 6.30 5.27 5.83 5.33 5.90 5.38 5.97 5.43 6.02 5.48 6.07 6.64 5.53 6.12 6.70 6.75
6
cm 434 638 721 794 862 891 982 1116 1230 1371 1512 1657 1829 1977 2183 2378 2455 2712 2956 3608
B t
x
DOUBLE SECTION D 100 120 127
x
B
mm x 65 x 65 x 65
140
x
65
155
x
65
170
x
65
185
x
65
200
x
65
220
x
65
240
65
t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0
D
x
y
Area 2
cm 7.57 8.20 8.42 9.44 10.44 8.82 9.89 9.29 10.42 9.76 10.95 10.23 11.48 10.69 12.01 13.31 11.32 12.71 14.09 14.87
Weight kg/m 5.95 6.43 6.61 7.41 8.20 6.92 7.77 7.29 8.18 7.66 8.60 8.03 9.01 8.39 9.42 10.44 8.88 9.98 11.06 11.68
Ix x 4
cm 129.5 195.7 222.7 248.4 273.5 278.4 310.6 351.9 392.8 435.8 486.8 530.7 593.0 637.1 712.2 785.7 797.8 892.2 984.7 1211.9
Iy y 4
cm 81.9 81.9 81.9 91.1 100.0 81.9 91.1 81.9 91.1 81.9 91.1 81.9 91.1 81.9 91.1 100.0 81.9 91.1 100.0 100.0
rx x cm 4.13 4.89 5.14 5.13 5.12 5.62 5.60 6.15 6.14 6.68 6.67 7.20 7.19 7.72 7.70 7.68 8.40 8.38 8.36 9.03
A-3
ry y cm 3.29 3.16 3.12 3.11 3.09 3.05 3.03 2.97 2.96 2.90 2.88 2.83 2.82 2.77 2.75 2.74 2.69 2.68 2.66 2.59
Zx x
Zy y
3
3
cm 25.91 32.63 35.09 39.13 43.08 39.78 44.39 45.41 50.70 51.28 57.28 57.39 64.12 63.73 71.23 78.59 72.54 81.12 89.54 101.01
cm 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39
J
Cw 4
cm 0.0614 0.0665 0.0683 0.0974 0.1337 0.0716 0.1022 0.0754 0.1076 0.0792 0.1131 0.0829 0.1185 0.0867 0.1240 0.1704 0.0918 0.1312 0.1804 0.1905
cm6 2042 2908 3247 3564 3860 3927 4312 4792 5264 5744 6311 6781 7453 7905 8690 9426 9537 10487 11378 13514
es mm -30.1 -28.9 -28.5 -28.2 -27.9 -27.8 -27.5 -27.0 -26.7 -26.2 -26.0 -25.6 -25.3 -24.9 -24.6 -24.4 -24.1 -23.8 -23.6 -22.8
B
REDUCED SECTION PROPERTIES
t
AYRSHIRE CW SECTION Design Yield Strength = 280 N/mm2
x
D
x
SINGLE SECTION D
x
B
mm 100 x 65 120 x 65 127 x 65
140
x
65
155
x
65
170
x
65
185
x
65
200
x
65
220
x
65
240
65
t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0
Q
po / py
Zxr
0.99 0.97 0.96 0.99 1.00 0.95 0.97 0.93 0.96 0.91 0.94 0.90 0.93 0.88 0.91 0.94 0.86 0.89 0.92 0.90
cm 12.77 15.84 16.88 19.35 21.52 18.84 21.64 21.10 24.31 23.40 27.01 25.69 29.73 27.99 32.46 36.76 31.03 36.11 41.02 45.30
3
0.90 0.84 0.82 0.87 0.91 0.79 0.83 0.75 0.79 0.71 0.76 0.68 0.72 0.65 0.69 0.72 0.62 0.65 0.69 0.65
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
cm3 6.87 6.92 6.92 8.02 9.12 6.93 8.03 6.93 8.04 6.94 8.05 6.95 8.06 6.96 8.06 9.21 6.98 8.08 9.22 9.24
cm3 5.04 5.16 5.20 5.76 6.30 5.27 5.83 5.33 5.90 5.38 5.97 5.43 6.02 5.48 6.07 6.64 5.53 6.12 6.70 6.75
cm4 64 96 108 123 137 132 152 164 189 200 230 239 275 281 325 368 342 398 451 544
kN 96 97 97 115 133 97 115 97 116 98 116 98 116 98 116 135 98 117 135 135
kNm 3.58 4.43 4.73 5.42 6.03 5.27 6.06 5.91 6.81 6.55 7.56 7.19 8.32 7.84 9.09 10.29 8.69 10.11 11.48 12.68
kNm 1.92 1.94 1.94 2.25 2.55 1.94 2.25 1.94 2.25 1.94 2.25 1.95 2.26 1.95 2.26 2.58 1.95 2.26 2.58 2.59
kNm 1.41 1.45 1.46 1.61 1.76 1.47 1.63 1.49 1.65 1.51 1.67 1.52 1.69 1.53 1.70 1.86 1.55 1.71 1.88 1.89
B
y
B t
x
DOUBLE SECTION D
x
B
mm 100 x 65 120 x 65 127 x 65
140
x
65
155
x
65
170
x
65
185
x
65
200
x
65
220
x
65
240
65
t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0
x
D
y
Q
po / py
Zxr
0.99 0.97 0.96 0.99 1.00 0.95 0.97 0.93 0.96 0.91 0.94 0.90 0.93 0.88 0.91 0.94 0.86 0.89 0.92 0.90
cm 25.55 31.67 33.77 38.70 43.04 37.67 43.28 42.20 48.62 46.79 54.02 51.39 59.46 55.97 64.93 73.52 62.05 72.23 82.03 90.59
3
0.90 0.84 0.82 0.87 0.91 0.79 0.83 0.75 0.79 0.71 0.76 0.68 0.72 0.65 0.69 0.72 0.62 0.65 0.69 0.65
Zy1r 3
cm 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39
Zy2r 3
cm 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39
A-4
Ixr 4
cm 128 191 215 246 273 265 303 329 377 399 460 477 551 562 650 735 684 795 902 1087
Pc
Mcx
Mcy1
Mcy2x
kN 191.6 193.6 193.9 230.0 265.9 194.3 230.8 194.7 231.3 195.1 231.7 195.5 232.0 195.9 232.4 269.8 196.5 233.0 270.3 270.9
kNm 7.15 8.87 9.45 10.84 12.05 10.55 12.12 11.82 13.61 13.10 15.13 14.39 16.65 15.67 18.18 20.58 17.37 20.22 22.97 25.37
kNm 3.53 3.53 3.53 3.92 4.31 3.53 3.92 3.53 3.92 3.53 3.92 3.53 3.92 3.53 3.92 4.31 3.53 3.93 4.31 4.31
kNm 3.53 3.53 3.53 3.92 4.31 3.53 3.92 3.53 3.92 3.53 3.92 3.53 3.92 3.53 3.92 4.31 3.53 3.93 4.31 4.31
B
REDUCED SECTION PROPERTIES
t
AYRSHIRE CW SECTION Design Yield Strength = 350 N/mm2
x
x
D
SINGLE SECTION D
x
B
mm 100 x 65 120 x 65 127 x 65
140
x
65
155
x
65
170
x
65
185
x
65
200
x
65
220
x
65
240
x
65
t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0
Q 0.86 0.80 0.78 0.83 0.87 0.74 0.80 0.71 0.76 0.68 0.72 0.65 0.69 0.62 0.66 0.69 0.59 0.63 0.66 0.62
po / py
Zxr
Zy1r
Zy2r
3
3
0.96 0.94 0.93 0.97 0.99 0.91 0.95 0.90 0.93 0.88 0.92 0.86 0.90 0.84 0.88 0.91 0.82 0.86 0.89 0.87
cm 12.49 15.33 16.33 18.92 21.30 18.19 21.12 20.33 23.67 22.51 26.25 24.67 28.84 26.82 31.43 35.80 29.64 34.86 39.84 43.86
cm 6.64 6.67 6.67 7.80 8.91 6.68 7.81 6.69 7.81 6.70 7.82 6.71 7.84 6.73 7.85 8.96 6.76 7.87 8.98 9.00
cm 5.04 5.16 5.20 5.76 6.30 5.27 5.83 5.33 5.90 5.38 5.97 5.43 6.02 5.48 6.07 6.64 5.53 6.12 6.70 6.75
3
Ixr 4
cm 63.2 93.0 104.8 120.6 135.4 128.6 148.4 159.1 184.1 193.0 223.9 230.0 267.5 270.0 315.0 358.3 327.9 384.2 438.4 526.6
Pc
Mcx
Mcy1
Mcy2x
kN 113.8 114.5 114.7 137.4 159.7 115.0 137.7 115.2 138.0 115.5 138.2 115.8 138.5 116.0 138.8 161.4 116.4 139.2 161.8 162.2
kNm 4.37 5.37 5.72 6.62 7.46 6.37 7.39 7.12 8.28 7.88 9.19 8.64 10.10 9.39 11.00 12.53 10.38 12.20 13.94 15.35
kNm 2.33 2.33 2.33 2.73 3.12 2.34 2.73 2.34 2.74 2.34 2.74 2.35 2.74 2.36 2.75 3.14 2.36 2.75 3.14 3.15
kNm 1.76 1.81 1.82 2.02 2.20 1.84 2.04 1.87 2.07 1.88 2.09 1.90 2.11 1.92 2.12 2.32 1.93 2.14 2.34 2.36
B
y
B t
x
DOUBLE SECTION D
x
B
mm 100 x 65 120 x 65 127 x 65
140
x
65
155
x
65
170
x
65
185
x
65
200
x
65
220
x
65
240
x
65
x
D
y
t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0
Q 0.86 0.80 0.78 0.83 0.87 0.74 0.80 0.71 0.76 0.68 0.72 0.65 0.69 0.62 0.66 0.69 0.59 0.63 0.66 0.62
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
0.96 0.94 0.93 0.97 0.99 0.91 0.95 0.90 0.93 0.88 0.92 0.86 0.90 0.84 0.88 0.91 0.82 0.86 0.89 0.87
cm3 24.97 30.66 32.66 37.83 42.61 36.38 42.23 40.66 47.34 45.01 52.51 49.35 57.69 53.64 62.86 71.61 59.29 69.71 79.67 87.72
cm3 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39
cm3 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39
cm4 126.4 186.0 209.6 241.1 270.8 257.3 296.7 318.2 368.2 385.9 447.7 460.0 535.1 540.1 630.1 716.5 655.9 768.4 876.9 1053.1
kN 227.5 229.1 229.4 274.8 319.4 229.9 275.4 230.4 275.9 231.0 276.5 231.5 277.0 232.1 277.6 322.7 232.9 278.4 323.5 324.4
kNm 8.74 10.73 11.43 13.24 14.91 12.73 14.78 14.23 16.57 15.75 18.38 17.27 20.19 18.78 22.00 25.06 20.75 24.40 27.89 30.70
kNm 4.41 4.41 4.41 4.90 5.38 4.41 4.90 4.41 4.91 4.41 4.91 4.41 4.91 4.41 4.91 5.39 4.41 4.91 5.39 5.39
kNm 4.41 4.41 4.41 4.90 5.38 4.41 4.90 4.41 4.91 4.41 4.91 4.41 4.91 4.41 4.91 5.39 4.41 4.91 5.39 5.39
A-5
B
t
GROSS SECTION PROPERTIES AYRSHIRE SWAGEBEAM Design Yield Strength = 280 N/mm2
x
D
x
SINGLE SECTION D
x
B
mm 220 x 65
250
x
65
300
x
65
t
Area
mm 1.5 1.8 2.0 2.4 1.5 1.8 2.0 2.4 1.8 2.0 2.4 3.0
cm 6.01 7.17 7.94 9.45 6.44 7.70 8.53 10.15 8.58 9.51 11.33 14.00
2
Weight
Ix x
kg/m 4.71 5.63 6.23 7.42 5.06 6.05 6.70 7.97 6.74 7.47 8.90 10.99
cm 416.9 495.8 547.1 646.8 566.6 674.3 744.4 880.8 1049.9 1159.8 1373.8 1680.7
4
Iy y
rx x
ry y
Zx x
cm4 33.5 39.4 43.2 50.4 34.9 41.1 45.1 52.5 43.5 47.6 55.5 66.3
cm 8.33 8.31 8.30 8.27 9.38 9.36 9.34 9.31 11.06 11.04 11.01 10.96
cm 2.36 2.34 2.33 2.31 2.33 2.31 2.30 2.27 2.25 2.24 2.21 2.18
cm 37.90 45.08 49.75 58.81 45.33 53.95 59.56 70.47 70.01 77.33 91.60 112.06
3
Zy y
J
Cw
es
cm3 7.36 8.65 9.48 11.04 7.46 8.78 9.62 11.20 8.95 9.80 11.42 13.62
cm4 0.0427 0.0741 0.1017 0.1754 0.0458 0.0795 0.1092 0.1885 0.0886 0.1218 0.2104 0.4089
cm6 3595 4211 4597 5315 4676 5481 5986 6927 8047 8793 10187 12044
mm -26.1 -25.7 -25.5 -25.0 -25.2 -24.9 -24.6 -24.1 -23.6 -23.3 -22.8 -22.1
B
y
B t
x
y
DOUBLE SECTION D
x
B
mm 220 x 65
250
x
65
300
x
65
D
x
t
Area
mm 1.5 1.8 2.0 2.4 1.5 1.8 2.0 2.4 1.8 2.0 2.4 3.0
cm 12.01 14.35 15.88 18.89 12.89 15.41 17.06 20.31 17.17 19.02 22.67 28.00
2
Weight
Ix x
kg/m 9.43 11.26 12.47 14.83 10.12 12.09 13.39 15.94 13.48 14.93 17.80 21.98
cm 833.7 991.6 1094.3 1293.6 1133.2 1348.5 1488.8 1761.6 2099.9 2319.6 2747.7 3361.5
4
Iy y 4
cm 112.4 132.9 146.1 171.4 112.4 132.9 146.1 171.4 133.0 146.2 171.4 206.5
rx x
ry y
Zx x
cm 8.33 8.31 8.30 8.27 9.38 9.36 9.34 9.31 11.06 11.04 11.01 10.96
cm 3.06 3.04 3.03 3.01 2.95 2.94 2.93 2.91 2.78 2.77 2.75 2.72
cm 75.81 90.16 99.50 117.62 90.67 107.90 119.12 140.95 140.01 154.66 183.20 224.13
A-6
3
Zy y 3
cm 17.30 20.45 22.48 26.36 17.30 20.45 22.48 26.37 20.46 22.49 26.37 31.77
J
Cw 4
cm 0.0854 0.1482 0.2034 0.3508 0.0916 0.1591 0.2185 0.3770 0.1772 0.2436 0.4209 0.8177
6
cm 12870 14990 16311 18740 16577 19313 21019 24158 27752 30211 34738 40594
es mm
-
B
REDUCED SECTION PROPERTIES
t
AYRSHIRE SWAGEBEAM Design Yield Strength = 280 N/mm2
x
x
D
SINGLE SECTION D
x
B
mm 220 x 65
250
x
65
300
x
65
t mm 1.5 1.8 2.0 2.4 1.5 1.8 2.0 2.4 1.8 2.0 2.4 3.0
Q
po / py
Zxr
0.88 0.93 0.95 0.98 0.85 0.90 0.93 0.96 0.86 0.89 0.93 0.97
cm 33.20 41.80 47.23 57.67 38.49 48.74 55.26 67.83 60.45 68.94 85.40 108.96
3
0.95 0.99 1.00 1.00 0.94 0.99 0.99 1.00 0.92 0.94 0.97 0.99
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
cm3 10.30 12.29 13.53 15.87 10.56 12.62 13.90 16.30 12.79 14.13 16.64 20.03
cm3 7.36 8.65 9.48 11.04 7.46 8.78 9.62 11.20 8.95 9.80 11.42 13.62
cm4 367.0 460.1 519.6 634.2 483.1 609.6 690.7 847.7 907.1 1034.2 1280.8 1634.2
kN 159.3 198.2 221.3 264.4 170.0 212.5 237.6 284.2 220.2 250.3 308.2 389.2
kNm 9.30 11.70 13.22 16.15 10.78 13.65 15.47 18.99 16.93 19.30 23.91 30.51
kNm 2.91 3.46 3.81 4.46 2.97 3.54 3.90 4.56 3.58 3.95 4.66 5.61
kNm 2.06 2.42 2.65 3.09 2.09 2.46 2.69 3.14 2.50 2.74 3.20 3.81
B
y
B t
x
DOUBLE SECTION D
x
B
mm 220 x 65
250
x
65
300
x
65
x
D
y
t mm 1.5 1.8 2.0 2.4 1.5 1.8 2.0 2.4 1.8 2.0 2.4 3.0
Q
po / py
Zxr
0.88 0.93 0.95 0.98 0.85 0.90 0.93 0.96 0.86 0.89 0.93 0.97
cm 66.39 83.59 94.46 115.33 76.97 97.47 110.51 135.65 120.90 137.89 170.79 217.93
3
0.95 0.99 1.00 1.00 0.94 0.99 0.99 1.00 0.92 0.94 0.97 0.99
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
cm3 17.30 20.45 22.48 26.36 17.30 20.45 22.48 26.37 20.46 22.49 26.37 31.77
cm3 17.30 20.45 22.48 26.36 17.30 20.45 22.48 26.37 20.46 22.49 26.37 31.77
cm4 734.0 920.2 1039.2 1268.4 966.2 1219.2 1381.5 1695.4 1814.2 2068.3 2561.5 3268.5
kN 318.5 396.3 442.6 528.8 340.0 425.1 475.2 568.4 440.3 500.6 616.4 778.3
kNm 18.59 23.41 26.45 32.29 21.55 27.29 30.94 37.98 33.85 38.61 47.82 61.02
kNm 4.84 5.73 6.29 7.38 4.84 5.73 6.30 7.38 5.73 6.30 7.38 8.90
kNm 4.84 5.73 6.29 7.38 4.84 5.73 6.30 7.38 5.73 6.30 7.38 8.90
A-7
B
t
GROSS SECTION PROPERTIES AYRSHIRE (ST HELENS) PLAIN SECTION Design Yield Strength = 280 N/mm2
x
D
x
SINGLE SECTION D
x
B
mm 75 x 50
100 x
50
125 x
50
150 x
50
160 x 175 x
50 50
t
Area
mm 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 5.0 4.0 3.0
cm 4.81 6.27 7.65 5.55 7.26 8.89 6.29 8.25 10.13 7.03 11.37 9.64 7.77
2
Weight
Ix x
kg/m 3.78 4.92 6.01 4.36 5.70 6.98 4.94 6.48 7.95 5.52 8.93 7.57 6.10
cm 43.8 55.2 64.9 85.4 108.6 129.0 144.3 184.7 220.9 222.9 344.5 335.2 323.5
4
Iy y 4
cm 12.4 15.8 18.9 13.8 17.7 21.3 14.8 19.1 23.0 15.6 24.4 20.6 16.3
rx x
ry y
Zx x
cm 3.02 2.97 2.91 3.92 3.87 3.81 4.79 4.73 4.67 5.63 5.50 5.90 6.45
cm 1.61 1.59 1.57 1.57 1.56 1.55 1.53 1.52 1.51 1.49 1.47 1.46 1.45
cm 11.70 14.72 17.31 17.09 21.72 25.81 23.10 29.56 35.36 29.73 45.95 41.92 36.98
3
Zy y 3
cm 3.65 4.75 5.77 3.83 5.00 6.10 3.96 5.17 6.33 4.05 6.50 5.34 4.12
J
Cw 4
B
es
6
cm 0.1405 0.3279 0.6275 0.1621 0.3797 0.7292 0.1838 0.4314 0.8309 0.2054 0.9325 0.5039 0.2270
cm 103 121 132 210 253 283 364 446 507 570 810 828 830
y
mm -18.6 -17.9 -17.1 -17.4 -16.8 -16.1 -16.2 -15.7 -15.1 -15.2 -14.1 -14.3 -14.3
B t
x
DOUBLE SECTION D
x
B
mm 75 x 50
100 x
50
125 x
50
150 x
50
160 x 175 x
50 50
x
D
y
t
Area
mm 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 5.0 4.0 3.0
cm 9.62 12.55 15.30 11.10 14.53 17.78 12.58 16.51 20.26 14.06 22.74 19.28 15.54
2
Weight
Ix x
kg/m 7.55 9.85 12.01 8.72 11.40 13.96 9.88 12.96 15.91 11.04 17.85 15.13 12.20
cm 87.7 110.3 129.8 170.8 217.2 258.0 288.7 369.4 441.9 445.8 689.1 670.5 646.9
4
Iy y
rx x
ry y
Zx x
cm4 49.4 66.2 83.2 49.5 66.3 83.4 49.5 66.5 83.6 49.5 83.8 66.6 49.6
cm 3.02 2.97 2.91 3.92 3.87 3.81 4.79 4.73 4.67 5.63 5.50 5.90 6.45
cm 2.27 2.30 2.33 2.11 2.14 2.17 1.98 2.01 2.03 1.88 1.92 1.86 1.79
cm 23.39 29.44 34.62 34.18 43.45 51.63 46.20 59.11 70.73 59.46 91.90 83.83 73.95
A-8
3
Zy y
J
Cw
es
cm3 9.88 13.25 16.64 9.89 13.27 16.68 9.90 13.29 16.72 9.91 16.76 13.32 9.92
cm4 0.2811 0.6558 1.2550 0.3243 0.7593 1.4583 0.3675 0.8628 1.6617 0.4107 1.8651 1.0077 0.4540
cm6 510 599 650 936 1120 1241 1490 1802 2022 2173 2993 3028 2985
mm
-
B
t
REDUCED SECTION PROPERTIES AYRSHIRE (ST HELENS) PLAIN SECTION Design Yield Strength = 280 N/mm2
x
D
x
SINGLE SECTION D
x
B
mm 75 x 50
100 x
50
125 x
50
150 x
50
160 x 175 x
50 50
t mm 3 4 5 3 4 5 3 4 5 3 5 4 3
Q
po / py
Zxr
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99
cm 11.66 14.72 17.31 17.03 21.72 25.81 23.00 29.56 35.36 29.58 45.95 41.91 36.76
3
1.00 1.00 1.00 0.99 1.00 1.00 0.96 1.00 1.00 0.90 1.00 0.98 0.84
Zy1r 3
cm 6.09 7.73 9.13 6.62 8.51 10.21 6.86 8.91 10.79 6.94 11.12 9.15 6.98
Zy2r 3
cm 3.65 4.75 5.77 3.83 5.00 6.10 3.96 5.17 6.33 4.05 6.50 5.34 4.12
Ixr 4
cm 43.8 55.2 64.9 85.2 108.6 129.0 143.9 184.7 220.9 222.2 344.5 335.2 322.2
Pc
Mcx
Mcy1
Mcy2x
kN 134.1 175.6 214.1 153.9 203.3 249.0 169.8 230.8 283.7 176.9 318.3 265.7 182.2
kNm 3.27 4.12 4.85 4.77 6.08 7.23 6.44 8.28 9.90 8.28 12.87 11.74 10.29
kNm 1.71 2.17 2.56 1.86 2.39 2.87 1.92 2.50 3.03 1.95 3.12 2.57 1.96
kNm 1.02 1.33 1.62 1.07 1.40 1.71 1.11 1.45 1.77 1.13 1.82 1.50 1.15
B
y
B t
x
DOUBLE SECTION D
x
B
mm 75 x 50
100 x
50
125 x
50
150 x
50
160 x 175 x
50 50
t mm 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 5.0 4.0 3.0
x
D
y
Q
po / py
Zxr
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99
cm 23.33 29.44 34.62 34.05 43.45 51.63 46.00 59.11 70.73 59.15 91.90 83.83 73.51
3
1.00 1.00 1.00 0.99 1.00 1.00 0.96 1.00 1.00 0.90 1.00 0.98 0.84
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
cm3 9.88 13.25 16.64 9.89 13.27 16.68 9.90 13.29 16.72 9.91 16.76 13.32 9.92
cm3 9.88 13.25 16.64 9.89 13.27 16.68 9.90 13.29 16.72 9.91 16.76 13.32 9.92
cm4 87.5 110.3 129.8 170.4 217.1 258.0 287.9 369.3 441.9 444.4 689.1 670.5 644.5
kN 268.2 351.3 428.2 307.7 406.7 497.9 339.6 461.7 567.4 353.8 636.6 531.3 364.5
kNm 6.53 8.24 9.69 9.54 12.17 14.46 12.88 16.55 19.80 16.56 25.73 23.47 20.58
kNm 2.77 3.71 4.66 2.77 3.72 4.67 2.77 3.72 4.68 2.77 4.69 3.73 2.78
kNm 2.77 3.71 4.66 2.77 3.72 4.67 2.77 3.72 4.68 2.77 4.69 3.73 2.78
A-9
B t
GROSS SECTION PROPERTIES HI-SPAN C SECTION Design Yield Strength = 350 N/mm2
x
D
x
SINGLE SECTION D
x
B
mm 150
x
66
170
x
66
200
x
66
t
Area
mm 1.5 1.6 1.8 2.0 1.5 1.6 1.8 2.0 2.4 1.5 1.6 1.8 2.0 2.4
cm 4.37 4.66 5.23 5.79 4.67 4.97 5.58 6.18 7.37 5.10 5.44 6.11 6.77 8.07
2
Weight
Ix x
kg/m 3.43 3.66 4.10 4.55 3.66 3.90 4.38 4.85 5.78 4.01 4.27 4.80 5.31 6.34
cm 157.2 167.2 186.6 205.7 210.0 223.3 249.4 275.0 324.6 306.7 326.3 364.8 402.5 475.8
4
Iy y 4
cm 25.1 26.6 29.5 32.3 26.1 27.7 30.7 33.6 39.2 27.4 29.1 32.3 35.4 41.1
rx x
ry y
Zx x
cm 6.00 5.99 5.97 5.96 6.71 6.70 6.69 6.67 6.64 7.75 7.74 7.73 7.71 7.68
cm 2.40 2.39 2.38 2.36 2.37 2.36 2.35 2.33 2.31 2.32 2.31 2.30 2.29 2.26
cm 20.97 22.29 24.89 27.43 24.71 26.27 29.35 32.37 38.20 30.68 32.63 36.48 40.26 47.59
3
Zy y 3
cm 5.47 5.79 6.42 7.03 5.55 5.88 6.52 7.13 8.29 5.64 5.97 6.63 7.25 8.43
J
Cw 4
cm 1106 1169 1290 1405 1453 1537 1697 1849 2130 2084 2204 2436 2657 3065
y
B
es
6
cm 0.0311 0.0378 0.0540 0.0741 0.0332 0.0403 0.0576 0.0792 0.1367 0.0363 0.0441 0.0631 0.0867 0.1499
mm -28.7 -28.6 -28.3 -28.1 -27.7 -27.6 -27.3 -27.0 -26.5 -26.3 -26.2 -25.9 -25.7 -25.1
B t
x
DOUBLE SECTION D
x
B
mm 150
x
66
170
x
66
200
x
66
D
x
y
t
Area
mm 1.5 1.6 1.8 2.0 1.5 1.6 1.8 2.0 2.4 1.5 1.6 1.8 2.0 2.4
cm 8.75 9.32 10.46 11.58 9.33 9.94 11.16 12.36 14.73 10.21 10.88 12.22 13.54 16.15
2
Weight
Ix x
kg/m 6.87 7.32 8.21 9.09 7.32 7.81 8.76 9.71 11.56 8.01 8.54 9.59 10.63 12.68
cm 314.5 334.3 373.3 411.4 419.9 446.5 498.8 550.1 649.3 613.4 652.5 729.5 805.0 951.6
4
Iy y 4
cm 85.4 90.7 100.9 110.9 85.4 90.7 100.9 110.9 129.9 85.4 90.7 100.9 110.9 129.9
rx x
ry y
Zx x
cm 6.00 5.99 5.97 5.96 6.71 6.70 6.69 6.67 6.64 7.75 7.74 7.73 7.71 7.68
cm 3.12 3.12 3.11 3.09 3.03 3.02 3.01 2.99 2.97 2.89 2.89 2.87 2.86 2.84
cm 41.94 44.59 49.78 54.86 49.41 52.54 58.70 64.73 76.40 61.36 65.26 72.97 80.52 95.17
A - 10
3
Zy y 3
cm 12.94 13.74 15.29 16.80 12.94 13.74 15.29 16.80 19.68 12.94 13.74 15.29 16.80 19.69
J
Cw 4
cm 0.0622 0.0756 0.1080 0.1483 0.0663 0.0807 0.1152 0.1583 0.2735 0.0725 0.0883 0.1261 0.1734 0.2998
6
cm 4808 5072 5578 6052 6130 6469 7116 7724 8827 8415 8882 9775 10616 12144
es mm
-
B t
REDUCED SECTION PROPERTIES HI-SPAN C SECTION Design Yield Strength = 350 N/mm2
x
D
x
SINGLE SECTION D
x
B
mm 150
x
66
170
x
66
200
x
66
t mm 1.5 1.6 1.8 2.0 1.5 1.6 1.8 2.0 2.4 1.5 1.6 1.8 2.0 2.4
Q
po / py
Zxr
0.87 0.90 0.94 0.96 0.85 0.88 0.92 0.94 0.98 0.81 0.84 0.88 0.91 0.95
cm 18.30 20.05 23.36 26.44 20.96 23.00 26.87 30.50 37.31 24.93 27.40 32.16 36.66 45.20
3
0.69 0.72 0.77 0.81 0.65 0.68 0.72 0.76 0.83 0.60 0.62 0.66 0.70 0.76
Zy1r
Zy2r
3
cm 5.47 5.79 6.42 7.03 5.55 5.88 6.52 7.13 8.29 5.64 5.97 6.63 7.25 8.43
cm 6.47 7.06 8.27 9.49 6.49 7.08 8.29 9.50 11.85 6.53 7.12 8.32 9.52 11.87
3
Ixr 4
cm 139.6 152.0 175.9 198.5 180.8 197.4 229.2 259.6 317.1 252.2 276.2 322.5 367.0 451.9
Pc
Mcx
Mcy1
Mcy2x
kN 106.0 117.8 141.2 164.4 106.3 118.2 141.6 164.8 212.7 106.9 118.7 142.1 165.3 213.4
kNm 6.41 7.02 8.17 9.25 7.34 8.05 9.40 10.68 13.06 8.72 9.59 11.25 12.83 15.82
kNm 2.26 2.47 2.90 3.32 2.27 2.48 2.90 3.32 4.15 2.29 2.49 2.91 3.33 4.15
kNm 1.91 2.03 2.25 2.46 1.94 2.06 2.28 2.50 2.90 1.97 2.09 2.32 2.54 2.95
B
y
B t
x
DOUBLE SECTION D
x
B
mm 150
x
66
170
x
66
200
x
66
t mm 1.5 1.6 1.8 2.0 1.5 1.6 1.8 2.0 2.4 1.5 1.6 1.8 2.0 2.4
x
D
y
Q
po / py
Zxr
0.87 0.90 0.94 0.96 0.85 0.88 0.92 0.94 0.98 0.81 0.84 0.88 0.91 0.95
cm 36.60 40.10 46.71 52.87 41.92 45.99 53.74 61.01 74.63 49.85 54.81 64.31 73.33 90.40
3
0.69 0.72 0.77 0.81 0.65 0.68 0.72 0.76 0.83 0.60 0.62 0.66 0.70 0.76
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
cm3 12.94 13.74 15.29 16.80 12.94 13.74 15.29 16.80 19.68 12.94 13.74 15.29 16.80 19.69
cm3 12.94 13.74 15.29 16.80 12.94 13.74 15.29 16.80 19.68 12.94 13.74 15.29 16.80 19.69
cm4 279.14 304.06 351.80 397.04 361.65 394.76 458.44 519.12 634.23 504.42 552.31 644.96 733.90 903.86
kN 211.90 235.65 282.46 328.81 212.62 236.37 283.16 329.55 425.49 213.72 237.49 284.28 330.62 426.72
kNm 12.81 14.04 16.35 18.51 14.67 16.10 18.81 21.35 26.12 17.45 19.18 22.51 25.67 31.64
kNm 4.53 4.81 5.35 5.88 4.53 4.81 5.35 5.88 6.89 4.53 4.81 5.35 5.88 6.89
kNm 4.53 4.81 5.35 5.88 4.53 4.81 5.35 5.88 6.89 4.53 4.81 5.35 5.88 6.89
A - 11
B t
GROSS SECTION PROPERTIES METSEC C SECTION Design Yield Strength = 350 N/mm2
x
x
D
SINGLE SECTION D
x
B
mm 142 x 64
172
x
69
202
x
69
232
x
76
262
x
80
302
x
89
342
x
97
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2
cm2 3.87 4.14 4.41 4.95 5.48 4.44 4.75 5.07 5.69 6.30 7.21 7.80 5.19 5.53 6.21 6.89 7.89 8.54 6.28 7.06 7.83 8.97 9.72 7.73 8.57 9.83 10.66 12.30 11.23 12.18 14.07 13.66 15.79 17.36
kg/m 3.04 3.25 3.46 3.88 4.30 3.48 3.73 3.98 4.46 4.95 5.66 6.13 4.08 4.34 4.88 5.41 6.19 6.71 4.93 5.54 6.15 7.04 7.63 6.07 6.73 7.72 8.37 9.65 8.82 9.56 11.04 10.72 12.39 13.63
cm4 125.4 133.9 142.3 158.7 174.8 206.5 220.6 234.6 262.2 289.1 328.6 354.1 320.6 341.0 381.3 420.9 478.8 516.4 507.7 568.3 627.9 715.4 772.5 781.0 863.4 984.7 1064.0 1218.7 1488.9 1610.2 1847.7 2302.7 2646.0 2897.9
cm4 20.4 21.8 23.0 25.5 27.9 26.8 28.6 30.3 33.6 36.8 41.4 44.3 30.0 31.8 35.3 38.6 43.5 46.5 44.1 49.0 53.8 60.6 65.0 57.6 63.3 71.4 76.6 86.5 101.4 108.9 123.4 145.4 165.2 179.3
cm 5.69 5.69 5.68 5.66 5.65 6.82 6.81 6.81 6.79 6.77 6.75 6.74 7.86 7.85 7.83 7.82 7.79 7.77 8.99 8.97 8.96 8.93 8.91 10.05 10.04 10.01 9.99 9.96 11.51 11.50 11.46 12.98 12.95 12.92
cm 2.30 2.29 2.29 2.27 2.26 2.46 2.45 2.44 2.43 2.42 2.40 2.38 2.40 2.40 2.38 2.37 2.35 2.33 2.65 2.63 2.62 2.60 2.59 2.73 2.72 2.70 2.68 2.65 3.00 2.99 2.96 3.26 3.23 3.21
cm3 17.66 18.86 20.04 22.36 24.63 24.01 25.66 27.29 30.49 33.63 38.21 41.19 31.75 33.77 37.76 41.68 47.41 51.14 43.78 49.00 54.14 61.69 66.61 59.63 65.92 75.18 81.23 93.04 98.61 106.65 122.38 134.67 154.76 169.49
cm3 4.57 4.86 5.15 5.70 6.23 5.43 5.78 6.12 6.79 7.44 8.35 8.93 5.88 6.23 6.91 7.57 8.50 9.09 7.80 8.67 9.51 10.72 11.49 9.53 10.46 11.80 12.66 14.28 14.98 16.09 18.22 19.60 22.25 24.14
cm4 0.0238 0.0294 0.0358 0.0511 0.0701 0.0274 0.0338 0.0411 0.0587 0.0807 0.1227 0.1574 0.0369 0.0449 0.0642 0.0882 0.1343 0.1723 0.0510 0.0729 0.1002 0.1527 0.1961 0.0798 0.1098 0.1673 0.2150 0.3353 0.1912 0.2458 0.3836 0.2755 0.4304 0.5779
cm6 790 839 886 976 1060 1504 1598 1690 1866 2034 2270 2417 2289 2422 2677 2921 3263 3477 4457 4939 5402 6059 6473 7362 8060 9055 9685 10864 17159 18392 20724 31640 35769 38686
mm -27.4 -27.3 -27.2 -26.9 -26.6 -28.7 -28.6 -28.5 -28.2 -28.0 -27.5 -27.3 -27.2 -27.1 -26.8 -26.6 -26.2 -25.9 -29.9 -29.6 -29.3 -29.0 -28.7 -30.2 -29.9 -29.6 -29.3 -28.8 -32.9 -32.6 -32.1 -35.5 -35.0 -34.6
A - 12
y
B
B t
GROSS SECTION PROPERTIES x
METSEC C SECTION Design Yield Strength = 350 N/mm2 DOUBLE SECTION D
x
B
mm 142 x 64
172
x
69
202
x
69
232
x
76
262
x
80
302
x
89
342
x
97
D
x
y
t
Area
mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2
cm 7.74 8.28 8.82 9.89 10.95 8.88 9.51 10.13 11.37 12.60 14.42 15.61 10.38 11.07 12.43 13.78 15.77 17.09 12.57 14.12 15.66 17.94 19.45 15.46 17.15 19.66 21.32 24.59 22.46 24.37 28.14 27.32 31.57 34.73
2
Weight
Ix x
kg/m 6.07 6.50 6.92 7.77 8.60 6.97 7.46 7.95 8.93 9.89 11.32 12.25 8.15 8.69 9.76 10.81 12.38 13.41 9.86 11.08 12.29 14.08 15.27 12.13 13.46 15.43 16.73 19.31 17.63 19.13 22.09 21.45 24.78 27.26
cm 250.7 267.7 284.5 317.5 349.7 413.0 441.2 469.2 524.3 578.3 657.1 708.3 641.2 682.1 762.7 841.8 957.5 1032.8 1015.4 1136.6 1255.8 1430.9 1545.0 1562.0 1726.9 1969.4 2127.9 2437.4 2977.7 3220.4 3695.5 4605.3 5292.1 5795.9
Iy y 4
4
cm 69.4 74.0 78.5 87.3 95.9 87.6 93.5 99.2 110.4 121.4 137.1 147.2 93.5 99.2 110.5 121.4 137.2 147.3 135.9 151.5 166.8 188.9 203.1 174.0 191.6 217.1 233.6 265.3 304.4 327.9 373.4 432.6 493.5 537.6
rx x
ry y
Zx x
cm 5.69 5.69 5.68 5.66 5.65 6.82 6.81 6.81 6.79 6.77 6.75 6.74 7.86 7.85 7.83 7.82 7.79 7.77 8.99 8.97 8.96 8.93 8.91 10.05 10.04 10.01 9.99 9.96 11.51 11.50 11.46 12.98 12.95 12.92
cm 3.00 2.99 2.98 2.97 2.96 3.14 3.14 3.13 3.12 3.10 3.08 3.07 3.00 2.99 2.98 2.97 2.95 2.94 3.29 3.28 3.26 3.24 3.23 3.36 3.34 3.32 3.31 3.28 3.68 3.67 3.64 3.98 3.95 3.93
cm 35.33 37.72 40.08 44.73 49.26 48.03 51.32 54.57 60.98 67.26 76.43 82.38 63.49 67.54 75.53 83.36 94.83 102.28 87.55 98.00 108.28 123.37 133.22 119.25 131.84 150.36 162.46 186.09 197.23 213.30 244.77 269.35 309.51 338.98
A - 13
3
Zy y 3
cm 10.85 11.57 12.27 13.65 14.98 12.70 13.54 14.38 16.01 17.59 19.87 21.34 13.54 14.38 16.01 17.59 19.88 21.34 17.88 19.94 21.94 24.85 26.72 21.75 23.95 27.14 29.20 33.16 34.20 36.85 41.95 44.59 50.88 55.42
J
Cw 4
cm 0.0477 0.0588 0.0716 0.1022 0.1403 0.0547 0.0675 0.0822 0.1174 0.1613 0.2454 0.3149 0.0738 0.0898 0.1283 0.1764 0.2685 0.3447 0.1019 0.1458 0.2005 0.3055 0.3923 0.1596 0.2196 0.3347 0.4300 0.6705 0.3824 0.4915 0.7672 0.5511 0.8608 1.1559
es 6
cm 3467 3672 3871 4249 4602 6420 6809 7186 7909 8589 9530 10107 9329 9849 10844 11782 13084 13883 17975 19846 21624 24118 25668 28978 31609 35315 37629 41889 66506 71043 79502 121287 136249 146652
mm -
B t
REDUCED SECTION PROPERTIES METSEC C SECTION Design Yield Strength = 350 N/mm2
x
x
D
SINGLE SECTION D
x
B
mm 142 x 64
172
x
69
202
x
69
232
x
76
262
x
80
302
x
89
342
x
97
t mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2
Q
po / py
Zxr
0.86 0.89 0.91 0.95 0.97 0.80 0.83 0.86 0.91 0.94 0.97 0.98 0.80 0.83 0.88 0.91 0.94 0.96 0.78 0.83 0.87 0.91 0.93 0.79 0.83 0.88 0.90 0.94 0.84 0.86 0.90 0.83 0.87 0.90
cm 15.17 16.78 18.33 21.26 23.98 19.20 21.40 23.56 27.69 31.54 36.96 40.41 25.41 28.02 33.05 37.79 44.54 48.86 33.96 40.66 47.05 56.10 61.86 47.09 54.96 66.16 73.29 87.02 82.57 92.24 110.74 111.31 135.25 152.46
Zy1r 3
0.68 0.71 0.74 0.79 0.83 0.60 0.64 0.67 0.72 0.76 0.81 0.84 0.59 0.61 0.66 0.69 0.74 0.77 0.56 0.61 0.65 0.69 0.72 0.57 0.61 0.65 0.67 0.72 0.61 0.63 0.67 0.59 0.64 0.66
3
Zy2r
cm 5.37 5.91 6.47 7.58 8.64 6.10 6.71 7.33 8.64 9.88 11.75 13.03 6.75 7.37 8.68 9.90 11.77 13.05 8.75 10.28 11.88 14.14 15.66 11.10 12.83 15.31 16.96 20.36 18.61 20.62 24.73 24.19 29.03 32.73
3
cm 4.57 4.86 5.15 5.70 6.23 5.43 5.78 6.12 6.79 7.44 8.35 8.93 5.88 6.23 6.91 7.57 8.50 9.09 7.80 8.67 9.51 10.72 11.49 9.53 10.46 11.80 12.66 14.28 14.98 16.09 18.22 19.60 22.25 24.14
A - 14
Ixr 4
cm 110.0 120.8 131.3 151.4 170.4 169.8 187.8 205.4 239.5 271.8 317.9 347.5 260.8 286.2 335.3 382.3 449.9 493.4 401.0 475.8 547.9 651.3 717.8 623.6 723.8 867.9 960.6 1139.8 1251.5 1395.2 1672.6 1910.0 2314.4 2607.3
Pc
Mcx
Mcy1
Mcy2x
kN 91.7 103.1 114.5 136.8 159.1 93.9 106.1 118.4 142.8 166.9 203.3 228.5 106.7 119.0 143.4 167.4 203.9 229.2 123.7 150.9 177.8 217.6 244.6 153.3 181.8 223.6 251.5 309.5 238.0 269.0 331.4 283.3 350.9 402.4
kNm 5.31 5.87 6.42 7.44 8.39 6.72 7.49 8.25 9.69 11.04 12.94 14.14 8.89 9.81 11.57 13.23 15.59 17.10 11.89 14.23 16.47 19.64 21.65 16.48 19.24 23.16 25.65 30.46 28.90 32.29 38.76 38.96 47.34 53.36
kNm 1.88 2.07 2.26 2.65 3.02 2.14 2.35 2.57 3.02 3.46 4.11 4.56 2.36 2.58 3.04 3.47 4.12 4.57 3.06 3.60 4.16 4.95 5.48 3.89 4.49 5.36 5.94 7.13 6.51 7.22 8.65 8.47 10.16 11.46
kNm 1.60 1.70 1.80 1.99 2.18 1.90 2.02 2.14 2.38 2.60 2.92 3.13 2.06 2.18 2.42 2.65 2.98 3.18 2.73 3.04 3.33 3.75 4.02 3.34 3.66 4.13 4.43 5.00 5.24 5.63 6.38 6.86 7.79 8.45
B
y
B t
REDUCED SECTION PROPERTIES x
METSEC C SECTION Design Yield Strength = 350 N/mm2 DOUBLE SECTION D
x
B
mm 142 x 64
172
x
69
202
x
69
232
x
76
262
x
80
302
x
89
342
x
97
x
D
y
t mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2
Q
po / py
Zxr
0.86 0.89 0.91 0.95 0.97 0.80 0.83 0.86 0.91 0.94 0.97 0.98 0.80 0.83 0.88 0.91 0.94 0.96 0.78 0.83 0.87 0.91 0.93 0.79 0.83 0.88 0.90 0.94 0.84 0.86 0.90 0.83 0.87 0.90
cm 30.34 33.56 36.67 42.51 47.96 38.40 42.80 47.12 55.37 63.09 73.93 80.83 50.82 56.04 66.09 75.59 89.07 97.71 67.93 81.31 94.10 112.20 123.73 94.18 109.92 132.32 146.59 174.04 165.15 184.49 221.49 222.62 270.50 304.91
Zy1r 3
0.68 0.71 0.74 0.79 0.83 0.60 0.64 0.67 0.72 0.76 0.81 0.84 0.59 0.61 0.66 0.69 0.74 0.77 0.56 0.61 0.65 0.69 0.72 0.57 0.61 0.65 0.67 0.72 0.61 0.63 0.67 0.59 0.64 0.66
3
Zy2r
cm 10.85 11.57 12.27 13.65 14.98 12.70 13.54 14.38 16.01 17.59 19.87 21.34 13.54 14.38 16.01 17.59 19.88 21.34 17.88 19.94 21.94 24.85 26.72 21.75 23.95 27.14 29.20 33.16 34.20 36.85 41.95 44.59 50.88 55.42
3
cm 10.85 11.57 12.27 13.65 14.98 12.70 13.54 14.38 16.01 17.59 19.87 21.34 13.54 14.38 16.01 17.59 19.88 21.34 17.88 19.94 21.94 24.85 26.72 21.75 23.95 27.14 29.20 33.16 34.20 36.85 41.95 44.59 50.88 55.42
A - 15
Ixr 4
cm 220.1 241.7 262.7 302.8 340.8 339.6 375.6 410.9 479.0 543.7 635.9 695.0 521.6 572.3 670.6 764.6 899.7 986.8 802.0 951.6 1095.9 1302.6 1435.5 1247.3 1447.6 1735.8 1921.2 2279.7 2503.0 2790.5 3345.1 3820.0 4628.9 5214.7
Pc
Mcx
Mcy1
Mcy2x
kN 183.3 206.2 228.9 273.6 318.2 187.8 212.2 236.9 285.7 333.7 406.7 457.0 213.3 238.0 286.8 334.8 407.8 458.5 247.4 301.9 355.7 435.3 489.1 306.6 363.6 447.3 503.0 618.9 476.1 538.1 662.8 566.5 701.8 804.7
kNm 10.62 11.75 12.83 14.88 16.78 13.44 14.98 16.49 19.38 22.08 25.87 28.29 17.79 19.62 23.13 26.46 31.18 34.20 23.77 28.46 32.94 39.27 43.31 32.96 38.47 46.31 51.31 60.91 57.80 64.57 77.52 77.92 94.67 106.72
kNm 3.80 4.05 4.29 4.78 5.24 4.44 4.74 5.03 5.60 6.16 6.96 7.47 4.74 5.03 5.60 6.16 6.96 7.47 6.26 6.98 7.68 8.70 9.35 7.61 8.38 9.50 10.22 11.60 11.97 12.90 14.68 15.61 17.81 19.40
kNm 3.80 4.05 4.29 4.78 5.24 4.44 4.74 5.03 5.60 6.16 6.96 7.47 4.74 5.03 5.60 6.16 6.96 7.47 6.26 6.98 7.68 8.70 9.35 7.61 8.38 9.50 10.22 11.60 11.97 12.90 14.68 15.61 17.81 19.40
B
t
GROSS SECTION PROPERTIES METSEC PLAIN SECTION Design Yield Strength = 280 N/mm2
x
x
D
SINGLE SECTION D
x
52 63 75 74 80
mm x x x x x
B 50 25 38 44 48
100
x
50
152
x
50
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.2 1.5 1.5 2.4 1.6 2.4 3.0 1.5 2.0 3.0 3.0
cm2 1.71 1.56 2.11 3.59 2.64 3.92 4.84 2.83 3.76 5.55 7.09
kg/m 1.34 1.22 1.66 2.82 2.07 3.08 3.80 2.22 2.95 4.36 5.57
cm4 8.5 9.1 18.9 31.5 28.1 40.6 49.1 45.3 59.4 85.4 230.1
cm4 4.6 0.9 3.1 7.1 6.4 9.3 11.3 7.2 9.5 13.8 15.7
cm 2.23 2.41 2.99 2.96 3.26 3.22 3.19 4.00 3.98 3.92 5.70
cm 1.65 0.77 1.21 1.41 1.55 1.54 1.53 1.59 1.59 1.57 1.49
cm3 3.26 2.88 5.03 8.52 7.02 10.14 12.28 9.07 11.89 17.09 30.29
cm3 1.41 0.49 1.12 2.31 1.87 2.77 3.41 1.96 2.60 3.83 4.05
cm4
cm6 21 6 28 59 66 92 107 119 152 210 589
mm -20.9 -8.1 -13.7 -16.1 -18.1 -17.7 -17.4 -18.1 -17.9 -17.4 -15.1
0.0076 0.0111 0.0150 0.0666 0.0214 0.0728 0.1414 0.0201 0.0481 0.1621 0.2071
B
y
B t
x
x
DOUBLE SECTION D
x
B
D
y
t
Area
Weight
Ix x
Iy y
rx x
mm cm2 kg/m cm4 cm4 cm 52 50 1.2 3.41 2.68 16.9 19.3 2.23 63 25 1.5 3.12 2.45 18.1 3.0 2.41 75 38 1.5 4.23 3.32 37.7 10.7 2.99 74 44 2.4 7.18 5.63 63.0 26.8 2.96 80 48 1.6 5.28 4.15 56.1 23.0 3.26 2.4 7.84 6.15 81.1 34.8 3.22 3.0 9.68 7.60 98.2 43.7 3.19 100 x 50 1.5 5.66 4.44 90.7 24.3 4.00 2.0 7.51 5.90 118.8 32.7 3.98 3.0 11.10 8.72 170.8 49.5 3.92 152 x 50 3.0 14.18 11.13 460.2 49.5 5.70 Note: This table lists only a selection of the plain sections available. mm x x x x x
A - 16
ry y
Zx x
Zy y
J
Cw
es
cm 2.38 0.99 1.59 1.93 2.09 2.11 2.13 2.07 2.09 2.11 1.87
cm3 6.52 5.76 10.07 17.03 14.03 20.29 24.57 18.15 23.78 34.18 60.57
cm3 3.86 1.22 2.81 6.10 4.79 7.26 9.11 4.87 6.54 9.89 9.91
cm4
cm6 115 23 126 282 316 438 512 535 686 936 2234
mm -
0.0153 0.0222 0.0300 0.1332 0.0429 0.1455 0.2828 0.0402 0.0962 0.3243 0.4142
B
t
REDUCED SECTION PROPERTIES METSEC PLAIN SECTION Design Yield Strength = 280 N/mm2
x
D
x
SINGLE SECTION D
x
B
52 63 75 74 80
mm x x x x x
50 25 38 44 48
100
x
50
152
x
50
t mm 1.2 1.5 1.5 2.4 1.6 2.4 3.0 1.5 2.0 3.0 3.0
Q
po / py
Zxr 3
0.69 0.96 0.82 0.98 0.78 0.97 1.00 0.64 0.83 0.99 0.89
0.68 1.00 0.90 0.99 0.83 0.98 1.00 0.79 0.91 1.00 0.99
cm 2.22 2.87 4.54 8.44 5.84 9.93 12.26 7.20 10.82 17.03 30.13
Zy1r
Zy2r
3
3
cm 2.26 0.85 1.95 3.97 3.22 4.76 5.80 3.29 4.53 6.64 6.96
cm 1.41 0.49 1.12 2.31 1.87 2.77 3.41 1.96 2.60 3.83 4.05
Ixr 4
cm 6.7 9.0 17.7 31.3 25.0 40.0 49.1 39.2 56.0 85.2 229.4
Pc
Mcx
Mcy1
Mcy2x
kN 33.0 41.8 48.8 98.9 57.6 106.2 135.1 50.7 87.5 153.9 177.1
kNm 0.62 0.80 1.27 2.36 1.63 2.78 3.43 2.02 3.03 4.77 8.44
kNm 0.63 0.24 0.54 1.11 0.90 1.33 1.62 0.92 1.27 1.86 1.95
kNm 0.39 0.14 0.31 0.65 0.52 0.77 0.96 0.55 0.73 1.07 1.14
B
y
B t
x
DOUBLE SECTION D
x
B
x
D
y
t
Q
po / py
Zxr
Zy1r
Zy2r
mm cm3 cm3 cm3 52 50 1.2 0.69 0.68 4.45 3.86 3.86 63 25 1.5 0.96 1.00 5.73 1.22 1.22 75 38 1.5 0.82 0.90 9.09 2.81 2.81 74 44 2.4 0.98 0.99 16.87 6.10 6.10 80 48 1.6 0.78 0.83 11.67 4.79 4.79 2.4 0.97 0.98 19.86 7.26 7.26 3.0 1.00 1.00 24.53 9.11 9.11 100 x 50 1.5 0.64 0.79 14.40 4.87 4.87 2.0 0.83 0.91 21.63 6.54 6.54 3.0 0.99 1.00 34.05 9.89 9.89 152 x 50 3.0 0.89 0.99 60.26 9.91 9.91 Note: This table lists only a selection of the plain sections available. mm x x x x x
A - 17
Ixr cm4 13.4 18.1 35.4 62.6 50.1 80.1 98.1 78.3 112.1 170.4 458.7
Pc
Mcx
kN kNm 66.0 1.25 83.7 1.61 97.6 2.54 197.8 4.72 115.3 3.27 212.5 5.56 270.1 6.87 101.4 4.03 175.0 6.06 307.7 9.54 354.1 16.87
Mcy1
Mcy2x
kNm 1.08 0.34 0.79 1.71 1.34 2.03 2.55 1.36 1.83 2.77 2.77
kNm 1.08 0.34 0.79 1.71 1.34 2.03 2.55 1.36 1.83 2.77 2.77
B t
GROSS SECTION PROPERTIES ALBION C SECTION 2 Design Yield Strength = 350 N/mm
x
D
x
SINGLE SECTION D
x
127 127 145
mm x x x
B 50 62.5 50
165
x
62.5
203
x
62.5
230
x
70
276
x
62.5
300
x
70
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
mm 1.6 1.6 1.6 2.0 1.6 2.0 1.6 2.0 2.5 2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0
cm2 3.80 4.19 4.08 5.06 4.79 5.95 5.53 6.89 8.54 7.71 9.58 11.40 8.32 10.34 12.32 9.08 11.30 13.47
kg/m 2.98 3.29 3.21 3.98 3.76 4.67 4.34 5.41 6.71 6.05 7.52 8.95 6.53 8.12 9.67 7.13 8.87 10.58
cm4 94.5 109.8 128.9 158.1 201.0 247.5 337.8 416.9 511.4 599.5 737.2 868.9 870.5 1071.4 1263.8 1131.5 1395.0 1648.4
cm4 12.8 22.0 13.4 16.1 24.0 29.1 28.7 34.9 42.1 47.7 57.8 66.9 38.1 45.9 53.0 51.3 62.1 72.0
cm 4.99 5.12 5.62 5.59 6.48 6.45 7.81 7.78 7.74 8.82 8.77 8.73 10.23 10.18 10.13 11.16 11.11 11.06
cm 1.84 2.29 1.81 1.78 2.24 2.21 2.28 2.25 2.22 2.49 2.46 2.42 2.14 2.11 2.07 2.38 2.34 2.31
cm3 14.89 17.30 17.79 21.82 24.37 30.00 33.29 41.08 50.39 52.14 64.12 75.57 63.09 77.65 91.59 75.44 93.01 109.91
cm3 3.70 5.22 3.76 4.52 5.38 6.52 6.35 7.72 9.30 9.29 11.23 12.99 7.92 9.55 11.02 9.50 11.49 13.30
J
Cw
es
cm4 cm6 0.0308 423 0.0340 719 0.0331 561 0.0649 669 0.0388 1263 0.0762 1517 0.0449 2380 0.0882 2875 0.1723 3431 0.0987 4931 0.1932 5911 0.3329 6783 0.1065 5657 0.2086 6772 0.3597 7758 0.1163 8909 0.2279 10707 0.3934 12320
B
y
mm -22.0 -28.2 -21.1 -20.6 -26.1 -25.6 -26.4 -25.9 -25.2 -28.2 -27.6 -26.9 -23.0 -22.3 -21.7 -25.5 -24.9 -24.2
B t
x
x
DOUBLE SECTION D
x
B
127 127 145
mm x x x
50 62.5 50
165
x
62.5
203
x
62.5
230
x
70
276
x
62.5
300
x
70
D
y
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.6 1.6 1.6 2.0 1.6 2.0 1.6 2.0 2.5 2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0
cm2 7.60 8.38 8.17 10.13 9.57 11.89 11.07 13.78 17.09 15.42 19.15 22.80 16.64 20.68 24.63 18.17 22.60 26.94
kg/m 5.97 6.58 6.41 7.95 7.51 9.34 8.69 10.81 13.41 12.11 15.03 17.90 13.06 16.23 19.34 14.26 17.74 21.15
cm4 189.0 219.6 257.9 316.2 402.1 494.9 675.6 833.7 1022.8 1198.9 1474.4 1737.8 1741.1 2142.9 2527.6 2263.0 2790.1 3296.8
cm4 43.6 78.4 43.6 53.0 78.4 95.8 90.3 110.6 134.5 148.6 181.1 211.5 110.7 134.6 156.8 148.6 181.2 211.6
cm 4.99 5.12 5.62 5.59 6.48 6.45 7.81 7.78 7.74 8.82 8.77 8.73 10.23 10.18 10.13 11.16 11.11 11.06
cm 2.39 3.06 2.31 2.29 2.86 2.84 2.86 2.83 2.81 3.10 3.08 3.05 2.58 2.55 2.52 2.86 2.83 2.80
cm3 29.77 34.60 35.58 43.63 48.75 60.01 66.57 82.16 100.79 104.27 128.23 151.14 126.18 155.30 183.19 150.89 186.03 219.82
cm3 8.71 12.55 8.71 10.59 12.55 15.33 14.45 17.70 21.52 21.23 25.87 30.21 17.71 21.53 25.09 21.24 25.88 30.23
cm4 0.0617 0.0680 0.0662 0.1297 0.0776 0.1523 0.0898 0.1764 0.3447 0.1975 0.3863 0.6659 0.2130 0.4171 0.7195 0.2326 0.4558 0.7869
cm6 1763 3180 2272 2679 5275 6284 9458 11329 13370 19416 23044 26175 20511 24250 27434 32543 38678 44001
mm -
A - 18
B t
REDUCED SECTION PROPERTIES ALBION C SECTION 2 Design Yield Strength = 350 N/mm
x
D
x
SINGLE SECTION D
x
127 127 145
mm x x x
B 50 62.5 50
165
x
62.5
203
x
62.5
230
x
70
276
x
62.5
300
x
70
t mm 1.6 1.6 1.6 2.0 1.6 2.0 1.6 2.0 2.5 2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0
Q 0.79 0.79 0.74 0.81 0.69 0.77 0.63 0.70 0.77 0.66 0.72 0.78 0.58 0.64 0.69 0.56 0.62 0.67
po / py
Zxr
Zy1r
0.96 0.94 0.93 0.97 0.89 0.95 0.84 0.91 0.95 0.88 0.93 0.96 0.83 0.89 0.93 0.80 0.87 0.91
cm3 14.22 16.23 16.56 21.22 21.69 28.49 28.07 37.34 48.11 45.72 59.70 72.92 52.39 69.24 85.36 60.57 81.00 100.53
cm3 4.75 6.53 4.76 6.25 6.55 8.76 7.13 9.57 12.56 11.26 14.91 18.32 9.66 12.61 15.28 11.37 14.98 18.35
Zy2r
Ixr
Pc
cm3 cm4 kN 3.70 90.3 105.2 5.22 103.8 115.5 3.76 120.1 105.4 4.52 153.8 144.0 5.38 180.1 116.1 6.52 235.1 160.5 6.35 286.1 122.3 7.72 379.0 168.0 9.30 488.2 228.9 9.29 526.5 177.3 11.23 686.5 241.7 12.99 838.4 312.3 7.92 723.0 169.6 9.55 955.4 230.3 11.02 1177.8 298.3 9.50 909.2 179.0 11.49 1214.9 243.4 13.30 1507.8 313.8
Mcx
Mcy1
Mcy2x
kNm 4.98 5.68 5.80 7.43 7.59 9.97 9.82 13.07 16.84 16.00 20.90 25.52 18.34 24.23 29.88 21.20 28.35 35.19
kNm 1.66 2.28 1.67 2.19 2.29 3.07 2.49 3.35 4.40 3.94 5.22 6.41 3.38 4.41 5.35 3.98 5.24 6.42
kNm 1.30 1.83 1.31 1.58 1.88 2.28 2.22 2.70 3.25 3.25 3.93 4.55 2.77 3.34 3.86 3.32 4.02 4.66
B
y
B t
x
DOUBLE SECTION D
x
B
127 127 145
mm x x x
50 62.5 50
165
x
62.5
203
x
62.5
230
x
70
276
x
62.5
300
x
70
x
D
y
t mm 1.6 1.6 1.6 2.0 1.6 2.0 1.6 2.0 2.5 2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0
Q 0.79 0.79 0.74 0.81 0.69 0.77 0.63 0.70 0.77 0.66 0.72 0.78 0.58 0.64 0.69 0.56 0.62 0.67
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
0.96 0.94 0.93 0.97 0.89 0.95 0.84 0.91 0.95 0.88 0.93 0.96 0.83 0.89 0.93 0.80 0.87 0.91
cm3 28.44 32.46 33.13 42.45 43.39 56.97 56.14 74.67 96.22 91.43 119.41 145.84 104.78 138.48 170.72 121.14 162.00 201.07
cm3 8.71 12.55 8.71 10.59 12.55 15.33 14.45 17.70 21.52 21.23 25.87 30.21 17.71 21.53 25.09 21.24 25.88 30.23
cm3 8.71 12.55 8.71 10.59 12.55 15.33 14.45 17.70 21.52 21.23 25.87 30.21 17.71 21.53 25.09 21.24 25.88 30.23
cm4 180.7 207.7 240.3 307.6 360.2 470.2 572.3 758.1 976.5 1053.0 1373.1 1676.9 1446.0 1910.7 2355.5 1818.5 2429.8 3015.6
kN 210.4 231.0 210.8 288.0 232.3 320.9 244.6 335.9 457.8 354.7 483.4 624.7 339.1 460.7 596.7 358.0 486.7 627.6
kNm 9.95 11.36 11.59 14.86 15.19 19.94 19.65 26.13 33.68 32.00 41.79 51.04 36.67 48.47 59.75 42.40 56.70 70.37
kNm 3.05 4.39 3.05 3.71 4.39 5.37 5.06 6.20 7.53 7.43 9.06 10.57 6.20 7.54 8.78 7.43 9.06 10.58
kNm 3.05 4.39 3.05 3.71 4.39 5.37 5.06 6.20 7.53 7.43 9.06 10.57 6.20 7.54 8.78 7.43 9.06 10.58
A - 19
B t
GROSS SECTION PROPERTIES METSEC FRAMING SFS SECTION Design Yield Strength = 350 N/mm2
x
D
x
SINGLE SECTION D
x
B
mm 70 x 100 x
35 54
150
x
54
200
x
54
250
x
54
300
x
54
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.5 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0 1.5 2.0 2.0
cm2 2.24 2.60 3.23 4.26 3.18 4.26 5.63 3.76 4.99 6.61 5.42 7.20 8.18
kg/m 1.76 2.04 2.54 3.35 2.50 3.34 4.42 2.95 3.91 5.19 4.26 5.65 6.42
cm4 17.1 43.1 53.2 68.9 109.7 151.9 198.5 216.1 296.6 389.0 458.7 602.0 943.4
cm4 3.9 10.4 12.7 16.2 11.9 22.1 28.4 12.9 24.2 31.0 16.7 21.4 22.3
cm 2.76 4.07 4.05 4.02 5.88 5.97 5.94 7.58 7.71 7.67 9.20 9.14 10.74
cm 1.32 2.00 1.98 1.95 1.94 2.28 2.25 1.86 2.20 2.17 1.76 1.72 1.65
cm3 4.90 8.63 10.64 13.79 14.63 20.25 26.47 21.61 29.67 38.91 36.70 48.17 62.90
cm3 1.76 2.92 3.56 4.53 3.06 4.89 6.27 3.15 5.04 6.47 3.91 4.99 5.05
cm4 0.0159 0.0117 0.0230 0.0546 0.0143 0.0302 0.0721 0.0169 0.0354 0.0847 0.0385 0.0922 0.1048
cm6 46 218 263 328 518 946 1197 984 1801 2289 1985 2514 3818
mm -17.1 -25.2 -24.8 -24.1 -22.5 -26.9 -26.2 -20.4 -24.6 -23.9 -18.2 -17.6 -16.2
y
B
B t
x
y
DOUBLE SECTION D
x
B
70 100
mm x x
35 54
150
x
54
200
x
54
250
x
54
300
x
54
D
x
t mm 1.5 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0 1.5 2.0 2.0
Area 2
cm 4.48 5.20 6.47 8.52 6.36 8.51 11.27 7.52 9.97 13.23 10.85 14.40 16.36
Weight
Ix x 4
kg/m cm 3.52 34.3 4.08 86.3 5.08 106.4 6.69 137.9 4.99 219.5 6.68 303.7 8.84 396.9 5.90 432.1 7.83 593.3 10.38 778.0 8.52 917.4 11.31 1203.9 12.84 1886.7
Iy y 4
cm 15.1 38.2 46.9 60.5 38.2 74.0 95.9 38.2 74.0 95.9 47.0 60.6 60.6
rx x cm 2.76 4.07 4.05 4.02 5.88 5.97 5.94 7.58 7.71 7.67 9.20 9.14 10.74
A - 20
ry y cm 1.83 2.71 2.69 2.66 2.45 2.95 2.92 2.25 2.72 2.69 2.08 2.05 1.92
Zx x
Zy y
3
3
cm 9.79 17.26 21.28 27.58 29.27 40.50 52.94 43.22 59.34 77.82 73.40 96.33 125.80
cm 4.31 7.07 8.69 11.20 7.08 11.57 14.98 7.08 11.57 14.98 8.70 11.21 11.22
J
Cw 4
cm 0.0319 0.0233 0.0460 0.1091 0.0285 0.0605 0.1443 0.0337 0.0709 0.1694 0.0771 0.1844 0.2095
6
cm 193 983 1179 1458 2146 4087 5124 3761 7184 9028 7025 8761 12564
es mm -
B
REDUCED SECTION PROPERTIES
t
METSEC FRAMING SFS SECTION 2 Design Yield Strength = 350 N/mm
x
D
x
SINGLE SECTION D
x
B
mm 70 x 100 x
35 54
150 150
x x
54 64
200 200
x x
54 64
250
x
54
300
x
54
t mm 1.5 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0 1.5 2.0 2.0
Q 0.97 0.75 0.85 0.95 0.62 0.69 0.81 0.53 0.60 0.69 0.52 0.59 0.52
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
1.00 0.90 0.97 1.00 0.82 0.88 0.96 0.74 0.82 0.91 0.76 0.86 0.80
cm3 4.90 7.73 10.37 13.79 12.00 17.81 25.54 16.07 24.26 35.47 28.04 41.37 50.62
cm3 2.41 3.44 4.67 6.58 3.47 5.99 8.73 3.52 6.04 8.76 4.78 6.77 6.80
cm3 1.76 2.92 3.56 4.53 3.06 4.89 6.27 3.15 5.04 6.47 3.91 4.99 5.05
cm4 17.1 39.5 52.0 68.9 91.4 135.4 191.7 162.2 244.9 354.9 350.8 517.1 759.3
kN 76.1 67.8 96.7 142.3 68.6 103.2 159.3 69.3 104.1 160.2 99.3 148.4 149.5
kNm 1.71 2.71 3.63 4.83 4.20 6.23 8.94 5.62 8.49 12.41 9.81 14.48 17.72
kNm 0.84 1.20 1.63 2.30 1.22 2.10 3.05 1.23 2.12 3.06 1.67 2.37 2.38
kNm 0.62 1.02 1.25 1.59 1.07 1.71 2.19 1.10 1.77 2.26 1.37 1.75 1.77
B
y
B t
x
DOUBLE SECTION D
x
B
mm 70 x 100 x
35 54
150 150
x x
54 64
200 200
x x
54 64
250
x
54
300
x
54
x
D
y
t mm 1.5 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0 1.5 2.0 2.0
Q 0.97 0.75 0.85 0.95 0.62 0.69 0.81 0.53 0.60 0.69 0.52 0.59 0.52
po / py
Zxr
Zy1r
1.00 0.90 0.97 1.00 0.82 0.88 0.96 0.74 0.82 0.91 0.76 0.86 0.80
cm3 9.79 15.46 20.74 27.58 24.00 35.61 51.08 32.13 48.53 70.94 56.08 82.75 101.25
cm3 4.31 7.07 8.69 11.20 7.08 11.57 14.98 7.08 11.57 14.98 8.70 11.21 11.22
Zy2r
Ixr
Pc
cm3 cm4 kN 4.31 34.3 152.3 7.07 79.0 135.6 8.69 104.1 193.4 11.20 137.8 284.6 7.08 182.8 137.1 11.57 270.8 206.5 14.98 383.4 318.6 7.08 324.4 138.6 11.57 489.8 208.3 14.98 709.7 320.3 8.70 701.6 198.6 11.21 1034.2 296.7 11.22 1518.5 299.0
A - 21
Mcx
Mcy1
Mcy2x
kNm 3.43 5.41 7.26 9.65 8.40 12.46 17.88 11.25 16.98 24.83 19.63 28.96 35.44
kNm 1.51 2.48 3.04 3.92 2.48 4.05 5.24 2.48 4.05 5.24 3.04 3.93 3.93
kNm 1.51 2.48 3.04 3.92 2.48 4.05 5.24 2.48 4.05 5.24 3.04 3.93 3.93
B
GROSS SECTION PROPERTIES
t
STRUCTURAL SECTIONS ULTRABEAM Design Yield Strength = 350 N/mm2
x
x
D
SINGLE SECTION D
x
145
mm x
B 50
170
x
50
200
x
63
225
x
63
255
x
75
285
x
75
t
Area
mm 1.2 1.3 1.4 1.6 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.6 1.8 2.0 2.5 1.6 1.8 2.5 1.8 2.0 2.5
cm 3.16 3.43 3.69 4.21 5.23 3.45 3.74 4.03 4.60 5.16 5.72 4.17 4.52 4.87 5.57 6.26 6.94 5.25 6.00 6.74 7.48 9.30 6.93 7.80 10.78 8.33 9.24 11.52
2
Weight
Ix x
kg/m 2.48 2.69 2.90 3.30 4.11 2.71 2.94 3.16 3.61 4.05 4.49 3.27 3.55 3.82 4.37 4.91 5.45 4.12 4.71 5.29 5.87 7.30 5.44 6.12 8.46 6.54 7.26 9.04
cm 99.9 108.1 116.2 132.1 163.2 145.6 157.6 169.4 192.8 215.7 238.3 248.0 268.5 288.9 329.3 369.2 408.5 382.8 436.4 489.4 541.6 669.4 661.2 742.0 1017.9 967.2 1071.7 1327.9
4
Iy y
rx x
ry y
Zx x
cm4 9.4 10.1 10.8 12.3 15.0 9.9 10.6 11.4 12.9 14.3 15.7 18.8 20.3 21.8 24.7 27.5 30.3 22.8 25.9 28.9 31.8 38.8 44.6 49.9 67.4 51.5 56.8 69.6
cm 5.62 5.62 5.61 5.60 5.59 6.49 6.49 6.48 6.47 6.46 6.45 7.71 7.71 7.70 7.69 7.68 7.67 8.54 8.53 8.52 8.51 8.48 9.77 9.75 9.72 10.78 10.77 10.74
cm 1.72 1.72 1.71 1.71 1.69 1.69 1.69 1.68 1.67 1.67 1.66 2.12 2.12 2.11 2.11 2.10 2.09 2.09 2.08 2.07 2.06 2.04 2.54 2.53 2.50 2.49 2.48 2.46
cm 13.79 14.91 16.03 18.23 22.52 17.14 18.54 19.93 22.68 25.39 28.04 24.80 26.86 28.90 32.94 36.92 40.86 34.03 38.80 43.51 48.15 59.51 51.87 58.21 79.84 67.89 75.21 93.20
A - 22
3
Zy y
J
Cw
es
cm3 2.61 2.81 3.01 3.41 4.16 2.66 2.86 3.07 3.47 3.86 4.24 4.08 4.41 4.73 5.37 5.99 6.59 4.83 5.47 6.11 6.73 8.21 7.97 8.91 12.05 9.01 9.94 12.19
cm4 0.0142 0.0181 0.0227 0.0341 0.0670 0.0155 0.0198 0.0248 0.0373 0.0533 0.0733 0.0187 0.0239 0.0300 0.0452 0.0646 0.0889 0.0324 0.0487 0.0696 0.0958 0.1876 0.0562 0.0805 0.2174 0.0860 0.1184 0.2323
cm6 377 405 434 488 592 533 574 614 692 768 840 1393 1502 1611 1822 2027 2227 2137 2418 2692 2957 3585 5399 6023 8084 7719 8500 10374
mm -18.1 -18.1 -18.0 -17.8 -17.5 -17.5 -17.4 -17.4 -17.2 -17.0 -16.9 -21.3 -21.3 -21.2 -21.0 -20.9 -20.7 -21.0 -20.8 -20.6 -20.5 -20.1 -26.5 -26.3 -25.7 -25.5 -25.4 -24.9
B
y
GROSS SECTION PROPERTIES
t
STRUCTURAL SECTIONS ULTRABEAM Design Yield Strength = 350 N/mm2
x
DOUBLE SECTION D
x
B
145
mm x
50
170
x
50
200
x
63
225
x
63
255
x
75
285
x
75
B
x
D
y
t
Area
mm 1.2 1.3 1.4 1.6 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.6 1.8 2.0 2.5 1.6 1.8 2.5 1.8 2.0 2.5
cm 6.33 6.85 7.38 8.42 10.46 6.91 7.48 8.06 9.20 10.33 11.44 8.34 9.04 9.74 11.13 12.51 13.88 10.50 12.00 13.48 14.96 18.60 13.87 15.60 21.55 16.65 18.49 23.03
2
Weight
Ix x
kg/m 4.97 5.38 5.79 6.61 8.21 5.42 5.87 6.33 7.22 8.11 8.98 6.55 7.10 7.65 8.74 9.82 10.90 8.24 9.42 10.58 11.74 14.60 10.89 12.24 16.92 13.07 14.51 18.08
cm 199.9 216.2 232.4 264.3 326.4 291.3 315.1 338.8 385.5 431.5 476.7 496.0 537.0 577.8 658.6 738.3 817.0 765.6 872.8 978.7 1083.3 1338.8 1322.4 1484.1 2035.7 1934.5 2143.3 2655.7
4
Iy y
rx x
ry y
Zx x
cm4 31.1 33.6 36.1 40.9 50.4 31.1 33.6 36.1 41.0 45.7 50.4 61.5 66.6 71.5 81.4 91.0 100.5 71.5 81.3 90.9 100.4 123.4 139.2 155.9 212.6 155.9 172.4 212.6
cm 5.62 5.62 5.61 5.60 5.59 6.49 6.49 6.48 6.47 6.46 6.45 7.71 7.71 7.70 7.69 7.68 7.67 8.54 8.53 8.52 8.51 8.48 9.77 9.75 9.72 10.78 10.77 10.74
cm 2.22 2.21 2.21 2.21 2.19 2.12 2.12 2.12 2.11 2.10 2.10 2.72 2.71 2.71 2.70 2.70 2.69 2.61 2.60 2.60 2.59 2.58 3.17 3.16 3.14 3.06 3.05 3.04
cm 27.58 29.83 32.06 36.46 45.04 34.28 37.09 39.87 45.37 50.77 56.09 49.61 53.72 57.80 65.88 73.85 81.72 68.06 77.60 87.01 96.31 119.03 103.74 116.41 159.69 135.77 150.43 186.39
A - 23
3
Zy y
J
Cw
es
cm3 6.22 6.72 7.21 8.19 10.07 6.22 6.72 7.22 8.19 9.14 10.08 9.77 10.57 11.36 12.92 14.45 15.95 11.34 12.90 14.43 15.94 19.58 18.56 20.79 28.35 20.79 22.99 28.35
cm4 0.0284 0.0363 0.0455 0.0683 0.1340 0.0310 0.0396 0.0497 0.0746 0.1066 0.1466 0.0374 0.0479 0.0601 0.0903 0.1292 0.1778 0.0647 0.0973 0.1392 0.1916 0.3753 0.1125 0.1610 0.4348 0.1719 0.2367 0.4646
cm6 1411 1516 1619 1817 2186 1960 2107 2250 2525 2788 3037 5044 5434 5817 6563 7281 7974 7636 8612 9552 10456 12566 20084 22335 29667 28065 30804 37274
mm -
B
REDUCED SECTION PROPERTIES
t x
STRUCTURAL SECTIONS ULTRABEAM Design Yield Strength = 350 N/mm2
x
D
SINGLE SECTION D
x
145
mm x
B 50
170
x
50
200
x
63
225
x
63
255
x
75
285
x
75
t mm 1.2 1.3 1.4 1.6 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.6 1.8 2.0 2.5 1.6 1.8 2.5 1.8 2.0 2.5
Q
po / py
Zxr
0.87 0.90 0.93 0.96 1.00 0.83 0.87 0.89 0.93 0.95 0.97 0.76 0.79 0.83 0.88 0.92 0.95 0.80 0.86 0.90 0.92 0.97 0.79 0.84 0.94 0.81 0.85 0.92
cm 12.02 13.46 14.86 17.52 22.51 14.31 16.06 17.77 21.06 24.21 27.27 18.74 21.35 23.97 29.15 34.11 38.85 27.22 33.21 38.99 44.54 57.72 40.78 48.83 75.15 54.90 63.94 85.35
3
0.86 0.88 0.90 0.93 0.97 0.79 0.81 0.82 0.85 0.88 0.90 0.79 0.81 0.83 0.87 0.89 0.92 0.78 0.81 0.84 0.86 0.90 0.75 0.78 0.85 0.73 0.75 0.79
Zy1r 3
cm 3.54 3.85 4.16 4.78 6.00 3.59 3.90 4.21 4.84 5.46 6.07 5.45 5.93 6.40 7.35 8.30 9.25 6.58 7.55 8.52 9.48 11.85 10.71 12.11 16.98 12.20 13.60 17.08
Zy2r 3
cm 2.61 2.81 3.01 3.41 4.16 2.66 2.86 3.07 3.47 3.86 4.24 4.08 4.41 4.73 5.37 5.99 6.59 4.83 5.47 6.11 6.73 8.21 7.97 8.91 12.05 9.01 9.94 12.19
A - 24
Ixr 4
cm 88.5 98.6 108.4 127.3 163.2 123.2 137.6 151.8 179.3 205.9 231.8 194.5 219.7 244.9 294.7 342.9 389.3 311.8 377.0 440.4 501.9 649.3 531.9 631.0 959.2 791.1 916.5 1217.4
Pc
Mcx
Mcy1
Mcy2x
kN 95.7 106.0 116.3 136.9 177.7 95.8 106.1 116.3 137.0 158.3 180.2 114.7 128.5 142.2 169.3 195.9 222.7 143.7 170.8 197.5 224.4 294.4 182.0 213.1 320.1 213.5 243.9 320.1
kNm 4.21 4.71 5.20 6.13 7.88 5.01 5.62 6.22 7.37 8.47 9.55 6.56 7.47 8.39 10.20 11.94 13.60 9.53 11.62 13.65 15.59 20.20 14.27 17.09 26.30 19.22 22.38 29.87
kNm 1.24 1.35 1.46 1.67 2.10 1.26 1.37 1.48 1.69 1.91 2.12 1.91 2.07 2.24 2.57 2.91 3.24 2.30 2.64 2.98 3.32 4.15 3.75 4.24 5.94 4.27 4.76 5.98
kNm 0.91 0.98 1.05 1.19 1.46 0.93 1.00 1.07 1.22 1.35 1.48 1.43 1.54 1.66 1.88 2.10 2.31 1.69 1.92 2.14 2.35 2.87 2.79 3.12 4.22 3.15 3.48 4.27
B
y
REDUCED SECTION PROPERTIES
t
STRUCTURAL SECTIONS ULTRABEAM Design Yield Strength = 350 N/mm2
x
DOUBLE SECTION D
x
B
145
mm x
50
170
x
50
200
x
63
225
x
63
255
x
75
285
x
75
B
x
D
y
t mm 1.2 1.3 1.4 1.6 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.6 1.8 2.0 2.5 1.6 1.8 2.5 1.8 2.0 2.5
Q
po / py
Zxr
0.87 0.90 0.93 0.96 1.00 0.83 0.87 0.89 0.93 0.95 0.97 0.76 0.79 0.83 0.88 0.92 0.95 0.80 0.86 0.90 0.92 0.97 0.79 0.84 0.94 0.81 0.85 0.92
cm 24.04 26.92 29.72 35.04 45.01 28.62 32.13 35.54 42.12 48.42 54.55 37.49 42.70 47.94 58.30 68.23 77.71 54.44 66.42 77.98 89.07 115.44 81.56 97.66 150.29 109.80 127.87 170.71
3
0.86 0.88 0.90 0.93 0.97 0.79 0.81 0.82 0.85 0.88 0.90 0.79 0.81 0.83 0.87 0.89 0.92 0.78 0.81 0.84 0.86 0.90 0.75 0.78 0.85 0.73 0.75 0.79
Zy1r 3
cm 6.22 6.72 7.21 8.19 10.07 6.22 6.72 7.22 8.19 9.14 10.08 9.77 10.57 11.36 12.92 14.45 15.95 11.34 12.90 14.43 15.94 19.58 18.56 20.79 28.35 20.79 22.99 28.35
Zy2r 3
cm 6.22 6.72 7.21 8.19 10.07 6.22 6.72 7.22 8.19 9.14 10.08 9.77 10.57 11.36 12.92 14.45 15.95 11.34 12.90 14.43 15.94 19.58 18.56 20.79 28.35 20.79 22.99 28.35
A - 25
Ixr 4
cm 177.1 197.2 216.7 254.5 326.3 246.3 275.2 303.5 358.5 411.7 463.6 388.9 439.4 489.9 589.4 685.7 778.6 623.5 754.1 880.9 1003.7 1298.6 1063.8 1262.0 1918.3 1582.2 1833.1 2434.8
Pc
Mcx
Mcy1
Mcy2x
kN 191.3 212.1 232.7 273.8 355.3 191.6 212.2 232.7 274.1 316.6 360.4 229.3 256.9 284.5 338.5 391.9 445.4 287.5 341.6 395.0 448.9 588.7 364.1 426.2 640.3 427.1 487.7 640.2
kNm 8.42 9.42 10.40 12.27 15.75 10.02 11.24 12.44 14.74 16.95 19.09 13.12 14.94 16.78 20.40 23.88 27.20 19.05 23.25 27.29 31.18 40.40 28.55 34.18 52.60 38.43 44.76 59.75
kNm 2.18 2.35 2.53 2.87 3.53 2.18 2.35 2.53 2.87 3.20 3.53 3.42 3.70 3.97 4.52 5.06 5.58 3.97 4.52 5.05 5.58 6.85 6.49 7.28 9.92 7.28 8.05 9.92
kNm 2.18 2.35 2.53 2.87 3.53 2.18 2.35 2.53 2.87 3.20 3.53 3.42 3.70 3.97 4.52 5.06 5.58 3.97 4.52 5.05 5.58 6.85 6.49 7.28 9.92 7.28 8.05 9.92
B
t
GROSS SECTION PROPERTIES WARD MULTIBEAM Design Yield Strength = 390 N/mm2
x
x
D
SINGLE SECTION D
x
B
mm 145 x
60
175
x
60
205
x
60
235
x
60
265
x
60
300
x
60
350
x
60
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.30 1.45 1.55 1.70 1.40 1.50 1.60 1.70 2.00 1.45 1.55 1.65 1.80 1.90 2.00 1.70 1.90 2.00 2.30 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00
cm2 3.89 4.33 4.62 5.06 4.59 4.92 5.24 5.56 6.50 5.18 5.53 5.88 6.40 6.75 7.09 6.55 7.31 7.68 8.79 7.46 8.27 9.27 10.45 12.20 8.08 8.95 10.04 11.33 13.23 8.95 9.93 11.15 12.59 14.71
kg/m 3.05 3.40 3.63 3.97 3.61 3.86 4.11 4.36 5.11 4.06 4.34 4.62 5.03 5.30 5.57 5.14 5.74 6.03 6.90 5.86 6.49 7.28 8.21 9.57 6.34 7.03 7.88 8.89 10.39 7.03 7.80 8.75 9.88 11.55
cm4 128.9 143.1 152.4 166.3 214.7 229.4 243.9 258.3 300.5 322.4 343.7 364.8 396.0 416.6 436.9 519.5 577.0 605.3 688.8 731.9 808.3 901.8 1011.3 1169.6 988.6 1092.3 1219.3 1368.2 1584.1 1442.1 1594.1 1780.8 1999.9 2318.4
cm4 17.87 19.69 20.88 22.60 19.54 20.76 21.96 23.12 26.45 20.54 21.77 22.97 24.71 25.84 26.93 23.92 26.23 27.34 30.50 25.42 27.70 30.37 33.34 37.31 25.75 28.05 30.75 33.75 37.75 26.14 28.47 31.20 34.23 38.27
cm 5.76 5.75 5.74 5.73 6.84 6.83 6.82 6.82 6.80 7.89 7.88 7.88 7.86 7.86 7.85 8.90 8.89 8.88 8.85 9.91 9.89 9.86 9.84 9.79 11.06 11.04 11.02 10.99 10.94 12.69 12.67 12.64 12.61 12.55
cm 2.14 2.13 2.12 2.11 2.06 2.05 2.05 2.04 2.02 1.99 1.98 1.98 1.96 1.96 1.95 1.91 1.89 1.89 1.86 1.85 1.83 1.81 1.79 1.75 1.79 1.77 1.75 1.73 1.69 1.71 1.69 1.67 1.65 1.61
cm3 17.78 19.74 21.03 22.94 24.54 26.22 27.88 29.52 34.35 31.46 33.54 35.59 38.64 40.65 42.64 44.22 49.11 51.53 58.63 55.24 61.01 68.07 76.33 88.29 65.92 72.83 81.30 91.23 105.62 82.41 91.10 101.77 114.29 132.50
cm3 4.68 5.15 5.46 5.90 4.99 5.29 5.59 5.89 6.72 5.13 5.44 5.73 6.16 6.44 6.71 5.87 6.43 6.70 7.46 6.15 6.69 7.33 8.04 8.98 6.14 6.69 7.32 8.03 8.97 6.13 6.68 7.32 8.02 8.96
cm4 0.0206 0.0287 0.0351 0.0465 0.0283 0.0349 0.0425 0.0510 0.0833 0.0343 0.0420 0.0508 0.0661 0.0778 0.0908 0.0602 0.0843 0.0983 0.1496 0.0770 0.1059 0.1509 0.2195 0.3562 0.0834 0.1147 0.1635 0.2380 0.3864 0.0925 0.1272 0.1815 0.2643 0.4296
cm6 948 1039 1098 1182 1496 1586 1673 1757 1995 2150 2274 2395 2570 2683 2791 3274 3581 3727 4141 4417 4803 5253 5749 6402 5731 6233 6821 7469 8324 7911 8608 9423 10321 11511
mm -20.6 -20.3 -20.1 -19.8 -16.5 -16.3 -16.1 -16.0 -15.4 -13.6 -13.4 -13.2 -12.9 -12.7 -12.5 -10.9 -10.5 -10.3 -9.8 -8.9 -8.6 -8.1 -7.6 -6.8 -7.3 -6.9 -6.5 -5.9 -5.1 -5.4 -5.0 -4.6 -4.1 -3.3
A - 26
y
B
B
t
GROSS SECTION PROPERTIES WARD MULTIBEAM Design Yield Strength = 390 N/mm2
x
x
DOUBLE SECTION D
x
B
mm 145 x
60
175
x
60
205
x
60
235
x
60
265
x
60
300
x
60
350
x
60
D
y
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.30 1.45 1.55 1.70 1.40 1.50 1.60 1.70 2.00 1.45 1.55 1.65 1.80 1.90 2.00 1.70 1.90 2.00 2.30 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00
cm2 7.78 8.66 9.25 10.12 9.19 9.83 10.48 11.12 13.01 10.36 11.06 11.76 12.81 13.50 14.18 13.11 14.61 15.36 17.58 14.92 16.54 18.54 20.90 24.39 16.15 17.91 20.08 22.66 26.46 17.91 19.87 22.29 25.17 29.42
kg/m 6.11 6.80 7.26 7.94 7.21 7.72 8.22 8.73 10.21 8.13 8.68 9.23 10.05 10.60 11.13 10.29 11.47 12.06 13.80 11.71 12.98 14.55 16.41 19.15 12.68 14.06 15.77 17.79 20.77 14.06 15.60 17.50 19.76 23.10
cm4 257.7 286.2 304.9 332.6 429.4 458.7 487.8 516.5 600.9 644.8 687.4 729.5 792.0 833.2 873.9 1038.9 1153.9 1210.7 1377.5 1463.8 1616.5 1803.6 2022.5 2339.2 1977.2 2184.5 2438.7 2736.4 3168.2 2884.1 3188.2 3561.6 3999.8 4636.8
cm4 72.7 80.3 85.3 92.6 78.7 83.8 88.9 93.8 108.0 82.3 87.4 92.5 99.9 104.8 109.5 96.2 106.1 111.0 125.0 102.5 112.4 124.4 138.0 157.2 104.0 114.1 126.4 140.4 160.0 106.1 116.6 129.2 143.7 164.1
cm 5.76 5.75 5.74 5.73 6.84 6.83 6.82 6.82 6.80 7.89 7.88 7.88 7.86 7.86 7.85 8.90 8.89 8.88 8.85 9.91 9.89 9.86 9.84 9.79 11.06 11.04 11.02 10.99 10.94 12.69 12.67 12.64 12.61 12.55
cm 3.06 3.04 3.04 3.03 2.93 2.92 2.91 2.90 2.88 2.82 2.81 2.80 2.79 2.79 2.78 2.71 2.69 2.69 2.67 2.62 2.61 2.59 2.57 2.54 2.54 2.52 2.51 2.49 2.46 2.43 2.42 2.41 2.39 2.36
cm3 35.56 39.48 42.06 45.88 49.08 52.44 55.76 59.04 68.70 62.92 67.07 71.19 77.28 81.30 85.27 88.43 98.22 103.05 117.26 110.49 122.02 136.14 152.66 176.57 131.83 145.65 162.60 182.45 211.24 164.83 182.21 203.54 228.59 264.99
cm3 12.11 13.39 14.22 15.43 13.12 13.97 14.81 15.63 18.01 13.72 14.57 15.42 16.65 17.46 18.25 16.03 17.69 18.49 20.83 17.08 18.74 20.73 23.01 26.20 17.33 19.02 21.06 23.39 26.67 17.69 19.43 21.53 23.94 27.35
cm4 0.0412 0.0574 0.0703 0.0929 0.0566 0.0699 0.0850 0.1021 0.1666 0.0686 0.0841 0.1016 0.1322 0.1556 0.1816 0.1204 0.1685 0.1967 0.2993 0.1540 0.2117 0.3018 0.4390 0.7123 0.1668 0.2293 0.3270 0.4759 0.7728 0.1849 0.2544 0.3629 0.5286 0.8593
cm6 2988 3257 3428 3670 4166 4397 4619 4831 5414 5490 5784 6065 6466 6719 6962 7786 8445 8755 9608 10009 10801 11704 12666 13879 12509 13515 14668 15907 17487 16656 18023 19602 21312 23531
mm
A - 27
-
B
t
REDUCED SECTION PROPERTIES WARD MULTIBEAM Design Yield Strength = 390 N/mm2
x
x
D
SINGLE SECTION D
x
B
mm 145 x
60
175
x
60
205
x
60
235
x
60
265
x
60
300
x
60
350
x
60
t mm 1.30 1.45 1.55 1.70 1.40 1.50 1.60 1.70 2.00 1.45 1.55 1.65 1.80 1.90 2.00 1.70 1.90 2.00 2.30 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00
Q 0.92 0.95 0.97 0.98 0.89 0.92 0.94 0.96 0.99 0.83 0.86 0.87 0.90 0.91 0.92 0.82 0.84 0.85 0.88 0.77 0.79 0.81 0.84 0.87 0.71 0.73 0.75 0.77 0.81 0.65 0.66 0.68 0.70 0.73
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
0.83 0.88 0.91 0.94 0.84 0.87 0.90 0.92 0.96 0.83 0.86 0.88 0.91 0.92 0.94 0.86 0.90 0.91 0.94 0.85 0.88 0.91 0.94 0.97 0.81 0.85 0.88 0.91 0.94 0.75 0.79 0.83 0.87 0.91
cm3 14.83 17.47 19.19 21.67 20.68 22.88 25.02 27.10 32.98 26.12 28.77 31.35 35.10 37.51 39.87 38.16 44.04 46.89 55.17 47.17 53.98 62.21 71.76 85.55 53.65 61.77 71.63 83.12 99.75 61.96 72.12 84.52 99.03 120.11
cm3 5.54 6.21 6.65 7.32 6.08 6.51 6.94 7.37 8.62 6.36 6.79 7.20 7.82 8.23 8.63 7.44 8.25 8.64 9.79 7.86 8.65 9.60 10.68 12.21 7.87 8.65 9.59 10.66 12.16 7.88 8.65 9.58 10.64 12.12
cm3 4.68 5.15 5.46 5.90 4.99 5.29 5.59 5.89 6.72 5.13 5.44 5.73 6.16 6.44 6.71 5.87 6.43 6.70 7.46 6.15 6.69 7.33 8.04 8.98 6.14 6.69 7.32 8.03 8.97 6.13 6.68 7.32 8.02 8.96
cm4 111.2 129.3 141.1 158.3 184.7 203.1 221.1 238.6 288.9 271.6 297.8 323.4 360.9 385.2 409.1 450.2 518.3 551.4 648.3 626.4 715.8 824.3 950.7 1133.4 806.0 927.0 1074.5 1246.6 1496.0 1085.4 1262.4 1479.0 1732.8 2101.7
kN 139.6 160.6 174.2 193.7 160.3 176.3 192.1 207.3 249.9 168.5 184.6 200.7 224.3 239.8 255.2 208.6 239.8 255.3 302.0 224.5 255.4 294.1 341.6 416.0 225.0 255.8 294.3 341.7 415.9 225.8 256.7 295.2 342.4 416.2
kNm 5.78 6.81 7.48 8.45 8.07 8.92 9.76 10.57 12.86 10.19 11.22 12.23 13.69 14.63 15.55 14.88 17.18 18.29 21.52 18.40 21.05 24.26 27.99 33.36 20.92 24.09 27.94 32.41 38.90 24.17 28.13 32.96 38.62 46.84
kNm 2.16 2.42 2.59 2.85 2.37 2.54 2.71 2.87 3.36 2.48 2.65 2.81 3.05 3.21 3.37 2.90 3.22 3.37 3.82 3.07 3.37 3.74 4.17 4.76 3.07 3.37 3.74 4.16 4.74 3.07 3.37 3.74 4.15 4.73
kNm 1.83 2.01 2.13 2.30 1.94 2.06 2.18 2.30 2.62 2.00 2.12 2.24 2.40 2.51 2.62 2.29 2.51 2.61 2.91 2.40 2.61 2.86 3.13 3.50 2.40 2.61 2.86 3.13 3.50 2.39 2.60 2.85 3.13 3.49
A - 28
B
y
t
REDUCED SECTION PROPERTIES WARD MULTIBEAM 2 Design Yield Strength = 390 N/mm
x
DOUBLE SECTION D
x
B
145
mm x
60
175
x
60
205
x
60
235
x
60
265
x
60
300
x
60
350
x
60
B
x
D
y
t mm 1.30 1.45 1.55 1.70 1.40 1.50 1.60 1.70 2.00 1.45 1.55 1.65 1.80 1.90 2.00 1.70 1.90 2.00 2.30 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00
Q
po / py
Zxr 3
0.92 0.95 0.97 0.98 0.89 0.92 0.94 0.96 0.99 0.83 0.86 0.87 0.90 0.91 0.92 0.82 0.84 0.85 0.88 0.77 0.79 0.81 0.84 0.87 0.71 0.73 0.75 0.77 0.81 0.65 0.66 0.68 0.70 0.73
0.83 0.88 0.91 0.94 0.84 0.87 0.90 0.92 0.96 0.83 0.86 0.88 0.91 0.92 0.94 0.86 0.90 0.91 0.94 0.85 0.88 0.91 0.94 0.97 0.81 0.85 0.88 0.91 0.94 0.75 0.79 0.83 0.87 0.91
cm 29.65 34.93 38.38 43.34 41.36 45.75 50.04 54.20 65.95 52.24 57.53 62.70 70.19 75.02 79.74 76.31 88.08 93.78 110.34 94.35 107.97 124.42 143.52 171.10 107.30 123.55 143.26 166.23 199.50 123.92 144.24 169.04 198.05 240.22
Zy1r
Zy2r
3
3
cm 12.11 13.39 14.22 15.43 13.12 13.97 14.81 15.63 18.01 13.72 14.57 15.42 16.65 17.46 18.25 16.03 17.69 18.49 20.83 17.08 18.74 20.73 23.01 26.20 17.33 19.02 21.06 23.39 26.67 17.69 19.43 21.53 23.94 27.35
cm 12.11 13.39 14.22 15.43 13.12 13.97 14.81 15.63 18.01 13.72 14.57 15.42 16.65 17.46 18.25 16.03 17.69 18.49 20.83 17.08 18.74 20.73 23.01 26.20 17.33 19.02 21.06 23.39 26.67 17.69 19.43 21.53 23.94 27.35
A - 29
Ixr 4
cm 222.3 258.6 282.3 316.7 369.4 406.2 442.2 477.3 577.9 543.2 595.5 646.8 721.8 770.5 818.3 900.4 1036.5 1102.9 1296.5 1252.7 1431.6 1648.6 1901.4 2266.7 1612.1 1854.1 2148.9 2493.2 2992.1 2170.7 2524.8 2958.1 3465.6 4203.4
Pc
Mcx
Mcy1
Mcy2x
kN 279.2 321.1 348.3 387.4 320.6 352.7 384.1 414.7 499.8 336.9 369.3 401.3 448.6 479.7 510.5 417.2 479.6 510.6 604.0 448.9 510.7 588.2 683.3 832.0 449.9 511.6 588.7 683.3 831.8 451.6 513.3 590.4 684.7 832.3
kNm 11.56 13.62 14.97 16.90 16.13 17.84 19.52 21.14 25.72 20.37 22.44 24.45 27.37 29.26 31.10 29.76 34.35 36.58 43.03 36.79 42.11 48.52 55.97 66.73 41.85 48.18 55.87 64.83 77.80 48.33 56.25 65.92 77.24 93.69
kNm 4.72 5.22 5.54 6.02 5.12 5.45 5.78 6.10 7.02 5.35 5.68 6.01 6.49 6.81 7.12 6.25 6.90 7.21 8.12 6.66 7.31 8.08 8.97 10.22 6.76 7.42 8.21 9.12 10.40 6.90 7.58 8.40 9.34 10.67
kNm 4.72 5.22 5.54 6.02 5.12 5.45 5.78 6.10 7.02 5.35 5.68 6.01 6.49 6.81 7.12 6.25 6.90 7.21 8.12 6.66 7.31 8.08 8.97 10.22 6.76 7.42 8.21 9.12 10.40 6.90 7.58 8.40 9.34 10.67
B
GROSS SECTION PROPERTIES
t
WARD MULTICHANNEL 2 Design Yield Strength = 350 N/mm
x
x
D
SINGLE SECTION D
x
70 145
mm x x
B 50 65
175
x
65
205
x
65
220
x
70
250
x
70
270 300 300 350
x x x x
95 70 95 95
t
Area
Weight
mm 1.3 1.5 2.0 1.6 1.8 2.4 1.6 1.8 2.4 2.0 2.7 1.8 2.4 2.4 2.7 2.7 3.2
cm2 2.33 4.21 5.57 4.96 5.56 7.34 5.42 6.09 8.05 7.24 9.67 7.06 9.35 11.00 11.80 13.13 17.05
kg/m 1.83 3.31 4.38 3.89 4.37 5.76 4.26 4.78 6.32 5.68 7.59 5.54 7.34 8.63 9.26 10.31 13.38
Ix x
Iy y
cm4 cm4 19.5 8.2 142.0 22.8 185.5 29.2 233.1 25.6 260.4 28.4 338.8 36.0 337.6 26.8 377.4 29.7 492.2 37.8 515.7 40.0 678.7 51.2 632.2 37.8 827.3 48.2 1206.5 108.6 1431.2 55.5 1725.1 123.6 2913.4 147.8
rx x
ry y
cm 2.89 5.80 5.77 6.86 6.84 6.79 7.89 7.87 7.82 8.44 8.38 9.46 9.41 10.47 11.01 11.46 13.07
cm 1.87 2.32 2.29 2.27 2.26 2.22 2.22 2.21 2.17 2.35 2.30 2.31 2.27 3.14 2.17 3.07 2.94
Zx x
Zy y
J
Cw
es
cm3 cm3 cm4 cm6 5.59 2.66 0.0124 97 19.59 4.99 0.0299 912 25.59 6.40 0.0714 1154 26.65 5.40 0.0402 1463 29.77 5.98 0.0574 1614 38.73 7.59 0.1363 2020 32.95 5.49 0.0440 2091 36.83 6.08 0.0629 2309 48.03 7.72 0.1494 2897 46.89 7.57 0.0927 3548 61.71 9.67 0.2281 4473 50.59 7.00 0.0729 4356 66.20 8.92 0.1735 5500 89.38 15.14 0.2042 14139 95.43 9.95 0.2783 9170 115.02 16.90 0.3097 19861 166.50 19.69 0.5674 32471
y
B
mm -25.0 -27.6 -27.0 -26.0 -25.7 -24.9 -24.7 -24.4 -23.6 -25.8 -24.9 -24.9 -24.1 -34.7 -22.0 -33.1 -30.6
B t
x
DOUBLE SECTION D
x
70 145
mm x x
B 50 65
175
x
65
205
x
65
220
x
70
250
x
70
270 300 300 350
x x x x
95 70 95 95
D
x
y
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.3 1.5 2.0 1.6 1.8 2.4 1.6 1.8 2.4 2.0 2.7 1.8 2.4 2.4 2.7 2.7 3.2
cm2 4.67 8.43 11.15 9.91 11.13 14.68 10.85 12.18 16.10 14.48 19.34 14.12 18.70 22.00 23.60 26.26 34.09
kg/m 3.66 6.61 8.75 7.78 8.73 11.53 8.52 9.56 12.64 11.37 15.19 11.08 14.68 17.27 18.53 20.61 26.76
cm4 39.1 283.9 371.0 466.2 520.8 677.6 675.3 754.9 984.4 1031.3 1357.5 1264.5 1654.6 2413.0 2862.4 3450.2 5826.9
cm4 33.6 77.2 100.0 81.9 91.1 117.0 81.9 91.1 117.0 122.5 158.4 111.5 143.5 336.0 158.5 372.6 430.8
cm 2.89 5.80 5.77 6.86 6.84 6.79 7.89 7.87 7.82 8.44 8.38 9.46 9.41 10.47 11.01 11.46 13.07
cm 2.68 3.03 2.99 2.87 2.86 2.82 2.75 2.73 2.70 2.91 2.86 2.81 2.77 3.91 2.59 3.77 3.55
cm3 11.18 39.17 51.19 53.29 59.53 77.46 65.89 73.66 96.05 93.77 123.43 101.17 132.39 178.76 190.85 230.04 333.00
cm3 6.72 11.88 15.38 12.60 14.02 18.00 12.60 14.02 18.00 17.50 22.63 15.93 20.51 35.37 22.65 39.22 45.34
cm4 0.0247 0.0599 0.1428 0.0804 0.1149 0.2726 0.0880 0.1258 0.2989 0.1854 0.4562 0.1458 0.3471 0.4084 0.5566 0.6194 1.1348
cm6 437 3989 5005 6080 6681 8258 8299 9123 11293 13986 17369 16574 20642 57371 32202 77504 119341
mm
A - 30
-
B
REDUCED SECTION PROPERTIES
t
WARD MULTICHANNEL 2 Design Yield Strength = 350 N/mm
x
x
D
SINGLE SECTION D
x
70 145
mm x x
B 50 65
175
x
65
205
x
65
220
x
70
250
x
70
270 300 300 350
x x x x
95 70 95 95
t mm 1.3 1.5 2.0 1.6 1.8 2.4 1.6 1.8 2.4 2.0 2.7 1.8 2.4 2.4 2.7 2.7 3.2
Q 0.91 0.70 0.82 0.67 0.71 0.81 0.61 0.65 0.74 0.66 0.76 0.58 0.66 0.65 0.62 0.65 0.64
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
0.98 0.88 0.97 0.87 0.91 0.97 0.84 0.88 0.95 0.89 0.95 0.82 0.90 0.87 0.89 0.89 0.89
cm3 5.48 17.28 24.82 23.23 27.12 37.66 27.53 32.29 45.40 41.60 58.89 41.47 59.88 77.95 84.97 101.90 148.90
cm3 3.37 6.04 8.84 6.64 7.77 11.10 6.68 7.80 11.12 9.95 14.23 8.77 12.49 20.07 14.27 23.28 28.82
cm3 2.66 4.99 6.40 5.40 5.98 7.59 5.49 6.08 7.72 7.57 9.67 7.00 8.92 15.14 9.95 16.90 19.69
cm4 19.3 127.2 180.1 205.0 238.0 329.5 284.0 331.7 465.3 458.3 647.7 520.2 748.5 1058.9 1274.4 1531.2 2606.0
kN 74.5 103.5 160.4 115.6 138.3 208.0 116.1 138.9 208.6 167.5 255.9 144.0 217.3 250.7 257.6 299.9 383.0
kNm 1.92 6.05 8.69 8.13 9.49 13.18 9.64 11.30 15.89 14.56 20.61 14.51 20.96 27.28 29.74 35.66 52.12
kNm 1.18 2.11 3.09 2.32 2.72 3.89 2.34 2.73 3.89 3.48 4.98 3.07 4.37 7.02 4.99 8.15 10.09
kNm 0.93 1.75 2.24 1.89 2.09 2.66 1.92 2.13 2.70 2.65 3.38 2.45 3.12 5.30 3.48 5.92 6.89
B
y
B t
x
x
DOUBLE SECTION D
x
70 145
mm x x
B 50 65
175
x
65
205
x
65
220
x
70
250
x
70
270 300 300 350
x x x x
95 70 95 95
D
y
t mm 1.3 1.5 2.0 1.6 1.8 2.4 1.6 1.8 2.4 2.0 2.7 1.8 2.4 2.4 2.7 2.7 3.2
Q 0.91 0.70 0.82 0.67 0.71 0.81 0.61 0.65 0.74 0.66 0.76 0.58 0.66 0.65 0.62 0.65 0.64
po / py
Zxr
Zy1r
Zy2r
Ixr
0.98 0.88 0.97 0.87 0.91 0.97 0.84 0.88 0.95 0.89 0.95 0.82 0.90 0.87 0.89 0.89 0.89
cm3 10.96 34.56 49.63 46.46 54.23 75.32 55.06 64.58 90.81 83.19 117.78 82.94 119.76 155.89 169.94 203.80 297.81
cm3 6.72 11.88 15.38 12.60 14.02 18.00 12.60 14.02 18.00 17.50 22.63 15.93 20.51 35.37 22.65 39.22 45.34
cm3 6.72 11.88 15.38 12.60 14.02 18.00 12.60 14.02 18.00 17.50 22.63 15.93 20.51 35.37 22.65 39.22 45.34
cm4 38.6 254.5 360.2 409.9 476.0 658.9 568.1 663.4 930.6 916.6 1295.4 1040.5 1497.0 2117.7 2548.7 3062.3 5211.9
A - 31
Pc
Mcx
Mcy1
kN kNm kNm 149.1 3.83 2.35 207.0 12.10 4.16 320.7 17.37 5.38 231.2 16.26 4.41 276.6 18.98 4.91 416.0 26.36 6.30 232.3 19.27 4.41 277.8 22.60 4.91 417.1 31.78 6.30 335.0 29.12 6.12 511.8 41.22 7.92 287.9 29.03 5.58 434.6 41.92 7.18 501.4 54.56 12.38 515.3 59.48 7.93 599.9 71.33 13.73 766.0 104.23 15.87
Mcy2x kNm 2.35 4.16 5.38 4.41 4.91 6.30 4.41 4.91 6.30 6.12 7.92 5.58 7.18 12.38 7.93 13.73 15.87
B
t
GROSS SECTION PROPERTIES GENERIC C SECTION 2 Design Yield Strength = 280 N/mm
x
x
D
SINGLE SECTION D
x
100 125
mm x x
B 55 55
150
x
65
165
x
65
180
x
65
200
x
65
220
x
65
250 300
x x
65 65
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
cm2 2.67 2.96 3.93 4.63 5.19 4.86 5.46 5.10 5.72 6.34 5.41 6.07 6.73 7.12 8.50 9.21 10.39 12.88
kg/m 2.09 2.32 3.08 3.63 4.08 3.82 4.28 4.00 4.49 4.98 4.25 4.77 5.28 5.59 6.67 7.23 8.15 10.11
cm4 44.3 73.9 97.0 165.4 184.7 206.2 230.4 252.5 282.2 311.2 323.2 361.3 398.7 499.6 590.9 802.8 1249.4 1531.2
cm4 11.5 12.4 16.1 25.6 28.4 26.4 29.3 27.1 30.1 33.0 28.0 31.1 34.0 35.0 40.7 42.1 44.1 52.4
cm 4.07 5.00 4.97 5.98 5.96 6.51 6.50 7.04 7.02 7.01 7.73 7.71 7.70 8.37 8.34 9.34 10.97 10.90
cm 2.07 2.05 2.02 2.35 2.34 2.33 2.32 2.31 2.29 2.28 2.28 2.26 2.25 2.22 2.19 2.14 2.06 2.02
cm3 8.87 11.83 15.52 22.06 24.63 25.00 27.93 28.06 31.36 34.59 32.32 36.14 39.87 45.43 53.73 64.23 83.31 102.09
cm3 3.22 3.31 4.28 5.66 6.27 5.72 6.34 5.77 6.40 7.00 5.83 6.47 7.08 7.14 8.30 8.40 8.53 10.14
cm4 0.0120 0.0133 0.0319 0.0376 0.0536 0.0394 0.0563 0.0413 0.0591 0.0812 0.0439 0.0627 0.0862 0.0912 0.1578 0.1709 0.1928 0.3762
cm6 255 401 513 1127 1244 1387 1532 1681 1856 2023 2125 2348 2560 3174 3664 4903 7444 8780
mm -26.6 -25.1 -24.6 -28.1 -27.8 -27.3 -27.1 -26.6 -26.4 -26.1 -25.7 -25.5 -25.2 -24.4 -23.8 -22.7 -21.0 -20.2
B
y
B t
x
x
DOUBLE SECTION D
x
B
100 125
mm x x
55 55
150
x
65
165
x
65
180
x
65
200
x
65
220
x
65
250 300
x x
65 65
D
y
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
J
Cw
es
mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
cm2 5.34 5.92 7.85 9.26 10.39 9.73 10.91 10.19 11.44 12.68 10.82 12.15 13.46 14.25 17.00 18.41 20.77 25.76
kg/m 4.19 4.64 6.17 7.27 8.15 7.63 8.57 8.00 8.98 9.95 8.49 9.54 10.57 11.18 13.34 14.45 16.31 20.22
cm4 88.6 147.8 194.0 330.9 369.4 412.5 460.7 505.0 564.3 622.4 646.4 722.6 797.3 999.2 1181.9 1605.5 2498.9 3062.3
cm4 42.8 42.9 55.9 87.0 96.9 87.0 96.9 87.0 96.9 106.4 87.1 96.9 106.4 106.5 124.7 124.7 124.8 150.1
cm 4.07 5.00 4.97 5.98 5.96 6.51 6.50 7.04 7.02 7.01 7.73 7.71 7.70 8.37 8.34 9.34 10.97 10.90
cm 2.83 2.69 2.67 3.07 3.05 2.99 2.98 2.92 2.91 2.90 2.84 2.82 2.81 2.73 2.71 2.60 2.45 2.41
cm3 17.73 23.66 31.05 44.13 49.27 50.01 55.86 56.13 62.72 69.17 64.65 72.27 79.75 90.85 107.46 128.46 166.61 204.18
cm3 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09
cm4 0.0239 0.0265 0.0637 0.0751 0.1072 0.0789 0.1127 0.0827 0.1181 0.1623 0.0878 0.1254 0.1724 0.1824 0.3155 0.3418 0.3857 0.7523
cm6 1135 1733 2198 4869 5353 5859 6443 6940 7634 8285 8524 9379 10183 12277 14042 18067 25902 30070
mm
A - 32
-
B
t
REDUCED SECTION PROPERTIES GENERIC C SECTION Design Yield Strength = 280 N/mm2
x
x
D
SINGLE SECTION D
x
100 125
mm x x
B 55 55
150
x
65
165
x
65
180
x
65
200
x
65
220
x
65
250 300
x x
65 65
t mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
Q 0.80 0.72 0.83 0.76 0.81 0.73 0.77 0.70 0.74 0.77 0.66 0.70 0.73 0.69 0.75 0.69 0.62 0.69
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
0.93 0.90 0.98 0.94 0.96 0.92 0.95 0.90 0.93 0.95 0.88 0.91 0.94 0.92 0.95 0.93 0.89 0.94
cm3 8.27 10.60 15.14 20.64 23.75 22.96 26.49 25.29 29.25 33.02 28.40 32.94 37.30 41.62 51.20 59.65 74.02 95.70
cm3 3.83 3.84 5.67 7.22 8.43 7.23 8.44 7.24 8.44 9.64 7.26 8.46 9.65 9.66 11.91 11.92 11.95 14.88
cm3 3.22 3.31 4.28 5.66 6.27 5.72 6.34 5.77 6.40 7.00 5.83 6.47 7.08 7.14 8.30 8.40 8.53 10.14
cm4 41.9 67.0 94.7 155.5 178.4 190.2 218.8 228.5 263.5 297.2 284.9 329.7 373.0 457.8 563.1 745.5 1110.1 1435.4
kN 59.5 59.8 91.7 99.1 117.5 99.2 117.7 99.4 117.9 136.8 99.7 118.2 137.1 137.3 177.7 178.1 179.0 247.4
kNm 2.32 2.97 4.24 5.78 6.65 6.43 7.42 7.08 8.19 9.25 7.95 9.22 10.44 11.65 14.34 16.70 20.72 26.80
kNm 1.07 1.08 1.59 2.02 2.36 2.02 2.36 2.03 2.36 2.70 2.03 2.37 2.70 2.70 3.34 3.34 3.35 4.17
kNm 0.90 0.93 1.20 1.58 1.76 1.60 1.78 1.62 1.79 1.96 1.63 1.81 1.98 2.00 2.33 2.35 2.39 2.84
B
y
B t
x
DOUBLE SECTION D
x
B
100 125
mm x x
55 55
150
x
65
165
x
65
180
x
65
200
x
65
220
x
65
250 300
x x
65 65
x
D
y
t mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
Q 0.80 0.72 0.83 0.76 0.81 0.73 0.77 0.70 0.74 0.77 0.66 0.70 0.73 0.69 0.75 0.69 0.62 0.69
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
0.93 0.90 0.98 0.94 0.96 0.92 0.95 0.90 0.93 0.95 0.88 0.91 0.94 0.92 0.95 0.93 0.89 0.94
cm3 16.54 21.19 30.29 41.28 47.51 45.92 52.98 50.59 58.49 66.04 56.79 65.88 74.60 83.24 102.40 119.31 148.03 191.41
cm3 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09
cm3 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09
cm4 83.8 134.1 189.4 311.0 356.8 380.5 437.6 457.0 527.0 594.4 569.7 659.4 746.1 915.6 1126.2 1491.1 2220.2 2870.7
kN 118.9 119.6 183.4 198.1 235.1 198.5 235.5 198.9 235.9 273.7 199.4 236.4 274.2 274.7 355.5 356.3 358.0 494.9
kNm 4.63 5.93 8.48 11.56 13.30 12.86 14.83 14.16 16.38 18.49 15.90 18.45 20.89 23.31 28.67 33.41 41.45 53.59
kNm 2.18 2.18 2.85 3.75 4.17 3.75 4.17 3.75 4.17 4.58 3.75 4.17 4.59 4.59 5.37 5.37 5.37 6.46
kNm 2.18 2.18 2.85 3.75 4.17 3.75 4.17 3.75 4.17 4.58 3.75 4.17 4.59 4.59 5.37 5.37 5.37 6.46
A - 33
B t
REDUCED SECTION PROPERTIES GENERIC C SECTION Design Yield Strength = 350 N/mm2
x
D
x
SINGLE SECTION D
x
100 125
mm x x
B 55 55
150
x
65
165
x
65
180
x
65
200
x
65
220
x
65
250 300
x x
65 65
t mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
Q
po / py
Zxr
0.89 0.85 0.95 0.90 0.94 0.88 0.92 0.87 0.91 0.93 0.84 0.88 0.91 0.89 0.93 0.90 0.86 0.91
cm 7.89 10.08 14.81 19.91 23.15 22.10 25.76 24.31 28.39 32.25 27.22 31.89 36.33 40.42 50.07 58.12 71.64 93.38
3
0.75 0.68 0.80 0.72 0.77 0.69 0.74 0.66 0.70 0.74 0.62 0.66 0.70 0.66 0.71 0.66 0.59 0.65
Zy1r 3
cm 3.66 3.67 5.44 6.91 8.09 6.93 8.10 6.94 8.11 9.29 6.97 8.13 9.31 9.32 11.60 11.62 11.66 14.68
Zy2r 3
cm 3.22 3.31 4.28 5.66 6.27 5.72 6.34 5.77 6.40 7.00 5.83 6.47 7.08 7.14 8.30 8.40 8.53 10.14
Ixr 4
cm 40.4 64.4 92.7 150.8 174.2 184.0 213.2 220.5 256.3 290.5 274.0 319.7 363.6 444.9 550.7 726.4 1074.4 1400.6
Pc
Mcx
Mcy1
Mcy2x
kN 69.6 70.0 109.8 117.3 140.3 117.6 140.6 117.9 140.9 163.8 118.2 141.2 164.1 164.5 212.1 212.7 214.0 293.5
kNm 2.76 3.53 5.18 6.97 8.10 7.74 9.02 8.51 9.94 11.29 9.53 11.16 12.72 14.15 17.53 20.34 25.07 32.68
kNm 1.28 1.29 1.91 2.42 2.83 2.42 2.84 2.43 2.84 3.25 2.44 2.85 3.26 3.26 4.06 4.07 4.08 5.14
kNm 1.13 1.16 1.50 1.98 2.19 2.00 2.22 2.02 2.24 2.45 2.04 2.26 2.48 2.50 2.91 2.94 2.98 3.55
B
y
B t
x
x
D
y
DOUBLE SECTION D
x
B
100 125
mm x x
55 55
150
x
65
165
x
65
180
x
65
200
x
65
220
x
65
250 300
x x
65 65
t mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
Q
po / py
Zxr 3
0.75 0.68 0.80 0.72 0.77 0.69 0.74 0.66 0.70 0.74 0.62 0.66 0.70 0.66 0.71 0.66 0.59 0.65
0.89 0.85 0.95 0.90 0.94 0.88 0.92 0.87 0.91 0.93 0.84 0.88 0.91 0.89 0.93 0.90 0.86 0.91
cm 15.79 20.16 29.62 39.81 46.30 44.20 51.53 48.61 56.78 64.50 54.43 63.78 72.67 80.85 100.14 116.25 143.28 186.77
Zy1r
Zy2r
3
3
cm 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09
A - 34
cm 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09
Ixr 4
cm 80.8 128.7 185.5 301.5 348.5 368.0 426.5 441.0 512.5 580.9 548.0 639.3 727.1 889.8 1101.4 1452.9 2148.9 2801.1
Pc
Mcx
Mcy1
Mcy2x
kN 139.2 140.0 219.6 234.6 280.7 235.2 281.2 235.7 281.7 327.5 236.5 282.5 328.2 329.0 424.3 425.5 428.0 587.0
kNm 5.53 7.06 10.37 13.93 16.20 15.47 18.03 17.01 19.87 22.57 19.05 22.32 25.43 28.30 35.05 40.69 50.15 65.37
kNm 2.73 2.73 3.56 4.69 5.22 4.69 5.22 4.69 5.22 5.73 4.69 5.22 5.73 5.73 6.71 6.72 6.72 8.08
kNm 2.73 2.73 3.56 4.69 5.22 4.69 5.22 4.69 5.22 5.73 4.69 5.22 5.73 5.73 6.71 6.72 6.72 8.08
SECTION PROPERTY TABLES Z Sections Note: Section property data are given for commonly available Z sections, and for generic Z sections, which may be used at the scheme design stage. These properties are calculated in accordance with BS 5950-5 and may differ slightly from manufacturers' data.
A - 35
B top
t
x
x
D
GROSS SECTION PROPERTIES AYRSHIRE ZED Design Yield Strength = 280 N/mm2 B bot
SINGLE SECTION D
x
B
mm top 125 x 55
bot 45
140
x
58
49
155
x
58
49
170
x
58
49
185
x
58
49
200
x
58
49
240
x
76
68
300
x
94
86
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
Ix y
θ
J
Cw
mm 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 2.5 2.0 2.5 3.2 2.5 3.0
cm2 3.15 3.39 3.63 4.12 4.84 3.42 3.69 3.95 4.48 5.27 3.61 3.89 4.17 4.73 5.56 3.80 4.10 4.39 4.98 5.85 3.99 4.30 4.61 5.23 6.15 4.18 4.50 4.83 5.48 6.44 8.04 7.97 9.93 12.61 12.29 14.69
kg/m 2.47 2.66 2.85 3.23 3.80 2.69 2.90 3.10 3.52 4.13 2.83 3.06 3.28 3.71 4.37 2.98 3.22 3.45 3.91 4.60 3.13 3.38 3.62 4.10 4.83 3.28 3.54 3.79 4.30 5.06 6.31 6.26 7.79 9.90 9.65 11.53
cm4 77.1 82.9 88.6 99.9 116.4 104.7 112.6 120.4 135.8 158.5 132.7 142.7 152.7 172.3 201.3 164.8 177.3 189.7 214.2 250.3 201.1 216.4 231.6 261.6 305.9 242.0 260.4 278.7 314.9 368.4 455.3 675.7 834.6 1048.1 1619.3 1923.2
cm4 20.3 21.8 23.2 26.2 30.4 23.9 25.7 27.5 30.9 36.0 23.9 25.7 27.5 30.9 36.0 23.9 25.7 27.5 30.9 36.0 23.9 25.7 27.5 31.0 36.0 24.0 25.7 27.5 31.0 36.0 44.1 75.0 91.1 111.5 166.9 195.2
cm 4.95 4.95 4.94 4.93 4.91 5.53 5.52 5.52 5.51 5.49 6.06 6.06 6.05 6.04 6.02 6.59 6.58 6.57 6.56 6.54 7.10 7.09 7.09 7.07 7.05 7.61 7.60 7.60 7.58 7.56 7.53 9.20 9.17 9.12 11.48 11.44
cm 2.54 2.53 2.53 2.52 2.51 2.64 2.64 2.64 2.63 2.61 2.57 2.57 2.57 2.56 2.54 2.51 2.51 2.50 2.49 2.48 2.45 2.45 2.44 2.43 2.42 2.39 2.39 2.39 2.38 2.36 2.34 3.07 3.03 2.97 3.69 3.65
cm3 11.87 12.76 13.64 15.37 17.92 14.49 15.58 16.66 18.79 21.93 16.61 17.87 19.11 21.57 25.19 18.83 20.26 21.68 24.48 28.60 21.15 22.76 24.35 27.51 32.16 23.57 25.36 27.14 30.67 35.88 44.33 55.69 68.79 86.38 107.02 127.10
cm3 3.44 3.70 3.95 4.46 5.21 3.84 4.13 4.42 4.99 5.83 3.84 4.13 4.41 4.98 5.82 3.83 4.12 4.41 4.98 5.81 3.83 4.12 4.40 4.97 5.81 3.82 4.11 4.40 4.97 5.80 7.15 10.14 12.35 15.19 18.18 21.33
cm4 29.2 31.4 33.6 37.8 44.0 36.9 39.6 42.4 47.8 55.7 41.1 44.1 47.2 53.2 62.0 45.2 48.6 52.0 58.6 68.4 49.4 53.1 56.8 64.1 74.7 53.6 57.6 61.6 69.5 81.1 99.8 161.5 197.6 244.9 370.9 436.9
(deg) 22.90 22.89 22.88 22.86 22.83 21.20 21.19 21.18 21.16 21.13 18.52 18.51 18.50 18.48 18.45 16.36 16.34 16.33 16.31 16.27 14.57 14.56 14.55 14.53 14.49 13.09 13.08 13.06 13.04 13.01 12.95 14.14 14.00 13.80 13.53 13.41
cm4 0.0166 0.0209 0.0258 0.0378 0.0619 0.0181 0.0227 0.0281 0.0412 0.0674 0.0191 0.0240 0.0296 0.0434 0.0712 0.0201 0.0253 0.0312 0.0457 0.0750 0.0211 0.0265 0.0328 0.0480 0.0787 0.0221 0.0278 0.0343 0.0503 0.0825 0.1621 0.1021 0.2003 0.4196 0.2479 0.4290
cm6 514 552 588 661 766 774 831 887 997 1157 969 1040 1110 1248 1449 1187 1274 1360 1530 1776 1430 1535 1639 1843 2140 1697 1822 1945 2188 2541 3102 7634 9235 11254 26439 30844
A - 36
es mm 2.5 2.5 2.5 2.6 2.7 2.2 2.3 2.3 2.3 2.4 2.1 2.2 2.2 2.3 2.3 2.1 2.1 2.1 2.2 2.3 2.0 2.0 2.1 2.1 2.2 2.0 2.0 2.0 2.1 2.1 2.3 1.6 1.7 1.8 1.6 1.7
B top
t
x
x
D
REDUCED SECTION PROPERTIES
PRINCIPAL AXIS PROPERTIES
AYRSHIRE ZED Design Yield Strength = 280 N/mm2 B bot
SINGLE SECTION D
x
t
B
mm top 125 x 55
bot 45
140
x
58
49
155
x
58
49
170
x
58
49
185
x
58
49
200
x
58
49
240
x
76
68
300
x
94
86
mm 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 2.5 2.0 2.5 3.2 2.5 3.0
Q 0.71 0.73 0.75 0.79 0.85 0.67 0.69 0.72 0.75 0.80 0.64 0.66 0.68 0.71 0.76 0.60 0.63 0.65 0.68 0.72 0.58 0.60 0.62 0.65 0.69 0.55 0.57 0.59 0.62 0.66 0.72 0.62 0.68 0.75 0.61 0.66
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
Iu u
Iv v
0.94 0.95 0.97 0.99 1.00 0.91 0.93 0.95 0.97 0.99 0.89 0.91 0.93 0.95 0.98 0.87 0.89 0.91 0.94 0.97 0.85 0.87 0.89 0.92 0.95 0.83 0.85 0.87 0.90 0.94 0.98 0.90 0.94 0.99 0.90 0.94
cm3 11.15 12.17 13.18 15.17 17.92 13.25 14.52 15.76 18.21 21.80 14.83 16.28 17.72 20.54 24.68 16.39 18.04 19.67 22.89 27.61 17.94 19.80 21.63 25.25 30.58 19.46 21.53 23.58 27.63 33.59 43.25 49.92 64.98 85.15 96.02 119.13
cm3 3.65 3.94 4.22 4.78 5.60 4.04 4.36 4.67 5.28 6.20 4.04 4.36 4.67 5.28 6.20 4.04 4.36 4.67 5.28 6.20 4.05 4.36 4.67 5.28 6.20 4.05 4.36 4.67 5.29 6.20 7.68 10.76 13.14 16.23 19.09 22.43
cm3 3.44 3.70 3.95 4.46 5.21 3.84 4.13 4.42 4.99 5.83 3.84 4.13 4.41 4.98 5.82 3.83 4.12 4.41 4.98 5.81 3.83 4.12 4.40 4.97 5.81 3.82 4.11 4.40 4.97 5.80 7.15 10.14 12.35 15.19 18.18 21.33
cm4 72.0 78.9 85.5 98.5 116.4 95.0 104.5 113.7 131.6 157.6 117.6 129.6 141.3 164.0 197.2 142.6 157.3 171.8 200.2 241.6 169.7 187.7 205.4 240.1 290.8 198.9 220.5 241.8 283.6 344.9 444.2 604.5 788.2 1033.1 1450.4 1802.2
kN 62.4 69.5 76.7 91.3 114.6 64.1 71.7 79.2 94.4 118.5 64.2 71.8 79.3 94.5 118.4 64.3 71.9 79.4 94.6 118.4 64.5 72.0 79.5 94.7 118.5 64.6 72.1 79.7 94.8 118.6 162.5 138.5 188.0 264.9 211.6 271.7
kNm 3.12 3.41 3.69 4.25 5.02 3.71 4.06 4.41 5.10 6.10 4.15 4.56 4.96 5.75 6.91 4.59 5.05 5.51 6.41 7.73 5.02 5.54 6.06 7.07 8.56 5.45 6.03 6.60 7.74 9.40 12.11 13.98 18.19 23.84 26.89 33.36
kNm 1.02 1.10 1.18 1.34 1.57 1.13 1.22 1.31 1.48 1.73 1.13 1.22 1.31 1.48 1.73 1.13 1.22 1.31 1.48 1.74 1.13 1.22 1.31 1.48 1.74 1.13 1.22 1.31 1.48 1.74 2.15 3.01 3.68 4.54 5.34 6.28
kNm 0.96 1.04 1.11 1.25 1.46 1.08 1.16 1.24 1.40 1.63 1.07 1.16 1.24 1.40 1.63 1.07 1.15 1.23 1.39 1.63 1.07 1.15 1.23 1.39 1.63 1.07 1.15 1.23 1.39 1.62 2.00 2.84 3.46 4.25 5.09 5.97
cm4 89.5 96.2 102.8 115.8 134.9 119.0 127.9 136.8 154.3 180.0 146.5 157.5 168.5 190.1 222.0 178.1 191.5 204.9 231.3 270.3 214.0 230.2 246.3 278.2 325.2 254.4 273.8 293.0 331.0 387.2 478.2 716.3 883.9 1108.3 1708.5 2027.3
cm4 7.9 8.5 9.1 10.2 11.9 9.6 10.3 11.0 12.4 14.5 10.2 10.9 11.7 13.2 15.3 10.7 11.5 12.2 13.8 16.0 11.1 11.9 12.7 14.4 16.7 11.5 12.4 13.2 14.9 17.3 21.2 34.3 41.8 51.4 77.7 91.1
A - 37
B top
t
GROSS SECTION PROPERTIES
x
x
D
AYRSHIRE ZETA Design Yield Strength = 280 N/mm2 B bot
SINGLE SECTION D
B
x
mm top 125 x 60
bot 50
150
x
72
65
175
x
72
65
200
x
72
65
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
Ix y
θ
J
Cw
mm 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.6 1.8 2.0 2.5
cm2 3.52 3.79 4.06 4.60 5.40 4.18 4.50 4.82 5.46 6.42 4.49 4.84 5.19 5.88 6.91 4.81 5.18 5.55 5.92 6.66 7.40 9.22
kg/m 2.76 2.98 3.19 3.61 4.24 3.28 3.53 3.79 4.29 5.04 3.53 3.80 4.07 4.61 5.42 3.77 4.07 4.36 4.65 5.23 5.81 7.24
cm4 84.5 90.8 97.0 109.4 127.5 149.0 160.2 171.4 193.5 226.1 213.3 229.5 245.5 277.4 324.4 291.7 313.9 335.9 357.8 401.3 444.3 549.7
cm4 12.2 13.1 14.0 15.8 18.5 22.4 24.1 25.8 29.2 34.1 22.5 24.2 25.8 29.2 34.1 22.5 24.2 25.9 27.5 30.8 34.1 42.2
cm 4.90 4.89 4.89 4.88 4.86 5.97 5.97 5.96 5.95 5.94 6.89 6.89 6.88 6.87 6.85 7.79 7.78 7.78 7.77 7.76 7.75 7.72
cm 1.86 1.86 1.86 1.85 1.85 2.32 2.32 2.31 2.31 2.30 2.24 2.23 2.23 2.23 2.22 2.16 2.16 2.16 2.16 2.15 2.15 2.14
cm3 12.73 13.68 14.63 16.49 19.22 19.04 20.48 21.90 24.73 28.90 23.43 25.20 26.97 30.46 35.62 28.10 30.23 32.36 34.47 38.65 42.79 52.93
cm3 2.57 2.77 2.96 3.34 3.91 3.76 4.05 4.33 4.89 5.73 3.75 4.04 4.32 4.88 5.71 3.75 4.03 4.31 4.60 5.15 5.70 7.06
cm4 7.3 7.9 8.4 9.4 10.9 22.4 24.1 25.8 29.1 33.9 26.1 28.1 30.0 33.9 39.5 29.8 32.1 34.3 36.5 40.8 45.1 55.5
(deg) 5.74 5.73 5.71 5.68 5.64 9.77 9.76 9.75 9.74 9.72 7.66 7.65 7.64 7.63 7.61 6.25 6.24 6.23 6.23 6.21 6.20 6.17
cm4 0.0186 0.0234 0.0289 0.0423 0.0691 0.0221 0.0277 0.0343 0.0502 0.0822 0.0238 0.0298 0.0369 0.0540 0.0885 0.0254 0.0319 0.0394 0.0480 0.0688 0.0947 0.1860
cm6 564 606 647 728 847 1428 1534 1639 1847 2153 1900 2041 2182 2459 2866 2435 2617 2797 2975 3327 3675 4522
es mm -4.81 -4.95 -4.88 -4.97 -4.82 -1.95 -2.09 -2.01 -2.09 -1.89 -1.62 -1.75 -1.68 -1.75 -1.56 -1.37 -1.49 -1.42 -1.35 -1.41 -1.30 -1.43
B top
t
REDUCED SECTION PROPERTIES
x
x
AYRSHIRE ZETA Design Yield Strength = 280 N/mm2
D
PRINCIPAL AXIS PROPERTIES
B bot
SINGLE SECTION D
B
x
t
mm top 125 x 60
bot 50
150
x
72
65
175
x
72
65
200
x
72
65
mm 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.6 1.8 2.0 2.5
Q 0.99 0.99 1.00 1.00 1.00 0.93 0.94 0.95 0.97 0.99 0.86 0.88 0.89 0.91 0.95 0.81 0.82 0.83 0.84 0.87 0.89 0.94
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
Iu u
Iv v
0.97 0.99 1.00 1.00 1.00 0.95 0.96 0.97 0.99 1.00 0.92 0.93 0.95 0.97 0.99 0.88 0.90 0.92 0.93 0.95 0.97 1.00
cm3 12.41 13.50 14.57 16.49 19.22 18.00 19.65 21.28 24.50 28.90 21.49 23.52 25.54 29.53 35.41 24.79 27.24 29.67 32.08 36.85 41.57 52.93
cm3 3.72 4.00 4.28 4.83 5.64 4.70 5.09 5.47 6.22 7.29 4.55 4.94 5.33 6.11 7.23 4.45 4.83 5.21 5.59 6.35 7.11 8.93
cm3 2.57 2.77 2.96 3.34 3.91 3.76 4.05 4.33 4.89 5.73 3.75 4.04 4.32 4.88 5.71 3.75 4.03 4.31 4.60 5.15 5.70 7.06
cm4 82.3 89.5 96.6 109.4 127.5 140.4 153.5 166.4 191.7 226.1 195.2 213.9 232.4 268.8 322.4 257.0 282.6 307.9 333.0 382.6 431.6 549.7
kN 97.7 105.6 113.4 128.7 151.1 108.4 118.7 128.9 149.1 178.0 108.4 118.8 129.3 150.6 183.2 108.4 118.8 129.3 139.8 161.5 183.8 242.1
kNm 3.48 3.78 4.08 4.62 5.38 5.04 5.50 5.96 6.86 8.09 6.02 6.59 7.15 8.27 9.91 6.94 7.63 8.31 8.98 10.32 11.64 14.82
kNm 1.04 1.12 1.20 1.35 1.58 1.31 1.42 1.53 1.74 2.04 1.28 1.38 1.49 1.71 2.03 1.25 1.35 1.46 1.57 1.78 1.99 2.50
kNm 0.72 0.77 0.83 0.94 1.09 1.05 1.13 1.21 1.37 1.60 1.05 1.13 1.21 1.37 1.60 1.05 1.13 1.21 1.29 1.44 1.60 1.98
cm4 85.2 91.6 97.9 110.3 128.6 152.8 164.4 175.8 198.5 231.9 216.8 233.3 249.6 281.9 329.7 294.9 317.4 339.7 361.8 405.7 449.2 555.7
cm4 11.4 12.3 13.2 14.9 17.4 18.6 20.0 21.4 24.2 28.3 18.9 20.4 21.8 24.6 28.8 19.2 20.7 22.1 23.5 26.4 29.2 36.2
A - 38
B top
t
x
x
D
GROSS SECTION PROPERTIES AYRSHIRE ZETA II Design Yield Strength = 350 N/mm2 B bot
SINGLE SECTION D 225
B
x mm top x 78
bot 68
245
x
78
68
265
x
78
68
285
x
78
68
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
Ix y
θ
J
Cw
mm 1.4 1.5 1.6 1.8 2.0 2.5 1.4 1.5 1.6 1.8 2.0 2.5 1.5 1.6 1.8 2.0 2.5 3.0 1.5 1.6 1.8 2.0 2.5 3.0
cm2 5.51 5.90 6.29 7.07 7.84 9.75 5.78 6.19 6.61 7.42 8.24 10.24 6.49 6.92 7.78 8.63 10.73 12.79 6.78 7.23 8.13 9.02 11.22 13.39
kg/m 4.32 4.63 4.94 5.55 6.16 7.65 4.54 4.86 5.19 5.83 6.47 8.04 5.09 5.43 6.10 6.77 8.42 10.04 5.32 5.68 6.38 7.08 8.81 10.51
cm4 419.4 448.6 477.4 534.5 590.6 726.8 512.7 548.3 583.7 653.7 722.5 889.9 660.5 703.2 787.7 871.0 1073.5 1268.2 785.6 836.6 937.3 1036.7 1278.6 1511.4
cm4 60.4 64.3 68.1 75.7 83.0 100.0 60.4 64.3 68.2 75.7 83.0 100.0 64.3 68.2 75.7 83.0 100.1 115.6 64.3 68.2 75.7 83.0 100.1 115.6
cm 8.73 8.72 8.71 8.69 8.68 8.64 9.42 9.41 9.40 9.38 9.37 9.32 10.09 10.08 10.06 10.05 10.00 9.96 10.77 10.76 10.74 10.72 10.67 10.63
cm 3.31 3.30 3.29 3.27 3.25 3.20 3.23 3.22 3.21 3.19 3.17 3.13 3.15 3.14 3.12 3.10 3.05 3.01 3.08 3.07 3.05 3.03 2.99 2.94
cm3 36.56 39.09 41.61 46.58 51.46 63.32 41.07 43.93 46.76 52.37 57.88 71.28 48.96 52.13 58.39 64.56 79.56 93.97 54.20 57.71 64.66 71.50 88.18 104.22
cm3 7.44 7.94 8.43 9.39 10.33 12.56 7.44 7.93 8.42 9.39 10.32 12.55 7.93 8.42 9.38 10.31 12.54 14.61 7.92 8.41 9.37 10.31 12.53 14.60
cm4 117.7 125.6 133.5 148.9 163.9 199.8 128.6 137.3 145.9 162.7 179.1 218.5 149.0 158.3 176.6 194.4 237.1 277.2 160.6 170.7 190.4 209.7 255.8 299.0
(deg) 16.62 16.59 16.55 16.49 16.42 16.26 14.81 14.78 14.75 14.69 14.63 14.47 13.28 13.25 13.19 13.13 12.99 12.84 12.00 11.98 11.92 11.87 11.73 11.60
cm4 0.0340 0.0419 0.0511 0.0730 0.1005 0.1966 0.0356 0.0440 0.0536 0.0767 0.1055 0.2065 0.0461 0.0561 0.0803 0.1105 0.2165 0.3736 0.0482 0.0586 0.0839 0.1155 0.2264 0.3909
cm6 4923 5237 5545 6142 6714 8039 5957 6338 6712 7436 8131 9742 7557 8003 8869 9700 11627 13346 8893 9419 10440 11420 13696 15729
es mm 2.9 2.9 2.9 2.9 2.9 2.9 2.8 2.8 2.8 2.8 2.8 2.8 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.6
B top
t
x
x
REDUCED SECTION PROPERTIES
D
PRINCIPAL AXIS PROPERTIES
AYRSHIRE ZETA II Design Yield Strength = 350 N/mm2 B bot
SINGLE SECTION D 225
x
B
mm top x 78
t bot 68
245
x
78
68
265
x
78
68
285
x
78
68
mm 1.4 1.5 1.6 1.8 2.0 2.5 1.4 1.5 1.6 1.8 2.0 2.5 1.5 1.6 1.8 2.0 2.5 3.0 1.5 1.6 1.8 2.0 2.5 3.0
Q 0.70 0.73 0.75 0.79 0.82 0.88 0.67 0.70 0.72 0.76 0.78 0.83 0.67 0.69 0.72 0.75 0.80 0.84 0.64 0.66 0.69 0.72 0.76 0.80
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
Iu u
Iv v
0.79 0.83 0.86 0.89 0.92 0.96 0.77 0.81 0.83 0.87 0.90 0.95 0.78 0.80 0.84 0.88 0.93 0.96 0.75 0.78 0.82 0.85 0.91 0.95
cm3 28.99 32.45 35.64 41.52 47.24 60.95 31.56 35.38 38.84 45.45 51.89 67.38 38.18 41.93 49.30 56.49 73.83 90.43 40.76 44.90 53.05 61.04 80.31 98.79
cm3 7.96 8.50 9.02 10.06 11.07 13.47 7.97 8.50 9.03 10.07 11.08 13.49 8.51 9.04 10.08 11.09 13.50 15.75 8.51 9.04 10.08 11.09 13.51 15.76
cm3 7.44 7.94 8.43 9.39 10.33 12.56 7.44 7.93 8.42 9.39 10.32 12.55 7.93 8.42 9.38 10.31 12.54 14.61 7.92 8.41 9.37 10.31 12.53 14.60
cm4 329.7 366.1 402.3 472.8 540.4 699.4 389.7 433.9 477.8 563.5 646.0 841.1 506.0 558.5 661.1 760.3 996.1 1220.3 581.7 643.7 765.2 883.0 1164.3 1432.7
kN 135.7 150.7 165.9 196.1 225.8 298.8 135.9 150.9 166.0 196.2 225.8 298.8 151.1 166.3 196.4 226.0 298.7 374.4 151.4 166.5 196.7 226.2 298.8 374.4
kNm 10.15 11.36 12.48 14.53 16.54 21.33 11.05 12.38 13.59 15.91 18.16 23.58 13.36 14.67 17.25 19.77 25.84 31.65 14.26 15.71 18.57 21.36 28.11 34.58
kNm 2.79 2.97 3.16 3.52 3.87 4.72 2.79 2.98 3.16 3.52 3.88 4.72 2.98 3.16 3.53 3.88 4.72 5.51 2.98 3.17 3.53 3.88 4.73 5.52
kNm 2.60 2.78 2.95 3.29 3.62 4.40 2.60 2.78 2.95 3.29 3.61 4.39 2.77 2.95 3.28 3.61 4.39 5.11 2.77 2.94 3.28 3.61 4.39 5.11
cm4 454.6 486.0 517.1 578.5 638.9 785.1 546.7 584.6 622.1 696.3 769.3 946.3 695.6 740.5 829.1 916.3 1128.2 1331.4 819.8 872.8 977.5 1080.7 1331.7 1572.8
cm4 25.2 26.9 28.5 31.6 34.7 41.8 26.4 28.1 29.8 33.0 36.2 43.6 29.2 30.9 34.3 37.6 45.4 52.4 30.2 32.0 35.5 38.9 46.9 54.2
A - 39
B top
t
x
x
D
GROSS SECTION PROPERTIES AYRSHIRE ZETA III Design Yield Strength = 350 N/mm2 B bot
SINGLE SECTION D
x
B
mm 140 x
top 55
bot 45
155
x
55
45
170
x
55
45
185
x
55
45
200
x
55
45
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
Ix y
θ
J
Cw
mm 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 2.50
cm2 3.37 3.63 3.88 4.39 5.13 3.56 3.83 4.10 4.63 5.42 3.75 4.03 4.32 4.88 5.72 3.94 4.24 4.54 5.13 6.01 4.13 4.44 4.76 5.38 6.31 7.82
kg/m 2.64 2.85 3.05 3.44 4.03 2.79 3.01 3.22 3.64 4.26 2.94 3.17 3.39 3.83 4.49 3.09 3.33 3.56 4.03 4.72 3.24 3.49 3.73 4.22 4.95 6.14
cm4 98.6 105.7 112.8 126.8 147.0 125.4 134.6 143.6 161.5 187.4 156.2 167.7 179.1 201.4 233.9 191.3 205.4 219.3 246.8 286.8 230.7 247.8 264.7 298.0 346.5 423.9
cm4 18.7 20.0 21.2 23.6 26.9 18.7 20.0 21.2 23.6 26.9 18.8 20.0 21.2 23.6 26.9 18.8 20.0 21.3 23.6 27.0 18.8 20.0 21.3 23.6 27.0 31.9
cm 5.41 5.40 5.39 5.38 5.35 5.94 5.93 5.92 5.90 5.88 6.46 6.45 6.44 6.42 6.40 6.97 6.96 6.95 6.93 6.91 7.48 7.47 7.46 7.44 7.41 7.36
cm 2.36 2.35 2.34 2.32 2.29 2.30 2.29 2.28 2.26 2.23 2.24 2.23 2.22 2.20 2.17 2.18 2.17 2.16 2.15 2.12 2.13 2.12 2.11 2.10 2.07 2.02
cm3 13.63 14.62 15.60 17.53 20.32 15.69 16.84 17.97 20.20 23.44 17.85 19.16 20.46 23.00 26.71 20.11 21.59 23.06 25.94 30.14 22.47 24.13 25.77 29.01 33.73 41.25
cm3 3.33 3.56 3.79 4.23 4.86 3.32 3.55 3.78 4.22 4.85 3.32 3.55 3.78 4.22 4.85 3.31 3.54 3.77 4.21 4.84 3.31 3.54 3.77 4.21 4.83 5.80
cm4 31.7 34.0 36.2 40.4 46.5 35.4 37.9 40.4 45.1 52.0 39.1 41.8 44.5 49.8 57.4 42.8 45.8 48.7 54.5 62.8 46.4 49.7 52.9 59.2 68.2 82.1
(deg) 19.25 19.20 19.15 19.04 18.89 16.79 16.75 16.70 16.61 16.46 14.81 14.77 14.72 14.64 14.50 13.18 13.14 13.10 13.02 12.90 11.83 11.79 11.75 11.67 11.56 11.37
cm4 0.0178 0.0224 0.0276 0.0403 0.0657 0.0188 0.0236 0.0291 0.0426 0.0695 0.0198 0.0249 0.0307 0.0449 0.0732 0.0208 0.0261 0.0322 0.0471 0.0770 0.0218 0.0274 0.0338 0.0494 0.0808 0.1577
cm6 596 635 673 745 843 742 791 838 927 1051 906 965 1023 1133 1285 1089 1160 1229 1362 1545 1290 1375 1457 1614 1832 2148
2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.6 2.6 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5
PRINCIPAL AXIS PROPERTIES
REDUCED SECTION PROPERTIES
AYRSHIRE ZETA III Design Yield Strength = 350 N/mm2
es mm
SINGLE SECTION D
x
t
B
mm 140 x
top 55
bot 45
155
x
55
45
170
x
55
45
185
x
55
45
200
x
55
45
mm 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 2.50
Q 0.98 0.99 0.99 1.00 1.00 0.98 0.99 0.99 1.00 1.00 0.95 0.96 0.98 0.99 1.00 0.91 0.92 0.94 0.96 0.98 0.86 0.88 0.90 0.92 0.95 0.984
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
Iu u
Iv v
0.93 0.95 0.96 0.98 1.00 0.91 0.93 0.94 0.97 0.99 0.89 0.91 0.93 0.95 0.98 0.87 0.89 0.91 0.94 0.97 0.85 0.88 0.89 0.92 0.95 0.99
cm3 12.67 13.83 14.97 17.18 20.32 14.29 15.63 16.94 19.51 23.23 15.92 17.45 18.95 21.89 26.15 17.56 19.29 20.99 24.31 29.15 19.20 21.14 23.04 26.77 32.20 40.85
cm3 3.65 3.91 4.16 4.65 5.35 3.66 3.91 4.17 4.66 5.36 3.66 3.92 4.17 4.66 5.37 3.67 3.92 4.18 4.67 5.38 3.67 3.93 4.18 4.67 5.38 6.47
cm3 3.33 3.56 3.79 4.23 4.86 3.32 3.55 3.78 4.22 4.85 3.32 3.55 3.78 4.22 4.85 3.31 3.54 3.77 4.21 4.84 3.31 3.54 3.77 4.21 4.83 5.80
cm4 91.0 99.7 108.0 124.2 147.0 113.5 124.5 135.2 155.9 185.7 138.7 152.4 165.7 191.6 229.0 166.3 183.1 199.4 231.3 277.3 196.5 216.7 236.4 275.0 330.8 419.8
kN 115.6 125.5 135.0 153.3 179.6 121.7 132.3 142.5 161.9 189.8 124.4 136.2 147.6 169.2 199.7 124.7 137.0 149.1 172.8 206.9 124.7 137.0 149.2 173.6 210.1 269.2
kNm 4.43 4.84 5.24 6.01 7.11 5.00 5.47 5.93 6.83 8.13 5.57 6.11 6.63 7.66 9.15 6.15 6.75 7.35 8.51 10.20 6.72 7.40 8.06 9.37 11.27 14.30
kNm 1.28 1.37 1.46 1.63 1.87 1.28 1.37 1.46 1.63 1.88 1.28 1.37 1.46 1.63 1.88 1.28 1.37 1.46 1.63 1.88 1.28 1.37 1.46 1.64 1.88 2.26
kNm 1.16 1.25 1.33 1.48 1.70 1.16 1.24 1.32 1.48 1.70 1.16 1.24 1.32 1.48 1.70 1.16 1.24 1.32 1.47 1.69 1.16 1.24 1.32 1.47 1.69 2.03
cm4 109.6 117.6 125.4 140.7 162.9 136.1 146.0 155.8 174.9 202.7 166.5 178.7 190.8 214.4 248.7 201.3 216.1 230.7 259.4 301.2 240.5 258.2 275.7 310.2 360.5 440.5
cm4 7.7 8.2 8.7 9.6 11.0 8.1 8.6 9.1 10.2 11.6 8.4 9.0 9.5 10.6 12.1 8.7 9.3 9.9 11.0 12.6 9.0 9.7 10.3 11.4 13.0 15.4
A - 40
B
t
GROSS SECTION PROPERTIES x
HI-SPAN ZED Design Yield Strength = 350 N/mm2
x
D
SINGLE SECTION D
x
B
mm top 150 x 66
bot 60
170
x
66
60
205
x
66
60
230
x
83
75
255
x
83
75
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
Ix y
θ
J
Cw
mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.4 1.4 1.5 1.6 1.8 2.0 2.4 1.6 1.8 2.0 2.4 3.2 1.8 2.0 2.4 3.0 3.2
cm2 4.12 4.41 4.70 5.28 5.86 4.39 4.70 5.02 5.63 6.25 7.46 4.87 5.21 5.56 6.25 6.94 8.29 6.45 7.25 8.05 9.63 12.73 7.69 8.54 10.22 12.71 13.52
kg/m 3.23 3.46 3.69 4.15 4.60 3.45 3.69 3.94 4.42 4.91 5.86 3.82 4.09 4.37 4.91 5.44 6.51 5.06 5.69 6.32 7.56 10.00 6.04 6.71 8.03 9.97 10.62
cm4 147.3 157.5 167.6 187.4 207.0 196.9 210.5 224.0 250.8 277.0 328.3 305.0 326.3 347.4 389.1 430.2 510.5 521.2 584.4 646.7 769.1 1004.1 744.2 823.9 980.4 1207.7 1281.6
cm4 38.2 40.7 43.1 48.0 52.6 38.2 40.7 43.1 48.0 52.6 61.5 38.2 40.7 43.1 48.0 52.6 61.5 78.6 87.6 96.3 113.2 144.1 87.6 96.4 113.2 136.7 144.1
cm 5.98 5.97 5.97 5.96 5.94 6.70 6.69 6.68 6.67 6.66 6.63 7.92 7.91 7.90 7.89 7.88 7.85 8.99 8.98 8.96 8.93 8.88 9.84 9.82 9.79 9.75 9.73
cm 3.04 3.04 3.03 3.01 3.00 2.95 2.94 2.93 2.92 2.90 2.87 2.80 2.79 2.79 2.77 2.76 2.72 3.49 3.47 3.46 3.43 3.36 3.37 3.36 3.33 3.28 3.26
cm3 19.36 20.70 22.02 24.64 27.21 22.86 24.44 26.01 29.11 32.16 38.11 29.41 31.46 33.49 37.52 41.48 49.21 44.65 50.06 55.41 65.88 86.00 57.56 63.72 75.82 93.39 99.10
cm3 5.95 6.34 6.73 7.50 8.24 5.94 6.34 6.73 7.49 8.23 9.65 5.93 6.33 6.72 7.48 8.22 9.64 9.73 10.86 11.96 14.08 18.02 10.85 11.95 14.07 17.06 18.00
cm4 56.2 60.0 63.8 71.1 78.3 64.1 68.5 72.7 81.1 89.3 105.1 78.0 83.3 88.5 98.7 108.7 127.9 147.7 165.1 182.2 215.2 277.3 183.7 202.6 239.4 291.9 308.6
(deg) 22.93 22.89 22.85 22.78 22.70 19.47 19.44 19.40 19.33 19.26 19.12 15.15 15.12 15.09 15.03 14.96 14.84 16.86 16.81 16.75 16.64 16.41 14.61 14.56 14.45 14.30 14.24
cm4 0.0254 0.0313 0.0382 0.0545 0.0750 0.0271 0.0334 0.0407 0.0582 0.0800 0.1385 0.0300 0.0370 0.0451 0.0645 0.0888 0.1539 0.0523 0.0749 0.1031 0.1789 0.4238 0.0794 0.1094 0.1898 0.3711 0.4501
cm6 1429 1521 1611 1787 1956 1882 2004 2123 2356 2580 3002 2843 3028 3210 3563 3904 4548 7106 7909 8687 10173 12869 9954 10936 12813 15413 16224
es mm 1.62 1.62 1.62 1.61 1.61 1.57 1.57 1.57 1.57 1.56 1.55 1.48 1.48 1.48 1.47 1.47 1.46 2.08 2.08 2.07 2.06 2.04 1.99 1.99 1.98 1.96 1.96
REDUCED SECTION PROPERTIES PRINCIPAL
HI-SPAN ZED Design Yield Strength = 350 N/mm2
AXIS PROPERTIES
SINGLE SECTION D
x
B
mm 150 x
66
60
170
x
66
60
205
x
66
60
230
x
83
75
255
x
83
75
t mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.4 1.4 1.5 1.6 1.8 2.0 2.4 1.6 1.8 2.0 2.4 3.2 1.8 2.0 2.4 3.0 3.2
Q 0.62 0.65 0.68 0.72 0.76 0.59 0.61 0.64 0.68 0.71 0.76 0.53 0.56 0.58 0.61 0.64 0.69 0.52 0.57 0.61 0.66 0.74 0.54 0.57 0.63 0.68 0.70
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
Iu u
Iv v
0.86 0.90 0.92 0.95 0.97 0.84 0.87 0.89 0.92 0.94 0.98 0.79 0.83 0.85 0.88 0.91 0.95 0.78 0.84 0.88 0.92 0.98 0.81 0.85 0.90 0.95 0.96
cm3 16.71 18.54 20.25 23.31 26.29 19.15 21.28 23.22 26.85 30.39 37.23 23.30 25.96 28.35 33.04 37.62 46.53 34.71 41.96 48.50 60.72 83.88 46.74 54.10 68.18 88.43 94.99
cm3 6.22 6.64 7.05 7.86 8.65 6.22 6.64 7.05 7.86 8.65 10.16 6.22 6.64 7.05 7.86 8.65 10.16 10.21 11.40 12.57 14.83 19.04 11.40 12.57 14.83 18.03 19.04
cm3 5.95 6.34 6.73 7.50 8.24 5.94 6.34 6.73 7.49 8.23 9.65 5.93 6.33 6.72 7.48 8.22 9.64 9.73 10.86 11.96 14.08 18.02 10.85 11.95 14.07 17.06 18.00
cm4 126.7 139.5 152.1 176.4 199.6 164.2 181.2 197.9 230.3 261.3 320.6 240.0 266.0 291.7 341.5 389.7 482.5 405.1 483.8 560.7 707.2 979.3 596.5 693.7 880.0 1143.5 1228.4
kN 90.0 101.0 112.0 133.7 155.1 90.2 101.2 112.2 133.8 155.2 199.0 90.6 101.7 112.6 134.3 155.6 199.1 117.3 144.0 170.9 223.6 331.6 144.3 171.3 224.0 303.7 331.7
kNm 5.85 6.49 7.09 8.16 9.20 6.70 7.45 8.13 9.40 10.64 13.03 8.16 9.09 9.92 11.56 13.17 16.28 12.15 14.69 16.97 21.25 29.36 16.36 18.93 23.86 30.95 33.25
kNm 2.18 2.32 2.47 2.75 3.03 2.18 2.32 2.47 2.75 3.03 3.56 2.18 2.32 2.47 2.75 3.03 3.56 3.57 3.99 4.40 5.19 6.66 3.99 4.40 5.19 6.31 6.66
kNm 2.08 2.22 2.36 2.62 2.88 2.08 2.22 2.35 2.62 2.88 3.38 2.08 2.22 2.35 2.62 2.88 3.37 3.41 3.80 4.19 4.93 6.31 3.80 4.18 4.92 5.97 6.30
cm4 171.1 182.8 194.4 217.3 239.7 219.5 234.7 249.7 279.2 308.3 364.7 326.2 348.8 371.2 415.6 459.2 544.4 566.0 634.2 701.6 833.4 1085.7 792.1 876.6 1042.1 1282.1 1359.9
cm4 14.4 15.3 16.3 18.1 19.9 15.5 16.5 17.5 19.5 21.4 25.1 17.0 18.2 19.3 21.5 23.6 27.6 33.8 37.7 41.5 48.9 62.4 39.7 43.7 51.5 62.3 65.8
A - 41
B
t
GROSS SECTION PROPERTIES METSEC ZED 2 Design Yield Strength = 350 N/mm
x
x
D
SINGLE SECTION D
x
B
mm 142 x 57.5
172
x
62.5
202
x
62.5
232
x
72.5
262
x
76.0
302
x
86.0
342
x
96.0
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
Ix y
θ
J
Cw
mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2
cm2 3.91 4.19 4.47 5.02 5.56 4.46 4.78 5.09 5.72 6.35 7.27 7.89 5.21 5.56 6.25 6.94 7.95 8.62 6.34 7.13 7.92 9.08 9.85 7.78 8.64 9.92 10.76 12.44 11.32 12.29 14.21 13.77 15.93 17.54
kg/m 3.07 3.29 3.51 3.94 4.37 3.50 3.75 4.00 4.49 4.98 5.71 6.19 4.09 4.37 4.91 5.44 6.24 6.77 4.98 5.60 6.21 7.13 7.74 6.11 6.78 7.79 8.45 9.76 8.89 9.65 11.16 10.81 12.50 13.77
cm4 123.9 132.4 140.9 157.5 173.9 203.8 217.9 231.9 259.6 286.9 326.9 353.0 317.7 338.2 378.8 418.8 477.7 516.2 510.8 572.7 633.7 723.8 782.8 784.2 868.2 992.3 1073.8 1233.6 1501.9 1626.3 1871.1 2330.1 2683.8 2944.4
cm4 31.8 33.9 35.9 39.9 43.7 39.4 42.0 44.5 49.5 54.4 61.4 65.8 42.0 44.5 49.5 54.4 61.4 65.8 65.7 73.1 80.4 90.9 97.7 82.9 91.2 103.2 110.9 125.7 146.8 158.0 179.6 212.4 241.9 263.1
cm 5.63 5.62 5.61 5.60 5.59 6.76 6.75 6.75 6.74 6.72 6.70 6.69 7.81 7.80 7.78 7.77 7.75 7.74 8.98 8.96 8.95 8.93 8.91 10.04 10.02 10.00 9.99 9.96 11.52 11.50 11.47 13.01 12.98 12.96
cm 2.85 2.84 2.83 2.82 2.80 2.97 2.96 2.96 2.94 2.93 2.90 2.89 2.84 2.83 2.82 2.80 2.78 2.76 3.22 3.20 3.19 3.16 3.15 3.26 3.25 3.23 3.21 3.18 3.60 3.59 3.55 3.93 3.90 3.87
cm3 17.25 18.43 19.61 21.92 24.20 23.45 25.08 26.69 29.88 33.02 37.62 40.63 31.16 33.18 37.16 41.09 46.86 50.63 43.48 48.74 53.93 61.59 66.62 59.04 65.36 74.70 80.83 92.85 98.25 106.39 122.40 134.79 155.24 170.32
cm3 5.44 5.80 6.16 6.86 7.53 6.21 6.62 7.03 7.83 8.61 9.74 10.46 6.62 7.02 7.82 8.60 9.73 10.45 8.87 9.90 10.90 12.35 13.29 10.66 11.74 13.31 14.33 16.29 16.77 18.07 20.58 21.79 24.86 27.09
cm4 47.0 50.1 53.2 59.3 65.3 66.3 70.8 75.2 83.9 92.4 104.7 112.7 83.8 89.0 99.4 109.4 124.1 133.6 132.5 148.1 163.3 185.5 200.0 182.3 201.1 228.6 246.5 281.1 333.9 360.4 412.0 497.7 569.8 622.2
(deg) 22.78 22.74 22.70 22.63 22.55 19.44 19.41 19.37 19.30 19.24 19.13 19.06 15.65 15.62 15.56 15.49 15.40 15.34 15.39 15.33 15.28 15.19 15.14 13.73 13.68 13.61 13.56 13.46 13.12 13.07 12.99 12.59 12.51 12.45
cm4 0.0241 0.0298 0.0363 0.0518 0.0712 0.0275 0.0339 0.0413 0.0591 0.0813 0.1238 0.1591 0.0370 0.0451 0.0645 0.0888 0.1354 0.1740 0.0514 0.0736 0.1014 0.1546 0.1988 0.0804 0.1106 0.1689 0.2171 0.3392 0.1927 0.2479 0.3875 0.2777 0.4343 0.5837
cm6 1098 1168 1237 1371 1500 2021 2152 2281 2532 2774 3120 3339 3061 3245 3603 3949 4445 4760 6227 6928 7606 8584 9210 10128 11128 12572 13498 15263 23886 25685 29135 44418 50497 54856
A - 42
es mm 1.21 1.24 1.26 1.31 1.36 1.19 1.21 1.24 1.28 1.33 1.40 1.45 1.19 1.22 1.27 1.31 1.39 1.43 1.59 1.64 1.68 1.76 1.80 1.79 1.83 1.91 1.95 2.05 1.87 1.92 2.01 1.87 1.96 2.03
B
t
REDUCED SECTION PROPERTIES METSEC ZED 2 Design Yield Strength = 350 N/mm
x
x
D
PRINCIPAL AXIS PROPERTIES
SINGLE SECTION D
x
B
mm 142 x 57.5
172
x
62.5
202
x
62.5
232
x
72.5
262
x
76.0
302
x
86.0
342
x
96.0
t mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2
Q 0.66 0.69 0.71 0.74 0.78 0.59 0.62 0.64 0.68 0.71 0.75 0.77 0.57 0.59 0.62 0.65 0.68 0.71 0.53 0.58 0.61 0.65 0.67 0.54 0.57 0.61 0.63 0.66 0.57 0.59 0.62 0.55 0.59 0.61
po / p y
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
Iu u
Iv v
0.89 0.92 0.93 0.96 0.98 0.83 0.87 0.89 0.92 0.94 0.97 0.98 0.83 0.85 0.88 0.91 0.94 0.96 0.80 0.84 0.88 0.91 0.93 0.81 0.84 0.88 0.90 0.94 0.84 0.87 0.91 0.83 0.87 0.90
cm3 15.43 16.92 18.30 20.99 23.61 19.54 21.70 23.77 27.50 31.13 36.42 39.87 25.76 28.22 32.87 37.40 44.05 48.38 34.62 41.17 47.24 56.12 61.91 47.68 55.08 65.93 73.01 86.85 82.86 92.32 110.82 112.06 135.83 153.24
cm3 5.65 6.03 6.40 7.13 7.84 6.42 6.86 7.28 8.12 8.94 10.12 10.89 6.86 7.28 8.12 8.94 10.12 10.89 9.23 10.31 11.36 12.90 13.89 11.14 12.28 13.95 15.03 17.12 17.46 18.83 21.49 22.59 25.82 28.16
cm3 5.44 5.80 6.16 6.86 7.53 6.21 6.62 7.03 7.83 8.61 9.74 10.46 6.62 7.02 7.82 8.60 9.73 10.45 8.87 9.90 10.90 12.35 13.29 10.66 11.74 13.31 14.33 16.29 16.77 18.07 20.58 21.79 24.86 27.09
cm4 109.9 120.4 130.7 150.5 169.5 169.7 187.3 204.6 238.0 270.0 316.4 346.4 260.6 285.5 334.0 380.8 448.9 493.2 403.6 479.2 552.6 658.6 727.1 626.4 727.7 874.3 969.2 1153.7 1260.6 1407.8 1693.1 1926.4 2344.3 2647.6
kN 90.4 100.6 110.8 130.8 151.0 92.1 103.2 114.2 135.9 157.4 190.2 213.0 103.5 114.6 136.3 157.7 190.4 213.0 118.5 143.8 168.7 205.4 230.0 145.8 172.0 210.5 236.0 288.3 224.1 252.9 310.1 265.0 328.6 376.0
kNm 5.40 5.92 6.41 7.35 8.26 6.84 7.59 8.32 9.62 10.89 12.75 13.96 9.02 9.88 11.50 13.09 15.42 16.93 12.12 14.41 16.54 19.64 21.67 16.69 19.28 23.08 25.55 30.40 29.00 32.31 38.79 39.22 47.54 53.63
kNm 1.98 2.11 2.24 2.50 2.74 2.25 2.40 2.55 2.84 3.13 3.54 3.81 2.40 2.55 2.84 3.13 3.54 3.81 3.23 3.61 3.98 4.52 4.86 3.90 4.30 4.88 5.26 5.99 6.11 6.59 7.52 7.91 9.04 9.86
kNm 1.91 2.03 2.16 2.40 2.64 2.17 2.32 2.46 2.74 3.01 3.41 3.66 2.32 2.46 2.74 3.01 3.41 3.66 3.11 3.46 3.81 4.32 4.65 3.73 4.11 4.66 5.01 5.70 5.87 6.32 7.20 7.63 8.70 9.48
cm4 143.6 153.4 163.1 182.3 201.0 227.2 242.8 258.4 289.0 319.1 363.2 392.0 341.1 363.1 406.5 449.2 511.9 552.8 547.3 613.3 678.3 774.1 836.9 828.7 917.2 1047.7 1133.2 1300.9 1579.7 1710.0 1966.1 2441.2 2810.2 3081.8
cm4 12.1 12.8 13.6 15.2 16.6 16.0 17.1 18.1 20.2 22.1 25.0 26.9 18.5 19.7 21.9 24.0 27.2 29.2 29.2 32.5 35.8 40.6 43.6 38.3 42.2 47.8 51.5 58.5 68.9 74.3 84.6 101.2 115.5 125.8
A - 43
B
t
GROSS SECTION PROPERTIES ALBION ZED 2 Design Yield Strength = 350 N/mm
x
x
D
SINGLE SECTION D
x
B
mm 120 x
50
145
x
50
145
x
62.5
175
x
50
175
x
62.5
200
x
62.5
200
x
75
225
x
62.5
225
x
75
240
x
75
300
x
75
t
Area
Weight
Ix x
Iy y
rx x
ry y
Zx x
Zy y
Ix y
θ
J
Cw
mm 1.5 1.6 1.5 1.6 1.4 1.5 1.6 1.8 2.0 1.5 1.6 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.5 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.8 2.3 2.5 2.8
cm2 3.51 3.74 3.87 4.13 4.09 4.38 4.67 5.25 5.82 4.31 4.59 4.50 4.82 5.14 5.78 6.41 7.34 7.96 5.18 5.53 6.22 6.90 8.57 6.66 7.39 8.47 9.19 5.92 6.66 7.39 8.47 9.19 7.10 7.88 9.04 9.80 7.36 8.17 9.38 10.17 11.36 10.73 11.65 13.02
kg/m 2.75 2.93 3.04 3.24 3.21 3.44 3.67 4.12 4.57 3.38 3.61 3.53 3.78 4.03 4.53 5.03 5.76 6.25 4.07 4.34 4.88 5.41 6.73 5.22 5.80 6.65 7.21 4.65 5.22 5.80 6.65 7.21 5.57 6.18 7.09 7.70 5.78 6.41 7.36 7.99 8.92 8.42 9.14 10.22
cm4 79.3 84.3 123.4 131.2 137.1 146.6 156.0 174.5 192.7 192.3 204.6 212.2 226.9 241.5 270.4 298.8 340.5 367.8 310.4 330.4 370.1 409.2 504.2 413.3 457.2 521.9 564.2 436.6 489.2 541.1 617.5 667.5 544.0 602.0 687.5 743.6 633.0 700.6 800.4 865.8 962.4 1361.1 1473.3 1639.2
cm4 20.2 21.4 20.2 21.4 39.4 42.0 44.5 49.5 54.3 20.2 21.4 39.4 42.0 44.5 49.5 54.3 61.3 65.8 42.0 44.5 49.5 54.3 65.8 79.9 87.8 99.4 106.8 44.5 49.5 54.4 61.3 65.8 79.9 87.8 99.4 106.8 79.9 87.8 99.4 106.8 117.6 99.4 106.8 117.6
cm 4.76 4.75 5.65 5.64 5.79 5.78 5.78 5.77 5.75 6.68 6.67 6.87 6.86 6.86 6.84 6.83 6.81 6.80 7.74 7.73 7.72 7.70 7.67 7.88 7.87 7.85 7.84 8.59 8.57 8.56 8.54 8.52 8.76 8.74 8.72 8.71 9.27 9.26 9.24 9.23 9.20 11.26 11.25 11.22
cm 2.40 2.39 2.29 2.28 3.10 3.09 3.09 3.07 3.06 2.17 2.16 2.96 2.95 2.94 2.93 2.91 2.89 2.87 2.84 2.84 2.82 2.81 2.77 3.46 3.45 3.42 3.41 2.74 2.73 2.71 2.69 2.68 3.35 3.34 3.32 3.30 3.29 3.28 3.26 3.24 3.22 3.04 3.03 3.01
cm3 13.23 14.06 17.02 18.10 18.92 20.23 21.52 24.07 26.58 21.98 23.39 24.26 25.94 27.61 30.91 34.16 38.93 42.04 31.04 33.05 37.02 40.93 50.43 41.34 45.73 52.20 56.43 38.82 43.49 48.11 54.90 59.34 48.37 53.52 61.13 66.11 52.76 58.39 66.71 72.16 80.21 90.75 98.24 109.30
cm3 4.11 4.35 4.11 4.35 6.37 6.80 7.22 8.04 8.84 4.11 4.35 6.37 6.80 7.22 8.04 8.84 10.00 10.74 6.80 7.22 8.04 8.84 10.74 10.78 11.87 13.46 14.49 7.22 8.04 8.84 10.00 10.74 10.78 11.87 13.46 14.49 10.78 11.87 13.46 14.49 15.98 13.46 14.49 15.98
cm4 30.1 31.9 36.7 38.9 55.3 59.0 62.7 70.0 77.0 44.7 47.4 67.5 72.1 76.6 85.5 94.1 106.7 114.8 82.9 88.1 98.3 108.3 132.2 134.6 148.4 168.6 181.8 99.7 111.2 122.5 139.0 149.6 152.1 167.8 190.7 205.6 162.7 179.4 203.9 219.9 243.1 256.9 277.0 306.4
(deg) 22.74 22.69 17.72 17.67 24.26 24.23 24.19 24.12 24.04 13.72 13.68 19.00 18.96 18.93 18.86 18.80 18.69 18.63 15.86 15.83 15.77 15.70 15.55 19.45 19.39 19.30 19.24 13.48 13.42 13.36 13.28 13.22 16.62 16.57 16.48 16.42 15.23 15.18 15.10 15.04 14.96 11.08 11.03 10.97
cm4 0.0249 0.0303 0.0275 0.0335 0.0252 0.0311 0.0379 0.0542 0.0745 0.0306 0.0373 0.0277 0.0342 0.0417 0.0596 0.0820 0.1250 0.1606 0.0368 0.0449 0.0642 0.0883 0.1730 0.0687 0.0946 0.1442 0.1854 0.0480 0.0687 0.0946 0.1442 0.1854 0.0733 0.1009 0.1539 0.1978 0.0760 0.1046 0.1596 0.2052 0.2884 0.1827 0.2350 0.3305
cm6 489 517 742 784 1398 1489 1578 1750 1916 1123 1188 2108 2245 2380 2642 2894 3256 3485 3008 3189 3542 3882 4679 5446 5980 6748 7240 4129 4587 5029 5662 6066 7070 7765 8768 9410 8157 8960 10119 10861 11931 16583 17807 19573
A - 44
es mm 0.36 0.39 0.36 0.39 0.34 0.37 0.39 0.44 0.49 0.36 0.39 0.34 0.36 0.39 0.44 0.49 0.57 0.61 0.36 0.39 0.44 0.49 0.61 0.44 0.49 0.57 0.61 0.39 0.44 0.49 0.57 0.61 0.44 0.49 0.57 0.61 0.44 0.49 0.57 0.61 0.69 0.56 0.61 0.69
B
t
REDUCED SECTION PROPERTIES ALBION ZED 2 Design Yield Strength = 350 N/mm
x
x
D
PRINCIPAL AXIS PROPERTIES
SINGLE SECTION D
x
B
mm 120 x
50
145
x
50
145
x
62.5
175
x
50
175
x
62.5
200
x
62.5
200
x
75
225
x
62.5
225
x
75
240
x
75
300
x
75
t mm 1.5 1.6 1.5 1.6 1.4 1.5 1.6 1.8 2.0 1.5 1.6 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.5 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.8 2.3 2.5 2.8
Q 0.74 0.76 0.67 0.69 0.64 0.67 0.70 0.74 0.77 0.60 0.62 0.59 0.61 0.64 0.67 0.70 0.74 0.76 0.57 0.59 0.63 0.65 0.71 0.62 0.66 0.70 0.73 0.56 0.59 0.61 0.64 0.66 0.58 0.62 0.66 0.68 0.56 0.60 0.64 0.66 0.69 0.56 0.58 0.60
po / p y
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
Iu u
Iv v
0.95 0.96 0.91 0.93 0.85 0.88 0.91 0.94 0.97 0.87 0.89 0.81 0.84 0.87 0.91 0.94 0.96 0.98 0.81 0.84 0.88 0.91 0.96 0.86 0.90 0.94 0.95 0.81 0.85 0.88 0.92 0.94 0.83 0.87 0.91 0.93 0.82 0.86 0.90 0.92 0.94 0.85 0.87 0.90
cm3 12.5 13.5 15.5 16.8 16.1 17.8 19.5 22.7 25.7 19.1 20.8 19.7 21.9 24.0 28.1 32.0 37.6 41.1 25.3 27.8 32.6 37.3 48.3 35.4 41.0 48.9 53.9 31.4 37.1 42.5 50.4 55.5 40.2 46.7 55.9 61.7 43.0 50.0 60.1 66.5 75.8 76.7 85.5 98.2
cm3 4.1 4.3 4.1 4.3 6.3 6.8 7.2 8.0 8.8 4.1 4.3 6.3 6.8 7.2 8.0 8.8 9.9 10.7 6.8 7.2 8.0 8.8 10.7 10.7 11.8 13.4 14.4 7.2 8.0 8.8 9.9 10.7 10.7 11.8 13.4 14.4 10.7 11.8 13.4 14.4 15.9 13.4 14.4 15.9
cm3 4.11 4.35 4.11 4.35 6.37 6.80 7.22 8.04 8.84 4.11 4.35 6.37 6.80 7.22 8.04 8.84 10.00 10.74 6.80 7.22 8.04 8.84 10.74 10.78 11.87 13.46 14.49 7.22 8.04 8.84 10.00 10.74 10.78 11.87 13.46 14.49 10.78 11.87 13.46 14.49 15.98 13.46 14.49 15.98
cm4 75.4 81.3 112.9 122.1 119.2 131.1 142.8 165.4 186.9 167.8 182.1 176.1 194.3 212.2 246.9 280.3 328.7 360.0 255.6 279.9 327.2 373.0 482.7 358.8 412.6 489.8 539.3 355.9 418.2 478.7 567.0 624.5 457.6 528.1 629.5 694.9 522.1 603.8 721.8 798.0 909.5 1152.0 1282.2 1473.6
kN 90.4 98.9 90.6 99.0 91.9 103.0 114.1 135.8 157.4 90.9 99.3 92.2 103.3 114.4 136.1 157.5 190.2 213.0 103.6 114.7 136.4 157.8 213.0 144.7 170.6 208.5 233.8 115.0 136.7 158.1 190.7 213.2 145.1 171.0 208.8 234.0 145.3 171.2 209.0 234.2 272.9 210.1 235.3 273.8
kNm 4.39 4.73 5.44 5.89 5.62 6.23 6.82 7.95 9.01 6.70 7.28 6.91 7.67 8.41 9.84 11.20 13.15 14.40 8.85 9.73 11.42 13.04 16.90 12.38 14.34 17.11 18.86 11.01 12.98 14.88 17.64 19.43 14.07 16.33 19.55 21.61 15.06 17.52 21.02 23.26 26.53 26.85 29.91 34.39
kNm 1.43 1.51 1.43 1.51 2.22 2.36 2.51 2.80 3.07 1.43 1.51 2.22 2.36 2.51 2.80 3.07 3.48 3.74 2.36 2.51 2.80 3.07 3.74 3.75 4.13 4.68 5.04 2.51 2.80 3.07 3.48 3.74 3.75 4.13 4.68 5.04 3.75 4.13 4.68 5.04 5.56 4.68 5.04 5.56
kNm 1.44 1.52 1.44 1.52 2.23 2.38 2.53 2.81 3.09 1.44 1.52 2.23 2.38 2.53 2.81 3.09 3.50 3.76 2.38 2.53 2.81 3.09 3.76 3.77 4.16 4.71 5.07 2.53 2.81 3.09 3.50 3.76 3.77 4.16 4.71 5.07 3.77 4.16 4.71 5.07 5.59 4.71 5.07 5.59
cm4 91.9 97.7 135.1 143.6 162.1 173.2 184.2 205.8 227.0 203.2 216.1 235.5 251.7 267.8 299.6 330.8 376.6 406.5 333.9 355.4 397.9 439.6 541.0 460.8 509.4 580.9 627.6 460.5 515.8 570.2 650.3 702.6 589.4 651.9 744.0 804.2 677.3 749.3 855.4 924.9 1027.3 1411.4 1527.4 1698.6
cm4 7.6 8.1 8.5 9.0 14.4 15.4 16.3 18.2 20.0 9.3 9.9 16.1 17.2 18.2 20.3 22.3 25.2 27.1 18.4 19.5 21.7 23.9 29.0 32.3 35.6 40.3 43.4 20.6 23.0 25.2 28.5 30.6 34.4 37.9 43.0 46.2 35.6 39.2 44.4 47.7 52.6 49.1 52.8 58.2
A - 45
B top
t
GROSS SECTION PROPERTIES
x
STRUCTURAL SECTIONS ULTRAZED Design Yield Strength = 350 N/mm2
B bot
SINGLE SECTION D 145
x
B
mm top x 62.5
D
x
bot 56.5
170
x
67.5
61.5
200
x
76.0
71.0
225
x
76.0
71.0
255
x
76.0
71.0
285
x
76.0
71.0
t
Area
mm 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.5 1.6 2.0 1.6 1.8 2.0 2.5 3.0 1.8 2.0 2.3 2.5 3.0
cm 3.60 3.91 4.22 4.84 5.45 6.07 4.01 4.35 4.70 5.38 6.07 6.76 4.66 5.05 5.45 6.24 7.03 7.82 5.79 6.21 6.63 8.31 7.10 8.00 8.90 11.14 13.36 8.53 9.49 10.92 11.88 14.25
2
Weight
Ix x
kg/m 2.83 3.07 3.31 3.80 4.28 4.76 3.15 3.42 3.69 4.22 4.76 5.30 3.66 3.97 4.28 4.90 5.52 6.14 4.55 4.88 5.21 6.52 5.57 6.28 6.99 8.74 10.49 6.70 7.45 8.57 9.32 11.19
cm 120.4 130.5 140.5 160.5 180.2 199.9 182.6 197.9 213.2 243.7 273.9 303.9 289.7 314.0 338.2 386.2 433.9 481.2 445.5 477.3 508.9 634.5 683.7 768.6 852.9 1061.2 1266.1 1001.2 1111.4 1275.3 1383.8 1652.1
4
Iy y 4
cm 29.6 32.1 34.5 39.5 44.3 49.2 36.2 39.2 42.3 48.3 54.3 60.2 56.2 60.9 65.6 74.7 83.8 92.8 65.6 70.2 74.8 92.8 74.8 83.9 92.8 114.8 136.1 83.9 92.8 106.1 114.8 136.1
rx x
ry y
Zx x
cm 5.78 5.78 5.77 5.76 5.75 5.74 6.75 6.74 6.74 6.73 6.72 6.71 7.89 7.88 7.88 7.87 7.85 7.84 8.77 8.76 8.76 8.74 9.81 9.80 9.79 9.76 9.73 10.83 10.82 10.81 10.79 10.77
cm 2.87 2.86 2.86 2.86 2.85 2.85 3.00 3.00 3.00 3.00 2.99 2.99 3.48 3.47 3.47 3.46 3.45 3.44 3.36 3.36 3.36 3.34 3.24 3.24 3.23 3.21 3.19 3.14 3.13 3.12 3.11 3.09
cm 16.35 17.72 19.08 21.79 24.48 27.15 21.18 22.97 24.74 28.28 31.79 35.29 28.69 31.09 33.49 38.25 42.97 47.65 39.24 42.04 44.84 55.90 53.18 59.79 66.35 82.57 98.52 69.73 77.41 88.83 96.39 115.10
3
Zy y 3
cm 4.45 4.83 5.20 5.94 6.67 7.40 5.06 5.49 5.91 6.75 7.59 8.42 6.90 7.47 8.04 9.18 10.29 11.40 8.04 8.60 9.17 11.39 9.16 10.28 11.38 14.09 16.71 10.27 11.37 13.00 14.08 16.70
Ix y 4
cm 45.5 49.3 53.1 60.6 68.1 75.5 61.2 66.3 71.4 81.6 91.7 101.7 97.9 106.1 114.2 130.4 146.3 162.1 129.4 138.6 147.7 183.7 168.6 189.2 209.7 260.0 309.0 212.6 235.6 269.7 292.2 347.4
θ
J
(deg) 22.53 22.53 22.53 22.53 22.54 22.54 19.94 19.94 19.94 19.93 19.93 19.92 20.00 19.99 19.98 19.97 19.95 19.93 17.14 17.13 17.12 17.08 14.48 14.46 14.44 14.39 14.34 12.44 12.42 12.38 12.36 12.31
cm 0.0162 0.0207 0.0260 0.0392 0.0563 0.0777 0.0180 0.0230 0.0289 0.0437 0.0627 0.0865 0.0209 0.0267 0.0336 0.0506 0.0726 0.1002 0.0357 0.0441 0.0538 0.1064 0.0576 0.0826 0.1140 0.2247 0.3903 0.0881 0.1215 0.1859 0.2395 0.4162
Cw 4
6
cm 881 954 1027 1171 1314 1455 1539 1668 1795 2048 2299 2547 3174 3434 3691 4201 4700 5192 4823 5158 5490 6790 7306 8180 9042 11138 13150 10553 11667 13306 14379 16986
es mm 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.4 2.5 2.5 2.4 2.1 2.1 2.1 2.1 2.2 2.0 2.1 2.0 2.1 1.9 2.0 2.0 1.9 1.8 1.8 1.9 1.8 1.9 1.7 1.8
B top
t
REDUCED SECTION PROPERTIES x
STRUCTURAL SECTIONS ULTRAZED Design Yield Strength = 350 N/mm2
145
x
B
mm top x 62.5
D
PRINCIPAL AXIS PROPERTIES
B bot
SINGLE SECTION D
x
t bot 56.5
170
x
67.5
61.5
200
x
76.0
71.0
225
x
76.0
71.0
255
x
76.0
71.0
285
x
76.0
71.0
mm 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.5 1.6 2.0 1.6 1.8 2.0 2.5 3.0 1.8 2.0 2.3 2.5 3.0
Q 0.84 0.86 0.87 0.89 0.91 0.94 0.78 0.79 0.81 0.83 0.85 0.87 0.83 0.84 0.86 0.89 0.91 0.93 0.81 0.82 0.83 0.87 0.78 0.80 0.81 0.85 0.89 0.75 0.76 0.79 0.80 0.84
po / py
Zxr
Zy1r
Zy2r
Ixr
Pc
Mcx
Mcy1
Mcy2x
Iu u
Iv v
0.90 0.92 0.94 0.96 0.98 1.00 0.86 0.88 0.90 0.93 0.95 0.97 0.83 0.85 0.88 0.91 0.94 0.96 0.85 0.87 0.88 0.93 0.84 0.88 0.90 0.95 0.98 0.84 0.87 0.90 0.92 0.96
cm3 14.78 16.34 17.89 20.97 24.03 27.06 18.15 20.19 22.22 26.25 30.25 34.21 23.70 26.56 29.32 34.79 40.18 45.52 33.19 36.41 39.60 52.22 44.82 52.36 59.83 78.29 96.44 58.54 67.29 80.30 88.90 110.19
cm3 4.67 5.07 5.46 6.24 7.01 7.77 5.30 5.75 6.19 7.08 7.96 8.83 7.15 7.74 8.33 9.51 10.67 11.81 8.34 8.93 9.52 11.82 9.52 10.69 11.83 14.65 17.39 10.69 11.84 13.55 14.66 17.40
cm3 4.45 4.83 5.20 5.94 6.67 7.40 5.06 5.49 5.91 6.75 7.59 8.42 6.90 7.47 8.04 9.18 10.29 11.40 8.04 8.60 9.17 11.39 9.16 10.28 11.38 14.09 16.71 10.27 11.37 13.00 14.08 16.70
cm4 108.6 120.2 131.7 154.4 176.9 199.2 155.8 173.6 191.3 226.1 260.5 294.7 237.4 266.2 294.6 350.6 405.5 459.5 375.2 412.2 448.8 592.7 575.4 672.8 769.0 1006.3 1239.4 840.3 966.0 1152.8 1276.3 1581.7
kN 106.1 117.0 128.1 150.9 174.6 198.9 109.4 121.0 132.6 156.2 180.7 206.2 134.6 149.5 164.3 193.8 223.4 253.6 164.4 179.1 193.8 253.6 194.0 223.5 253.7 332.9 417.9 223.9 253.9 300.6 332.9 418.0
kNm 5.17 5.72 6.26 7.34 8.41 9.47 6.35 7.07 7.78 9.19 10.59 11.97 8.30 9.30 10.26 12.18 14.06 15.93 11.62 12.74 13.86 18.28 15.69 18.33 20.94 27.40 33.76 20.49 23.55 28.10 31.12 38.57
kNm 1.64 1.77 1.91 2.18 2.45 2.72 1.86 2.01 2.17 2.48 2.78 3.09 2.50 2.71 2.92 3.33 3.73 4.13 2.92 3.13 3.33 4.14 3.33 3.74 4.14 5.13 6.09 3.74 4.15 4.74 5.13 6.09
kNm 1.56 1.69 1.82 2.08 2.34 2.59 1.77 1.92 2.07 2.36 2.66 2.95 2.42 2.62 2.82 3.21 3.60 3.99 2.81 3.01 3.21 3.99 3.21 3.60 3.98 4.93 5.85 3.59 3.98 4.55 4.93 5.85
cm4 139.3 150.9 162.6 185.6 208.5 231.2 204.8 222.0 239.1 273.3 307.1 340.8 325.3 352.6 379.7 433.6 487.0 539.9 485.4 520.0 554.4 690.9 727.2 817.4 906.9 1127.9 1345.0 1048.1 1163.2 1334.5 1447.8 1727.9
cm4 10.7 11.6 12.5 14.3 16.1 17.9 14.0 15.2 16.3 18.7 21.0 23.4 20.6 22.3 24.0 27.4 30.7 34.0 25.6 27.5 29.3 36.4 31.2 35.0 38.8 48.1 57.1 37.0 41.0 46.9 50.8 60.3
B
t
GROSS SECTION PROPERTIES GENERIC Z SECTIONS Design Yield Strength = 280 N/mm2
x
x
D
SINGLE SECTION D
B
x
mm top 100 x 55 125 x 55
bot 45 45
150
x
58
49
165
x
58
49
180
x
58
49
200
x
58
49
220
x
58
49
250 300
x x
76 94
68 86
t
Area
mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
cm 2.65 2.94 3.91 4.41 4.95 4.64 5.21 4.87 5.48 6.07 5.19 5.83 6.47 6.86 8.19 9.78 11.81 14.69
Weight
2
Ix x
Iy y
4 cm4 cm kg/m 2.08 42.8 18.2 2.30 71.7 18.2 3.07 94.5 23.7 3.46 151.1 28.2 3.88 169.0 31.3 3.64 189.1 28.2 4.09 211.5 31.3 3.83 232.3 28.2 4.30 259.9 31.3 4.77 287.1 34.3 4.07 298.5 28.2 4.58 334.1 31.3 5.08 369.1 34.3 5.38 464.1 34.3 6.43 550.5 39.9 7.67 885.0 87.9 9.27 1557.5 161.0 11.53 1923.2 195.2
rx x
ry y
cm 4.02 4.94 4.92 5.86 5.84 6.38 6.37 6.90 6.89 6.88 7.59 7.57 7.56 8.23 8.20 9.51 11.49 11.44
cm 2.62 2.49 2.46 2.53 2.51 2.46 2.45 2.40 2.39 2.37 2.33 2.32 2.30 2.24 2.21 3.00 3.69 3.65
Zx x
Zy y
3 cm3 cm 8.29 3.48 11.17 3.47 14.72 4.52 19.75 5.05 22.08 5.62 22.49 5.05 25.15 5.61 25.35 5.04 28.37 5.61 31.33 6.15 29.35 5.04 32.86 5.60 36.30 6.14 41.54 6.14 49.26 7.17 70.05 11.92 102.94 17.53 127.10 21.33
Ix y
θ
cm4 21.2 27.0 35.3 48.2 53.6 53.3 59.3 58.4 65.0 71.5 65.2 72.6 79.9 88.2 103.6 198.8 357.3 436.9
(deg) 29.96 22.63 22.46 19.03 18.96 16.75 16.68 14.89 14.82 14.75 12.88 12.82 12.75 11.16 11.04 13.26 13.55 13.41
REDUCED SECTION PROPERTIES
J
Cw
4 cm6 cm 0.0119 297 0.0132 479 0.0317 619 0.0357 1086 0.0511 1202 0.0376 1338 0.0538 1481 0.0395 1618 0.0565 1792 0.0778 1959 0.0421 2038 0.0602 2258 0.0828 2469 0.0878 3042 0.1521 3530 0.1815 9774 0.2192 25520 0.4290 30844
es mm 2.65 2.63 2.63 2.18 2.17 2.13 2.13 2.09 2.08 2.07 2.02 2.01 2.00 1.93 1.91 1.55 1.46 1.44
PRINCIPAL AXIS PROPERTIES
GENERIC Z SECTIONS Design Yield Strength = 280 N/mm2 SINGLE SECTION D
B
x
t
mm top 100 x 55 125 x 55
bot 45 45
150
x
58
49
165
x
58
49
180
x
58
49
200
x
58
49
220
x
58
49
250 300
x x
76 94
68 86
mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
p o / py
Q 0.76 0.68 0.78 0.71 0.74 0.68 0.71 0.64 0.67 0.70 0.61 0.63 0.66 0.62 0.67 0.65 0.60 0.66
0.97 0.93 0.98 0.95 0.97 0.93 0.95 0.91 0.94 0.96 0.89 0.91 0.94 0.92 0.95 0.93 0.89 0.94
Zxr
Zy1r
3 cm3 cm 7.97 3.81 10.28 3.81 14.39 4.98 18.69 5.52 21.37 6.14 20.88 5.52 23.94 6.14 23.08 5.52 26.54 6.14 29.93 6.75 26.01 5.52 30.03 6.14 33.98 6.75 38.08 6.75 46.94 7.91 65.05 12.76 91.30 18.54 119.13 22.59
Zy2r
Ixr
Pc
cm3 cm4 kN 3.48 40.7 56.2 3.47 65.4 56.3 4.52 92.3 84.9 5.05 142.9 87.7 5.62 163.5 103.1 5.05 175.4 87.8 5.61 201.3 103.1 5.04 211.3 87.9 5.61 243.1 103.2 6.15 274.3 119.1 5.04 264.2 88.1 5.60 305.3 103.3 6.14 345.5 119.2 6.14 425.5 119.4 7.17 524.5 153.4 11.92 821.6 177.9 17.53 1377.9 199.7 21.33 1802.2 271.7
Mcx
Mcy1
Mcy2x
Iu u
kNm 2.23 2.88 4.03 5.23 5.98 5.85 6.70 6.46 7.43 8.38 7.28 8.41 9.51 10.66 13.14 18.21 25.56 33.36
kNm 1.07 1.07 1.40 1.54 1.72 1.54 1.72 1.54 1.72 1.89 1.54 1.72 1.89 1.89 2.21 3.57 5.19 6.33
kNm 0.97 0.97 1.27 1.42 1.57 1.41 1.57 1.41 1.57 1.72 1.41 1.57 1.72 1.72 2.01 3.34 4.91 5.97
cm 55.0 83.0 109.1 167.7 187.4 205.1 229.3 247.8 277.1 305.9 313.4 350.6 387.2 481.6 570.7 931.8 1643.6 2027.3
Mcx
Mcy1
Mcy2x
kNm 2.72 3.49 4.94 6.39 7.33 7.11 8.19 7.84 9.06 10.25 8.80 10.21 11.60 12.96 16.07 22.18 30.87 40.67
kNm 1.33 1.33 1.74 1.93 2.15 1.93 2.15 1.93 2.15 2.36 1.93 2.15 2.36 2.36 2.77 4.46 6.49 7.90
kNm 1.22 1.21 1.58 1.77 1.97 1.77 1.96 1.77 1.96 2.15 1.76 1.96 2.15 2.15 2.51 4.17 6.14 7.46
REDUCED SECTION PROPERTIES GENERIC Z SECTIONS Design Yield Strength = 350 N/mm2 SINGLE SECTION D
B
x
t
mm top 100 x 55 125 x 55
bot 45 45
150
x
58
49
165
x
58
49
180
x
58
49
200
x
58
49
220
x
58
49
250 300
x x
76 94
68 86
mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0
Q 0.72 0.65 0.75 0.68 0.72 0.65 0.68 0.62 0.65 0.67 0.58 0.61 0.63 0.60 0.64 0.62 0.58 0.63
p o / py 0.95 0.90 0.96 0.93 0.95 0.91 0.93 0.89 0.91 0.93 0.86 0.89 0.91 0.89 0.93 0.91 0.86 0.91
Zxr
Zy1r
3 cm3 cm 7.77 3.80 9.97 3.80 14.11 4.98 18.25 5.51 20.94 6.14 20.33 5.51 23.40 6.14 22.40 5.51 25.88 6.14 29.28 6.74 25.14 5.51 29.19 6.14 33.15 6.74 37.03 6.74 45.91 7.90 63.36 12.76 88.19 18.53 116.20 22.58
Zy2r
Ixr
Pc
cm3 cm4 kN 3.48 39.3 66.33 3.47 62.9 66.49 4.52 90.5 101.93 5.05 139.3 105.26 5.62 160.1 123.89 5.05 170.5 105.40 5.61 196.6 124.00 5.04 204.8 105.58 5.61 237.0 124.15 6.15 268.3 143.11 5.04 255.2 105.83 5.60 296.6 124.40 6.14 337.0 143.33 6.14 413.7 143.61 7.17 513.0 183.68 11.92 800.0 213.82 17.53 1327.2 237.76 21.33 1757.1 326.13
A - 48
4
Iv v cm4 6.0 7.0 9.1 11.6 12.8 12.1 13.5 12.7 14.1 15.4 13.3 14.8 16.2 16.9 19.7 41.1 74.9 91.1
LOAD CAPACITY TABLES FOR BEAMS S280 Generic C Sections Note: These tables are presented for generic C sections, which may be used for scheme design.
B-1
BENDING
Table 1
GENERIC C SECTION
Depth 100 mm Thickness 1.2 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
1.0
1.5
5.0
11.6 11.6 11.6
7.7 7.7 7.7
5.8 5.8 5.8
4.2 4.6 4.6
2.6 3.9 3.9
1.7 3.3 3.3
1.1 2.9 2.9
0.8 2.5 2.6
0.6 1.9 2.3
26.4 18.9
11.7 8.4
6.6 4.7
4.2 3.0
2.9 2.1
2.2 1.5
1.6 1.2
1.3 0.9
1.1 0.8
44.0 31.4
19.6 14.0
11.0 7.9
7.0 5.0
4.9 3.5
3.6 2.6
2.7 2.0
2.2 1.6
1.8 1.3
23.2 23.2 23.2
15.4 15.4 15.4
11.6 11.6 11.6
9.3 9.3 9.3
7.7 7.7 7.7
5.8 6.6 6.6
4.0 5.8 5.8
2.9 5.1 5.1
2.2 4.6 4.6
52.8 37.7
23.5 16.8
13.2 9.4
8.4 6.0
5.9 4.2
4.3 3.1
3.3 2.4
2.6 1.9
2.1 1.5
88.0 62.9
39.1 27.9
22.0 15.7
14.1 10.1
9.8 7.0
7.2 5.1
5.5 3.9
4.3 3.1
3.5 2.5
1.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
5.0
5.8 5.8 5.8
3.9 3.9 3.9
2.9 2.9 2.9
2.3 2.3 2.3
1.5 1.9 1.9
1.0 1.7 1.7
0.7 1.4 1.4
0.5 1.3 1.3
0.4 1.0 1.2
16.5 11.8
7.3 5.2
4.1 2.9
2.6 1.9
1.8 1.3
1.3 1.0
1.0 0.7
0.8 0.6
0.7 0.5
11.6 11.6 11.6
7.7 7.7 7.7
5.8 5.8 5.8
4.6 4.6 4.6
3.9 3.9 3.9
3.3 3.3 3.3
2.4 2.9 2.9
1.7 2.6 2.6
1.3 2.3 2.3
33.0 23.6
14.7 10.5
8.2 5.9
5.3 3.8
3.7 2.6
2.7 1.9
2.1 1.5
1.6 1.2
1.3 0.9
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 3.9 8.3
4.3 8.9
4.9 9.8
5.6 10.6
6.2 11.2
6.8 11.8
7.8 16.5
8.6 17.8
9.8 19.6
11.1 21.1
12.4 22.4
13.6 23.6
For double span beams, web cleats should be provided to prevent crushing at internal supports
B-2
BENDING
Table 2
GENERIC C SECTION
Depth 125 mm Thickness 1.2 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
1.0
1.5
5.0
14.8 14.8 14.8
9.9 9.9 9.9
7.4 7.4 7.4
5.6 5.9 5.9
3.4 4.9 4.9
2.2 4.2 4.2
1.5 3.7 3.7
1.1 3.3 3.3
0.8 2.5 3.0
42.2 30.2
18.8 13.4
10.6 7.5
6.8 4.8
4.7 3.4
3.4 2.5
2.6 1.9
2.1 1.5
1.7 1.2
70.4 50.3
31.3 22.3
17.6 12.6
11.3 8.0
7.8 5.6
5.7 4.1
4.4 3.1
3.5 2.5
2.8 2.0
29.7 29.7 29.7
19.8 19.8 19.8
14.8 14.8 14.8
11.9 11.9 11.9
9.9 9.9 9.9
7.2 8.5 8.5
5.0 7.4 7.4
3.5 6.6 6.6
2.6 5.9 5.9
84.4 60.3
37.5 26.8
21.1 15.1
13.5 9.7
9.4 6.7
6.9 4.9
5.3 3.8
4.2 3.0
3.4 2.4
140.7 100.5
62.6 44.7
35.2 25.1
22.5 16.1
15.6 11.2
11.5 8.2
8.8 6.3
7.0 5.0
5.6 4.0
1.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
5.0
7.4 7.4 7.4
4.9 4.9 4.9
3.7 3.7 3.7
3.0 3.0 3.0
2.0 2.5 2.5
1.3 2.1 2.1
0.9 1.9 1.9
0.6 1.6 1.6
0.5 1.3 1.5
26.4 18.8
11.7 8.4
6.6 4.7
4.2 3.0
2.9 2.1
2.2 1.5
1.6 1.2
1.3 0.9
1.1 0.8
14.8 14.8 14.8
9.9 9.9 9.9
7.4 7.4 7.4
5.9 5.9 5.9
4.9 4.9 4.9
4.2 4.2 4.2
3.0 3.7 3.7
2.1 3.3 3.3
1.6 3.0 3.0
52.8 37.7
23.5 16.8
13.2 9.4
8.4 6.0
5.9 4.2
4.3 3.1
3.3 2.4
2.6 1.9
2.1 1.5
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 3.7 8.5
4.1 9.1
4.7 10.0
5.3 10.8
5.9 11.5
6.5 12.1
7.5 16.9
8.2 18.3
9.4 20.1
10.6 21.6
11.8 23.0
13.0 24.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B-3
BENDING
Table 3
GENERIC C SECTION
Depth 125 mm Thickness 1.6 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
1.0
1.5
5.0
21.2 21.2 21.2
14.1 14.1 14.1
10.6 10.6 10.6
7.5 8.5 8.5
4.6 7.1 7.1
3.0 6.1 6.1
2.1 5.3 5.3
1.5 4.4 4.7
1.1 3.4 4.2
59.6 42.6
26.5 18.9
14.9 10.7
9.5 6.8
6.6 4.7
4.9 3.5
3.7 2.7
2.9 2.1
2.4 1.7
99.4 71.0
44.2 31.6
24.9 17.8
15.9 11.4
11.0 7.9
8.1 5.8
6.2 4.4
4.9 3.5
4.0 2.8
42.4 42.4 42.4
28.3 28.3 28.3
21.2 21.2 21.2
17.0 17.0 17.0
13.7 14.1 14.1
9.7 12.1 12.1
6.7 10.6 10.6
4.8 9.4 9.4
3.6 8.5 8.5
119.3 85.2
53.0 37.9
29.8 21.3
19.1 13.6
13.3 9.5
9.7 7.0
7.5 5.3
5.9 4.2
4.8 3.4
198.8 142.0
88.4 63.1
49.7 35.5
31.8 22.7
22.1 15.8
16.2 11.6
12.4 8.9
9.8 7.0
8.0 5.7
1.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
5.0
10.6 10.6 10.6
7.1 7.1 7.1
5.3 5.3 5.3
4.1 4.2 4.2
2.7 3.5 3.5
1.8 3.0 3.0
1.2 2.6 2.7
0.9 2.2 2.4
0.7 1.7 2.1
37.3 26.6
16.6 11.8
9.3 6.7
6.0 4.3
4.1 3.0
3.0 2.2
2.3 1.7
1.8 1.3
1.5 1.1
21.2 21.2 21.2
14.1 14.1 14.1
10.6 10.6 10.6
8.5 8.5 8.5
7.0 7.1 7.1
5.6 6.1 6.1
4.0 5.3 5.3
2.9 4.7 4.7
2.2 4.2 4.2
74.6 53.3
33.1 23.7
18.6 13.3
11.9 8.5
8.3 5.9
6.1 4.3
4.7 3.3
3.7 2.6
3.0 2.1
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.6 13.8
7.1 14.8
8.0 16.2
8.9 17.3
9.7 18.3
10.6 19.2
13.3 27.6
14.3 29.6
16.0 32.3
17.7 34.6
19.4 36.7
21.1 38.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
B-4
BENDING
Table 4
GENERIC C SECTION
Depth 150 mm Thickness 1.6 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
14.4 14.4 14.4
11.6 11.6 11.6
8.3 9.6 9.6
5.4 8.3 8.3
3.7 7.2 7.2
2.6 6.4 6.4
2.0 5.8 5.8
1.2 3.7 4.8
0.8 2.4 4.1
24.5 17.5
15.7 11.2
10.9 7.8
8.0 5.7
6.1 4.4
4.8 3.5
3.9 2.8
2.7 1.7
2.0 1.1
40.8 29.1
26.1 18.7
18.1 13.0
13.3 9.5
10.2 7.3
8.1 5.8
6.5 4.7
4.5 2.8
3.3 1.8
28.9 28.9 28.9
23.1 23.1 23.1
19.3 19.3 19.3
16.5 16.5 16.5
11.9 14.4 14.4
8.6 12.8 12.8
6.4 11.6 11.6
3.8 9.6 9.6
2.5 7.7 8.3
49.0 35.0
31.3 22.4
21.8 15.5
16.0 11.4
12.2 8.7
9.7 6.9
7.8 5.6
5.4 3.4
4.0 2.1
81.6 58.3
52.2 37.3
36.3 25.9
26.7 19.0
20.4 14.6
16.1 11.5
13.1 9.3
9.1 5.7
6.7 3.6
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
9.6 9.6 9.6
7.2 7.2 7.2
5.8 5.8 5.8
4.7 4.8 4.8
3.2 4.1 4.1
2.2 3.6 3.6
1.2 2.9 2.9
0.7 1.9 2.4
0.5 1.2 2.1
27.2 19.4
15.3 10.9
9.8 7.0
6.8 4.9
5.0 3.6
3.8 2.7
2.4 1.7
1.7 1.1
1.2 0.7
19.3 19.3 19.3
14.4 14.4 14.4
11.6 11.6 11.6
9.6 9.6 9.6
8.3 8.3 8.3
6.9 7.2 7.2
3.8 5.8 5.8
2.3 4.8 4.8
1.5 3.8 4.1
54.4 38.9
30.6 21.9
19.6 14.0
13.6 9.7
10.0 7.1
7.7 5.5
4.9 3.5
3.4 2.1
2.5 1.3
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.4 14.1
6.9 15.1
7.7 16.5
8.6 17.6
9.4 18.7
10.2 19.6
12.8 28.1
13.8 30.1
15.5 32.9
17.1 35.3
18.7 37.3
20.4 39.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B-5
BENDING
Table 5
GENERIC C SECTION
Depth 150 mm Thickness 1.8 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
16.6 16.6 16.6
13.3 13.3 13.3
9.3 11.1 11.1
6.1 9.5 9.5
4.2 8.3 8.3
3.0 7.4 7.4
2.2 6.5 6.7
1.4 4.2 5.5
0.9 2.7 4.8
28.1 20.1
18.0 12.8
12.5 8.9
9.2 6.6
7.0 5.0
5.5 4.0
4.5 3.2
3.1 2.0
2.3 1.2
46.8 33.4
30.0 21.4
20.8 14.9
15.3 10.9
11.7 8.4
9.2 6.6
7.5 5.3
5.2 3.3
3.8 2.0
33.3 33.3 33.3
26.6 26.6 26.6
22.2 22.2 22.2
18.4 19.0 19.0
13.4 16.6 16.6
9.7 14.8 14.8
7.2 13.3 13.3
4.3 11.1 11.1
2.8 8.6 9.5
56.2 40.1
35.9 25.7
25.0 17.8
18.3 13.1
14.0 10.0
11.1 7.9
9.0 6.4
6.2 3.9
4.6 2.5
93.6 66.9
59.9 42.8
41.6 29.7
30.6 21.8
23.4 16.7
18.5 13.2
15.0 10.7
10.4 6.5
7.6 4.1
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
11.1 11.1 11.1
8.3 8.3 8.3
6.7 6.7 6.7
5.2 5.5 5.5
3.6 4.8 4.8
2.5 4.2 4.2
1.3 3.3 3.3
0.8 2.1 2.8
0.5 1.3 2.4
31.2 22.3
17.6 12.5
11.2 8.0
7.8 5.6
5.7 4.1
4.4 3.1
2.8 2.0
2.0 1.2
1.4 0.8
22.2 22.2 22.2
16.6 16.6 16.6
13.3 13.3 13.3
11.1 11.1 11.1
9.5 9.5 9.5
7.7 8.3 8.3
4.3 6.7 6.7
2.6 5.5 5.5
1.7 4.3 4.8
62.4 44.6
35.1 25.1
22.5 16.0
15.6 11.1
11.5 8.2
8.8 6.3
5.6 4.0
3.9 2.4
2.9 1.5
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.1 17.2
8.7 18.4
9.7 20.0
10.6 21.4
11.5 22.6
12.5 23.7
16.3 34.4
17.4 36.8
19.3 40.1
21.2 42.8
23.1 45.3
25.0 47.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
B-6
BENDING
Table 6
GENERIC C SECTION
Depth 165 mm Thickness 1.6 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
16.1 16.1 16.1
12.9 12.9 12.9
9.3 10.7 10.7
6.0 9.2 9.2
4.1 8.0 8.0
2.9 7.1 7.1
2.2 6.4 6.4
1.3 4.2 5.4
0.9 2.7 4.6
29.9 21.4
19.2 13.7
13.3 9.5
9.8 7.0
7.5 5.3
5.9 4.2
4.8 3.4
3.3 2.1
2.4 1.3
49.9 35.7
31.9 22.8
22.2 15.8
16.3 11.6
12.5 8.9
9.9 7.0
8.0 5.7
5.5 3.5
4.1 2.2
32.1 32.1 32.1
25.7 25.7 25.7
21.4 21.4 21.4
18.3 18.4 18.4
13.1 16.1 16.1
9.4 14.3 14.3
6.9 12.9 12.9
4.1 10.7 10.7
2.7 8.5 9.2
59.9 42.8
38.3 27.4
26.6 19.0
19.6 14.0
15.0 10.7
11.8 8.5
9.6 6.8
6.7 4.2
4.9 2.6
99.8 71.3
63.9 45.6
44.4 31.7
32.6 23.3
25.0 17.8
19.7 14.1
16.0 11.4
11.1 6.9
8.1 4.4
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
10.7 10.7 10.7
8.0 8.0 8.0
6.4 6.4 6.4
5.3 5.4 5.4
3.6 4.6 4.6
2.5 4.0 4.0
1.3 3.2 3.2
0.8 2.1 2.7
0.5 1.3 2.3
33.3 23.8
18.7 13.4
12.0 8.6
8.3 5.9
6.1 4.4
4.7 3.3
3.0 2.1
2.1 1.3
1.5 0.8
21.4 21.4 21.4
16.1 16.1 16.1
12.9 12.9 12.9
10.7 10.7 10.7
9.2 9.2 9.2
7.6 8.0 8.0
4.1 6.4 6.4
2.5 5.4 5.4
1.6 4.2 4.6
66.6 47.5
37.4 26.7
24.0 17.1
16.6 11.9
12.2 8.7
9.4 6.7
6.0 4.3
4.2 2.6
3.1 1.6
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.3 14.2
6.8 15.2
7.6 16.6
8.4 17.8
9.2 18.9
10.0 19.8
12.6 28.4
13.5 30.5
15.1 33.3
16.7 35.7
18.4 37.8
20.0 39.6
For double span beams, web cleats should be provided to prevent crushing at internal supports
B-7
BENDING
Table 7
GENERIC C SECTION
Depth 165 mm Thickness 1.8 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
18.5 18.5 18.5
14.8 14.8 14.8
10.4 12.4 12.4
6.8 10.6 10.6
4.7 9.3 9.3
3.3 8.2 8.2
2.5 7.4 7.4
1.5 4.7 6.2
1.0 3.0 5.3
34.4 24.6
22.0 15.7
15.3 10.9
11.2 8.0
8.6 6.2
6.8 4.9
5.5 3.9
3.8 2.4
2.8 1.5
57.4 41.0
36.7 26.2
25.5 18.2
18.7 13.4
14.4 10.3
11.3 8.1
9.2 6.6
6.4 4.0
4.7 2.5
37.1 37.1 37.1
29.7 29.7 29.7
24.7 24.7 24.7
20.5 21.2 21.2
14.7 18.5 18.5
10.6 16.5 16.5
7.8 14.8 14.8
4.7 12.4 12.4
3.1 9.5 10.6
68.9 49.2
44.1 31.5
30.6 21.9
22.5 16.1
17.2 12.3
13.6 9.7
11.0 7.9
7.7 4.8
5.6 3.0
114.8 82.0
73.5 52.5
51.0 36.4
37.5 26.8
28.7 20.5
22.7 16.2
18.4 13.1
12.8 8.0
9.4 5.0
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
12.4 12.4 12.4
9.3 9.3 9.3
7.4 7.4 7.4
5.9 6.2 6.2
4.0 5.3 5.3
2.8 4.6 4.6
1.5 3.7 3.7
0.9 2.3 3.1
0.6 1.5 2.6
38.3 27.3
21.5 15.4
13.8 9.8
9.6 6.8
7.0 5.0
5.4 3.8
3.4 2.5
2.4 1.5
1.8 0.9
24.7 24.7 24.7
18.5 18.5 18.5
14.8 14.8 14.8
12.4 12.4 12.4
10.6 10.6 10.6
8.5 9.3 9.3
4.7 7.4 7.4
2.8 6.2 6.2
1.8 4.7 5.3
76.5 54.7
43.1 30.8
27.6 19.7
19.1 13.7
14.1 10.0
10.8 7.7
6.9 4.9
4.8 3.0
3.5 1.9
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.0 17.4
8.6 18.6
9.5 20.2
10.4 21.6
11.3 22.9
12.3 24.0
16.0 34.7
17.1 37.2
19.0 40.5
20.8 43.3
22.7 45.7
24.5 48.0
For double span beams, web cleats should be provided to prevent crushing at internal supports
B-8
BENDING
Table 8
GENERIC C SECTION
Depth 180 mm Thickness 1.6 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
17.7 17.7 17.7
14.2 14.2 14.2
10.4 11.8 11.8
6.7 10.1 10.1
4.6 8.9 8.9
3.3 7.9 7.9
2.4 7.1 7.1
1.5 4.7 5.9
0.9 3.0 5.1
36.0 25.7
23.0 16.4
16.0 11.4
11.7 8.4
9.0 6.4
7.1 5.1
5.8 4.1
4.0 2.5
2.9 1.6
60.0 42.8
38.4 27.4
26.6 19.0
19.6 14.0
15.0 10.7
11.8 8.5
9.6 6.9
6.7 4.2
4.9 2.6
35.4 35.4 35.4
28.3 28.3 28.3
23.6 23.6 23.6
20.2 20.2 20.2
14.2 17.7 17.7
10.2 15.7 15.7
7.5 14.2 14.2
4.5 11.8 11.8
2.9 9.2 10.1
71.9 51.4
46.0 32.9
32.0 22.8
23.5 16.8
18.0 12.8
14.2 10.2
11.5 8.2
8.0 5.0
5.9 3.1
119.9 85.7
76.7 54.8
53.3 38.1
39.2 28.0
30.0 21.4
23.7 16.9
19.2 13.7
13.3 8.3
9.8 5.2
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
11.8 11.8 11.8
8.9 8.9 8.9
7.1 7.1 7.1
5.9 5.9 5.9
4.0 5.1 5.1
2.7 4.4 4.4
1.5 3.5 3.5
0.9 2.3 3.0
0.6 1.5 2.5
40.0 28.6
22.5 16.1
14.4 10.3
10.0 7.1
7.3 5.2
5.6 4.0
3.6 2.6
2.5 1.6
1.8 1.0
23.6 23.6 23.6
17.7 17.7 17.7
14.2 14.2 14.2
11.8 11.8 11.8
10.1 10.1 10.1
8.3 8.9 8.9
4.5 7.1 7.1
2.7 5.9 5.9
1.7 4.6 5.1
79.9 57.1
45.0 32.1
28.8 20.6
20.0 14.3
14.7 10.5
11.2 8.0
7.2 5.1
5.0 3.1
3.7 2.0
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.1 14.4
6.6 15.4
7.4 16.8
8.2 18.0
9.0 19.1
9.8 20.0
12.3 28.7
13.2 30.8
14.8 33.7
16.4 36.1
18.0 38.2
19.5 40.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
B-9
BENDING
Table 9
GENERIC C SECTION
Depth 180 mm Thickness 1.8 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
20.5 20.5 20.5
16.4 16.4 16.4
11.6 13.6 13.6
7.5 11.7 11.7
5.2 10.2 10.2
3.7 9.1 9.1
2.7 8.2 8.2
1.7 5.2 6.8
1.1 3.3 5.8
41.5 29.6
26.5 19.0
18.4 13.2
13.5 9.7
10.4 7.4
8.2 5.9
6.6 4.7
4.6 2.9
3.4 1.8
69.1 49.4
44.2 31.6
30.7 21.9
22.6 16.1
17.3 12.3
13.7 9.8
11.1 7.9
7.7 4.8
5.6 3.0
40.9 40.9 40.9
32.8 32.8 32.8
27.3 27.3 27.3
22.6 23.4 23.4
16.0 20.5 20.5
11.5 18.2 18.2
8.5 16.4 16.4
5.1 13.6 13.6
3.3 10.4 11.7
83.0 59.3
53.1 37.9
36.9 26.3
27.1 19.4
20.7 14.8
16.4 11.7
13.3 9.5
9.2 5.8
6.8 3.6
138.3 98.8
88.5 63.2
61.5 43.9
45.2 32.3
34.6 24.7
27.3 19.5
22.1 15.8
15.4 9.6
11.3 6.0
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
13.6 13.6 13.6
10.2 10.2 10.2
8.2 8.2 8.2
6.6 6.8 6.8
4.5 5.8 5.8
3.1 5.1 5.1
1.7 4.1 4.1
1.0 2.6 3.4
0.7 1.7 2.9
46.1 32.9
25.9 18.5
16.6 11.9
11.5 8.2
8.5 6.0
6.5 4.6
4.1 3.0
2.9 1.8
2.1 1.1
27.3 27.3 27.3
20.5 20.5 20.5
16.4 16.4 16.4
13.6 13.6 13.6
11.7 11.7 11.7
9.3 10.2 10.2
5.1 8.2 8.2
3.0 6.8 6.8
2.0 5.2 5.8
92.2 65.8
51.9 37.0
33.2 23.7
23.0 16.5
16.9 12.1
13.0 9.3
8.3 5.9
5.8 3.6
4.2 2.3
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.8 17.5
8.4 18.8
9.3 20.4
10.2 21.8
11.1 23.1
12.0 24.2
15.7 35.1
16.8 37.5
18.6 40.9
20.4 43.7
22.3 46.2
24.1 48.4
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 10
BENDING
Table 10
GENERIC C SECTION
Depth 180 mm Thickness 2.0 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
23.1 23.1 23.1
18.5 18.5 18.5
12.9 15.4 15.4
8.4 13.2 13.2
5.7 11.6 11.6
4.1 10.3 10.3
3.1 9.1 9.2
1.9 5.8 7.7
1.2 3.7 6.6
46.8 33.4
29.9 21.4
20.8 14.9
15.3 10.9
11.7 8.4
9.2 6.6
7.5 5.3
5.2 3.2
3.8 2.0
78.0 55.7
49.9 35.7
34.7 24.8
25.5 18.2
19.5 13.9
15.4 11.0
12.5 8.9
8.7 5.4
6.4 3.4
46.2 46.2 46.2
37.0 37.0 37.0
30.8 30.8 30.8
25.0 26.4 26.4
17.7 23.1 23.1
12.7 20.5 20.5
9.5 18.5 18.5
5.7 15.4 15.4
3.7 11.5 13.2
93.6 66.8
59.9 42.8
41.6 29.7
30.6 21.8
23.4 16.7
18.5 13.2
15.0 10.7
10.4 6.5
7.6 4.1
156.0 111.4
99.8 71.3
69.3 49.5
50.9 36.4
39.0 27.9
30.8 22.0
25.0 17.8
17.3 10.8
12.7 6.8
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
15.4 15.4 15.4
11.6 11.6 11.6
9.2 9.2 9.2
7.3 7.7 7.7
5.0 6.6 6.6
3.4 5.8 5.8
1.8 4.6 4.6
1.1 2.9 3.9
0.7 1.9 3.3
52.0 37.1
29.2 20.9
18.7 13.4
13.0 9.3
9.5 6.8
7.3 5.2
4.7 3.3
3.2 2.0
2.4 1.3
30.8 30.8 30.8
23.1 23.1 23.1
18.5 18.5 18.5
15.4 15.4 15.4
13.2 13.2 13.2
10.3 11.6 11.6
5.7 9.2 9.2
3.4 7.7 7.7
2.2 5.7 6.6
104.0 74.3
58.5 41.8
37.4 26.7
26.0 18.6
19.1 13.6
14.6 10.4
9.4 6.7
6.5 4.1
4.8 2.6
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.7 21.0
10.4 22.4
11.4 24.4
12.4 26.0
13.5 27.4
14.5 28.7
19.5 42.0
20.7 44.8
22.8 48.7
24.9 52.0
26.9 54.9
29.0 57.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 11
BENDING
Table 11
GENERIC C SECTION
Depth 200 mm Thickness 1.6 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
19.9 19.9 19.9
15.9 15.9 15.9
11.9 13.3 13.3
7.7 11.4 11.4
5.2 9.9 9.9
3.7 8.8 8.8
2.7 8.0 8.0
1.6 5.3 6.6
1.1 3.4 5.7
44.8 32.0
28.7 20.5
19.9 14.2
14.6 10.5
11.2 8.0
8.9 6.3
7.2 5.1
5.0 3.1
3.7 2.0
74.7 53.4
47.8 34.2
33.2 23.7
24.4 17.4
18.7 13.3
14.8 10.5
12.0 8.5
8.3 5.2
6.1 3.3
39.8 39.8 39.8
31.8 31.8 31.8
26.5 26.5 26.5
22.6 22.7 22.7
15.8 19.9 19.9
11.2 17.7 17.7
8.3 15.9 15.9
4.9 13.3 13.3
3.2 10.3 11.4
89.7 64.1
57.4 41.0
39.9 28.5
29.3 20.9
22.4 16.0
17.7 12.7
14.4 10.3
10.0 6.2
7.3 3.9
149.5 106.8
95.7 68.3
66.4 47.5
48.8 34.9
37.4 26.7
29.5 21.1
23.9 17.1
16.6 10.4
12.2 6.5
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
13.3 13.3 13.3
9.9 9.9 9.9
8.0 8.0 8.0
6.6 6.6 6.6
4.6 5.7 5.7
3.1 5.0 5.0
1.6 4.0 4.0
1.0 2.7 3.3
0.6 1.7 2.8
49.8 35.6
28.0 20.0
17.9 12.8
12.5 8.9
9.2 6.5
7.0 5.0
4.5 3.2
3.1 1.9
2.3 1.2
26.5 26.5 26.5
19.9 19.9 19.9
15.9 15.9 15.9
13.3 13.3 13.3
11.4 11.4 11.4
9.3 9.9 9.9
5.0 8.0 8.0
2.9 6.6 6.6
1.9 5.1 5.7
99.7 71.2
56.1 40.0
35.9 25.6
24.9 17.8
18.3 13.1
14.0 10.0
9.0 6.4
6.2 3.9
4.6 2.5
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.0 14.6
6.4 15.6
7.2 17.1
8.0 18.3
8.7 19.4
9.5 20.3
11.9 29.2
12.9 31.3
14.4 34.1
15.9 36.6
17.4 38.7
19.0 40.7
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 12
P276: Building Design Using Cold Formed Steel Sections: Structural Design to BS 5950-5:1998. Section Properties and L
BENDING
Table 12
GENERIC C SECTION
Depth 200 mm Thickness 1.8 mm
Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
23.1 23.1 23.1
18.4 18.4 18.4
13.3 15.4 15.4
8.6 13.2 13.2
5.9 11.5 11.5
4.2 10.2 10.2
3.1 9.2 9.2
1.9 5.9 7.7
1.2 3.8 6.6
51.9 37.1
33.2 23.7
23.1 16.5
16.9 12.1
13.0 9.3
10.3 7.3
8.3 5.9
5.8 3.6
4.2 2.3
86.5 61.8
55.4 39.5
38.4 27.5
28.2 20.2
21.6 15.4
17.1 12.2
13.8 9.9
9.6 6.0
7.1 3.8
46.1 46.1 46.1
36.9 36.9 36.9
30.7 30.7 30.7
25.3 26.4 26.4
17.7 23.1 23.1
12.6 20.5 20.5
9.3 18.4 18.4
5.6 15.4 15.4
3.6 11.5 13.2
103.8 74.2
66.4 47.5
46.1 33.0
33.9 24.2
26.0 18.5
20.5 14.6
16.6 11.9
11.5 7.2
8.5 4.5
173.0 123.6
110.7 79.1
76.9 54.9
56.5 40.4
43.3 30.9
34.2 24.4
27.7 19.8
19.2 12.0
14.1 7.6
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
15.4 15.4 15.4
11.5 11.5 11.5
9.2 9.2 9.2
7.6 7.7 7.7
5.1 6.6 6.6
3.5 5.8 5.8
1.9 4.6 4.6
1.1 3.0 3.8
0.7 1.9 3.3
57.7 41.2
32.4 23.2
20.8 14.8
14.4 10.3
10.6 7.6
8.1 5.8
5.2 3.7
3.6 2.3
2.6 1.4
30.7 30.7 30.7
23.1 23.1 23.1
18.4 18.4 18.4
15.4 15.4 15.4
13.2 13.2 13.2
10.4 11.5 11.5
5.6 9.2 9.2
3.3 7.7 7.7
2.2 5.7 6.6
115.3 82.4
64.9 46.3
41.5 29.7
28.8 20.6
21.2 15.1
16.2 11.6
10.4 7.4
7.2 4.5
5.3 2.8
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.6 17.8
8.2 19.0
9.1 20.7
10.0 22.1
10.8 23.4
11.7 24.5
15.3 35.5
16.4 38.0
18.1 41.4
19.9 44.3
21.7 46.8
23.5 49.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 13
Created for Dr MAHMOOD MD TAHIR (Universiti Teknologi Malaysia) from www.steelbiz.org on 6/10/2003 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement
Design Strength 280 N/mm2
BENDING
Table 13
GENERIC C SECTION
Depth 200 mm Thickness 2.0 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0
3.0
3.5
8.0
14.6 17.4 17.4
9.5 14.9 14.9
6.5 13.1 13.1
4.7 11.6 11.6
3.5 10.4 10.4
2.7 8.3 9.5
2.1 6.5 8.7
1.4 4.2 7.5
1.0 2.9 6.5
26.1 18.6
19.2 13.7
14.7 10.5
11.6 8.3
9.4 6.7
7.8 5.3
6.5 4.1
4.8 2.6
3.7 1.7
43.5 31.1
32.0 22.8
24.5 17.5
19.3 13.8
15.7 11.2
12.9 8.8
10.9 6.8
8.0 4.3
6.1 2.9
34.8 34.8 34.8
28.0 29.8 29.8
19.6 26.1 26.1
14.0 23.2 23.2
10.4 20.9 20.9
7.9 19.0 19.0
6.2 17.4 17.4
4.0 12.7 14.9
2.8 8.7 13.1
52.2 37.3
38.4 27.4
29.4 21.0
23.2 16.6
18.8 13.4
15.5 10.6
13.1 8.2
9.6 5.1
7.3 3.4
87.0 62.1
63.9 45.7
48.9 35.0
38.7 27.6
31.3 22.4
25.9 17.6
21.8 13.6
16.0 8.6
12.2 5.7
2.0
2.5
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0
8.0
13.1 13.1 13.1
10.4 10.4 10.4
8.4 8.7 8.7
5.7 7.5 7.5
3.9 6.5 6.5
2.1 5.2 5.2
1.3 3.3 4.4
0.8 2.1 3.7
0.6 1.4 3.3
36.7 26.2
23.5 16.8
16.3 11.7
12.0 8.6
9.2 6.6
5.9 4.2
4.1 2.5
3.0 1.6
2.3 1.1
26.1 26.1 26.1
20.9 20.9 20.9
17.4 17.4 17.4
14.9 14.9 14.9
11.5 13.1 13.1
6.2 10.4 10.4
3.7 8.7 8.7
2.4 6.4 7.5
1.7 4.4 6.5
73.4 52.4
47.0 33.6
32.6 23.3
24.0 17.1
18.4 13.1
11.7 8.4
8.2 5.1
6.0 3.2
4.6 2.2
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.5 21.3
10.1 22.7
11.1 24.7
12.2 26.3
13.2 27.8
14.2 29.1
19.1 42.5
20.3 45.4
22.3 49.3
24.3 52.6
26.4 55.5
28.4 58.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 14
BENDING
Table 14
GENERIC C SECTION
Depth 220 mm Thickness 2.0 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0
3.0
3.5
8.0
16.5 19.4 19.4
10.7 16.6 16.6
7.3 14.6 14.6
5.2 12.9 12.9
3.9 11.7 11.7
3.0 9.4 10.6
2.3 7.4 9.7
1.5 4.7 8.3
1.1 3.2 7.3
32.0 22.9
23.5 16.8
18.0 12.9
14.2 10.2
11.5 8.2
9.5 6.5
8.0 5.0
5.9 3.2
4.5 2.1
53.4 38.1
39.2 28.0
30.0 21.5
23.7 16.9
19.2 13.7
15.9 10.8
13.3 8.3
9.8 5.3
7.5 3.5
38.8 38.8 38.8
31.0 33.3 33.3
21.5 29.1 29.1
15.3 25.9 25.9
11.4 23.3 23.3
8.6 21.2 21.2
6.8 19.4 19.4
4.4 14.0 16.6
3.0 9.5 14.6
64.1 45.8
47.1 33.6
36.0 25.7
28.5 20.3
23.1 16.5
19.1 13.0
16.0 10.0
11.8 6.3
9.0 4.2
106.8 76.3
78.5 56.0
60.1 42.9
47.5 33.9
38.4 27.5
31.8 21.7
26.7 16.7
19.6 10.5
15.0 7.0
2.0
2.5
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0
8.0
14.6 14.6 14.6
11.7 11.7 11.7
9.4 9.7 9.7
6.3 8.3 8.3
4.4 7.3 7.3
2.3 5.8 5.8
1.4 3.7 4.9
0.9 2.4 4.2
0.6 1.6 3.6
45.0 32.2
28.8 20.6
20.0 14.3
14.7 10.5
11.3 8.0
7.2 5.1
5.0 3.1
3.7 2.0
2.8 1.3
29.1 29.1 29.1
23.3 23.3 23.3
19.4 19.4 19.4
16.6 16.6 16.6
12.7 14.6 14.6
6.8 11.7 11.7
4.1 9.7 9.7
2.6 7.0 8.3
1.8 4.8 7.3
90.1 64.4
57.7 41.2
40.0 28.6
29.4 21.0
22.5 16.1
14.4 10.3
10.0 6.3
7.4 3.9
5.6 2.6
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.3 21.5
9.9 23.0
10.9 24.9
11.9 26.6
12.9 28.1
13.9 29.4
18.6 43.0
19.8 45.9
21.8 49.9
23.8 53.2
25.8 56.2
27.7 58.8
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 15
BENDING
Table 15
GENERIC C SECTION
Depth 220 mm Thickness 2.4 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0
3.0
3.5
8.0
19.5 23.9 23.9
12.7 20.5 20.5
8.7 17.9 17.9
6.2 15.9 15.9
4.7 13.9 14.3
3.6 11.1 13.0
2.8 8.7 11.9
1.9 5.6 10.2
1.3 3.8 9.0
39.4 28.1
28.9 20.7
22.2 15.8
17.5 12.5
14.2 10.1
11.7 8.0
9.9 6.2
7.2 3.9
5.5 2.6
65.7 46.9
48.2 34.5
36.9 26.4
29.2 20.8
23.6 16.9
19.5 13.3
16.4 10.3
12.1 6.5
9.2 4.3
47.8 47.8 47.8
36.8 41.0 41.0
25.6 35.8 35.8
18.4 31.9 31.9
13.7 28.7 28.7
10.5 26.1 26.1
8.2 23.8 23.9
5.4 16.6 20.5
3.8 11.4 17.9
78.8 56.3
57.9 41.4
44.3 31.7
35.0 25.0
28.4 20.3
23.4 16.0
19.7 12.3
14.5 7.8
11.1 5.2
131.3 93.8
96.5 68.9
73.9 52.8
58.4 41.7
47.3 33.8
39.1 26.6
32.8 20.5
24.1 12.9
18.5 8.7
2.0
2.5
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0
8.0
17.9 17.9 17.9
14.3 14.3 14.3
11.2 11.9 11.9
7.5 10.2 10.2
5.2 9.0 9.0
2.8 7.0 7.2
1.7 4.4 6.0
1.1 2.8 5.1
0.8 1.9 4.5
55.4 39.6
35.5 25.3
24.6 17.6
18.1 12.9
13.9 9.9
8.9 6.3
6.2 3.8
4.5 2.4
3.5 1.6
35.8 35.8 35.8
28.7 28.7 28.7
23.9 23.9 23.9
20.1 20.5 20.5
15.1 17.9 17.9
8.2 14.3 14.3
4.9 11.9 11.9
3.2 8.3 10.2
2.3 5.7 9.0
110.8 79.2
70.9 50.7
49.3 35.2
36.2 25.8
27.7 19.8
17.7 12.7
12.3 7.7
9.0 4.8
6.9 3.2
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 13.6 29.4
14.4 31.3
15.6 33.8
16.9 36.0
18.1 37.9
19.3 39.6
27.3 58.8
28.7 62.5
31.2 67.6
33.7 71.9
36.2 75.7
38.7 79.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 16
BENDING
Table 16
GENERIC C SECTION
Depth 250 mm Thickness 2.4 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0
3.5
4.0
10.0
14.7 23.9 23.9
10.1 20.9 20.9
7.2 18.6 18.6
5.4 16.5 16.7
3.2 10.1 13.9
2.1 6.5 11.9
1.5 4.5 10.4
1.1 3.2 9.3
0.9 2.4 8.4
38.3 27.4
29.3 21.0
23.2 16.6
18.8 13.4
13.0 8.2
9.6 5.1
7.3 3.4
5.8 2.4
4.7 1.8
63.9 45.6
48.9 34.9
38.6 27.6
31.3 22.4
21.7 13.6
16.0 8.6
12.2 5.7
9.7 4.0
7.8 2.9
41.9 47.7 47.7
28.9 41.8 41.8
20.7 37.1 37.1
15.3 33.4 33.4
9.2 27.8 27.8
6.0 18.8 23.9
4.2 12.8 20.9
3.0 9.2 18.6
2.3 6.8 16.7
76.7 54.8
58.7 41.9
46.4 33.1
37.6 26.8
26.1 16.3
19.2 10.3
14.7 6.9
11.6 4.8
9.4 3.5
127.8 91.3
97.8 69.9
77.3 55.2
62.6 44.7
43.5 27.2
31.9 17.1
24.5 11.5
19.3 8.1
15.7 5.9
2.0
3.0
Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0
10.0
20.9 20.9 20.9
13.1 13.9 13.9
6.0 10.4 10.4
3.2 8.2 8.4
2.0 5.1 7.0
1.3 3.3 6.0
0.9 2.2 5.2
0.7 1.6 4.6
0.5 1.2 4.2
73.4 52.4
32.6 23.3
18.3 13.1
11.7 8.4
8.2 5.1
6.0 3.2
4.6 2.1
3.6 1.5
2.9 1.1
41.8 41.8 41.8
27.8 27.8 27.8
17.1 20.9 20.9
9.2 16.7 16.7
5.5 13.9 13.9
3.6 9.4 11.9
2.5 6.4 10.4
1.8 4.6 9.3
1.4 3.4 8.4
146.7 104.8
65.2 46.6
36.7 26.2
23.5 16.8
16.3 10.2
12.0 6.4
9.2 4.3
7.2 3.0
5.9 2.2
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 13.3 29.8
14.0 31.7
15.2 34.3
16.4 36.5
17.6 38.4
18.8 40.2
26.5 59.7
28.0 63.5
30.4 68.6
32.8 73.0
35.2 76.9
37.6 80.3
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 17
BENDING
Table 17
GENERIC C SECTION
Depth 300 mm Thickness 2.4 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0
3.5
4.0
10.0
18.2 29.6 29.6
12.4 25.9 25.9
8.9 23.0 23.0
6.6 20.7 20.7
3.9 12.6 17.3
2.6 8.1 14.8
1.8 5.5 13.0
1.3 3.9 11.5
1.0 2.9 10.4
57.1 40.8
43.7 31.2
34.5 24.7
28.0 20.0
19.4 12.1
14.3 7.6
10.9 5.1
8.6 3.6
7.0 2.6
95.1 67.9
72.8 52.0
57.5 41.1
46.6 33.3
32.4 20.2
23.8 12.7
18.2 8.5
14.4 6.0
11.7 4.4
50.3 59.2 59.2
34.4 51.8 51.8
24.5 46.1 46.1
18.1 41.4 41.4
10.8 34.3 34.5
7.0 22.5 29.6
4.8 15.3 25.9
3.5 10.9 23.0
2.6 8.0 20.7
114.1 81.5
87.4 62.4
69.0 49.3
55.9 39.9
38.8 24.3
28.5 15.3
21.8 10.2
17.3 7.2
14.0 5.2
190.2 135.9
145.6 104.0
115.1 82.2
93.2 66.6
64.7 40.5
47.6 25.5
36.4 17.1
28.8 12.0
23.3 8.7
2.0
3.0
Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0
10.0
25.9 25.9 25.9
16.5 17.3 17.3
7.4 13.0 13.0
3.9 10.4 10.4
2.4 6.3 8.6
1.5 4.0 7.4
1.1 2.7 6.5
0.8 2.0 5.8
0.6 1.5 5.2
109.2 78.0
48.5 34.7
27.3 19.5
17.5 12.5
12.1 7.6
8.9 4.8
6.8 3.2
5.4 2.2
4.4 1.6
51.8 51.8 51.8
34.5 34.5 34.5
20.5 25.9 25.9
10.9 20.7 20.7
6.5 17.1 17.3
4.2 11.2 14.8
2.9 7.6 13.0
2.1 5.4 11.5
1.6 4.0 10.4
218.5 156.0
97.1 69.4
54.6 39.0
35.0 25.0
24.3 15.2
17.8 9.6
13.7 6.4
10.8 4.5
8.7 3.3
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 12.6 30.6
13.3 32.5
14.5 35.2
15.6 37.4
16.8 39.4
17.9 41.2
25.2 61.2
26.6 65.0
28.9 70.3
31.2 74.8
33.5 78.7
35.8 82.3
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 18
BENDING
Table 18
GENERIC C SECTION
Depth 300 mm Thickness 3.0 mm
Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0
3.5
4.0
10.0
22.3 38.3 38.3
15.3 33.5 33.5
11.0 29.8 29.8
8.2 25.2 26.8
5.0 15.3 22.3
3.3 9.9 19.1
2.3 6.8 16.7
1.7 4.9 14.9
1.3 3.6 13.4
73.8 52.7
56.5 40.4
44.6 31.9
36.2 25.8
25.1 15.7
18.4 9.9
14.1 6.6
11.2 4.6
9.0 3.4
123.0 87.8
94.2 67.3
74.4 53.1
60.3 43.0
41.8 26.2
30.7 16.5
23.5 11.0
18.6 7.7
15.1 5.6
61.6 76.6 76.6
42.4 67.0 67.0
30.4 59.5 59.5
22.6 53.6 53.6
13.6 41.8 44.7
8.9 27.5 38.3
6.2 18.8 33.5
4.6 13.4 29.8
3.5 10.0 26.8
147.6 105.4
113.0 80.7
89.3 63.8
72.3 51.7
50.2 31.4
36.9 19.8
28.2 13.2
22.3 9.3
18.1 6.8
246.0 175.7
188.3 134.5
148.8 106.3
120.5 86.1
83.7 52.3
61.5 32.9
47.1 22.1
37.2 15.5
30.1 11.3
2.0
3.0
Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0
10.0
33.5 33.5 33.5
20.1 22.3 22.3
9.2 16.7 16.7
4.9 12.6 13.4
3.0 7.7 11.2
2.0 4.9 9.6
1.4 3.4 8.4
1.0 2.4 7.4
0.8 1.8 6.7
141.2 100.9
62.8 44.8
35.3 25.2
22.6 16.1
15.7 9.8
11.5 6.2
8.8 4.1
7.0 2.9
5.6 2.1
67.0 67.0 67.0
44.7 44.7 44.7
25.2 33.5 33.5
13.5 26.8 26.8
8.2 20.9 22.3
5.4 13.7 19.1
3.8 9.4 16.7
2.8 6.7 14.9
2.1 5.0 13.4
282.5 201.8
125.5 89.7
70.6 50.4
45.2 32.3
31.4 19.6
23.1 12.4
17.7 8.3
13.9 5.8
11.3 4.2
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 20.4 44.8
21.3 47.4
22.8 51.1
24.3 54.1
25.8 56.8
27.4 59.2
40.7 89.7
42.6 94.9
45.6 102.1
48.7 108.2
51.7 113.5
54.7 118.4
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 19
[BLANK PAGE]
B - 20
LOAD CAPACITY TABLES FOR BEAMS S280 Generic Z Sections Note: These tables are presented for generic Z sections, which may be used for scheme design.
B - 21
BENDING
Table 19
GENERIC ZED SECTION Design Strength 280N/mm
Depth 100 mm Thickness 1.2 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
11.2 11.2 11.2
7.4 7.4 7.4
5.6 5.6 5.6
3.4 4.5 4.5
2.0 3.7 3.7
1.3 3.2 3.2
0.9 2.7 2.8
0.6 2.0 2.5
0.5 1.5 2.2
25.6 18.3
11.4 8.1
6.4 4.6
4.1 2.9
2.8 2.0
2.1 1.5
1.6 1.1
1.3 0.9
1.0 0.7
42.7 30.5
19.0 13.6
10.7 7.6
6.8 4.9
4.7 3.4
3.5 2.5
2.7 1.9
2.1 1.5
1.7 1.2
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
5.6 5.6 5.6
3.7 3.7 3.7
2.8 2.8 2.8
2.0 2.2 2.2
1.2 1.9 1.9
0.8 1.6 1.6
0.5 1.4 1.4
0.4 1.0 1.2
0.3 0.8 1.1
16.0 11.4
7.1 5.1
4.0 2.9
2.6 1.8
1.8 1.3
1.3 0.9
1.0 0.7
0.8 0.6
0.6 0.5
26.7 19.1
11.9 8.5
6.7 4.8
4.3 3.1
3.0 2.1
2.2 1.6
1.7 1.2
1.3 0.9
1.1 0.8
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 3.9 8.3
4.3 8.9
4.9 9.8
5.6 10.6
6.2 11.2
6.8 11.8
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 22
BENDING
Table 20
GENERIC ZED SECTION Design Strength 280N/mm
Depth 125 mm Thickness 1.2 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
14.4 14.4 14.4
9.6 9.6 9.6
7.2 7.2 7.2
4.2 5.8 5.8
2.5 4.8 4.8
1.6 4.1 4.1
1.1 3.5 3.6
0.8 2.5 3.2
0.6 1.9 2.9
41.2 29.4
18.3 13.1
10.3 7.4
6.6 4.7
4.6 3.3
3.4 2.4
2.6 1.8
2.0 1.5
1.6 1.2
68.7 49.0
30.5 21.8
17.2 12.3
11.0 7.8
7.6 5.4
5.6 4.0
4.3 3.1
3.4 2.4
2.7 2.0
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
7.2 7.2 7.2
4.8 4.8 4.8
3.6 3.6 3.6
2.5 2.9 2.9
1.5 2.4 2.4
1.0 2.1 2.1
0.6 1.8 1.8
0.5 1.3 1.6
0.3 0.9 1.4
25.7 18.4
11.4 8.2
6.4 4.6
4.1 2.9
2.9 2.0
2.1 1.5
1.6 1.1
1.3 0.9
1.0 0.7
42.9 30.7
19.1 13.6
10.7 7.7
6.9 4.9
4.8 3.4
3.5 2.5
2.7 1.9
2.1 1.5
1.7 1.2
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 3.7 8.5
4.1 9.1
4.7 10
5.3 10.8
5.9 11.5
6.5 12.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 23
BENDING
Table 21
GENERIC ZED SECTION Design Strength 280N/mm
Depth 125 mm Thickness 1.6 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
20.1 20.1 20.1
13.4 13.4 13.4
9.8 10.1 10.1
5.6 8.1 8.1
3.3 6.7 6.7
2.1 5.8 5.8
1.5 4.6 5.0
1.0 3.4 4.5
0.8 2.5 4.0
58.2 41.5
25.8 18.5
14.5 10.4
9.3 6.6
6.5 4.6
4.7 3.4
3.6 2.6
2.9 2.1
2.3 1.7
96.9 69.2
43.1 30.8
24.2 17.3
15.5 11.1
10.8 7.7
7.9 5.7
6.1 4.3
4.8 3.4
3.9 2.8
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
10.1 10.1 10.1
6.7 6.7 6.7
5.0 5.0 5.0
3.3 4.0 4.0
2.0 3.4 3.4
1.3 2.9 2.9
0.9 2.3 2.5
0.6 1.7 2.2
0.5 1.2 2.0
36.3 26.0
16.2 11.5
9.1 6.5
5.8 4.2
4.0 2.9
3.0 2.1
2.3 1.6
1.8 1.3
1.5 1.0
60.6 43.3
26.9 19.2
15.1 10.8
9.7 6.9
6.7 4.8
4.9 3.5
3.8 2.7
3.0 2.1
2.4 1.7
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.6 13.8
7.1 14.8
8.0 16.2
8.9 17.3
9.7 18.3
10.6 19.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 24
BENDING
Table 22
GENERIC ZED SECTION Design Strength 280N/mm
Depth 150 mm Thickness 1.6 m
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
13.1 13.1 13.1
7.8 10.5 10.5
4.6 8.7 8.7
3.0 7.5 7.5
2.0 6.4 6.5
1.4 4.7 5.8
1.1 3.5 5.2
0.6 2.0 4.4
0.4 1.3 3.7
22.5 16.1
14.4 10.3
10.0 7.1
7.3 5.2
5.6 4.0
4.4 3.2
3.6 2.6
2.5 1.6
1.8 1.0
37.5 26.8
24.0 17.1
16.7 11.9
12.2 8.7
9.4 6.7
7.4 5.3
6.0 4.3
4.2 2.6
3.1 1.6
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
8.7 8.7 8.7
6.5 6.5 6.5
4.6 5.2 5.2
2.8 4.4 4.4
1.8 3.7 3.7
1.2 3.2 3.3
0.6 1.7 2.6
0.4 1.0 2.2
0.3 0.7 1.9
25.0 17.9
14.1 10.0
9.0 6.4
6.2 4.5
4.6 3.3
3.5 2.5
2.2 1.6
1.6 1.0
1.1 0.6
41.7 29.8
23.4 16.7
15.0 10.7
10.4 7.4
7.7 5.5
5.9 4.2
3.7 2.7
2.6 1.6
1.9 1.0
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.4 14.1
6.9 15.1
7.7 16.5
8.6 17.6
9.4 18.7
10.2 19.6
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 25
BENDING
Table 23
GENERIC ZED SECTION Design Strength 280N/mm
Depth 150 mm Thickness 1.8 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
14.9 15.0 15.0
8.8 12.0 12.0
5.2 10.0 10.0
3.3 8.5 8.5
2.3 7.2 7.5
1.6 5.3 6.6
1.2 3.9 6.0
0.7 2.3 5.0
0.5 1.5 4.3
25.7 18.4
16.5 11.8
11.4 8.2
8.4 6.0
6.4 4.6
5.1 3.6
4.1 2.9
2.9 1.8
2.1 1.1
42.9 30.6
27.5 19.6
19.1 13.6
14.0 10.0
10.7 7.7
8.5 6.1
6.9 4.9
4.8 3.0
3.5 1.9
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
10.0 10.0 10.0
7.5 7.5 7.5
5.2 6.0 6.0
3.1 5.0 5.0
2.0 4.3 4.3
1.4 3.6 3.7
0.7 1.9 3.0
0.4 1.1 2.5
0.3 0.7 2.1
28.6 20.4
16.1 11.5
10.3 7.4
7.2 5.1
5.3 3.8
4.0 2.9
2.6 1.8
1.8 1.1
1.3 0.7
47.7 34.1
26.8 19.2
17.2 12.3
11.9 8.5
8.8 6.3
6.7 4.8
4.3 3.1
3.0 1.9
2.2 1.2
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.1 17.2
8.7 18.4
9.7 20.0
10.6 21.4
11.5 22.6
12.5 23.7
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 26
BENDING
Table 24
GENERIC ZED SECTION Design Strength 280N/mm
Depth 165 mm Thickness 1.6 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
14.6 14.6 14.6
8.6 11.7 11.7
5.1 9.7 9.7
3.2 8.4 8.4
2.2 7.2 7.3
1.6 5.2 6.5
1.2 3.8 5.8
0.7 2.2 4.9
0.5 1.4 4.2
27.6 19.7
17.7 12.6
12.3 8.8
9.0 6.4
6.9 4.9
5.5 3.9
4.4 3.2
3.1 1.9
2.3 1.2
46.0 32.9
29.5 21.0
20.5 14.6
15.0 10.7
11.5 8.2
9.1 6.5
7.4 5.3
5.1 3.2
3.8 2.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
9.7 9.7 9.7
7.3 7.3 7.3
5.1 5.8 5.8
3.0 4.9 4.9
1.9 4.2 4.2
1.3 3.6 3.7
0.7 1.9 2.9
0.4 1.1 2.4
0.3 0.7 2.1
30.7 21.9
17.3 12.3
11.0 7.9
7.7 5.5
5.6 4.0
4.3 3.1
2.8 2.0
1.9 1.2
1.4 0.8
51.1 36.5
28.8 20.5
18.4 13.1
12.8 9.1
9.4 6.7
7.2 5.1
4.6 3.3
3.2 2.0
2.3 1.3
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.3 14.2
6.8 15.2
7.6 16.6
8.4 17.8
9.2 18.9
10.0 19.8
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 27
BENDING
Table 25
GENERIC ZED SECTION Design Strength 280N/mm
Depth 165 mm Thickness 1.8 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
16.8 16.8 16.8
9.6 13.4 13.4
5.7 11.2 11.2
3.6 9.6 9.6
2.5 8.0 8.4
1.8 5.8 7.4
1.3 4.3 6.7
0.8 2.5 5.6
0.5 1.6 4.8
31.7 22.6
20.3 14.5
14.1 10.1
10.3 7.4
7.9 5.7
6.3 4.5
5.1 3.6
3.5 2.2
2.6 1.4
52.8 37.7
33.8 24.1
23.5 16.8
17.2 12.3
13.2 9.4
10.4 7.5
8.4 6.0
5.9 3.7
4.3 2.3
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
11.2 11.2 11.2
8.4 8.4 8.4
5.7 6.7 6.7
3.4 5.6 5.6
2.2 4.8 4.8
1.5 4.0 4.2
0.8 2.1 3.4
0.5 1.3 2.8
0.3 0.8 2.4
35.2 25.1
19.8 14.1
12.7 9.1
8.8 6.3
6.5 4.6
5.0 3.5
3.2 2.3
2.2 1.4
1.6 0.9
58.7 41.9
33.0 23.6
21.1 15.1
14.7 10.5
10.8 7.7
8.3 5.9
5.3 3.8
3.7 2.3
2.7 1.4
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.0 17.4
8.6 18.6
9.5 20.2
10.4 21.6
11.3 22.9
12.3 24.0
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 28
BENDING
Table 26
GENERIC ZED SECTION Design Strength 280N/mm
Depth 180 mm Thickness 1.6 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
16.2 16.2 16.2
9.4 12.9 12.9
5.5 10.8 10.8
3.5 9.2 9.2
2.4 7.9 8.1
1.7 5.7 7.2
1.3 4.2 6.5
0.7 2.4 5.4
0.5 1.6 4.6
33.3 23.8
21.3 15.2
14.8 10.6
10.9 7.8
8.3 5.9
6.6 4.7
5.3 3.8
3.7 2.3
2.7 1.5
55.4 39.6
35.5 25.3
24.6 17.6
18.1 12.9
13.9 9.9
11.0 7.8
8.9 6.3
6.2 3.8
4.5 2.4
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
10.8 10.8 10.8
8.1 8.1 8.1
5.6 6.5 6.5
3.3 5.4 5.4
2.1 4.6 4.6
1.4 3.9 4.0
0.8 2.1 3.2
0.5 1.2 2.7
0.3 0.8 2.3
37.0 26.4
20.8 14.8
13.3 9.5
9.2 6.6
6.8 4.8
5.2 3.7
3.3 2.4
2.3 1.4
1.7 0.9
61.6 44.0
34.6 24.7
22.2 15.8
15.4 11.0
11.3 8.1
8.7 6.2
5.5 4.0
3.8 2.4
2.8 1.5
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.1 14.4
6.6 15.4
7.4 16.8
8.2 18
9 19.1
9.8 20.0
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 29
BENDING
Table 27
GENERIC ZED SECTION Design Strength 280N/mm
Depth 180 mm Thickness 1.8 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
18.6 18.6 18.6
10.5 14.9 14.9
6.2 12.4 12.4
3.9 10.6 10.6
2.7 8.8 9.3
1.9 6.3 8.3
1.4 4.6 7.4
0.9 2.7 6.2
0.6 1.7 5.3
38.3 27.3
24.5 17.5
17.0 12.2
12.5 8.9
9.6 6.8
7.6 5.4
6.1 4.4
4.3 2.7
3.1 1.7
63.8 45.6
40.8 29.2
28.4 20.3
20.8 14.9
15.9 11.4
12.6 9.0
10.2 7.3
7.1 4.4
5.2 2.8
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
12.4 12.4 12.4
9.3 9.3 9.3
6.2 7.4 7.4
3.7 6.2 6.2
2.4 5.3 5.3
1.6 4.4 4.6
0.9 2.3 3.7
0.5 1.4 3.1
0.3 0.9 2.7
42.5 30.4
23.9 17.1
15.3 10.9
10.6 7.6
7.8 5.6
6.0 4.3
3.8 2.7
2.7 1.7
2.0 1.0
70.9 50.6
39.9 28.5
25.5 18.2
17.7 12.7
13.0 9.3
10.0 7.1
6.4 4.6
4.4 2.8
3.3 1.7
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.8 17.5
8.4 18.8
9.3 20.4
10.2 21.8
11.1 23.1
12.0 24.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 30
BENDING
Table 28
GENERIC ZED SECTION Design Strength 280N/mm
Depth 180 mm Thickness 2.0 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
20.7 21.0 21.0
11.5 16.8 16.8
6.8 14.0 14.0
4.4 12.0 12.0
3.0 9.6 10.5
2.1 6.9 9.3
1.6 5.1 8.4
1.0 3.0 7.0
0.6 1.9 6.0
43.2 30.8
27.6 19.7
19.2 13.7
14.1 10.1
10.8 7.7
8.5 6.1
6.9 4.9
4.8 3.0
3.5 1.9
72.0 51.4
46.1 32.9
32.0 22.8
23.5 16.8
18.0 12.9
14.2 10.2
11.5 8.2
8.0 5.0
5.9 3.1
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
14.0 14.0 14.0
10.5 10.5 10.5
6.9 8.4 8.4
4.1 7.0 7.0
2.6 6.0 6.0
1.8 4.8 5.2
1.0 2.6 4.2
0.6 1.5 3.5
0.4 1.0 3.0
48.0 34.3
27.0 19.3
17.3 12.3
12.0 8.6
8.8 6.3
6.7 4.8
4.3 3.1
3.0 1.9
2.2 1.2
80.0 57.1
45.0 32.1
28.8 20.6
20.0 14.3
14.7 10.5
11.2 8.0
7.2 5.1
5.0 3.1
3.7 2.0
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.7 21.0
10.4 22.4
11.4 24.4
12.4 26.0
13.5 27.4
14.5 28.7
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 31
BENDING
Table 29
GENERIC ZED SECTION Design Strength 280N/mm
Depth 200 mm Thickness 1.6 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
18.2 18.2 18.2
10.4 14.6 14.6
6.1 12.1 12.1
3.9 10.4 10.4
2.6 8.8 9.1
1.9 6.3 8.1
1.4 4.6 7.3
0.8 2.7 6.1
0.5 1.7 5.2
41.6 29.7
26.6 19.0
18.5 13.2
13.6 9.7
10.4 7.4
8.2 5.9
6.7 4.8
4.6 2.9
3.4 1.8
69.3 49.5
44.4 31.7
30.8 22.0
22.6 16.2
17.3 12.4
13.7 9.8
11.1 7.9
7.7 4.8
5.7 3.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
12.1 12.1 12.1
9.1 9.1 9.1
6.2 7.3 7.3
3.7 6.1 6.1
2.3 5.2 5.2
1.6 4.4 4.6
0.8 2.3 3.6
0.5 1.3 3.0
0.3 0.9 2.6
46.2 33.0
26.0 18.6
16.6 11.9
11.6 8.3
8.5 6.1
6.5 4.6
4.2 3.0
2.9 1.8
2.1 1.1
77.0 55.0
43.3 31.0
27.7 19.8
19.3 13.8
14.2 10.1
10.8 7.7
6.9 5.0
4.8 3.0
3.5 1.9
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.0 14.6
6.4 15.6
7.2 17.1
8.0 18.3
8.7 19.4
9.5 20.3
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 32
BENDING
Table 30
GENERIC ZED SECTION Design Strength 280N/mm
Depth 200 mm Thickness 1.8 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
21.0 21.0 21.0
11.6 16.8 16.8
6.8 14.0 14.0
4.3 12.0 12.0
3.0 9.8 10.5
2.1 7.0 9.3
1.6 5.1 8.4
0.9 3.0 7.0
0.6 1.9 6.0
48.1 34.3
30.8 22.0
21.4 15.3
15.7 11.2
12.0 8.6
9.5 6.8
7.7 5.5
5.3 3.3
3.9 2.1
80.1 57.2
51.3 36.6
35.6 25.4
26.2 18.7
20.0 14.3
15.8 11.3
12.8 9.2
8.9 5.6
6.5 3.5
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
14.0 14.0 14.0
10.5 10.5 10.5
6.9 8.4 8.4
4.1 7.0 7.0
2.6 6.0 6.0
1.8 4.9 5.3
0.9 2.6 4.2
0.6 1.5 3.5
0.4 1.0 3.0
53.4 38.1
30.0 21.5
19.2 13.7
13.4 9.5
9.8 7.0
7.5 5.4
4.8 3.4
3.3 2.1
2.5 1.3
89.0 63.6
50.1 35.8
32.0 22.9
22.3 15.9
16.3 11.7
12.5 8.9
8.0 5.7
5.6 3.5
4.1 2.2
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.6 17.8
8.2 19
9.1 20.7
10 22.1
10.8 23.4
11.7 24.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 33
BENDING
Table 31
GENERIC ZED SECTION Design Strength 280N/mm
Depth 200 mm Thickness 2.0 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.0
Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0
8.0
7.5 15.9 15.9
4.8 13.6 13.6
3.3 10.8 11.9
2.3 7.7 10.6
1.7 5.7 9.5
1.3 4.3 8.6
1.0 3.3 7.9
0.7 2.1 6.8
0.5 1.4 5.9
24.2 17.3
17.8 12.7
13.6 9.7
10.7 7.7
8.7 6.2
7.2 4.9
6.0 3.8
4.4 2.4
3.4 1.6
40.3 28.8
29.6 21.1
22.7 16.2
17.9 12.8
14.5 10.4
12.0 8.2
10.1 6.3
7.4 4.0
5.7 2.7
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0
8.0
11.9 11.9 11.9
7.6 9.5 9.5
4.5 7.9 7.9
2.9 6.8 6.8
2.0 5.4 5.9
1.0 2.8 4.8
0.6 1.7 4.0
0.4 1.1 3.4
0.3 0.7 3.0
34.0 24.3
21.8 15.5
15.1 10.8
11.1 7.9
8.5 6.1
5.4 3.9
3.8 2.4
2.8 1.5
2.1 1.0
56.7 40.5
36.3 25.9
25.2 18.0
18.5 13.2
14.2 10.1
9.1 6.5
6.3 3.9
4.6 2.5
3.5 1.7
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.5 21.3
10.1 22.7
11.1 24.7
12.2 26.3
13.2 27.8
14.2 29.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 34
BENDING
Table 32
GENERIC ZED SECTION Design Strength 280N/mm
Depth 220 mm Thickness 2.0 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.0
Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0
8.0
8.2 17.8 17.8
5.3 15.2 15.2
3.6 11.9 13.3
2.6 8.5 11.8
1.9 6.2 10.7
1.4 4.7 9.7
1.1 3.6 8.9
0.7 2.3 7.6
0.5 1.6 6.7
29.8 21.3
21.9 15.6
16.7 12.0
13.2 9.5
10.7 7.7
8.9 6.0
7.4 4.7
5.5 2.9
4.2 2.0
49.6 35.4
36.5 26.0
27.9 19.9
22.1 15.8
17.9 12.8
14.8 10.1
12.4 7.8
9.1 4.9
7.0 3.3
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0
8.0
13.3 13.3 13.3
8.4 10.7 10.7
4.9 8.9 8.9
3.2 7.6 7.6
2.2 5.9 6.7
1.1 3.1 5.3
0.7 1.8 4.4
0.4 1.2 3.8
0.3 0.8 3.3
41.9 29.9
26.8 19.1
18.6 13.3
13.7 9.8
10.5 7.5
6.7 4.8
4.7 2.9
3.4 1.8
2.6 1.2
69.8 49.8
44.7 31.9
31.0 22.2
22.8 16.3
17.4 12.5
11.2 8.0
7.8 4.8
5.7 3.1
4.4 2.0
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.3 21.5
9.9 23
10.9 24.9
11.9 26.6
12.9 28.1
13.9 29.4
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 35
BENDING
Table 33
GENERIC ZED SECTION Design Strength 280N/mm
Depth 220 mm Thickness 2.4 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.0
Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0
8.0
9.7 21.9 21.9
6.3 18.8 18.8
4.3 13.9 16.4
3.1 9.9 14.6
2.3 7.3 13.1
1.8 5.6 11.9
1.4 4.3 11.0
0.9 2.8 9.4
0.7 1.9 8.2
36.7 26.2
27.0 19.3
20.6 14.7
16.3 11.7
13.2 9.4
10.9 7.4
9.2 5.7
6.7 3.6
5.2 2.4
61.2 43.7
44.9 32.1
34.4 24.6
27.2 19.4
22.0 15.7
18.2 12.4
15.3 9.6
11.2 6.0
8.6 4.0
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0
8.0
16.4 16.4 16.4
9.9 13.1 13.1
5.9 11.0 11.0
3.8 9.4 9.4
2.6 7.0 8.2
1.4 3.7 6.6
0.8 2.2 5.5
0.6 1.4 4.7
0.4 0.9 4.1
51.6 36.9
33.0 23.6
22.9 16.4
16.9 12.0
12.9 9.2
8.3 5.9
5.7 3.6
4.2 2.3
3.2 1.5
86.0 61.4
55.1 39.3
38.2 27.3
28.1 20.1
21.5 15.4
13.8 9.8
9.6 6.0
7.0 3.8
5.4 2.5
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 13.6 29.4
14.4 31.3
15.6 33.8
16.9 36
18.1 37.9
19.3 39.6
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 36
BENDING
Table 34
GENERIC ZED SECTION Design Strength 280N/mm
Depth 250 mm Thickness 2.4 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.5
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0
10.0
15.0 26.0 26.0
10.2 22.8 22.8
7.2 20.2 20.2
5.3 17.5 18.2
3.2 10.4 15.2
2.0 6.7 13.0
1.4 4.5 11.4
1.0 3.2 10.1
0.8 2.4 9.1
42.2 30.2
32.3 23.1
25.6 18.3
20.7 14.8
14.4 9.0
10.6 5.7
8.1 3.8
6.4 2.7
5.2 1.9
70.4 50.3
53.9 38.5
42.6 30.4
34.5 24.6
24.0 15.0
17.6 9.4
13.5 6.3
10.6 4.4
8.6 3.2
2.0
Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0
10.0
22.8 22.8 22.8
13.8 15.2 15.2
6.1 11.4 11.4
3.2 8.7 9.1
1.9 5.2 7.6
1.2 3.3 6.5
0.9 2.3 5.7
0.6 1.6 5.1
0.5 1.2 4.6
80.8 57.7
35.9 25.7
20.2 14.4
12.9 9.2
9.0 5.6
6.6 3.5
5.1 2.4
4.0 1.7
3.2 1.2
134.7 96.2
59.9 42.8
33.7 24.1
21.6 15.4
15.0 9.4
11.0 5.9
8.4 3.9
6.7 2.8
5.4 2.0
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 13.3 29.8
14 31.7
15.2 34.3
16.4 36.5
17.6 38.4
18.8 40.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 37
BENDING
Table 35
GENERIC ZED SECTION Design Strength 280N/mm
Depth 300 mm Thickness 2.4 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.5
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0
10.0
32.1 36.5 36.5
21.8 32.0 32.0
15.4 28.4 28.4
11.3 25.6 25.6
6.6 21.3 21.3
4.2 14.3 18.3
2.9 9.7 16.0
2.1 6.8 14.2
1.5 5.0 12.8
70.8 50.6
54.2 38.7
42.9 30.6
34.7 24.8
24.1 15.1
17.7 9.5
13.6 6.4
10.7 4.5
8.7 3.3
118.1 84.3
90.4 64.6
71.4 51.0
57.9 41.3
40.2 25.1
29.5 15.8
22.6 10.6
17.9 7.4
14.5 5.4
2.0
Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0
10.0
32.0 32.0 32.0
21.3 21.3 21.3
13.0 16.0 16.0
6.8 12.8 12.8
4.0 10.7 10.7
2.6 7.1 9.1
1.7 4.8 8.0
1.2 3.4 7.1
0.9 2.5 6.4
135.6 96.9
60.3 43.0
33.9 24.2
21.7 15.5
15.1 9.4
11.1 5.9
8.5 4.0
6.7 2.8
5.4 2.0
226.0 161.4
100.4 71.7
56.5 40.4
36.2 25.8
25.1 15.7
18.4 9.9
14.1 6.6
11.2 4.6
9.0 3.4
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 12.6 30.6
13.3 32.5
14.5 35.2
15.6 37.4
16.8 39.4
17.9 41.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 38
BENDING
Table 36
GENERIC ZED SECTION Design Strength 280N/mm
Depth 300 mm Thickness 3.0 mm
2
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.5
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0
10.0
39.3 47.7 47.7
26.7 41.7 41.7
19.0 37.1 37.1
14.0 33.4 33.4
8.2 26.8 27.8
5.3 17.5 23.8
3.6 11.8 20.8
2.6 8.4 18.5
2.0 6.2 16.7
92.6 66.2
70.9 50.7
56.0 40.0
45.4 32.4
31.5 19.7
23.2 12.4
17.7 8.3
14.0 5.8
11.3 4.3
154.4 110.3
118.2 84.4
93.4 66.7
75.7 54.0
52.5 32.8
38.6 20.7
29.6 13.9
23.4 9.7
18.9 7.1
2.0
Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0
10.0
41.7 41.7 41.7
27.8 27.8 27.8
16.0 20.8 20.8
8.4 16.7 16.7
5.0 13.4 13.9
3.2 8.7 11.9
2.2 5.9 10.4
1.6 4.2 9.3
1.2 3.1 8.3
177.3 126.7
78.8 56.3
44.3 31.7
28.4 20.3
19.7 12.3
14.5 7.8
11.1 5.2
8.8 3.6
7.1 2.7
295.6 211.1
131.4 93.8
73.9 52.8
47.3 33.8
32.8 20.5
24.1 12.9
18.5 8.7
14.6 6.1
11.8 4.4
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 20.4 44.8
21.3 47.4
22.8 51.1
24.3 54.1
25.8 56.8
27.4 59.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
B - 39
[BLANK PAGE]
B - 40
LOAD CAPACITY TABLES FOR COLUMNS S280 Generic C Sections Note: These tables are presented for generic C sections, which may be used for scheme design.
B-1
COMPRESSION GENERIC C SECTION
Table 37
Depth 100 mm Thickness 1.2 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4m
3m
2m
1m
Continuous
6.8 6.8 6.8
10.0 10.8 10.8
14.8 18.4 18.8
19.5 26.1 27.3
21.2 28.3 30.1
4.3 4.5 4.5
6.1 6.6 6.7
6.9 7.9 8.2
7.2 8.3 8.6
6.1 6.5 6.5
9.0 10.8 10.9
10.1 13.2 14.2
10.4 13.6 14.8
5.9 6.2 6.2
7.9 8.8 8.8
9.7 11.1 11.3
10.4 11.9 12.2
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
3.1 3.1 3.1
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
4.1 4.1 4.1
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
4.4 4.4 4.4
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4m
3m
2m
1m
Continuous
28.7 28.7 28.7
44.6 44.6 44.6
48.9 62.6 62.6
48.9 69.0 71.8
48.9 69.0 74.3
10.6 10.6 10.6
11.7 12.7 12.8
12.1 13.5 13.8
12.2 13.7 14.1
21.2 22.0 22.0
21.9 28.4 29.6
21.9 29.6 32.0
21.9 29.6 32.5
13.4 13.4 13.4
15.2 16.2 16.2
16.1 17.8 18.0
16.4 18.2 18.6
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
8.2 8.2 8.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
14.5 14.5 14.5
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.7 10.7 10.7
B - 42
COMPRESSION GENERIC C SECTION
Table 38
Depth 125 mm Thickness 1.2 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
6.9 6.9 6.9
10.8 10.8 10.8
17.3 17.9 17.9
22.1 25.0 25.2
23.5 26.9 27.8
4.7 4.7 4.7
6.7 6.8 6.8
7.5 8.1 8.2
7.8 8.3 8.5
6.7 6.7 6.7
10.5 11.0 11.0
11.6 13.3 13.8
11.8 13.7 14.3
6.3 6.3 6.3
8.8 8.9 8.9
10.5 11.1 11.1
11.1 11.8 12.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
3.3 3.3 3.3
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
4.2 4.2 4.2
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
4.5 4.5 4.5
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
28.5 28.5 28.5
44.2 44.2 44.2
59.9 62.2 62.2
59.9 71.3 71.9
59.9 71.3 74.7
10.6 10.6 10.6
12.5 12.8 12.9
13.0 13.7 13.8
13.1 13.9 14.2
22.1 22.1 22.1
26.0 29.3 30.3
26.0 31.2 32.5
26.0 31.2 33.1
13.4 13.4 13.4
16.0 16.2 16.2
17.1 17.9 18.0
17.5 18.4 18.6
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
8.2 8.2 8.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
14.4 14.4 14.4
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.6 10.6 10.6
B - 43
COMPRESSION GENERIC C SECTION
Table 39
Depth 125 mm Thickness 1.6 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
9.6 9.6 9.6
15.4 15.4 15.4
26.4 27.3 27.3
34.8 40.9 41.2
37.3 44.2 45.9
6.3 6.3 6.3
9.1 9.3 9.3
10.6 11.5 11.6
11.0 11.9 12.2
9.2 9.2 9.2
15.3 15.7 15.7
17.1 20.3 21.2
17.4 20.8 22.0
8.5 8.5 8.5
12.1 12.3 12.3
14.8 15.7 15.8
15.7 16.8 17.1
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
4.4 4.4 4.4
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
5.8 5.8 5.8
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
6.0 6.0 6.0
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
38.4 38.4 38.4
61.7 61.7 61.7
89.0 93.0 93.0
89.0 109.3 110.1
89.0 109.3 114.6
14.1 14.1 14.1
17.0 17.3 17.3
17.8 18.8 19.0
18.0 19.1 19.4
29.9 29.9 29.9
37.3 42.3 42.3
37.3 45.7 47.9
37.3 45.7 48.7
17.8 17.8 17.8
21.5 21.7 21.7
23.1 24.3 24.3
23.7 24.9 25.2
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
10.8 10.8 10.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
19.4 19.4 19.4
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
14.0 14.0 14.0
B - 44
COMPRESSION GENERIC C SECTION
Table 40
Depth 150 mm Thickness 1.6 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
13.7 13.7 13.7
21.1 21.1 21.1
32.6 33.1 33.1
39.6 42.9 43.1
41.5 45.4 46.5
8.4 8.4 8.4
11.2 11.3 11.3
12.2 12.8 12.9
12.5 13.1 13.3
13.0 13.0 13.0
18.9 19.5 19.5
20.2 22.4 22.9
20.5 22.9 23.6
11.1 11.1 11.1
14.6 14.7 14.7
16.8 17.4 17.4
17.6 18.2 18.4
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.1 6.1 6.1
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
8.4 8.4 8.4
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
8.3 8.3 8.3
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
56.2 56.2 56.2
83.2 83.2 83.2
106.8 107.8 107.8
106.8 120.2 120.4
106.8 120.2 123.8
17.5 17.5 17.5
19.8 20.1 20.1
20.4 21.2 21.3
20.7 21.4 21.6
40.4 40.4 40.4
45.6 49.6 50.7
45.6 51.9 53.5
45.6 51.9 54.2
21.8 21.8 21.8
25.1 25.1 25.1
26.5 27.2 27.2
26.9 27.7 27.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
14.2 14.2 14.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
28.1 28.1 28.1
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
18.0 18.0 18.0
B - 45
COMPRESSION GENERIC C SECTION
Table 41
Depth 150 mm Thickness 1.8 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
15.8 15.8 15.8
24.6 24.6 24.6
39.2 39.7 39.7
48.1 52.5 52.7
50.5 55.7 57.0
9.5 9.5 9.5
12.8 12.8 12.8
14.0 14.7 14.8
14.4 15.1 15.3
14.8 14.8 14.8
22.2 22.6 22.6
23.8 26.6 27.3
24.1 27.1 28.1
12.6 12.6 12.6
16.7 16.8 16.8
19.3 20.0 20.0
20.2 21.0 21.2
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.8 6.8 6.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
9.5 9.5 9.5
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
9.3 9.3 9.3
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
63.6 63.6 63.6
96.0 96.0 96.0
126.0 127.1 127.1
126.0 142.5 142.8
126.0 142.5 146.9
19.6 19.6 19.6
22.4 22.6 22.6
23.2 24.0 24.1
23.4 24.3 24.5
45.8 45.8 45.8
52.8 57.6 58.0
52.8 60.5 62.4
52.8 60.5 63.2
24.5 24.5 24.5
28.3 28.3 28.3
29.8 30.7 30.7
30.4 31.3 31.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
15.8 15.8 15.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
31.7 31.7 31.7
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
20.2 20.2 20.2
B - 46
COMPRESSION GENERIC C SECTION
Table 42
Depth 165mm Thickness 1.6 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
13.7 13.7 13.7
20.9 20.9 20.9
32.2 32.2 32.2
39.3 41.6 41.6
41.1 44.1 44.9
8.5 8.5 8.5
11.3 11.3 11.3
12.4 12.8 12.8
12.6 13.1 13.3
13.0 13.0 13.0
19.1 19.4 19.4
20.6 22.3 22.6
20.9 22.8 23.3
11.2 11.2 11.2
14.7 14.7 14.7
16.9 17.3 17.3
17.6 18.1 18.3
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.2 6.2 6.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
8.5 8.5 8.5
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
8.4 8.4 8.4
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
55.9 55.9 55.9
82.8 82.8 82.8
107.5 107.5 107.5
110.3 120.4 120.4
110.3 121.2 124.0
17.5 17.5 17.5
19.9 20.1 20.2
20.7 21.3 21.3
20.9 21.5 21.7
40.6 40.6 40.6
46.9 50.0 51.1
47.4 52.6 53.8
47.4 52.8 54.5
21.8 21.8 21.8
25.1 25.1 25.1
26.7 27.2 27.2
27.2 27.8 27.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
14.2 14.2 14.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
28.1 28.1 28.1
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
18.0 18.0 18.0
B - 47
COMPRESSION GENERIC C SECTION
Table 43
Depth 165 mm Thickness 1.8 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
15.8 15.8 15.8
24.3 24.3 24.3
38.4 38.4 38.4
47.7 50.6 50.6
50.0 53.8 54.8
9.6 9.6 9.6
12.9 12.9 12.9
14.2 14.7 14.8
14.6 15.1 15.3
14.9 14.9 14.9
22.4 22.5 22.5
24.3 26.4 26.9
24.6 27.0 27.7
12.7 12.7 12.7
16.8 16.8 16.8
19.4 19.9 19.9
20.3 20.9 21.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.9 6.9 6.9
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
9.6 9.6 9.6
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
9.4 9.4 9.4
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
63.3 63.3 63.3
95.5 95.5 95.5
126.8 126.8 126.8
130.3 142.8 142.8
130.3 143.7 147.2
19.7 19.7 19.7
22.6 22.8 22.8
23.5 24.1 24.2
23.7 24.4 24.6
46.0 46.0 46.0
54.5 58.3 58.7
55.1 61.3 62.9
55.1 61.5 63.7
24.5 24.5 24.5
28.3 28.3 28.3
30.1 30.7 30.7
30.7 31.3 31.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
15.8 15.8 15.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
31.6 31.6 31.6
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
20.2 20.2 20.2
B - 48
COMPRESSION GENERIC C SECTION
Table 44
Depth 180 mm Thickness 1.6 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
13.7 13.7 13.7
20.8 20.8 20.8
31.4 31.4 31.4
38.9 40.3 40.3
40.6 43.0 43.5
8.6 8.6 8.6
11.4 11.4 11.4
12.5 12.8 12.8
12.7 13.1 13.2
13.1 13.1 13.1
19.1 19.3 19.3
20.8 22.1 22.4
21.1 22.6 23.1
11.3 11.3 11.3
14.7 14.7 14.7
16.9 17.2 17.2
17.6 18.0 18.1
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.2 6.2 6.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
8.6 8.6 8.6
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
8.4 8.4 8.4
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
55.7 55.7 55.7
82.4 82.4 82.4
107.3 107.3 107.3
112.7 120.4 120.4
112.7 122.1 124.3
17.6 17.6 17.6
20.0 20.2 20.2
20.9 21.3 21.4
21.1 21.6 21.8
40.8 40.8 40.8
47.9 50.4 51.3
48.9 53.1 54.1
48.9 53.4 54.9
21.8 21.8 21.8
25.1 25.1 25.1
26.8 27.2 27.2
27.3 27.8 27.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
14.2 14.2 14.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
28.0 28.0 28.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
18.0 18.0 18.0
B - 49
COMPRESSION GENERIC C SECTION
Table 45
Depth 180 mm Thickness 1.8 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
15.7 15.7 15.7
24.0 24.0 24.0
37.4 37.4 37.4
47.0 48.9 48.9
49.2 52.3 52.9
9.7 9.7 9.7
12.9 12.9 12.9
14.3 14.7 14.8
14.7 15.1 15.3
14.9 14.9 14.9
22.4 22.4 22.4
24.6 26.2 26.5
24.9 26.8 27.4
12.8 12.8 12.8
16.8 16.8 16.8
19.4 19.8 19.8
20.3 20.8 20.8
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
7.0 7.0 7.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
9.7 9.7 9.7
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
9.5 9.5 9.5
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
63.1 63.1 63.1
95.0 95.0 95.0
126.4 126.4 126.4
133.3 142.8 142.8
133.3 144.7 147.4
19.7 19.7 19.7
22.7 22.8 22.8
23.7 24.2 24.3
24.0 24.5 24.7
46.2 46.2 46.2
55.7 58.8 59.3
56.9 62.0 63.3
56.9 62.4 64.2
24.4 24.4 24.4
28.3 28.3 28.3
30.3 30.7 30.7
30.8 31.4 31.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
15.8 15.8 15.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
31.6 31.6 31.6
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
20.1 20.1 20.1
B - 50
COMPRESSION GENERIC C SECTION
Table 46
Depth 180 mm Thickness 2.0 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
17.8 17.8 17.8
27.5 27.5 27.5
43.9 43.9 43.9
56.0 58.4 58.4
58.7 62.6 63.4
10.8 10.8 10.8
14.4 14.4 14.4
16.2 16.6 16.7
16.6 17.1 17.3
16.8 16.8 16.8
25.6 25.6 25.6
28.5 30.4 30.9
28.8 31.2 31.9
14.2 14.2 14.2
18.8 18.8 18.8
22.0 22.3 22.3
22.9 23.5 23.6
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
7.8 7.8 7.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
10.9 10.9 10.9
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.5 10.5 10.5
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
70.3 70.3 70.3
107.4 107.4 107.4
145.8 145.8 145.8
154.3 165.5 165.5
154.3 167.9 171.0
21.8 21.8 21.8
25.3 25.3 25.3
26.4 26.9 27.0
26.7 27.3 27.5
51.6 51.6 51.6
63.3 66.8 66.8
64.7 70.8 72.3
64.7 71.2 73.3
27.0 27.0 27.0
31.3 31.3 31.3
33.6 34.1 34.1
34.3 34.9 35.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
17.5 17.5 17.5
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
35.1 35.1 35.1
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
22.2 22.2 22.2
B - 51
COMPRESSION GENERIC C SECTION
Table 47
Depth 200 mm Thickness 1.6 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
13.8 13.8 13.8
20.5 20.5 20.5
30.7 30.7 30.7
38.2 39.0 39.0
39.9 41.7 42.1
8.7 8.7 8.7
11.4 11.4 11.4
12.5 12.8 12.8
12.8 13.1 13.2
13.1 13.1 13.1
19.1 19.3 19.3
21.0 21.8 22.1
21.3 22.4 22.8
11.3 11.3 11.3
14.7 14.7 14.7
16.9 17.1 17.1
17.6 17.9 18.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.3 6.3 6.3
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
8.7 8.7 8.7
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
8.5 8.5 8.5
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
55.4 55.4 55.4
82.0 82.0 82.0
106.9 106.9 106.9
115.2 120.5 120.5
115.2 123.1 124.6
17.6 17.6 17.6
20.1 20.2 20.3
21.1 21.4 21.4
21.3 21.7 21.8
40.9 40.9 40.9
48.8 50.8 51.5
50.4 53.7 54.4
50.4 54.2 55.3
21.8 21.8 21.8
25.1 25.1 25.1
26.9 27.2 27.2
27.4 27.9 27.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
14.2 14.2 14.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
28.0 28.0 28.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
18.0 18.0 18.0
B - 52
COMPRESSION GENERIC C SECTION
Table 48
Depth 200 mm Thickness 1.8 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
15.7 15.7 15.7
23.8 23.8 23.8
36.3 36.3 36.3
46.0 47.1 47.1
48.2 50.5 50.9
9.8 9.8 9.8
13.0 13.0 13.0
14.4 14.7 14.7
14.8 15.1 15.2
15.0 15.0 15.0
22.3 22.3 22.3
24.8 25.9 26.2
25.1 26.6 27.0
12.8 12.8 12.8
16.7 16.7 16.7
19.4 19.6 19.6
20.2 20.6 20.7
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
7.1 7.1 7.1
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
9.8 9.8 9.8
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
9.6 9.6 9.6
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
62.8 62.8 62.8
94.5 94.5 94.5
126.0 126.0 126.0
136.3 142.8 142.8
136.3 145.9 147.7
19.7 19.7 19.7
22.8 22.9 22.9
23.9 24.3 24.3
24.2 24.7 24.8
46.4 46.4 46.4
56.9 59.3 60.2
58.8 62.8 63.8
58.8 63.4 64.8
24.4 24.4 24.4
28.3 28.3 28.3
30.4 30.7 30.7
31.0 31.5 31.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
15.8 15.8 15.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
31.5 31.5 31.5
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
20.1 20.1 20.1
B - 53
COMPRESSION GENERIC C SECTION
Table 49
Depth 200 mm Thickness 2.0 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
17.7 17.7 17.7
27.1 27.1 27.1
42.5 42.5 42.5
54.7 55.9 55.9
57.3 60.2 60.8
10.9 10.9 10.9
14.5 14.5 14.5
16.3 16.6 16.7
16.7 17.1 17.2
16.9 16.9 16.9
25.5 25.5 25.5
28.7 30.1 30.4
29.1 30.9 31.5
14.3 14.3 14.3
18.8 18.8 18.8
22.0 22.2 22.2
22.9 23.3 23.4
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
7.9 7.9 7.9
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
11.0 11.0 11.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.7 10.7 10.7
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
69.9 69.9 69.9
106.7 106.7 106.7
145.2 145.2 145.2
157.9 165.5 165.5
157.9 169.2 171.3
21.8 21.8 21.8
25.4 25.4 25.4
26.7 27.1 27.1
27.0 27.5 27.6
51.8 51.8 51.8
64.8 67.7 67.7
67.1 71.8 73.0
67.1 72.5 74.1
27.0 27.0 27.0
31.3 31.3 31.3
33.8 34.1 34.1
34.4 35.0 35.1
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
17.5 17.5 17.5
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
35.0 35.0 35.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
22.2 22.2 22.2
B - 54
COMPRESSION GENERIC C SECTION
Table 50
Depth 220 mm Thickness 2.0 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
17.7 17.7 17.7
26.8 26.8 26.8
41.3 41.3 41.3
53.4 54.0 54.0
55.9 58.3 58.6
10.9 10.9 10.9
14.6 14.6 14.6
16.4 16.6 16.6
16.8 17.1 17.2
16.9 16.9 16.9
25.4 25.4 25.4
28.8 29.8 30.0
29.3 30.7 31.1
14.3 14.3 14.3
18.7 18.7 18.7
21.9 22.0 22.0
22.8 23.2 23.2
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
8.0 8.0 8.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
11.1 11.1 11.1
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.8 10.8 10.8
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
69.6 69.6 69.6
106.1 106.1 106.1
144.7 144.7 144.7
160.5 165.4 165.4
160.5 170.3 171.7
21.8 21.8 21.8
25.5 25.6 25.6
26.9 27.2 27.2
27.2 27.6 27.7
52.0 52.0 52.0
66.0 68.3 68.6
68.9 72.6 73.5
68.9 73.5 74.8
26.9 26.9 26.9
31.3 31.3 31.3
33.9 34.1 34.1
34.6 35.0 35.1
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
17.5 17.5 17.5
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
34.9 34.9 34.9
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
22.1 22.1 22.1
B - 55
COMPRESSION GENERIC C SECTION
Table 51
Depth 220 mm Thickness 2.4 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
21.8 21.8 21.8
33.8 33.8 33.8
54.3 54.3 54.3
72.7 73.5 73.5
76.3 79.8 80.3
13.1 13.1 13.1
17.7 17.7 17.7
20.2 20.4 20.5
20.7 21.1 21.2
20.8 20.8 20.8
31.9 31.9 31.9
37.3 38.7 39.1
37.8 39.9 40.4
17.2 17.2 17.2
22.8 22.8 22.8
27.0 27.1 27.1
28.2 28.7 28.7
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
9.5 9.5 9.5
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
13.4 13.4 13.4
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
12.8 12.8 12.8
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
83.4 83.4 83.4
130.2 130.2 130.2
184.7 184.7 184.7
207.3 213.8 213.8
207.3 220.3 222.2
25.8 25.8 25.8
30.4 30.4 30.4
32.3 32.6 32.7
32.7 33.2 33.3
62.5 62.5 62.5
82.3 84.0 84.0
86.3 91.2 92.4
86.3 92.3 94.0
31.9 31.9 31.9
37.3 37.3 37.3
40.5 40.7 40.7
41.3 41.8 41.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
20.6 20.6 20.6
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
41.7 41.7 41.7
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
26.1 26.1 26.1
B - 56
COMPRESSION GENERIC C SECTION
Table 52
Depth 250 mm Thickness 2.4 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
21.7 21.7 21.7
33.2 33.2 33.2
52.2 52.2 52.2
69.7 69.7 69.7
73.4 76.0 76.2
13.2 13.2 13.2
17.8 17.8 17.8
20.3 20.4 20.4
20.8 21.1 21.2
20.8 20.8 20.8
31.8 31.8 31.8
37.3 38.2 38.4
37.9 39.5 39.8
17.3 17.3 17.3
22.7 22.7 22.7
26.8 26.8 26.8
28.0 28.3 28.4
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
9.6 9.6 9.6
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
13.5 13.5 13.5
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
12.9 12.9 12.9
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
82.9 82.9 82.9
129.1 129.1 129.1
183.6 183.6 183.6
211.1 213.6 213.6
211.1 222.0 222.7
25.9 25.9 25.9
30.6 30.6 30.6
32.6 32.8 32.8
33.1 33.4 33.5
62.8 62.8 62.8
84.3 85.5 85.5
89.4 92.8 93.7
89.4 94.3 95.4
31.8 31.8 31.8
37.3 37.3 37.3
40.6 40.7 40.7
41.5 41.9 41.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
20.6 20.6 20.6
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
41.6 41.6 41.6
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
26.0 26.0 26.0
B - 57
COMPRESSION GENERIC C SECTION
Table 53
Depth 300 mm Thickness 2.4 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
21.6 21.6 21.6
32.4 32.4 32.4
49.7 49.7 49.7
65.3 65.3 65.3
69.8 71.4 71.4
13.4 13.4 13.4
17.8 17.8 17.8
20.3 20.4 20.4
20.8 21.1 21.1
20.9 20.9 20.9
31.5 31.5 31.5
37.0 37.5 37.6
37.9 38.9 39.1
17.4 17.4 17.4
22.6 22.6 22.6
26.5 26.5 26.5
27.7 27.9 27.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
9.8 9.8 9.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
13.7 13.7 13.7
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
13.1 13.1 13.1
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
82.2 82.2 82.2
127.6 127.6 127.6
182.1 182.1 182.1
213.5 213.5 213.5
215.8 223.7 223.7
25.9 25.9 25.9
30.9 30.9 30.9
32.9 33.0 33.1
33.5 33.7 33.8
63.3 63.3 63.3
86.6 87.8 87.8
92.9 94.8 95.5
93.3 96.8 97.5
31.8 31.8 31.8
37.2 37.2 37.2
40.7 40.7 40.7
41.7 42.0 42.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
20.6 20.6 20.6
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
41.4 41.4 41.4
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
26.0 26.0 26.0
B - 58
COMPRESSION GENERIC C SECTION
Table 54
Depth 300 mm Thickness 3.0 mm
Design Strength 280N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
27.6 27.6 27.6
42.5 42.5 42.5
68.8 68.8 68.8
95.3 95.3 95.3
102.6 105.3 105.3
16.5 16.5 16.5
22.4 22.4 22.4
26.1 26.2 26.2
26.8 27.2 27.2
26.6 26.6 26.6
41.6 41.6 41.6
51.0 51.8 52.1
52.3 53.9 54.2
21.5 21.5 21.5
28.5 28.5 28.5
33.9 33.9 33.9
35.6 35.9 35.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
12.0 12.0 12.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
17.1 17.1 17.1
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
16.1 16.1 16.1
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
101.7 101.7 101.7
162.3 162.3 162.3
245.4 245.4 245.4
294.3 294.3 294.3
297.9 309.3 309.3
31.6 31.6 31.6
37.9 37.9 37.9
41.0 41.1 41.1
41.7 42.0 42.0
78.7 78.7 78.7
112.3 112.3 112.3
123.2 126.0 127.0
123.8 128.7 129.7
38.7 38.7 38.7
45.7 45.7 45.7
50.2 50.2 50.2
51.4 51.8 51.8
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
25.0 25.0 25.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
51.0 51.0 51.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
31.5 31.5 31.5
B - 59
[BLANK PAGE]
B - 60
LOAD CAPACITY TABLES FOR BEAMS S350 Generic C Sections Note: These tables are presented for generic Z sections, which may be used for scheme design.
C-1
BENDING
Table 55
GENERIC C SECTION
Depth 100 mm Thickness 1.2 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
13.8 13.8 13.8
9.2 9.2 9.2
6.9 6.9 6.9
4.4 5.5 5.5
2.6 4.6 4.6
1.7 3.9 3.9
1.2 3.5 3.5
0.8 2.6 3.1
0.6 1.9 2.8
25.5 18.2
11.3 8.1
6.4 4.5
4.1 2.9
2.8 2.0
2.1 1.5
1.6 1.1
1.3 0.9
1.0 0.7
42.4 30.3
18.9 13.5
10.6 7.6
6.8 4.8
4.7 3.4
3.5 2.5
2.7 1.9
2.1 1.5
1.7 1.2
27.6 27.6 27.6
18.4 18.4 18.4
13.8 13.8 13.8
11.1 11.1 11.1
9.1 9.2 9.2
5.9 7.9 7.9
4.1 6.9 6.9
2.9 6.1 6.1
2.2 5.5 5.5
50.9 36.4
22.6 16.2
12.7 9.1
8.1 5.8
5.7 4.0
4.2 3.0
3.2 2.3
2.5 1.8
2.0 1.5
84.9 60.6
37.7 26.9
21.2 15.2
13.6 9.7
9.4 6.7
6.9 4.9
5.3 3.8
4.2 3.0
3.4 2.4
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
6.9 6.9 6.9
4.6 4.6 4.6
3.5 3.5 3.5
2.6 2.8 2.8
1.6 2.3 2.3
1.0 2.0 2.0
0.7 1.7 1.7
0.5 1.3 1.5
0.4 1.0 1.4
15.9 11.4
7.1 5.1
4.0 2.8
2.5 1.8
1.8 1.3
1.3 0.9
1.0 0.7
0.8 0.6
0.6 0.5
13.8 13.8 13.8
9.2 9.2 9.2
6.9 6.9 6.9
5.5 5.5 5.5
4.6 4.6 4.6
3.5 3.9 3.9
2.4 3.5 3.5
1.7 3.1 3.1
1.3 2.8 2.8
31.8 22.7
14.1 10.1
8.0 5.7
5.1 3.6
3.5 2.5
2.6 1.9
2.0 1.4
1.6 1.1
1.3 0.9
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 4.4 10.3
4.8 11.1
5.5 12.2
6.2 13.2
6.9 14.0
7.6 14.8
8.7 20.6
9.6 22.3
11.0 24.5
12.4 26.4
13.8 28.0
15.2 29.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
C-2
BENDING
Table 56
GENERIC C SECTION
Depth 125 mm Thickness 1.2 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
17.3 17.3 17.3
11.8 11.8 11.8
8.8 8.8 8.8
5.8 7.1 7.1
3.4 5.9 5.9
2.2 5.0 5.0
1.5 4.4 4.4
1.1 3.5 3.9
0.8 2.6 3.5
40.5 29.0
18.0 12.9
10.1 7.2
6.5 4.6
4.5 3.2
3.3 2.4
2.5 1.8
2.0 1.4
1.6 1.2
67.6 48.3
30.0 21.4
16.9 12.1
10.8 7.7
7.5 5.4
5.5 3.9
4.2 3.0
3.3 2.4
2.7 1.9
34.6 34.6 34.6
23.5 23.5 23.5
17.6 17.6 17.6
14.1 14.1 14.1
11.3 11.8 11.8
7.3 10.1 10.1
5.0 8.8 8.8
3.6 7.8 7.8
2.6 7.1 7.1
81.1 57.9
36.0 25.7
20.3 14.5
13.0 9.3
9.0 6.4
6.6 4.7
5.1 3.6
4.0 2.9
3.2 2.3
135.1 96.5
60.0 42.9
33.8 24.1
21.6 15.4
15.0 10.7
11.0 7.9
8.4 6.0
6.7 4.8
5.4 3.9
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
8.8 8.8 8.8
5.9 5.9 5.9
4.4 4.4 4.4
3.4 3.5 3.5
2.0 2.9 2.9
1.3 2.5 2.5
0.9 2.2 2.2
0.6 1.7 2.0
0.5 1.3 1.8
25.3 18.1
11.3 8.0
6.3 4.5
4.1 2.9
2.8 2.0
2.1 1.5
1.6 1.1
1.3 0.9
1.0 0.7
17.6 17.6 17.6
11.8 11.8 11.8
8.8 8.8 8.8
7.1 7.1 7.1
5.9 5.9 5.9
4.4 5.0 5.0
3.0 4.4 4.4
2.1 3.9 3.9
1.6 3.5 3.5
50.7 36.2
22.5 16.1
12.7 9.0
8.1 5.8
5.6 4.0
4.1 3.0
3.2 2.3
2.5 1.8
2.0 1.4
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 4.2 10.6
4.6 11.4
5.2 12.6
5.9 13.5
6.6 14.4
7.2 15.1
8.3 21.2
9.1 22.8
10.5 25.1
11.8 27.0
13.1 28.7
14.5 30.3
For double span beams, web cleats should be provided to prevent crushing at internal supports
C-3
BENDING
Table 57
GENERIC C SECTION
Depth 125 mm Thickness 1.6 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
25.9 25.9 25.9
17.3 17.3 17.3
13.0 13.0 13.0
7.7 10.4 10.4
4.6 8.6 8.6
3.0 7.4 7.4
2.1 6.2 6.5
1.5 4.6 5.8
1.1 3.4 5.2
58.4 41.7
26.0 18.5
14.6 10.4
9.3 6.7
6.5 4.6
4.8 3.4
3.7 2.6
2.9 2.1
2.3 1.7
97.3 69.5
43.3 30.9
24.3 17.4
15.6 11.1
10.8 7.7
7.9 5.7
6.1 4.3
4.8 3.4
3.9 2.8
51.8 51.8 51.8
34.6 34.6 34.6
25.9 25.9 25.9
20.7 20.7 20.7
15.1 17.3 17.3
9.8 14.8 14.8
6.7 13.0 13.0
4.8 11.5 11.5
3.6 10.4 10.4
116.8 83.4
51.9 37.1
29.2 20.9
18.7 13.4
13.0 9.3
9.5 6.8
7.3 5.2
5.8 4.1
4.7 3.3
194.7 139.1
86.5 61.8
48.7 34.8
31.2 22.3
21.6 15.5
15.9 11.4
12.2 8.7
9.6 6.9
7.8 5.6
1.0
Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5
5.0
13.0 13.0 13.0
8.6 8.6 8.6
6.5 6.5 6.5
4.5 5.2 5.2
2.7 4.3 4.3
1.8 3.7 3.7
1.2 3.1 3.2
0.9 2.3 2.9
0.7 1.7 2.6
36.5 26.1
16.2 11.6
9.1 6.5
5.8 4.2
4.1 2.9
3.0 2.1
2.3 1.6
1.8 1.3
1.5 1.0
25.9 25.9 25.9
17.3 17.3 17.3
13.0 13.0 13.0
10.4 10.4 10.4
8.4 8.6 8.6
5.8 7.4 7.4
4.0 6.5 6.5
2.9 5.8 5.8
2.2 5.2 5.2
73.0 52.1
32.4 23.2
18.3 13.0
11.7 8.3
8.1 5.8
6.0 4.3
4.6 3.3
3.6 2.6
2.9 2.1
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.4 17.2
8.0 18.5
8.9 20.2
9.9 21.6
10.8 22.9
11.7 24.1
14.8 34.5
15.9 37.0
17.8 40.4
19.7 43.3
21.6 45.8
23.5 48.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
C-4
BENDING
Table 58
GENERIC C SECTION
Depth 150 mm Thickness 1.6 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
17.4 17.4 17.4
13.8 13.9 13.9
8.4 11.6 11.6
5.4 10.0 10.0
3.7 8.7 8.7
2.6 7.7 7.7
2.0 6.3 7.0
1.2 3.7 5.8
0.8 2.4 5.0
23.7 17.0
15.2 10.8
10.5 7.5
7.7 5.5
5.9 4.2
4.7 3.3
3.8 2.7
2.6 1.6
1.9 1.0
39.6 28.3
25.3 18.1
17.6 12.6
12.9 9.2
9.9 7.1
7.8 5.6
6.3 4.5
4.4 2.7
3.2 1.7
34.8 34.8 34.8
27.9 27.9 27.9
23.2 23.2 23.2
17.6 19.9 19.9
12.1 17.4 17.4
8.6 15.5 15.5
6.4 13.9 13.9
3.8 11.6 11.6
2.5 7.9 10.0
47.5 33.9
30.4 21.7
21.1 15.1
15.5 11.1
11.9 8.5
9.4 6.7
7.6 5.4
5.3 3.3
3.9 2.1
79.1 56.5
50.6 36.2
35.2 25.1
25.8 18.5
19.8 14.1
15.6 11.2
12.7 9.0
8.8 5.5
6.5 3.5
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
11.6 11.6 11.6
8.7 8.7 8.7
7.0 7.0 7.0
5.0 5.8 5.8
3.2 5.0 5.0
2.2 4.4 4.4
1.2 3.1 3.5
0.7 1.9 2.9
0.5 1.2 2.5
26.4 18.8
14.8 10.6
9.5 6.8
6.6 4.7
4.8 3.5
3.7 2.6
2.4 1.7
1.6 1.0
1.2 0.6
23.2 23.2 23.2
17.4 17.4 17.4
13.9 13.9 13.9
11.6 11.6 11.6
10.0 10.0 10.0
7.2 8.7 8.7
3.8 7.0 7.0
2.3 5.8 5.8
1.5 3.9 5.0
52.7 37.7
29.7 21.2
19.0 13.6
13.2 9.4
9.7 6.9
7.4 5.3
4.7 3.4
3.3 2.1
2.4 1.3
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.1 17.6
7.7 18.8
8.6 20.6
9.5 22.0
10.4 23.3
11.3 24.5
14.3 35.1
15.4 37.7
17.2 41.2
19.0 44.1
20.9 46.7
22.7 49.0
For double span beams, web cleats should be provided to prevent crushing at internal supports
C-5
BENDING
Table 59
GENERIC C SECTION
Depth 150 mm Thickness 1.8 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
20.3 20.3 20.3
15.4 16.2 16.2
9.4 13.5 13.5
6.1 11.6 11.6
4.2 10.1 10.1
3.0 9.0 9.0
2.2 7.0 8.1
1.4 4.2 6.8
0.9 2.7 5.8
27.4 19.6
17.6 12.5
12.2 8.7
9.0 6.4
6.9 4.9
5.4 3.9
4.4 3.1
3.0 1.9
2.2 1.2
45.7 32.7
29.3 20.9
20.3 14.5
14.9 10.7
11.4 8.2
9.0 6.5
7.3 5.2
5.1 3.2
3.7 2.0
40.5 40.5 40.5
32.4 32.4 32.4
27.0 27.0 27.0
19.8 23.1 23.1
13.6 20.3 20.3
9.7 18.0 18.0
7.2 16.2 16.2
4.3 13.3 13.5
2.8 8.8 11.6
54.9 39.2
35.1 25.1
24.4 17.4
17.9 12.8
13.7 9.8
10.8 7.7
8.8 6.3
6.1 3.8
4.5 2.4
91.4 65.3
58.5 41.8
40.6 29.0
29.9 21.3
22.9 16.3
18.1 12.9
14.6 10.5
10.2 6.3
7.5 4.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
13.5 13.5 13.5
10.1 10.1 10.1
8.1 8.1 8.1
5.6 6.8 6.8
3.6 5.8 5.8
2.5 5.1 5.1
1.3 3.5 4.1
0.8 2.1 3.4
0.5 1.3 2.9
30.5 21.8
17.1 12.2
11.0 7.8
7.6 5.4
5.6 4.0
4.3 3.1
2.7 2.0
1.9 1.2
1.4 0.7
27.0 27.0 27.0
20.3 20.3 20.3
16.2 16.2 16.2
13.5 13.5 13.5
11.2 11.6 11.6
8.1 10.1 10.1
4.3 8.1 8.1
2.6 6.6 6.8
1.7 4.4 5.8
61.0 43.5
34.3 24.5
21.9 15.7
15.2 10.9
11.2 8.0
8.6 6.1
5.5 3.9
3.8 2.4
2.8 1.5
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.1 21.5
9.7 23.0
10.7 25.0
11.8 26.8
12.9 28.3
13.9 29.7
18.1 43.0
19.4 46.0
21.5 50.1
23.6 53.5
25.7 56.6
27.8 59.4
For double span beams, web cleats should be provided to prevent crushing at internal supports
C-6
BENDING
Table 60
GENERIC C SECTION
Depth 165 mm Thickness 1.6 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
19.3 19.3 19.3
15.5 15.5 15.5
9.5 12.9 12.9
6.1 11.1 11.1
4.1 9.7 9.7
3.0 8.6 8.6
2.2 7.1 7.7
1.3 4.2 6.4
0.9 2.7 5.5
29.0 20.7
18.5 13.2
12.9 9.2
9.5 6.8
7.2 5.2
5.7 4.1
4.6 3.3
3.2 2.0
2.4 1.3
48.3 34.5
30.9 22.1
21.5 15.3
15.8 11.3
12.1 8.6
9.5 6.8
7.7 5.5
5.4 3.4
3.9 2.1
38.7 38.7 38.7
30.9 30.9 30.9
25.8 25.8 25.8
19.3 22.1 22.1
13.2 19.3 19.3
9.4 17.2 17.2
7.0 15.5 15.5
4.1 12.9 12.9
2.7 8.6 11.1
57.9 41.4
37.1 26.5
25.7 18.4
18.9 13.5
14.5 10.3
11.4 8.2
9.3 6.6
6.4 4.0
4.7 2.5
96.6 69.0
61.8 44.1
42.9 30.7
31.5 22.5
24.1 17.2
19.1 13.6
15.4 11.0
10.7 6.7
7.9 4.2
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
12.9 12.9 12.9
9.7 9.7 9.7
7.7 7.7 7.7
5.6 6.4 6.4
3.6 5.5 5.5
2.5 4.8 4.8
1.3 3.5 3.9
0.8 2.1 3.2
0.5 1.3 2.8
32.2 23.0
18.1 12.9
11.6 8.3
8.0 5.7
5.9 4.2
4.5 3.2
2.9 2.1
2.0 1.3
1.5 0.8
25.8 25.8 25.8
19.3 19.3 19.3
15.5 15.5 15.5
12.9 12.9 12.9
11.1 11.1 11.1
7.9 9.7 9.7
4.2 7.7 7.7
2.5 6.4 6.4
1.6 4.3 5.5
64.4 46.0
36.2 25.9
23.2 16.6
16.1 11.5
11.8 8.4
9.1 6.5
5.8 4.1
4.0 2.5
3.0 1.6
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.0 17.8
7.5 19.0
8.4 20.8
9.3 22.3
10.2 23.6
11.1 24.8
14.0 35.5
15.1 38.1
16.8 41.6
18.6 44.6
20.4 47.2
22.2 49.6
For double span beams, web cleats should be provided to prevent crushing at internal supports
C-7
BENDING
Table 61
GENERIC C SECTION
Depth 165 mm Thickness 1.8 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
22.5 22.5 22.5
17.4 18.0 18.0
10.6 15.0 15.0
6.8 12.9 12.9
4.7 11.3 11.3
3.3 10.0 10.0
2.5 7.9 9.0
1.5 4.7 7.5
1.0 3.0 6.4
33.6 24.0
21.5 15.3
14.9 10.7
11.0 7.8
8.4 6.0
6.6 4.7
5.4 3.8
3.7 2.3
2.7 1.5
56.0 40.0
35.8 25.6
24.9 17.8
18.3 13.1
14.0 10.0
11.1 7.9
9.0 6.4
6.2 3.9
4.6 2.4
45.1 45.1 45.1
36.1 36.1 36.1
30.1 30.1 30.1
21.7 25.8 25.8
14.9 22.5 22.5
10.6 20.0 20.0
7.9 18.0 18.0
4.7 14.7 15.0
3.1 9.7 12.9
67.1 48.0
43.0 30.7
29.8 21.3
21.9 15.7
16.8 12.0
13.3 9.5
10.7 7.7
7.5 4.7
5.5 2.9
111.9 79.9
71.6 51.2
49.7 35.5
36.5 26.1
28.0 20.0
22.1 15.8
17.9 12.8
12.4 7.8
9.1 4.9
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
15.0 15.0 15.0
11.3 11.3 11.3
9.0 9.0 9.0
6.3 7.5 7.5
4.1 6.4 6.4
2.8 5.6 5.6
1.5 4.0 4.5
0.9 2.4 3.8
0.6 1.5 3.2
37.3 26.6
21.0 15.0
13.4 9.6
9.3 6.7
6.9 4.9
5.2 3.7
3.4 2.4
2.3 1.5
1.7 0.9
30.1 30.1 30.1
22.5 22.5 22.5
18.0 18.0 18.0
15.0 15.0 15.0
12.5 12.9 12.9
8.9 11.3 11.3
4.7 9.0 9.0
2.8 7.4 7.5
1.8 4.8 6.4
74.6 53.3
42.0 30.0
26.9 19.2
18.7 13.3
13.7 9.8
10.5 7.5
6.7 4.8
4.7 2.9
3.4 1.8
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.9 21.7
9.5 23.2
10.6 25.3
11.6 27.0
12.6 28.6
13.7 30.0
17.8 43.4
19.0 46.4
21.1 50.6
23.2 54.1
25.2 57.2
27.3 59.9
For double span beams, web cleats should be provided to prevent crushing at internal supports
C-8
BENDING
Table 62
GENERIC C SECTION
Depth 180 mm Thickness 1.6 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
21.3 21.3 21.3
17.0 17.0 17.0
10.6 14.2 14.2
6.8 12.2 12.2
4.6 10.6 10.6
3.3 9.5 9.5
2.4 7.9 8.5
1.5 4.7 7.1
0.9 3.0 6.1
34.7 24.8
22.2 15.9
15.4 11.0
11.3 8.1
8.7 6.2
6.9 4.9
5.6 4.0
3.9 2.4
2.8 1.5
57.9 41.3
37.0 26.4
25.7 18.4
18.9 13.5
14.5 10.3
11.4 8.2
9.3 6.6
6.4 4.0
4.7 2.5
42.5 42.5 42.5
34.0 34.0 34.0
28.4 28.4 28.4
21.1 24.3 24.3
14.4 21.3 21.3
10.2 18.9 18.9
7.5 17.0 17.0
4.5 14.2 14.2
2.9 9.4 12.2
69.4 49.6
44.4 31.7
30.9 22.0
22.7 16.2
17.4 12.4
13.7 9.8
11.1 7.9
7.7 4.8
5.7 3.0
115.7 82.7
74.1 52.9
51.4 36.7
37.8 27.0
28.9 20.7
22.9 16.3
18.5 13.2
12.9 8.0
9.4 5.1
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
14.2 14.2 14.2
10.6 10.6 10.6
8.5 8.5 8.5
6.3 7.1 7.1
4.1 6.1 6.1
2.8 5.3 5.3
1.5 4.0 4.3
0.9 2.3 3.5
0.6 1.5 3.0
38.6 27.6
21.7 15.5
13.9 9.9
9.6 6.9
7.1 5.1
5.4 3.9
3.5 2.5
2.4 1.5
1.8 0.9
28.4 28.4 28.4
21.3 21.3 21.3
17.0 17.0 17.0
14.2 14.2 14.2
12.2 12.2 12.2
8.6 10.6 10.6
4.5 8.5 8.5
2.7 7.1 7.1
1.7 4.7 6.1
77.1 55.1
43.4 31.0
27.8 19.8
19.3 13.8
14.2 10.1
10.8 7.7
6.9 5.0
4.8 3.0
3.5 1.9
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.8 18.0
7.4 19.3
8.2 21.0
9.1 22.5
10.0 23.9
10.9 25.1
13.7 35.9
14.7 38.5
16.5 42.1
18.2 45.1
20.0 47.7
21.7 50.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
C-9
BENDING
Table 63
GENERIC C SECTION
Depth 180 mm Thickness 1.8 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
24.8 24.8 24.8
19.5 19.9 19.9
11.8 16.6 16.6
7.6 14.2 14.2
5.2 12.4 12.4
3.7 11.0 11.0
2.8 8.8 9.9
1.7 5.2 8.3
1.1 3.4 7.1
40.3 28.8
25.8 18.4
17.9 12.8
13.2 9.4
10.1 7.2
8.0 5.7
6.5 4.6
4.5 2.8
3.3 1.8
67.2 48.0
43.0 30.7
29.9 21.3
22.0 15.7
16.8 12.0
13.3 9.5
10.8 7.7
7.5 4.7
5.5 2.9
49.7 49.7 49.7
39.7 39.7 39.7
33.1 33.1 33.1
23.6 28.4 28.4
16.1 24.8 24.8
11.5 22.1 22.1
8.5 19.9 19.9
5.1 16.1 16.6
3.3 10.5 14.2
80.7 57.6
51.6 36.9
35.9 25.6
26.3 18.8
20.2 14.4
15.9 11.4
12.9 9.2
9.0 5.6
6.6 3.5
134.5 96.1
86.1 61.5
59.8 42.7
43.9 31.4
33.6 24.0
26.6 19.0
21.5 15.4
14.9 9.3
11.0 5.9
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
16.6 16.6 16.6
12.4 12.4 12.4
9.9 9.9 9.9
7.0 8.3 8.3
4.5 7.1 7.1
3.1 6.2 6.2
1.7 4.4 5.0
1.0 2.6 4.1
0.7 1.7 3.5
44.8 32.0
25.2 18.0
16.1 11.5
11.2 8.0
8.2 5.9
6.3 4.5
4.0 2.9
2.8 1.8
2.1 1.1
33.1 33.1 33.1
24.8 24.8 24.8
19.9 19.9 19.9
16.6 16.6 16.6
13.7 14.2 14.2
9.6 12.4 12.4
5.1 9.9 9.9
3.0 8.1 8.3
2.0 5.3 7.1
89.7 64.0
50.4 36.0
32.3 23.1
22.4 16.0
16.5 11.8
12.6 9.0
8.1 5.8
5.6 3.5
4.1 2.2
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.7 21.9
9.3 23.5
10.4 25.5
11.4 27.3
12.4 28.9
13.4 30.3
17.5 43.9
18.7 46.9
20.7 51.1
22.7 54.6
24.8 57.7
26.8 60.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 10
BENDING
Table 64
GENERIC C SECTION
Depth 180 mm Thickness 2.0 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
28.2 28.2 28.2
21.5 22.6 22.6
13.1 18.8 18.8
8.4 16.1 16.1
5.8 14.1 14.1
4.1 12.5 12.5
3.1 9.7 11.3
1.9 5.8 9.4
1.2 3.7 8.1
45.7 32.7
29.3 20.9
20.3 14.5
14.9 10.7
11.4 8.2
9.0 6.5
7.3 5.2
5.1 3.2
3.7 2.0
76.2 54.4
48.8 34.8
33.9 24.2
24.9 17.8
19.1 13.6
15.1 10.8
12.2 8.7
8.5 5.3
6.2 3.3
56.4 56.4 56.4
45.1 45.1 45.1
37.6 37.6 37.6
26.1 32.2 32.2
17.9 28.2 28.2
12.8 25.1 25.1
9.5 22.6 22.6
5.7 17.8 18.8
3.7 11.7 16.1
91.5 65.3
58.5 41.8
40.7 29.0
29.9 21.3
22.9 16.3
18.1 12.9
14.6 10.5
10.2 6.4
7.5 4.0
152.4 108.9
97.6 69.7
67.8 48.4
49.8 35.6
38.1 27.2
30.1 21.5
24.4 17.4
16.9 10.6
12.4 6.7
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
18.8 18.8 18.8
14.1 14.1 14.1
11.3 11.3 11.3
7.7 9.4 9.4
5.0 8.1 8.1
3.5 7.1 7.1
1.9 4.9 5.6
1.1 2.9 4.7
0.7 1.9 4.0
50.8 36.3
28.6 20.4
18.3 13.1
12.7 9.1
9.3 6.7
7.1 5.1
4.6 3.3
3.2 2.0
2.3 1.2
37.6 37.6 37.6
28.2 28.2 28.2
22.6 22.6 22.6
18.8 18.8 18.8
15.2 16.1 16.1
10.7 14.1 14.1
5.7 11.3 11.3
3.4 8.9 9.4
2.2 5.8 8.1
101.6 72.6
57.2 40.8
36.6 26.1
25.4 18.1
18.7 13.3
14.3 10.2
9.1 6.5
6.4 4.0
4.7 2.5
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.8 26.3
11.5 28.0
12.7 30.5
13.8 32.5
15.0 34.3
16.2 35.9
21.7 52.5
23.1 56.1
25.4 60.9
27.7 65.0
30.0 68.6
32.3 71.8
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 11
BENDING
Table 65
GENERIC C SECTION
Depth 200 mm Thickness 1.6 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
23.8 23.8 23.8
19.1 19.1 19.1
12.0 15.9 15.9
7.7 13.6 13.6
5.2 11.9 11.9
3.7 10.6 10.6
2.7 9.0 9.5
1.6 5.3 7.9
1.1 3.4 6.8
43.1 30.8
27.6 19.7
19.2 13.7
14.1 10.1
10.8 7.7
8.5 6.1
6.9 4.9
4.8 3.0
3.5 1.9
71.9 51.4
46.0 32.9
32.0 22.8
23.5 16.8
18.0 12.8
14.2 10.1
11.5 8.2
8.0 5.0
5.9 3.1
47.6 47.6 47.6
38.1 38.1 38.1
31.8 31.8 31.8
23.4 27.2 27.2
15.9 23.8 23.8
11.3 21.2 21.2
8.3 19.1 19.1
4.9 15.9 15.9
3.2 10.4 13.6
86.3 61.6
55.2 39.4
38.3 27.4
28.2 20.1
21.6 15.4
17.0 12.2
13.8 9.9
9.6 6.0
7.0 3.8
143.8 102.7
92.0 65.7
63.9 45.6
47.0 33.5
35.9 25.7
28.4 20.3
23.0 16.4
16.0 10.0
11.7 6.3
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
15.9 15.9 15.9
11.9 11.9 11.9
9.5 9.5 9.5
7.2 7.9 7.9
4.6 6.8 6.8
3.1 6.0 6.0
1.7 4.5 4.8
1.0 2.7 4.0
0.6 1.7 3.4
47.9 34.2
27.0 19.3
17.3 12.3
12.0 8.6
8.8 6.3
6.7 4.8
4.3 3.1
3.0 1.9
2.2 1.2
31.8 31.8 31.8
23.8 23.8 23.8
19.1 19.1 19.1
15.9 15.9 15.9
13.6 13.6 13.6
9.5 11.9 11.9
5.0 9.5 9.5
3.0 7.9 7.9
1.9 5.2 6.8
95.9 68.5
53.9 38.5
34.5 24.7
24.0 17.1
17.6 12.6
13.5 9.6
8.6 6.2
6.0 3.7
4.4 2.4
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.6 18.2
7.2 19.5
8.0 21.3
8.9 22.9
9.7 24.2
10.6 25.4
13.3 36.4
14.3 39.1
16.0 42.7
17.7 45.7
19.4 48.4
21.1 50.8
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 12
BENDING
Table 66
GENERIC C SECTION
Depth 200 mm Thickness 1.8 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0
7.0
27.9 27.9 27.9
22.3 22.3 22.3
13.5 18.6 18.6
8.6 15.9 15.9
5.9 14.0 14.0
4.2 12.4 12.4
3.1 10.1 11.2
1.9 6.0 9.3
1.2 3.8 8.0
50.3 35.9
32.2 23.0
22.4 16.0
16.4 11.7
12.6 9.0
9.9 7.1
8.1 5.8
5.6 3.5
4.1 2.2
83.9 59.9
53.7 38.3
37.3 26.6
27.4 19.6
21.0 15.0
16.6 11.8
13.4 9.6
9.3 5.8
6.8 3.7
55.8 55.8 55.8
44.6 44.6 44.6
37.2 37.2 37.2
26.2 31.9 31.9
17.8 27.9 27.9
12.7 24.8 24.8
9.4 22.3 22.3
5.6 18.0 18.6
3.6 11.6 15.9
100.7 71.9
64.4 46.0
44.7 32.0
32.9 23.5
25.2 18.0
19.9 14.2
16.1 11.5
11.2 7.0
8.2 4.4
167.8 119.8
107.4 76.7
74.6 53.3
54.8 39.1
41.9 30.0
33.1 23.7
26.8 19.2
18.6 11.7
13.7 7.3
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0
7.0
18.6 18.6 18.6
14.0 14.0 14.0
11.2 11.2 11.2
8.0 9.3 9.3
5.2 8.0 8.0
3.5 7.0 7.0
1.9 5.0 5.6
1.1 3.0 4.7
0.7 1.9 4.0
55.9 39.9
31.5 22.5
20.1 14.4
14.0 10.0
10.3 7.3
7.9 5.6
5.0 3.6
3.5 2.2
2.6 1.4
37.2 37.2 37.2
27.9 27.9 27.9
22.3 22.3 22.3
18.6 18.6 18.6
15.3 15.9 15.9
10.7 14.0 14.0
5.6 11.2 11.2
3.3 9.0 9.3
2.2 5.8 8.0
111.8 79.9
62.9 44.9
40.3 28.8
28.0 20.0
20.5 14.7
15.7 11.2
10.1 7.2
7.0 4.4
5.1 2.8
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.5 22.2
9.1 23.8
10.1 25.9
11.1 27.7
12.1 29.2
13.1 30.7
17.0 44.4
18.2 47.5
20.2 51.8
22.2 55.3
24.2 58.5
26.1 61.3
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 13
BENDING
Table 67
GENERIC C SECTION
Depth 200 mm Thickness 2.0 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.0
Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0
8.0
14.9 21.2 21.2
9.5 18.2 18.2
6.5 15.9 15.9
4.7 14.1 14.1
3.5 11.1 12.7
2.7 8.5 11.6
2.1 6.6 10.6
1.4 4.2 9.1
1.0 2.9 7.9
25.4 18.2
18.7 13.4
14.3 10.2
11.3 8.1
9.2 6.5
7.6 5.2
6.4 4.0
4.7 2.5
3.6 1.7
42.4 30.3
31.2 22.3
23.8 17.0
18.8 13.5
15.3 10.9
12.6 8.6
10.6 6.6
7.8 4.2
6.0 2.8
42.4 42.4 42.4
29.0 36.3 36.3
19.8 31.8 31.8
14.1 28.3 28.3
10.4 25.4 25.4
8.0 23.1 23.1
6.2 19.9 21.2
4.1 12.9 18.2
2.8 8.8 15.9
50.9 36.3
37.4 26.7
28.6 20.4
22.6 16.2
18.3 13.1
15.1 10.3
12.7 7.9
9.3 5.0
7.2 3.4
84.8 60.6
62.3 44.5
47.7 34.1
37.7 26.9
30.5 21.8
25.2 17.2
21.2 13.2
15.6 8.3
11.9 5.6
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0
8.0
15.9 15.9 15.9
12.7 12.7 12.7
8.8 10.6 10.6
5.7 9.1 9.1
3.9 7.9 7.9
2.1 5.6 6.4
1.3 3.3 5.3
0.8 2.1 4.5
0.6 1.4 4.0
35.8 25.6
22.9 16.4
15.9 11.4
11.7 8.3
8.9 6.4
5.7 4.1
4.0 2.5
2.9 1.6
2.2 1.0
31.8 31.8 31.8
25.4 25.4 25.4
21.2 21.2 21.2
16.9 18.2 18.2
11.8 15.9 15.9
6.3 12.7 12.7
3.7 9.9 10.6
2.4 6.4 9.1
1.7 4.4 7.9
71.5 51.1
45.8 32.7
31.8 22.7
23.4 16.7
17.9 12.8
11.4 8.2
7.9 5.0
5.8 3.1
4.5 2.1
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.6 26.6
11.3 28.4
12.4 30.8
13.5 32.9
14.7 34.7
15.8 36.3
21.2 53.2
22.6 56.7
24.8 61.6
27.1 65.8
29.3 69.4
31.6 72.7
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 14
BENDING
Table 68
GENERIC C SECTION
Depth 220 mm Thickness 2.0 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.0
Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0
8.0
16.7 23.6 23.6
10.7 20.2 20.2
7.3 17.7 17.7
5.2 15.7 15.7
3.9 12.5 14.1
3.0 9.5 12.9
2.3 7.4 11.8
1.5 4.7 10.1
1.1 3.2 8.8
31.1 22.2
22.9 16.3
17.5 12.5
13.8 9.9
11.2 8.0
9.3 6.3
7.8 4.9
5.7 3.1
4.4 2.1
51.9 37.1
38.1 27.2
29.2 20.8
23.1 16.5
18.7 13.3
15.4 10.5
13.0 8.1
9.5 5.1
7.3 3.4
47.2 47.2 47.2
31.8 40.4 40.4
21.6 35.4 35.4
15.4 31.4 31.4
11.4 28.3 28.3
8.7 25.7 25.7
6.8 21.9 23.6
4.4 14.1 20.2
3.0 9.6 17.7
62.3 44.5
45.7 32.7
35.0 25.0
27.7 19.8
22.4 16.0
18.5 12.6
15.6 9.7
11.4 6.1
8.8 4.1
103.8 74.1
76.2 54.5
58.4 41.7
46.1 32.9
37.4 26.7
30.9 21.0
25.9 16.2
19.1 10.2
14.6 6.8
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0
8.0
17.7 17.7 17.7
14.1 14.1 14.1
9.9 11.8 11.8
6.4 10.1 10.1
4.4 8.8 8.8
2.3 6.3 7.1
1.4 3.7 5.9
0.9 2.4 5.1
0.6 1.6 4.4
43.8 31.3
28.0 20.0
19.5 13.9
14.3 10.2
10.9 7.8
7.0 5.0
4.9 3.0
3.6 1.9
2.7 1.3
35.4 35.4 35.4
28.3 28.3 28.3
23.6 23.6 23.6
18.7 20.2 20.2
12.9 17.7 17.7
6.8 14.1 14.1
4.1 10.9 11.8
2.6 7.1 10.1
1.8 4.8 8.8
87.6 62.5
56.0 40.0
38.9 27.8
28.6 20.4
21.9 15.6
14.0 10.0
9.7 6.1
7.1 3.8
5.5 2.6
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.4 26.9
11.0 28.7
12.1 31.2
13.2 33.3
14.3 35.1
15.4 36.8
20.7 53.8
22.1 57.4
24.3 62.4
26.5 66.5
28.7 70.2
30.9 73.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 15
BENDING
Table 69
GENERIC C SECTION
Depth 220 mm Thickness 2.4 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.0
Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0
8.0
19.8 29.2 29.2
12.7 25.0 25.0
8.7 21.9 21.9
6.3 19.3 19.5
4.7 14.7 17.5
3.6 11.2 15.9
2.8 8.8 14.6
1.9 5.6 12.5
1.3 3.9 11.0
38.5 27.5
28.3 20.2
21.7 15.5
17.1 12.2
13.9 9.9
11.5 7.8
9.6 6.0
7.1 3.8
5.4 2.5
64.2 45.9
47.2 33.7
36.1 25.8
28.5 20.4
23.1 16.5
19.1 13.0
16.1 10.0
11.8 6.3
9.0 4.2
56.7 58.4 58.4
37.7 50.1 50.1
25.8 43.8 43.8
18.5 38.9 38.9
13.7 35.1 35.1
10.5 31.9 31.9
8.2 25.9 29.2
5.4 16.8 25.0
3.8 11.4 21.9
77.1 55.0
56.6 40.4
43.4 31.0
34.3 24.5
27.7 19.8
22.9 15.6
19.3 12.0
14.2 7.6
10.8 5.1
128.4 91.7
94.4 67.4
72.3 51.6
57.1 40.8
46.2 33.0
38.2 26.1
32.1 20.1
23.6 12.6
18.1 8.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0
8.0
21.9 21.9 21.9
17.5 17.5 17.5
11.7 14.6 14.6
7.6 12.5 12.5
5.2 11.0 11.0
2.8 7.4 8.8
1.7 4.4 7.3
1.1 2.8 6.3
0.8 1.9 5.5
54.2 38.7
34.7 24.8
24.1 17.2
17.7 12.6
13.5 9.7
8.7 6.2
6.0 3.8
4.4 2.4
3.4 1.6
43.8 43.8 43.8
35.1 35.1 35.1
29.2 29.2 29.2
22.2 25.0 25.0
15.4 21.9 21.9
8.2 17.5 17.5
4.9 13.0 14.6
3.2 8.4 12.5
2.3 5.7 11.0
108.4 77.4
69.4 49.5
48.2 34.4
35.4 25.3
27.1 19.4
17.3 12.4
12.0 7.5
8.8 4.7
6.8 3.2
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 15.2 36.8
16.0 39.1
17.4 42.3
18.8 45.0
20.1 47.3
21.5 49.5
30.3 73.5
32.0 78.2
34.8 84.6
37.5 89.9
40.3 94.7
43.0 99.0
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 16
BENDING
Table 70
GENERIC C SECTION
Depth 250 mm Thickness 2.4 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.5
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0
10.0
14.8 29.1 29.1
10.1 25.4 25.4
7.2 22.6 22.6
5.4 17.2 20.3
3.2 10.2 17.0
2.1 6.5 14.5
1.5 4.5 12.7
1.1 3.2 11.3
0.9 2.4 10.2
37.3 26.7
28.6 20.4
22.6 16.1
18.3 13.1
12.7 7.9
9.3 5.0
7.1 3.4
5.6 2.4
4.6 1.7
62.2 44.5
47.7 34.0
37.7 26.9
30.5 21.8
21.2 13.2
15.6 8.3
11.9 5.6
9.4 3.9
7.6 2.9
42.7 58.1 58.1
29.1 50.9 50.9
20.8 45.2 45.2
15.4 40.7 40.7
9.2 29.5 33.9
6.0 19.0 29.1
4.2 12.9 25.4
3.0 9.2 22.6
2.3 6.8 20.3
74.7 53.4
57.2 40.8
45.2 32.3
36.6 26.1
25.4 15.9
18.7 10.0
14.3 6.7
11.3 4.7
9.1 3.4
124.5 88.9
95.3 68.1
75.3 53.8
61.0 43.6
42.4 26.5
31.1 16.7
23.8 11.2
18.8 7.8
15.2 5.7
2.0
Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0
10.0
25.4 25.4 25.4
13.7 17.0 17.0
6.1 12.7 12.7
3.2 8.6 10.2
2.0 5.1 8.5
1.3 3.3 7.3
0.9 2.2 6.4
0.7 1.6 5.7
0.5 1.2 5.1
71.5 51.1
31.8 22.7
17.9 12.8
11.4 8.2
7.9 5.0
5.8 3.1
4.5 2.1
3.5 1.5
2.9 1.1
50.9 50.9 50.9
33.9 33.9 33.9
17.4 25.4 25.4
9.2 20.3 20.3
5.5 14.7 17.0
3.6 9.5 14.5
2.5 6.4 12.7
1.8 4.6 11.3
1.4 3.4 10.2
143.0 102.1
63.5 45.4
35.7 25.5
22.9 16.3
15.9 9.9
11.7 6.3
8.9 4.2
7.1 2.9
5.7 2.1
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 14.8 37.3
15.6 39.7
16.9 42.9
18.2 45.6
19.6 48.0
20.9 50.2
29.5 74.6
31.1 79.3
33.8 85.8
36.5 91.3
39.2 96.1
41.8 100.4
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 17
BENDING
Table 71
GENERIC C SECTION
Depth 300 mm Thickness 2.4 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.5
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0
10.0
18.3 35.8 35.8
12.5 31.3 31.3
8.9 27.9 27.9
6.6 21.5 25.1
3.9 12.7 20.9
2.6 8.1 17.9
1.8 5.5 15.7
1.3 3.9 13.9
1.0 2.9 12.5
55.2 39.5
42.3 30.2
33.4 23.9
27.1 19.3
18.8 11.7
13.8 7.4
10.6 5.0
8.4 3.5
6.8 2.5
92.1 65.8
70.5 50.3
55.7 39.8
45.1 32.2
31.3 19.6
23.0 12.3
17.6 8.3
13.9 5.8
11.3 4.2
50.9 71.6 71.6
34.6 62.7 62.7
24.6 55.7 55.7
18.2 50.1 50.1
10.8 35.3 41.8
7.0 22.6 35.8
4.8 15.3 31.3
3.5 10.9 27.9
2.6 8.0 25.1
110.5 78.9
84.6 60.4
66.8 47.7
54.1 38.7
37.6 23.5
27.6 14.8
21.1 9.9
16.7 7.0
13.5 5.1
184.1 131.5
141.0 100.7
111.4 79.6
90.2 64.4
62.7 39.2
46.0 24.7
35.2 16.5
27.8 11.6
22.6 8.5
2.0
Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0
10.0
31.3 31.3 31.3
17.1 20.9 20.9
7.5 15.7 15.7
4.0 10.8 12.5
2.4 6.3 10.4
1.6 4.1 9.0
1.1 2.8 7.8
0.8 2.0 7.0
0.6 1.5 6.3
105.7 75.5
47.0 33.6
26.4 18.9
16.9 12.1
11.7 7.3
8.6 4.6
6.6 3.1
5.2 2.2
4.2 1.6
62.7 62.7 62.7
41.8 41.8 41.8
20.7 31.3 31.3
10.9 25.1 25.1
6.5 17.7 20.9
4.2 11.3 17.9
2.9 7.7 15.7
2.1 5.4 13.9
1.6 4.0 12.5
211.5 151.0
94.0 67.1
52.9 37.8
33.8 24.2
23.5 14.7
17.3 9.2
13.2 6.2
10.4 4.4
8.5 3.2
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 14.0 38.2
14.8 40.6
16.1 44.0
17.4 46.7
18.6 49.2
19.9 51.4
28.1 76.4
29.6 81.3
32.2 87.9
34.7 93.5
37.3 98.4
39.8 102.9
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 18
BENDING
Table 72
GENERIC C SECTION
Depth 300 mm Thickness 3.0 mm
Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
3.5
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0
10.0
22.4 46.7 46.7
15.3 40.9 40.9
11.0 34.6 36.3
8.2 26.0 32.7
5.0 15.4 27.2
3.3 9.9 23.3
2.3 6.8 20.4
1.7 4.9 18.2
1.3 3.6 16.3
72.0 51.4
55.1 39.4
43.6 31.1
35.3 25.2
24.5 15.3
18.0 9.6
13.8 6.5
10.9 4.5
8.8 3.3
120.0 85.7
91.9 65.6
72.6 51.9
58.8 42.0
40.8 25.5
30.0 16.1
23.0 10.8
18.1 7.6
14.7 5.5
62.4 93.4 93.4
42.6 81.7 81.7
30.4 72.6 72.6
22.6 65.4 65.4
13.6 43.1 54.5
8.9 27.7 46.7
6.2 18.9 40.9
4.6 13.5 36.3
3.5 10.0 32.7
144.0 102.9
110.3 78.8
87.1 62.2
70.6 50.4
49.0 30.6
36.0 19.3
27.6 12.9
21.8 9.1
17.6 6.6
240.0 171.4
183.8 131.3
145.2 103.7
117.6 84.0
81.7 51.0
60.0 32.1
45.9 21.5
36.3 15.1
29.4 11.0
2.0
Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0
10.0
40.9 40.9 40.9
20.7 27.2 27.2
9.2 20.4 20.4
4.9 13.0 16.3
3.0 7.7 13.6
2.0 4.9 11.7
1.4 3.4 10.2
1.0 2.4 9.1
0.8 1.8 8.2
137.8 98.4
61.3 43.8
34.5 24.6
22.1 15.8
15.3 9.6
11.3 6.0
8.6 4.0
6.8 2.8
5.5 2.1
81.7 81.7 81.7
54.4 54.5 54.5
25.5 40.9 40.9
13.6 32.7 32.7
8.2 21.5 27.2
5.4 13.8 23.3
3.8 9.4 20.4
2.8 6.7 18.2
2.1 5.0 16.3
275.6 196.9
122.5 87.5
68.9 49.2
44.1 31.5
30.6 19.1
22.5 12.1
17.2 8.1
13.6 5.7
11.0 4.1
Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 22.7 56.0
23.7 59.3
25.4 63.8
27.1 67.6
28.8 71.0
30.5 74.0
45.4 112.1
47.4 118.6
50.8 127.6
54.2 135.2
57.5 141.9
60.9 148.0
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 19
[BLANK PAGE]
C - 20
LOAD CAPACITY TABLES FOR BEAMS S350 Generic Z Sections Note: These tables are presented for generic Z sections, which may be used for scheme design.
C - 21
BENDING
Table 73
GENERIC ZED SECTION
Depth 100 mm Thickness 1.2 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
1.0
1.5
5.0
13.6 13.6 13.6
9.1 9.1 9.1
6.4 6.8 6.8
3.4 5.4 5.4
2.0 4.5 4.5
1.3 3.9 3.9
0.9 2.9 3.4
0.6 2.1 3.0
0.5 1.5 2.7
24.8 17.7
11.0 7.9
6.2 4.4
4.0 2.8
2.8 2.0
2.0 1.4
1.5 1.1
1.2 0.9
1.0 0.7
41.3 29.5
18.4 13.1
10.3 7.4
6.6 4.7
4.6 3.3
3.4 2.4
2.6 1.8
2.0 1.5
1.7 1.2
1.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
5.0
6.8 6.8 6.8
4.5 4.5 4.5
3.4 3.4 3.4
2.0 2.7 2.7
1.2 2.3 2.3
0.8 1.9 1.9
0.5 1.4 1.7
0.4 1.0 1.5
0.3 0.8 1.4
15.5 11.1
6.9 4.9
3.9 2.8
2.5 1.8
1.7 1.2
1.3 0.9
1.0 0.7
0.8 0.5
0.6 0.4
25.8 18.4
11.5 8.2
6.5 4.6
4.1 2.9
2.9 2.0
2.1 1.5
1.6 1.2
1.3 0.9
1.0 0.7
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 4.4 10.3
4.8 11.1
5.5 12.2
6.2 13.2
6.9 14.0
7.6 14.8
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 22
BENDING
Table 74
GENERIC ZED SECTION
Depth 125 mm Thickness 1.2 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
1.0
1.5
5.0
17.3 17.3 17.3
11.6 11.6 11.6
8.1 8.7 8.7
4.2 7.0 7.0
2.5 5.8 5.8
1.6 5.0 5.0
1.1 3.6 4.4
0.8 2.6 3.9
0.6 1.9 3.5
39.6 28.3
17.6 12.6
9.9 7.1
6.3 4.5
4.4 3.1
3.2 2.3
2.5 1.8
2.0 1.4
1.6 1.1
66.1 47.2
29.4 21.0
16.5 11.8
10.6 7.5
7.3 5.2
5.4 3.9
4.1 2.9
3.3 2.3
2.6 1.9
1.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
5.0
8.7 8.7 8.7
5.8 5.8 5.8
4.4 4.4 4.4
2.5 3.5 3.5
1.5 2.9 2.9
1.0 2.5 2.5
0.6 1.8 2.2
0.5 1.3 1.9
0.3 0.9 1.7
24.8 17.7
11.0 7.9
6.2 4.4
4.0 2.8
2.8 2.0
2.0 1.4
1.5 1.1
1.2 0.9
1.0 0.7
41.3 29.5
18.3 13.1
10.3 7.4
6.6 4.7
4.6 3.3
3.4 2.4
2.6 1.8
2.0 1.5
1.7 1.2
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 4.2 10.6
4.6 11.4
5.2 12.6
5.9 13.5
6.6 14.4
7.2 15.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 23
BENDING
Table 75
GENERIC ZED SECTION
Depth 125 mm Thickness 1.6 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
1.0
1.5
5.0
24.7 24.7 24.7
16.5 16.5 16.5
10.6 12.3 12.3
5.6 9.9 9.9
3.3 8.2 8.2
2.1 6.8 7.1
1.5 4.7 6.2
1.0 3.4 5.5
0.8 2.5 4.9
57.0 40.7
25.3 18.1
14.2 10.2
9.1 6.5
6.3 4.5
4.7 3.3
3.6 2.5
2.8 2.0
2.3 1.6
95.0 67.8
42.2 30.2
23.7 17.0
15.2 10.9
10.6 7.5
7.8 5.5
5.9 4.2
4.7 3.4
3.8 2.7
1.0
1.5
Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5
5.0
12.3 12.3 12.3
8.2 8.2 8.2
6.0 6.2 6.2
3.4 4.9 4.9
2.0 4.1 4.1
1.3 3.4 3.5
0.9 2.4 3.1
0.6 1.7 2.7
0.5 1.2 2.5
35.6 25.4
15.8 11.3
8.9 6.4
5.7 4.1
4.0 2.8
2.9 2.1
2.2 1.6
1.8 1.3
1.4 1.0
59.4 42.4
26.4 18.8
14.8 10.6
9.5 6.8
6.6 4.7
4.8 3.5
3.7 2.6
2.9 2.1
2.4 1.7
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.4 17.2
8.0 18.5
8.9 20.2
9.9 21.6
10.8 22.9
11.7 24.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 24
BENDING
Table 76
GENERIC ZED SECTION
Depth 150 mm Thickness 1.6 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
14.9 16.0 16.0
7.9 12.8 12.8
4.6 10.6 10.6
3.0 9.1 9.1
2.0 6.7 8.0
1.4 4.8 7.1
1.1 3.5 6.4
0.6 2.1 5.3
0.4 1.3 4.6
21.9 15.7
14.0 10.0
9.7 7.0
7.2 5.1
5.5 3.9
4.3 3.1
3.5 2.5
2.4 1.5
1.8 1.0
36.5 26.1
23.4 16.7
16.2 11.6
11.9 8.5
9.1 6.5
7.2 5.2
5.8 4.2
4.1 2.5
3.0 1.6
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
10.6 10.6 10.6
8.0 8.0 8.0
4.7 6.4 6.4
2.8 5.3 5.3
1.8 4.6 4.6
1.2 3.4 4.0
0.6 1.7 3.2
0.4 1.0 2.7
0.3 0.7 2.3
24.4 17.4
13.7 9.8
8.8 6.3
6.1 4.3
4.5 3.2
3.4 2.4
2.2 1.6
1.5 1.0
1.1 0.6
40.6 29.0
22.8 16.3
14.6 10.4
10.1 7.2
7.5 5.3
5.7 4.1
3.7 2.6
2.5 1.6
1.9 1.0
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.1 17.6
7.7 18.8
8.6 20.6
9.5 22
10.4 23.3
11.3 24.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 25
BENDING
Table 77
GENERIC ZED SECTION
Depth 150 mm Thickness 1.8 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
16.7 18.3 18.3
8.8 14.7 14.7
5.2 12.2 12.2
3.3 10.5 10.5
2.3 7.5 9.2
1.6 5.3 8.1
1.2 3.9 7.3
0.7 2.3 6.1
0.5 1.5 5.2
25.2 18.0
16.1 11.5
11.2 8.0
8.2 5.9
6.3 4.5
5.0 3.6
4.0 2.9
2.8 1.8
2.1 1.1
42.0 30.0
26.9 19.2
18.7 13.3
13.7 9.8
10.5 7.5
8.3 5.9
6.7 4.8
4.7 2.9
3.4 1.8
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
12.2 12.2 12.2
9.2 9.2 9.2
5.3 7.3 7.3
3.1 6.1 6.1
2.0 5.2 5.2
1.4 3.7 4.6
0.7 2.0 3.7
0.4 1.1 3.1
0.3 0.7 2.6
28.0 20.0
15.8 11.3
10.1 7.2
7.0 5.0
5.1 3.7
3.9 2.8
2.5 1.8
1.8 1.1
1.3 0.7
46.7 33.3
26.3 18.8
16.8 12.0
11.7 8.3
8.6 6.1
6.6 4.7
4.2 3.0
2.9 1.8
2.1 1.1
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.1 21.5
9.7 23
10.7 25
11.8 26.8
12.9 28.3
13.9 29.7
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 26
BENDING
Table 78
GENERIC ZED SECTION
Depth 165 mm Thickness 1.6 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
16.5 17.8 17.8
8.7 14.2 14.2
5.1 11.9 11.9
3.2 10.2 10.2
2.2 7.4 8.9
1.6 5.2 7.9
1.2 3.8 7.1
0.7 2.2 5.9
0.5 1.4 5.1
26.8 19.2
17.2 12.3
11.9 8.5
8.8 6.3
6.7 4.8
5.3 3.8
4.3 3.1
3.0 1.9
2.2 1.2
44.7 32.0
28.6 20.5
19.9 14.2
14.6 10.4
11.2 8.0
8.8 6.3
7.2 5.1
5.0 3.1
3.7 2.0
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
11.9 11.9 11.9
8.9 8.9 8.9
5.2 7.1 7.1
3.1 5.9 5.9
1.9 5.1 5.1
1.3 3.7 4.4
0.7 1.9 3.6
0.4 1.1 3.0
0.3 0.7 2.5
29.8 21.3
16.8 12.0
10.7 7.7
7.5 5.3
5.5 3.9
4.2 3.0
2.7 1.9
1.9 1.2
1.4 0.7
49.7 35.5
28.0 20.0
17.9 12.8
12.4 8.9
9.1 6.5
7.0 5.0
4.5 3.2
3.1 1.9
2.3 1.2
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.0 17.8
7.5 19
8.4 20.8
9.3 22.3
10.2 23.6
11.1 24.8
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 27
BENDING
Table 79
GENERIC ZED SECTION
Depth 165 mm Thickness 1.8 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
18.4 20.5 20.5
9.7 16.4 16.4
5.7 13.7 13.7
3.6 11.7 11.7
2.5 8.2 10.2
1.8 5.8 9.1
1.3 4.3 8.2
0.8 2.5 6.8
0.5 1.6 5.9
31.0 22.1
19.8 14.2
13.8 9.8
10.1 7.2
7.7 5.5
6.1 4.4
5.0 3.5
3.4 2.1
2.5 1.4
51.6 36.9
33.0 23.6
22.9 16.4
16.8 12.0
12.9 9.2
10.2 7.3
8.3 5.9
5.7 3.6
4.2 2.3
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
13.7 13.7 13.7
10.2 10.2 10.2
5.8 8.2 8.2
3.4 6.8 6.8
2.2 5.9 5.9
1.5 4.1 5.1
0.8 2.1 4.1
0.5 1.3 3.4
0.3 0.8 2.9
34.4 24.6
19.3 13.8
12.4 8.8
8.6 6.1
6.3 4.5
4.8 3.5
3.1 2.2
2.1 1.3
1.6 0.8
57.3 41.0
32.2 23.0
20.6 14.7
14.3 10.2
10.5 7.5
8.1 5.8
5.2 3.7
3.6 2.2
2.6 1.4
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.9 21.7
9.5 23.2
10.6 25.3
11.6 27
12.6 28.6
13.7 30
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 28
BENDING
Table 80
GENERIC ZED SECTION
Depth 180 mm Thickness 1.6 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
18.0 19.6 19.6
9.4 15.7 15.7
5.5 13.1 13.1
3.5 11.2 11.2
2.4 8.0 9.8
1.7 5.7 8.7
1.3 4.2 7.8
0.7 2.4 6.5
0.5 1.6 5.6
32.2 23.0
20.6 14.7
14.3 10.2
10.5 7.5
8.1 5.8
6.4 4.5
5.2 3.7
3.6 2.2
2.6 1.4
53.7 38.4
34.4 24.6
23.9 17.1
17.5 12.5
13.4 9.6
10.6 7.6
8.6 6.1
6.0 3.7
4.4 2.4
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
13.1 13.1 13.1
9.8 9.8 9.8
5.7 7.8 7.8
3.3 6.5 6.5
2.1 5.6 5.6
1.4 4.0 4.9
0.8 2.1 3.9
0.5 1.2 3.3
0.3 0.8 2.8
35.8 25.6
20.2 14.4
12.9 9.2
9.0 6.4
6.6 4.7
5.0 3.6
3.2 2.3
2.2 1.4
1.6 0.9
59.7 42.7
33.6 24.0
21.5 15.4
14.9 10.7
11.0 7.8
8.4 6.0
5.4 3.8
3.7 2.3
2.7 1.5
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.8 18.0
7.4 19.3
8.2 21.0
9.1 22.5
10.0 23.9
10.9 25.1
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 29
BENDING
Table 81
GENERIC ZED SECTION
Depth 180 mm Thickness 1.8 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
20.1 22.6 22.6
10.5 18.1 18.1
6.2 15.1 15.1
3.9 12.9 12.9
2.7 9.0 11.3
1.9 6.3 10.1
1.4 4.7 9.1
0.9 2.7 7.5
0.6 1.7 6.5
37.3 26.7
23.9 17.1
16.6 11.8
12.2 8.7
9.3 6.7
7.4 5.3
6.0 4.3
4.1 2.6
3.0 1.6
62.2 44.4
39.8 28.4
27.6 19.7
20.3 14.5
15.5 11.1
12.3 8.8
9.9 7.1
6.9 4.3
5.1 2.7
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
15.1 15.1 15.1
11.3 11.3 11.3
6.3 9.1 9.1
3.7 7.5 7.5
2.4 6.5 6.5
1.6 4.5 5.7
0.9 2.3 4.5
0.5 1.4 3.8
0.3 0.9 3.2
41.5 29.6
23.3 16.7
14.9 10.7
10.4 7.4
7.6 5.4
5.8 4.2
3.7 2.7
2.6 1.6
1.9 1.0
69.1 49.4
38.9 27.8
24.9 17.8
17.3 12.3
12.7 9.1
9.7 6.9
6.2 4.4
4.3 2.7
3.2 1.7
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.7 21.9
9.3 23.5
10.4 25.5
11.4 27.3
12.4 28.9
13.4 30.3
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 30
BENDING
Table 82
GENERIC ZED SECTION
Depth 180 mm Thickness 2.0 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
22.1 25.6 25.6
11.6 20.5 20.5
6.8 17.1 17.1
4.4 14.2 14.6
3.0 9.8 12.8
2.1 7.0 11.4
1.6 5.1 10.2
1.0 3.0 8.5
0.6 1.9 7.3
42.2 30.2
27.0 19.3
18.8 13.4
13.8 9.9
10.6 7.5
8.3 6.0
6.8 4.8
4.7 2.9
3.4 1.8
70.4 50.3
45.1 32.2
31.3 22.4
23.0 16.4
17.6 12.6
13.9 9.9
11.3 8.0
7.8 4.9
5.7 3.1
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
17.1 17.1 17.1
12.7 12.8 12.8
7.0 10.2 10.2
4.1 8.5 8.5
2.6 7.1 7.3
1.8 4.9 6.4
1.0 2.6 5.1
0.6 1.5 4.3
0.4 1.0 3.7
46.9 33.5
26.4 18.9
16.9 12.1
11.7 8.4
8.6 6.2
6.6 4.7
4.2 3.0
2.9 1.8
2.2 1.2
78.2 55.9
44.0 31.4
28.2 20.1
19.6 14.0
14.4 10.3
11.0 7.9
7.0 5.0
4.9 3.1
3.6 1.9
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.8 26.3
11.5 28.0
12.7 30.5
13.8 32.5
15.0 34.3
16.2 35.9
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 31
BENDING
Table 83
GENERIC ZED SECTION
Depth 200 mm Thickness 1.6 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
20.1 22.0 22.0
10.5 17.6 17.6
6.1 14.7 14.7
3.9 12.6 12.6
2.6 8.9 11.0
1.9 6.3 9.8
1.4 4.6 8.8
0.8 2.7 7.3
0.5 1.7 6.3
40.2 28.7
25.7 18.4
17.9 12.8
13.1 9.4
10.0 7.2
7.9 5.7
6.4 4.6
4.5 2.8
3.3 1.8
67.0 47.8
42.9 30.6
29.8 21.3
21.9 15.6
16.7 12.0
13.2 9.4
10.7 7.7
7.4 4.7
5.5 2.9
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
14.7 14.7 14.7
11.0 11.0 11.0
6.3 8.8 8.8
3.7 7.3 7.3
2.3 6.3 6.3
1.6 4.5 5.5
0.8 2.3 4.4
0.5 1.4 3.7
0.3 0.9 3.1
44.6 31.9
25.1 17.9
16.1 11.5
11.2 8.0
8.2 5.9
6.3 4.5
4.0 2.9
2.8 1.7
2.0 1.1
74.4 53.1
41.9 29.9
26.8 19.1
18.6 13.3
13.7 9.8
10.5 7.5
6.7 4.8
4.7 2.9
3.4 1.8
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.6 18.2
7.2 19.5
8 21.3
8.9 22.9
9.7 24.2
10.6 25.4
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 32
BENDING
Table 84
GENERIC ZED SECTION
Depth 200 mm Thickness 1.8 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0
2.0
2.5
7.0
22.3 25.5 25.5
11.7 20.4 20.4
6.8 17.0 17.0
4.4 14.5 14.6
3.0 9.9 12.8
2.1 7.0 11.3
1.6 5.2 10.2
0.9 3.0 8.5
0.6 1.9 7.3
46.7 33.4
29.9 21.3
20.8 14.8
15.2 10.9
11.7 8.3
9.2 6.6
7.5 5.3
5.2 3.2
3.8 2.0
77.8 55.6
49.8 35.6
34.6 24.7
25.4 18.2
19.5 13.9
15.4 11.0
12.5 8.9
8.6 5.4
6.4 3.4
1.5
2.0
Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0
7.0
17.0 17.0 17.0
12.8 12.8 12.8
7.0 10.2 10.2
4.1 8.5 8.5
2.6 7.3 7.3
1.8 5.0 6.4
0.9 2.6 5.1
0.6 1.5 4.3
0.4 1.0 3.6
51.9 37.1
29.2 20.8
18.7 13.3
13.0 9.3
9.5 6.8
7.3 5.2
4.7 3.3
3.2 2.0
2.4 1.3
86.5 61.8
48.6 34.7
31.1 22.2
21.6 15.4
15.9 11.3
12.2 8.7
7.8 5.6
5.4 3.4
4.0 2.1
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.5 22.2
9.1 23.8
10.1 25.9
11.1 27.7
12.1 29.2
13.1 30.7
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 33
BENDING
Table 85
GENERIC ZED SECTION
Depth 200 mm Thickness 2.0 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0
3.0
3.5
8.0
7.5 19.3 19.3
4.8 15.9 16.6
3.3 10.9 14.5
2.3 7.7 12.9
1.7 5.7 11.6
1.3 4.3 10.5
1.0 3.3 9.7
0.7 2.1 8.3
0.5 1.4 7.3
23.6 16.8
17.3 12.4
13.3 9.5
10.5 7.5
8.5 6.1
7.0 4.8
5.9 3.7
4.3 2.3
3.3 1.6
39.3 28.1
28.9 20.6
22.1 15.8
17.5 12.5
14.2 10.1
11.7 8.0
9.8 6.1
7.2 3.9
5.5 2.6
2.0
2.5
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0
8.0
14.3 14.5 14.5
7.7 11.6 11.6
4.5 9.7 9.7
2.9 8.0 8.3
2.0 5.5 7.3
1.0 2.8 5.8
0.6 1.7 4.8
0.4 1.1 4.1
0.3 0.7 3.6
33.2 23.7
21.2 15.2
14.7 10.5
10.8 7.7
8.3 5.9
5.3 3.8
3.7 2.3
2.7 1.5
2.1 1.0
55.3 39.5
35.4 25.3
24.6 17.5
18.0 12.9
13.8 9.9
8.8 6.3
6.1 3.8
4.5 2.4
3.5 1.6
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.6 26.6
11.3 28.4
12.4 30.8
13.5 32.9
14.7 34.7
15.8 36.3
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 34
BENDING
Table 86
GENERIC ZED SECTION
Depth 220 mm Thickness 2.0 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0
3.0
3.5
8.0
8.3 21.6 21.6
5.3 17.6 18.5
3.6 12.0 16.2
2.6 8.5 14.4
1.9 6.2 13.0
1.4 4.7 11.8
1.1 3.6 10.8
0.7 2.3 9.3
0.5 1.6 8.1
29.0 20.7
21.3 15.2
16.3 11.6
12.9 9.2
10.4 7.4
8.6 5.9
7.2 4.5
5.3 2.8
4.1 1.9
48.3 34.5
35.4 25.3
27.1 19.4
21.4 15.3
17.4 12.4
14.4 9.8
12.1 7.5
8.9 4.7
6.8 3.2
2.0
2.5
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0
8.0
15.8 16.2 16.2
8.5 13.0 13.0
5.0 10.8 10.8
3.2 8.8 9.3
2.2 6.0 8.1
1.1 3.1 6.5
0.7 1.8 5.4
0.4 1.2 4.6
0.3 0.8 4.1
40.7 29.1
26.1 18.6
18.1 12.9
13.3 9.5
10.2 7.3
6.5 4.7
4.5 2.8
3.3 1.8
2.5 1.2
67.9 48.5
43.4 31.0
30.2 21.5
22.2 15.8
17.0 12.1
10.9 7.8
7.5 4.7
5.5 3.0
4.2 2.0
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.4 26.9
11.0 28.7
12.1 31.2
13.2 33.3
14.3 35.1
15.4 36.8
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 35
BENDING
Table 87
GENERIC ZED SECTION
Depth 220 mm Thickness 2.4 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0
3.0
3.5
8.0
9.8 26.8 26.8
6.3 20.7 23.0
4.3 14.1 20.1
3.1 10.0 17.9
2.3 7.3 16.1
1.8 5.6 14.6
1.4 4.3 13.4
0.9 2.8 11.5
0.7 1.9 10.0
35.9 25.6
26.4 18.8
20.2 14.4
16.0 11.4
12.9 9.2
10.7 7.3
9.0 5.6
6.6 3.5
5.0 2.4
59.8 42.7
44.0 31.4
33.7 24.0
26.6 19.0
21.5 15.4
17.8 12.1
15.0 9.3
11.0 5.9
8.4 3.9
2.0
2.5
Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0
8.0
18.6 20.1 20.1
10.0 16.1 16.1
5.9 13.4 13.4
3.8 10.3 11.5
2.6 7.0 10.0
1.4 3.7 8.0
0.8 2.2 6.7
0.6 1.4 5.7
0.4 0.9 5.0
50.5 36.1
32.3 23.1
22.4 16.0
16.5 11.8
12.6 9.0
8.1 5.8
5.6 3.5
4.1 2.2
3.2 1.5
84.1 60.1
53.8 38.5
37.4 26.7
27.5 19.6
21.0 15.0
13.5 9.6
9.3 5.8
6.9 3.7
5.3 2.5
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 15.2 36.8
16.0 39.1
17.4 42.3
18.8 45.0
20.1 47.3
21.5 49.5
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 36
BENDING
Table 88
GENERIC ZED SECTION
Depth 250 mm Thickness 2.4 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0
3.5
4.0
10.0
15.1 31.7 31.7
10.2 27.7 27.7
7.2 24.0 24.6
5.3 17.9 22.2
3.2 10.5 18.5
2.0 6.7 15.8
1.4 4.5 13.9
1.0 3.2 12.3
0.8 2.4 11.1
41.1 29.4
31.5 22.5
24.9 17.8
20.2 14.4
14.0 8.7
10.3 5.5
7.9 3.7
6.2 2.6
5.0 1.9
68.5 49.0
52.5 37.5
41.5 29.6
33.6 24.0
23.3 14.6
17.1 9.2
13.1 6.1
10.4 4.3
8.4 3.1
2.0
3.0
Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0
10.0
27.7 27.7 27.7
14.2 18.5 18.5
6.1 13.9 13.9
3.2 8.9 11.1
1.9 5.2 9.2
1.2 3.3 7.9
0.9 2.3 6.9
0.6 1.6 6.2
0.5 1.2 5.5
78.7 56.2
35.0 25.0
19.7 14.1
12.6 9.0
8.7 5.5
6.4 3.4
4.9 2.3
3.9 1.6
3.1 1.2
131.2 93.7
58.3 41.7
32.8 23.4
21.0 15.0
14.6 9.1
10.7 5.7
8.2 3.8
6.5 2.7
5.2 2.0
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 14.8 37.3
15.6 39.7
16.9 42.9
18.2 45.6
19.6 48.0
20.9 50.2
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 37
BENDING
Table 89
GENERIC ZED SECTION
Depth 300 mm Thickness 2.4 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0
3.5
4.0
10.0
32.4 44.1 44.1
21.9 38.6 38.6
15.5 34.3 34.3
11.3 30.9 30.9
6.7 22.6 25.7
4.2 14.4 22.0
2.9 9.7 19.3
2.1 6.8 17.1
1.5 5.0 15.4
68.2 48.7
52.2 37.3
41.3 29.5
33.4 23.9
23.2 14.5
17.1 9.1
13.1 6.1
10.3 4.3
8.4 3.1
113.7 81.2
87.1 62.2
68.8 49.1
55.7 39.8
38.7 24.2
28.4 15.2
21.8 10.2
17.2 7.2
13.9 5.2
2.0
3.0
Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0
10.0
38.6 38.6 38.6
25.7 25.7 25.7
13.1 19.3 19.3
6.8 15.4 15.4
4.0 11.3 12.9
2.6 7.2 11.0
1.7 4.8 9.6
1.2 3.4 8.6
0.9 2.5 7.7
130.6 93.3
58.0 41.5
32.6 23.3
20.9 14.9
14.5 9.1
10.7 5.7
8.2 3.8
6.4 2.7
5.2 2.0
217.7 155.5
96.7 69.1
54.4 38.9
34.8 24.9
24.2 15.1
17.8 9.5
13.6 6.4
10.7 4.5
8.7 3.3
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 14.0 38.2
14.8 40.6
16.1 44.0
17.4 46.7
18.6 49.2
19.9 51.4
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 38
BENDING
Table 90
GENERIC ZED SECTION
Depth 300 mm Thickness 3.0 mm
2
Design Strength 350N/mm
Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350
Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0
3.5
4.0
10.0
39.6 58.1 58.1
26.8 50.8 50.8
19.0 45.2 45.2
14.0 40.7 40.7
8.2 27.6 33.9
5.3 17.6 29.1
3.6 11.9 25.4
2.6 8.4 22.6
2.0 6.2 20.3
90.3 64.5
69.2 49.4
54.6 39.0
44.3 31.6
30.7 19.2
22.6 12.1
17.3 8.1
13.7 5.7
11.1 4.1
150.5 107.5
115.3 82.3
91.1 65.1
73.8 52.7
51.2 32.0
37.6 20.2
28.8 13.5
22.8 9.5
18.4 6.9
2.0
3.0
Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0
10.0
50.8 50.8 50.8
33.9 33.9 33.9
16.1 25.4 25.4
8.4 20.3 20.3
5.0 13.8 16.9
3.2 8.8 14.5
2.2 5.9 12.7
1.6 4.2 11.3
1.2 3.1 10.2
172.9 123.5
76.8 54.9
43.2 30.9
27.7 19.8
19.2 12.0
14.1 7.6
10.8 5.1
8.5 3.6
6.9 2.6
288.2 205.8
128.1 91.5
72.0 51.5
46.1 32.9
32.0 20.0
23.5 12.6
18.0 8.4
14.2 5.9
11.5 4.3
Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:
Deflection is calculated for self weight plus imposed load
Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained
Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 22.7 56.0
23.7 59.3
25.4 63.8
27.1 67.6
28.8 71.0
30.5 74.0
For double span beams, web cleats should be provided to prevent crushing at internal supports
C - 39
[BLANK PAGE]
C - 40
LOAD CAPACITY TABLES FOR COLUMNS S350 Generic C Sections Note: These tables are presented for generic Z sections, which may be used for scheme design.
C - 41
COMPRESSION GENERIC C SECTION
Table 91
Depth 100 mm Thickness 1.2 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
6.9 6.9 6.9
10.3 11.2 11.2
15.5 19.6 20.0
20.9 29.5 31.0
22.9 32.5 34.6
4.7 4.9 4.9
6.8 7.6 7.7
7.9 9.5 9.8
8.3 9.9 10.3
6.3 6.8 6.8
9.8 11.9 12.1
11.1 15.3 16.5
11.5 15.8 17.3
6.4 6.8 6.8
8.8 10.0 10.1
11.2 13.2 13.4
12.1 14.3 14.7
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
3.3 3.3 3.3
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
4.2 4.2 4.2
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
4.7 4.7 4.7
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
29.6 29.6 29.6
47.7 47.7 47.7
53.0 71.6 71.6
53.0 80.4 84.0
53.0 80.4 87.0
12.2 12.2 12.2
13.7 15.2 15.4
14.2 16.3 16.8
14.4 16.6 17.2
23.4 24.1 24.1
24.3 32.9 35.2
24.3 34.5 37.9
24.3 34.5 38.5
15.5 15.5 15.5
17.8 19.3 19.3
19.1 21.7 21.9
19.5 22.3 22.8
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
9.1 9.1 9.1
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
15.2 15.2 15.2
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
11.9 11.9 11.9
C - 42
COMPRESSION GENERIC C SECTION
Table 92
Depth 125 mm Thickness 1.2 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
7.1 7.1 7.1
11.2 11.2 11.2
18.7 19.4 19.4
24.8 28.7 28.9
26.6 31.2 32.3
5.1 5.1 5.1
7.7 7.8 7.8
8.8 9.6 9.8
9.2 10.0 10.3
7.0 7.0 7.0
11.7 12.3 12.3
13.1 15.5 16.1
13.4 16.0 16.8
7.0 7.0 7.0
10.0 10.2 10.2
12.4 13.3 13.3
13.2 14.3 14.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
3.5 3.5 3.5
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
4.3 4.3 4.3
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
4.9 4.9 4.9
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
29.4 29.4 29.4
47.3 47.3 47.3
68.0 71.2 71.2
68.0 83.4 84.1
68.0 83.4 87.5
12.2 12.2 12.2
14.9 15.3 15.5
15.5 16.7 16.8
15.8 16.9 17.3
24.1 24.1 24.1
29.7 34.1 35.4
29.7 36.5 38.3
29.7 36.5 39.1
15.5 15.5 15.5
19.1 19.3 19.3
20.7 21.9 21.9
21.3 22.6 22.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
9.1 9.1 9.1
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
15.1 15.1 15.1
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
11.9 11.9 11.9
C - 43
COMPRESSION GENERIC C SECTION
Table 93
Depth 125 mm Thickness 1.6 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
9.7 9.7 9.7
15.7 15.7 15.7
27.6 28.6 28.6
38.3 46.5 46.8
41.6 51.1 53.1
6.9 6.9 6.9
10.5 10.6 10.6
12.5 13.8 14.0
13.0 14.4 14.8
9.6 9.6 9.6
16.8 17.3 17.3
19.4 23.9 25.0
19.9 24.7 26.2
9.3 9.3 9.3
13.7 14.0 14.0
17.3 18.8 18.9
18.7 20.4 20.7
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
4.7 4.7 4.7
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
5.9 5.9 5.9
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
6.5 6.5 6.5
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
39.5 39.5 39.5
65.3 65.3 65.3
101.2 107.3 107.3
101.2 130.5 131.6
101.2 130.5 137.3
16.2 16.2 16.2
20.4 20.8 20.8
21.4 23.1 23.3
21.8 23.6 24.0
32.5 32.5 32.5
42.9 50.3 50.3
42.9 54.8 58.0
42.9 54.8 59.0
20.5 20.5 20.5
25.8 26.1 26.1
28.1 29.8 29.9
28.9 30.8 31.2
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
12.0 12.0 12.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
20.3 20.3 20.3
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
15.7 15.7 15.7
C - 44
COMPRESSION GENERIC C SECTION
Table 94
Depth 150 mm Thickness 1.6 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
14.1 14.1 14.1
22.0 22.0 22.0
35.6 36.2 36.2
45.0 49.4 49.5
47.7 52.8 54.0
9.3 9.3 9.3
13.2 13.3 13.3
14.6 15.4 15.5
15.0 15.9 16.1
13.8 13.8 13.8
21.4 22.3 22.3
23.4 26.3 27.0
23.8 26.9 28.0
12.4 12.4 12.4
17.0 17.1 17.1
20.1 20.9 20.9
21.2 22.1 22.3
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.5 6.5 6.5
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
8.7 8.7 8.7
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
9.0 9.0 9.0
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
58.7 58.7 58.7
91.1 91.1 91.1
124.4 125.7 125.7
124.4 142.2 142.5
124.4 142.2 146.6
20.5 20.5 20.5
23.9 24.3 24.4
24.8 25.9 26.1
25.1 26.3 26.6
45.5 45.5 45.5
53.1 58.5 60.3
53.1 61.8 64.0
53.1 61.8 64.8
25.6 25.6 25.6
30.3 30.4 30.4
32.3 33.4 33.4
33.1 34.2 34.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
16.0 16.0 16.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
29.8 29.8 29.8
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
20.5 20.5 20.5
C - 45
COMPRESSION GENERIC C SECTION
Table 95
Depth 150 mm Thickness 1.8 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
16.1 16.1 16.1
25.4 25.4 25.4
42.2 42.8 42.8
54.3 60.2 60.3
57.8 64.5 66.0
10.5 10.5 10.5
14.9 15.0 15.0
16.8 17.8 17.9
17.3 18.3 18.6
15.7 15.7 15.7
25.2 25.8 25.8
27.5 31.3 32.3
28.0 32.1 33.4
14.0 14.0 14.0
19.4 19.5 19.5
23.1 24.1 24.1
24.4 25.5 25.8
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
7.4 7.4 7.4
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
9.8 9.8 9.8
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.1 10.1 10.1
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
66.3 66.3 66.3
104.6 104.6 104.6
147.4 149.0 149.0
147.4 170.0 170.4
147.4 170.0 175.4
23.0 23.0 23.0
27.1 27.6 27.6
28.3 29.5 29.7
28.6 29.9 30.3
51.5 51.5 51.5
61.8 68.6 70.0
61.8 72.6 75.3
61.8 72.6 76.3
28.7 28.7 28.7
34.2 34.3 34.3
36.6 37.8 37.8
37.4 38.7 39.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
17.9 17.9 17.9
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
33.5 33.5 33.5
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
22.9 22.9 22.9
C - 46
COMPRESSION GENERIC C SECTION
Table 96
Depth 165 mm Thickness 1.6 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
14.2 14.2 14.2
21.9 21.9 21.9
35.4 35.4 35.4
45.1 48.0 48.0
47.6 51.4 52.3
9.5 9.5 9.5
13.3 13.3 13.3
14.8 15.4 15.5
15.2 15.9 16.1
13.9 13.9 13.9
21.8 22.3 22.3
23.9 26.2 26.7
24.3 26.8 27.6
12.5 12.5 12.5
17.2 17.2 17.2
20.3 20.8 20.8
21.3 22.0 22.2
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.7 6.7 6.7
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
8.8 8.8 8.8
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
9.1 9.1 9.1
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
58.4 58.4 58.4
90.7 90.7 90.7
125.4 125.4 125.4
129.2 142.6 142.6
129.2 143.5 147.0
20.6 20.6 20.6
24.1 24.4 24.5
25.2 26.0 26.1
25.5 26.4 26.6
45.5 45.5 45.5
54.8 59.1 60.6
55.5 62.6 64.3
55.5 62.8 65.2
25.6 25.6 25.6
30.4 30.4 30.4
32.7 33.4 33.4
33.4 34.3 34.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
16.0 16.0 16.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
29.7 29.7 29.7
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
20.5 20.5 20.5
C - 47
COMPRESSION GENERIC C SECTION
Table 97
Depth 165 mm Thickness 1.8 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
16.1 16.1 16.1
25.3 25.3 25.3
41.8 41.8 41.8
54.4 58.2 58.2
57.7 62.6 63.7
10.7 10.7 10.7
15.1 15.1 15.1
17.1 17.8 17.9
17.5 18.3 18.6
15.8 15.8 15.8
25.6 25.7 25.7
28.3 31.2 31.8
28.8 31.9 32.9
14.1 14.1 14.1
19.5 19.5 19.5
23.3 23.9 23.9
24.5 25.3 25.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
7.5 7.5 7.5
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
10.0 10.0 10.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.3 10.3 10.3
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
66.0 66.0 66.0
104.2 104.2 104.2
148.6 148.6 148.6
153.7 170.4 170.4
153.7 171.6 175.8
23.0 23.0 23.0
27.3 27.7 27.7
28.7 29.6 29.7
29.1 30.1 30.3
51.6 51.6 51.6
64.0 69.3 70.8
64.9 73.6 75.8
64.9 73.8 76.8
28.7 28.7 28.7
34.3 34.3 34.3
36.9 37.8 37.8
37.8 38.8 39.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
17.9 17.9 17.9
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
33.4 33.4 33.4
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
22.9 22.9 22.9
C - 48
COMPRESSION GENERIC C SECTION
Table 98
Depth 180 mm Thickness 1.6 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
14.2 14.2 14.2
21.9 21.9 21.9
34.8 34.8 34.8
44.9 46.7 46.7
47.3 50.3 50.9
9.6 9.6 9.6
13.4 13.4 13.4
14.9 15.4 15.5
15.3 15.9 16.0
14.0 14.0 14.0
21.9 22.2 22.2
24.3 26.0 26.4
24.7 26.7 27.3
12.6 12.6 12.6
17.2 17.2 17.2
20.3 20.7 20.7
21.3 21.9 22.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.7 6.7 6.7
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
8.9 8.9 8.9
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
9.2 9.2 9.2
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
58.3 58.3 58.3
90.3 90.3 90.3
125.1 125.1 125.1
132.7 142.7 142.7
132.7 144.6 147.3
20.6 20.6 20.6
24.2 24.4 24.5
25.4 26.1 26.2
25.8 26.5 26.7
45.6 45.6 45.6
56.0 59.6 60.8
57.4 63.2 64.6
57.4 63.6 65.6
25.5 25.5 25.5
30.3 30.3 30.3
32.9 33.4 33.4
33.6 34.3 34.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
15.9 15.9 15.9
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
29.6 29.6 29.6
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
20.5 20.5 20.5
C - 49
COMPRESSION GENERIC C SECTION
Table 99
Depth 180 mm Thickness 1.8 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
16.2 16.2 16.2
25.1 25.1 25.1
41.0 41.0 41.0
54.0 56.4 56.4
57.1 60.9 61.7
10.8 10.8 10.8
15.2 15.2 15.2
17.3 17.8 17.8
17.7 18.3 18.5
15.9 15.9 15.9
25.7 25.7 25.7
28.8 30.9 31.4
29.3 31.8 32.6
14.2 14.2 14.2
19.5 19.5 19.5
23.4 23.8 23.8
24.5 25.2 25.3
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
7.6 7.6 7.6
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
10.1 10.1 10.1
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.4 10.4 10.4
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
65.8 65.8 65.8
103.7 103.7 103.7
148.1 148.1 148.1
158.0 170.4 170.4
158.0 172.8 176.1
23.1 23.1 23.1
27.5 27.8 27.8
29.0 29.7 29.8
29.4 30.2 30.4
51.7 51.7 51.7
65.6 70.0 71.4
67.3 74.4 76.3
67.3 74.9 77.3
28.7 28.7 28.7
34.3 34.3 34.3
37.2 37.8 37.8
38.1 38.9 39.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
17.8 17.8 17.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
33.3 33.3 33.3
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
22.9 22.9 22.9
C - 50
COMPRESSION GENERIC C SECTION
Table 100
Depth 180 mm Thickness 2.0 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
18.2 18.2 18.2
28.5 28.5 28.5
47.5 47.5 47.5
63.9 66.9 66.9
67.8 72.5 73.5
11.9 11.9 11.9
17.0 17.0 17.0
19.5 20.1 20.2
20.0 20.8 21.0
17.8 17.8 17.8
29.2 29.2 29.2
33.3 35.9 36.6
33.8 37.0 37.9
15.8 15.8 15.8
21.9 21.9 21.9
26.4 26.9 26.9
27.8 28.6 28.7
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
8.4 8.4 8.4
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
11.3 11.3 11.3
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
11.5 11.5 11.5
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
73.1 73.1 73.1
116.5 116.5 116.5
170.7 170.7 170.7
183.1 197.9 197.9
183.1 200.8 204.7
25.5 25.5 25.5
30.6 30.8 30.8
32.4 33.2 33.3
32.8 33.8 34.0
57.5 57.5 57.5
74.7 79.9 80.4
76.8 85.3 87.5
76.8 85.8 88.8
31.6 31.6 31.6
38.0 38.0 38.0
41.3 42.0 42.0
42.3 43.2 43.4
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
19.7 19.7 19.7
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
37.0 37.0 37.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
25.2 25.2 25.2
C - 51
COMPRESSION GENERIC C SECTION
Table 101
Depth 200 mm Thickness 1.6 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
14.3 14.3 14.3
21.8 21.8 21.8
34.2 34.2 34.2
44.3 45.3 45.3
46.7 49.0 49.4
9.7 9.7 9.7
13.5 13.5 13.5
15.1 15.3 15.4
15.4 15.9 16.0
14.1 14.1 14.1
21.9 22.2 22.2
24.6 25.8 26.0
25.0 26.5 27.0
12.8 12.8 12.8
17.2 17.2 17.2
20.4 20.6 20.6
21.3 21.8 21.8
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
6.8 6.8 6.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
9.0 9.0 9.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
9.3 9.3 9.3
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
58.0 58.0 58.0
89.8 89.8 89.8
124.7 124.7 124.7
136.0 142.8 142.8
136.0 145.9 147.8
20.6 20.6 20.6
24.3 24.4 24.5
25.7 26.1 26.2
26.0 26.6 26.8
45.7 45.7 45.7
57.2 60.0 60.9
59.3 63.8 64.9
59.3 64.4 65.9
25.5 25.5 25.5
30.3 30.3 30.3
33.1 33.4 33.4
33.8 34.4 34.5
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
15.9 15.9 15.9
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
29.6 29.6 29.6
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
20.5 20.5 20.5
C - 52
COMPRESSION GENERIC C SECTION
Table 102
Depth 200 mm Thickness 1.8 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
16.3 16.3 16.3
25.0 25.0 25.0
40.1 40.1 40.1
53.3 54.5 54.5
56.3 59.1 59.6
10.9 10.9 10.9
15.3 15.3 15.3
17.4 17.7 17.8
17.8 18.3 18.5
16.0 16.0 16.0
25.6 25.6 25.6
29.1 30.6 31.0
29.6 31.6 32.1
14.3 14.3 14.3
19.5 19.5 19.5
23.4 23.7 23.7
24.5 25.1 25.2
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
7.7 7.7 7.7
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
10.2 10.2 10.2
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
10.5 10.5 10.5
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
65.6 65.6 65.6
103.1 103.1 103.1
147.6 147.6 147.6
162.1 170.4 170.4
162.1 174.3 176.5
23.1 23.1 23.1
27.6 27.8 27.9
29.3 29.8 29.9
29.7 30.3 30.5
51.8 51.8 51.8
67.1 70.6 71.7
69.8 75.3 76.7
69.8 76.0 77.9
28.6 28.6 28.6
34.2 34.2 34.2
37.4 37.8 37.8
38.3 38.9 39.1
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
17.8 17.8 17.8
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
33.3 33.3 33.3
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
22.9 22.9 22.9
C - 53
COMPRESSION GENERIC C SECTION
Table 103
Depth 200 mm Thickness 2.0 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
18.2 18.2 18.2
28.3 28.3 28.3
46.3 46.3 46.3
62.8 64.4 64.4
66.5 70.1 70.7
12.1 12.1 12.1
17.1 17.1 17.1
19.7 20.1 20.2
20.2 20.8 20.9
17.9 17.9 17.9
29.1 29.1 29.1
33.8 35.6 36.0
34.3 36.7 37.4
15.9 15.9 15.9
21.9 21.9 21.9
26.4 26.7 26.7
27.8 28.3 28.4
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
8.5 8.5 8.5
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
11.4 11.4 11.4
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
11.6 11.6 11.6
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
72.8 72.8 72.8
115.9 115.9 115.9
170.0 170.0 170.0
188.0 197.9 197.9
188.0 202.5 205.1
25.5 25.5 25.5
30.8 31.0 31.0
32.7 33.3 33.4
33.2 33.9 34.1
57.6 57.6 57.6
76.7 80.8 81.5
79.8 86.4 88.1
79.8 87.3 89.5
31.6 31.6 31.6
38.0 38.0 38.0
41.6 42.0 42.0
42.6 43.3 43.4
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
19.7 19.7 19.7
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
36.9 36.9 36.9
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
25.2 25.2 25.2
C - 54
COMPRESSION GENERIC C SECTION
Table 104
Depth 220 mm Thickness 2.0 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
18.3 18.3 18.3
28.1 28.1 28.1
45.4 45.4 45.4
61.7 62.3 62.3
65.3 68.1 68.4
12.2 12.2 12.2
17.2 17.2 17.2
19.8 20.0 20.1
20.3 20.8 20.9
18.0 18.0 18.0
29.0 29.0 29.0
34.0 35.2 35.6
34.5 36.4 37.0
16.0 16.0 16.0
21.8 21.8 21.8
26.4 26.5 26.5
27.7 28.2 28.2
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
8.6 8.6 8.6
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
11.5 11.5 11.5
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
11.8 11.8 11.8
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
72.5 72.5 72.5
115.3 115.3 115.3
169.4 169.4 169.4
191.6 197.9 197.9
191.6 203.9 205.6
25.5 25.5 25.5
30.9 31.1 31.1
33.0 33.4 33.5
33.5 34.1 34.2
57.7 57.7 57.7
78.1 81.4 82.4
82.2 87.3 88.7
82.2 88.5 90.2
31.6 31.6 31.6
37.9 37.9 37.9
41.8 42.0 42.0
42.8 43.4 43.4
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
19.7 19.7 19.7
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
36.8 36.8 36.8
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
25.2 25.2 25.2
C - 55
COMPRESSION GENERIC C SECTION
Table 105
Depth 220 mm Thickness 2.4 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
22.3 22.3 22.3
34.8 34.8 34.8
58.4 58.4 58.4
82.7 83.6 83.6
87.8 91.9 92.5
14.5 14.5 14.5
20.7 20.7 20.7
24.4 24.7 24.8
25.1 25.7 25.8
21.9 21.9 21.9
36.2 36.2 36.2
43.8 45.6 46.1
44.5 47.2 47.9
19.2 19.2 19.2
26.5 26.5 26.5
32.5 32.6 32.6
34.2 34.8 34.8
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
10.3 10.3 10.3
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
13.8 13.8 13.8
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
13.9 13.9 13.9
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
86.4 86.4 86.4
139.8 139.8 139.8
214.5 214.5 214.5
246.4 254.9 254.9
246.4 262.9 265.2
30.1 30.1 30.1
37.0 37.0 37.0
39.7 40.2 40.3
40.3 41.0 41.2
69.0 69.0 69.0
97.4 100.6 100.6
103.1 109.9 111.8
103.1 111.3 113.7
37.3 37.3 37.3
45.1 45.1 45.1
49.8 50.2 50.2
51.2 51.8 51.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
23.2 23.2 23.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
43.8 43.8 43.8
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
29.6 29.6 29.6
C - 56
COMPRESSION GENERIC C SECTION
Table 106
Depth 250 mm Thickness 2.4 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
22.3 22.3 22.3
34.5 34.5 34.5
56.7 56.7 56.7
79.8 79.8 79.8
85.0 88.0 88.2
14.7 14.7 14.7
20.8 20.8 20.8
24.5 24.7 24.7
25.2 25.6 25.7
22.0 22.0 22.0
36.0 36.0 36.0
43.9 45.0 45.3
44.8 46.8 47.2
19.3 19.3 19.3
26.4 26.4 26.4
32.3 32.3 32.3
33.9 34.4 34.4
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
10.4 10.4 10.4
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
14.0 14.0 14.0
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
14.1 14.1 14.1
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
86.0 86.0 86.0
138.8 138.8 138.8
213.2 213.2 213.2
251.6 254.7 254.7
251.6 265.1 265.9
30.1 30.1 30.1
37.2 37.2 37.2
40.1 40.3 40.4
40.8 41.3 41.4
69.1 69.1 69.1
99.7 102.2 102.2
107.0 111.7 113.1
107.0 113.6 115.3
37.2 37.2 37.2
45.1 45.1 45.1
50.1 50.2 50.2
51.4 51.9 51.9
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
23.2 23.2 23.2
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
43.6 43.6 43.6
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
29.6 29.6 29.6
C - 57
COMPRESSION GENERIC C SECTION
Table 107
Depth 300 mm Thickness 2.4 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
22.3 22.3 22.3
34.1 34.1 34.1
54.6 54.6 54.6
75.4 75.4 75.4
81.3 83.3 83.3
14.9 14.9 14.9
21.0 21.0 21.0
24.5 24.6 24.6
25.3 25.6 25.6
22.2 22.2 22.2
35.8 35.8 35.8
43.6 44.2 44.4
44.8 46.1 46.3
19.5 19.5 19.5
26.3 26.3 26.3
31.9 31.9 31.9
33.6 34.0 34.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
10.6 10.6 10.6
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
14.2 14.2 14.2
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
14.4 14.4 14.4
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
85.3 85.3 85.3
137.4 137.4 137.4
211.3 211.3 211.3
254.8 254.8 254.8
257.7 267.5 267.5
30.2 30.2 30.2
37.4 37.5 37.5
40.5 40.6 40.6
41.2 41.6 41.7
69.2 69.2 69.2
102.3 104.3 104.6
111.2 113.9 114.8
111.7 116.3 117.3
37.1 37.1 37.1
45.0 45.0 45.0
50.2 50.2 50.2
51.6 52.0 52.0
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
23.1 23.1 23.1
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
43.4 43.4 43.4
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
29.6 29.6 29.6
C - 58
COMPRESSION GENERIC C SECTION
Table 108
Depth 300 mm Thickness 3.0 mm
Design Strength 350N/mm2
Single Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
28.2 28.2 28.2
43.9 43.9 43.9
73.7 73.7 73.7
107.8 107.8 107.8
117.5 120.6 120.6
18.3 18.3 18.3
26.1 26.1 26.1
31.4 31.6 31.6
32.6 32.9 33.0
27.9 27.9 27.9
46.7 46.7 46.7
59.8 60.8 61.1
61.5 63.5 63.9
24.0 24.0 24.0
33.0 33.0 33.0
40.8 40.8 40.8
43.2 43.6 43.6
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
13.0 13.0 13.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
17.7 17.7 17.7
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
17.6 17.6 17.6
Double Section Columns Effective length Lx
Working load (kN) for effective length Ly (m) 4.0
3.0
2.0
1.0
Continuous
104.8 104.8 104.8
172.0 172.0 172.0
280.5 280.5 280.5
348.6 348.6 348.6
353.1 366.8 366.8
36.7 36.7 36.7
45.9 45.9 45.9
50.4 50.5 50.6
51.4 51.8 51.9
85.4 85.4 85.4
132.8 132.8 132.8
147.5 151.5 152.9
148.3 154.8 156.3
45.1 45.1 45.1
55.2 55.2 55.2
61.8 61.8 61.8
63.7 64.1 64.1
CONCENTRIC LOADING 4m 2m Continuous
ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous
28.0 28.0 28.0
ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous
53.3 53.3 53.3
ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous
35.8 35.8 35.8
C - 59
[BLANK PAGE]
C - 60
Typeset and page make-up by The Steel Construction Institute, Ascot, Berks. Printed and bound by Hobbs The Printers, Totton, SO40 3WX. 1,500 4/2002 [BCS 849]
View more...
Comments