Structural Design to BS 5950-51998 Section Properties and Load Tables.pdf

November 13, 2017 | Author: Muhammad Firdaus | Category: Buckling, Strength Of Materials, Wall, Bending, Yield (Engineering)
Share Embed Donate


Short Description

Download Structural Design to BS 5950-51998 Section Properties and Load Tables.pdf...

Description

Building Design Using Cold Formed Steel Sections

Structural Design to BS 5950-5:1998 Section Properties and Load Tables

R M LAWSON BSc(Eng), PhD, ACGI, CEng MICE, MIStructE K F CHUNG BEng, PhD, DIC, MIStructE, CEng, MHKIE S O POPO-OLA BSc(Eng), MEng, PhD, DIC

SCI PUBLICATION P276

Published by: The Steel Construction Institute Silwood Park Ascot Berkshire SL5 7QN Tel: 01344 623345 Fax: 01344 622944

© 2002 The Steel Construction Institute Apart from any fair dealing for the purposes of research or private study or criticism or review, as permitted under the Copyright Designs and Patents Act, 1988, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the UK Copyright Licensing Agency, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organisation outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers, The Steel Construction Institute, at the address given on the title page. Although care has been taken to ensure, to the best of our knowledge, that all data and information contained herein are accurate to the extent that they relate to either matters of fact or accepted practice or matters of opinion at the time of publication, The Steel Construction Institute, the authors and the reviewers assume no responsibility for any errors in or misinterpretations of such data and/or information or any loss or damage arising from or related to their use. Publications supplied to the Members of the Institute at a discount are not for resale by them. Publication Number: SCI-P276 ISBN 1 85942 119 9 British Library Cataloguing-in-Publication Data. A catalogue record for this book is available from the British Library.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

ii

18 April 2002

FOREWORD The authors of this publication are Dr R M Lawson and Dr S O Popo-Ola of The Steel Construction Institute, and Dr K F Chung of Hong Kong Polytechnic University. Dr Chung and Dr Popo-Ola were responsible for preparation of the design tables. The work was funded by Corus Colors (formerly, British Steel Strip Products). This publication is a revised edition of the 1992 publication Design of structures using cold formed steel sections (SCI-P-089). It gives general information on the design of cold formed steel sections to BS 5950-5: 1998 (now revised from the 1985 version), and includes new design tables for a wide range of cold formed steel sections used in general building construction. The following individuals and organisations helped in the preparation of this publication: Mr R Colver

Ayrshire Steel Framing

Mr V French

Ayrshire Metal Products (Daventry) Ltd

Mr B Johnson

Structural Sections Ltd

Mr I McCarthy

Metsec Ltd

Mr T Harper

Ward Building Components Ltd

Mr P Reid

Hi-Span Ltd

Mr J Jones

Albion Ltd

This publication is one of a general series on ‘Building Design using Cold Formed Steel Sections’. The series includes: C

Light Steel Framing in Residential Construction (P301, 2001)

C

Durability of Light Steel Framing in Residential Buildings (P262, 2000)

C

Case Studies on Light Steel Framing (P176, 1997)

C

Construction Detailing and Practice (P165, 1997)

C

Architects’ Guide (P130, 1994)

C

Fire Protection (P129, 1993)

C

Acoustic Insulation (P128, 1993)

C

Worked Examples (P125, 1993).

Other titles on light steel applications in modular construction by the SCI are: C

Modular Construction using Light Steel Framing: Residential Buildings (P302, 2001)

C

Case Studies on Modular Construction (P271, 1999)

C

Building Design Using Modular Construction: An Architect’s Guide (P272, 1991).

The section property data, member design tables and associated information are intended to be used at the scheme design stage. For more comprehensive data concerning particular sections and their availability, the reader is advised to contact manufacturers directly. All sections that are included can be obtained from the manufacturers listed in the Appendix. For more information on steel grades and coatings, contact Corus directly (see Appendix). P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

iii

18 April 2002

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

iv

18 April 2002

CONTENTS Page No SUMMARY

vii

1

AIM OF THE PUBLICATION 1.1 Design tables 1.2 Limit state design

2

INTRODUCTION TO USE OF COLD FORMED SECTIONS 2.1 Materials 2.2 Methods of forming 2.3 Methods of protection 2.4 Common shapes of sections 2.5 Common applications 2.6 Fire protection

3 3 4 5 5 6 12

3

INTRODUCTION TO DESIGN OF COLD FORMED SECTIONS 3.1 Behaviour of thin plates in compression 3.2 Behaviour of webs 3.3 Behaviour of members in bending 3.4 Behaviour of members in compression 3.5 Serviceability limits

13 13 17 20 25 28

4

APPLICATION OF COLD FORMED SECTIONS IN BUILDING 4.1 Purlins and side rails 4.2 Floor joists 4.3 Stud walling 4.4 Trusses 4.5 Structural Frames 4.6 Curtain walling and over-cladding 4.7 Housing 4.8 Modular construction 4.9 Frameless structures 4.10 Connections

29 29 30 32 33 34 37 39 40 40 41

5

SECTION PROPERTIES OF COLD FORMED SECTIONS 5.1 Notation used in section property tables 5.2 Summary of assumptions in deriving the section property tables

47 51 52

6

LOAD AND PERFORMANCE CHARACTERISTICS OF COLD FORMED SECTIONS 54 6.1 Generic sections 54 6.2 Load capacity tables for beams 55 6.3 Load capacity tables for columns 55 6.4 Guidance on selection of cold formed steel sections 57 6.5 Example of use of load-span tables for beams 58

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

v

1 2 2

18 April 2002

7

REFERENCES

59

8

BIBLIOGRAHY

61

APPENDIX A: Contact Information

SECTION PROPERTY TABLES C Sections Z Sections

LOAD CAPACITY TABLES FOR BEAMS - S280 Generic C Sections Generic Z Sections LOAD CAPACITY TABLES FOR COLUMNS - S280 Generic C Sections

LOAD CAPACITY TABLES FOR BEAMS - S350 Generic C Sections Generic Z Sections LOAD CAPACITY TABLES FOR COLUMNS - S350 Generic C Sections

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

vi

70 Yellow Pages

A-1 A-3 A-35

Pink Pages

B-1 B-1 B-21 B-41 B-41

Green Pages

C-1 C-1 C-21 C-41 C-41

18 April 2002

SUMMARY This publication reviews the design and application of cold formed steel sections in building construction. The design of these sections conforms to BS 5950-5: 1998: Code of practice for design of cold formed thin gauge sections. Applications that are covered relate to steel frames, trusses and secondary members in commercial, industrial and domestic buildings. The main part of the publication presents design tables for general use of cold formed sections. This data is tabulated in two parts: section properties, and load tables. Section properties can be used in general applications, whereas load tables can be used in direct selection of beam and column sizes. The cold formed steel sections listed in this publication can be readily obtained from manufacturers in the UK. Other references to the use of cold formed steel are also given. Berechnung von tragwerken aus kaltgeformten stahlprofilen Zusammenfassung Diese Veröffentlichung gibt einen Überblick über die Bemessung und Anwendung von kaltverformten Stahlprofilen im Bauwesen. Die Bemessung dieser Profile entspricht BS 5950, Teil 5: “Code of practice for design of cold formed sections”, Ausgabe 1998. Die behandelten Anwendungsfälle beziehen sich auf Stahltragwerke, Fachwerke und nichttragende Bauteile im Verwaltungs, Industrie- und Wohnungs-bau. Der Hauptteil dieser Veröffentlichung stellt Bemessungstabellen für den allgemeinen Gebrauch von kaltverformten Profilen vor. Dieses Daten sind in zwei Teilen tabelliert: Querschnittsgrö$en Belastungstabellen. Die Querschnittsgrö$en können allgemein verwendet werden, während die Belastungstabellen der direkten wahl der Träger- und Stützenprofile dienen. Die in dieser Veröffentlichung enthaltenen, kaltverformten Profile können von Herstellern im Vereinigten Königreich bezogen werden. Andere Verweise zur Anwendung von kaltverformtem Stahl sind ebenso enthalten. Dimensionnement de structures en profils en acier formé á froid Résumé Cette publication passe en revue les méthodes de dimensionnement et les principales applications des profils en acier formé á froid dans la construction. Le dimensionnement de ces profils est en accord avec la BS 5950: Partie 5: 1998 - Recommandations pour le calcul des profils formé à froid. Les applications présentées ont trait aux cadres et portiques en acier ainsi qu’aux éléments secondaires utilisés dans les bâtiments industriels, commerciaux ou pour habitation. La partie principale de la publication présente des tables de dimensionnement pour les applications habituelles des profils formé à froid. Ces informations sont réparties en deux catégories: les propriétés des sections et les tables donnant les charges de dimensionnement des éléments. Les propriétés géométriques des P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

vii

18 April 2002

sections peuvent être utilisées dans toutes les applications. Les informations relatives au dimensionnement des éléments permettent un choix rapide des profils à utiliser en tant que poutres ou colonnes. Les profils en acier formé á froid repris dans la publication peuvent être aisément obtenus prés des producteurs du Royaume-University. D’autres références relatives à l’utilisation des profils en acier formé á froid sont également mentionnées. Proyecto de estructuras usando secciones de acero conformado en frio Resumen Esta publicación revisa el proyecto y aplicación de secciones de acero conformado en frio a la construcción de edificios. El proyecto de estas secciones de acero se ajusta a la BS 5950: Parte 5: 1998: “Norma de buena práctica para el proyecto de secciones de acero conformadas en frio”. Las aplicaciones cubiertas se refieren a pórticos de acero, cerchas y piezas secundarias en edificios comerciales, industriales y de habitación. La parte principal de la publicación presenta tablas de diseño para uso general de secciones. Los datos se tabulan en dos partes: propiedades de las secciones y cargas de proyecto de piezas. Las primeras son de uso general mientras que las segundas pueden utilizarse para la elección directa de las proporciones de vigas y columnas. Las secciones de acero conformado un frio descritas en esta publicación pueden obtenerse fácilmente de los fabricantes del Reino Unido. También se dan otras referencias para el uso de secciones conformadas en frio. Progettazione di strutture realizzate con profili in acciaio sagomati a freddo Sommario In questa pubblicazione viene presentato il dimensionamento e l’utilizzo di profili in acciaio sagomati a freddo. La progettazione di tali elementi in acciaio risulta conforme alla normativa BS5950: Parte 5, 1998, `Guida alla progettazione di profili sagomati a freddo’. Le applicazioni che vengono presentate sono relative a strutture intelaiate, a travature reticolari ed elementi secondari per strutture ad uso commerciale, civile ed industriale. Nella parte principale di questa pubblicazione sono riportate le tabelle progettuali per differenti utilizzi dei profili sagomati a freddo. Questi dati sono tabulati in due differenti parti: la prima e’ relativa alle caratteristiche geometriche dei profili e la seconda riporta i valori dei carichi di progetto degli elementi. Le caratteristiche dei profili possono essere utilizzate in applicazioni di carattere generale mentre una scelta diretta delle dimensioni di travi e colonne puo’ essere fatta sulla base delle caratteristiche portanti degli elementi. Le sezioni dei profili sagomati a freddo riportati in questa pubblicazione possono essere ottenute in brevi tempi da qualsiasi stabilimento del regno Unito. Vengono inoltre forniti diversi riferimenti per l’utilizzo dei profili in acciaio.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

viii

18 April 2002

NOTATION A cross-sectional area of section b plate width between corners or stiffeners be effective plate width in compression B width of the section Cb coefficient representing variation of bending moment along a member D depth of web of section 2

E modulus of elasticity of steel (205 kN/mm ) es eccentricity of line of application of axial force from centroid of section I

second moment of area of section (subscript x or y indicates major or minor axis direction of bending)

K plate buckling coefficient L length of member Le effective length of member My elastic moment resistance of the section N support width (mm) py design strength of steel pcr critical buckling stress in plate po reduced stress in section determined by web properties Q factor representing reduced performance of section in compression r corner radius ry radius of gyration in y (minor) axis direction of bending t

net steel thickness

Us ultimate strength of steel Ys yield stress of steel " effective length factor including torsional flexural buckling 8 slenderness of member 8y slenderness corresponding to B E/Y s L Poisson’s ratio for steel (= 0.3)

Note:

For notation used in section property tables, see Section 5.1.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

ix

18 April 2002

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

x

18 April 2002

1 AIM OF THE PUBLICATION This design guide is aimed at practitioners in the building industry who may have limited experience of the structural design of light steel framing using cold formed steel sections. The publication presents an overview of the design principles for ‘cold formed’ steel sections in accordance with [1] BS 5950-5:1998 (revised from the 1985 version). Cold formed steel sections are generally produced by cold rolling from galvanized steel strip. Most structural engineers are familiar with the application of cold formed steel sections (also known as cold rolled sections) in purlins and side-rails, which are highly engineered products for specific applications. The general use of cold formed sections as primary members of light steel framing requires a more simplified design process appropriate to their applications as beams, floor joists, columns, stud walling, members of roof trusses and sub-frames. A wide range of uses of cold formed sections and light steel framing has been realised in recent years, and common applications are in: C

housing

C

medium-rise apartment buildings

C

mezzanine floors

C

roof trusses, including ‘over-roofing’ in renovation projects

C

sub-frames for cladding, including ‘over-cladding’ in renovation projects

C

framework of modular units

C

separating and infill walls

C

canopies.

This design guide concentrates on the general use of cold formed steel sections in these structural applications. The information is presented under three broad headings: 1. An introduction to the design of cold formed sections. It is appreciated that the design of these sections may appear to be more complicated than that of hot rolled sections. It is therefore important to understand the design principles and also the practical considerations of the structural use of these sections. 2. A review of the application of cold formed sections in buildings, concentrating on the main design features and details. This also necessitates a discussion on methods of cutting, joining and attachment of other members and materials, which are fundamental to the practical use of these thinner sections. 3. A series of tables on section properties and loads for the range of cold formed sections that are readily available for general building use. The section properties have been calculated based on first principles, in accordance with BS 5950-5. The load tables (also determined in accordance with BS 5950-5) can be used to obtain the required member sizes for specific applications.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

1

18 April 2002

1.1

Design tables

Section properties are presented for the gross and the effective sections on the yellow pages (i.e. as influenced by local buckling under compression). These properties may be used by structural engineers when designing members for general application. Alternatively, designers may refer to the load-span tables for beams or load-height tables for columns, which give the member resistances directly (see pink pages and green pages for grades S280 and S350, respectively). The tables in this design guide may be used for general application of generic C and Z sections as floors and walls. Manufacturers often design their sections for specific uses, such as purlins, and establish the member performance based on test data rather than calculations to BS 5950-5. This means that manufacturers’ data may be more beneficial in certain cases. Member resistance tables (in terms of working load capacity) are presented for generic C or Z sections only. These load tables are useful for selection of member sizes and are intended to be used for initial or scheme design. However, for final design, the data provided by the manufacturer of the selected sections should be used. Manufacturers should be contacted directly with regard to availability, cutting to length, hole punching, etc. A list of UK manufacturers and further sources of information are presented in Appendix A.

1.2

Limit state design [1]

In BS 5950-5 , the loads to be used in design are calculated from the working loads multiplied by factors of 1.6 for imposed load and 1.4 for dead loads (including self weight). These factored loads are used to determine the moments and forces in the members, which are then compared to the resistance of the members. Resistances may be as determined for all relevant modes of failure, such as buckling, connection or local failure etc. The methods of determining the member resistance and load bearing capacity of cold formed sections are presented in Section 3. Additional checks on deflections are made for working loads (i.e. for load factors of 1.0) in order to ensure adequate performance in service. Light weight floors should also be checked for their vibration response to normal activities (see Section 6.1). The methods in BS 5950 are not based on working load or permissible stress design, although a global factor of safety of 1.6 may be used conservatively to determine maximum working loads that the structure can support. The load capacity tables are presented in terms of working loads.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

2

18 April 2002

2 INTRODUCTION TO USE OF COLD FORMED SECTIONS 2.1

Materials

Sheet steel used in cold formed sections is typically 0.9 to 3.2 mm thick (although thinner steels are used in roofing and decking applications). It is usually supplied pre-galvanized in accordance with European Standard [2] EN 10147 (issued by BSI in 1991 as BS EN 10147 as a replacement for [3] BS 2989 ). Galvanizing gives adequate protection for internal members, including those adjacent to the boundaries of building envelopes, such as purlins. The expected design life of galvanized products in this environment exceeds 60 years (see Section 2.3). Steel strip is produced by cold reducing hot rolled coil steel with further annealing processes to improve the ductility of the material. It is a quality controlled product with known and easily tested properties. Grade S280 steel (formerly Z28) is a quality of steel specified as having a guaranteed minimum 2 yield strength of 280 N/mm . Grades S280 and S350 steels are the most commonly specified grades, although it is often found that the actual yield strength is considerably higher than the specified minimum. Steel with a non-guaranteed yield strength may be used in some applications, provided that the strength of the material is determined by tensile tests taken from the coil from which the material was cut.

Stress

During ‘cold forming’ of a section, the increase in yield strength of the steel increases, due to cold working by the process of “strain hardening”, as illustrated in Figure 2.1. The increase in yield strength by cold working may be significant (> 10%) for highly stiffened sections with many bends. Strictly, the yield point is not a clearly defined transition point, as it is for hot rolled steels. The proof strength (at 0.2% strain) is often used as an effective “yield” value.

Increase of yield stress due to strain hardening

Ultimate strength Yield point after cold working

Initial loading

Further loading after cold working

Loss of ductility

Ductility after cold working

Fracture

Strain

due to cold working

Figure 2.1

The influence of cold forming on the stress-strain diagram of strip steel

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

3

18 April 2002

Ductility is defined on the basis of minimum elongation at fracture over a certain gauge length. This is specified for S280 steel as a minimum of 20% (2) elongation for a gauge length of 50 mm . Ductility reduces with cold working. Cold working also has the effect of reducing the ratio of the ultimate to the yield strength of the material.

2.2

Methods of forming

Manufacturers purchase strip steel in coils, normally of 1 m to 1.25 m width. The sheets are then cut (slit) longitudinally to the correct width for the section being produced and then fed into a series of roll formers. These rolls are set in pairs moving in an opposite direction so that the sheet is drawn through and its shape is gradually modified along the line of rolls. The number of rolls needed to form the finished shape depends on the complexity of the section. The overall length of the roll forming machinery can be over 30 m (see Figure 2.2). Setting-up costs are high if special rolls are needed. Adjustable rolls are often used, which permit a rapid change of section depth or width. Roll forming is therefore most economic where large quantities of the same section are produced at one time. The lengths of the members can be pre-programmed and cut accurately. Holes for attachments and services can also be punched either before or after forming. An alternative method of cold forming is by press-braking. This is normally only practicable for short lengths (up to 6 m, depending on the size of the machine used) and for relatively simple shapes. This method can be advantageous for small production runs, because of its lower setting-up costs.

Figure 2.2 Roll forms used for cold formed sections and sheeting

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

4

18 April 2002

2.3

Methods of protection

Hot dip galvanizing (zinc coating) of preformed strip steel offers protection by sacrificial loss of the zinc surface which occurs preferentially to corrosion of the steel. Guidance on thickness of galvanizing is given in Galvatite Technical [4] Manual . The specified sheet thickness includes galvanizing. A zinc coating 2 of 275 g/m (total on both faces) is the standard (G275) specification for internal environments, and corresponds to a total zinc thickness of about 0.04 mm. G100 to G600 coatings can also be obtained but these are generally non-standard. The thicker coatings are used in applications where moisture may be present over a long period. Zinc coatings can also be applied by hot dipping of the sections after manufacture. Galvanized steel has good durability because, unlike paint, scratches do not initiate local corrosion of the steel. Similarly, cut ends do not corrode, except where the rate of zinc loss on the adjacent surfaces is high. In some applications it may be necessary to apply zinc-rich paint to the exposed steel. [5] ‘White rust’ or wet storage stains may occur if galvanized sections are stored in bundles in moist conditions, but this does not normally affect their long term performance. Correct storage of bundles of sheets or sections is therefore important. A recent SCI publication Durability of light steel framing in residential [6] building shows that the design life of galvanized steel in ‘warm frame’ applications is at least 200 years, provided that the external envelope is properly maintained. Zinc-aluminium coatings also have high corrosion resistance and are sometimes used in sheeting applications, but rarely on sections. Organic coatings are not used for sections. Powder paint coatings, in addition to galvanizing, are often used for specialist products such as lintels.

2.4

Common shapes of sections

Cold formed sections are used in many industries and are often specially shaped to suit particular applications. In building applications, the most common sections are the C and the Z sections. There are a wide range of variants of these basic shapes, including those with edge lips, internal stiffeners and bends in the webs. Other sections are the ‘top-hat’ section and the modified I section. The common range of cold formed sections that are marketed is illustrated in Figure 2.3. The sections can also be joined together back to back or toe to toe to form compound sections. The reason for edge lips and internal stiffeners is because unstiffened wide and thin plates are not able to resist significant compression, and consequently the sections are structurally inefficient. However, a highly stiffened section is less easy to form and is often less practicable from the point of view of connection to other members. Therefore, a compromise between structural efficiency and practicability is often necessary.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

5

18 April 2002

Z sections

Lipped Z

Zeta

C sections

Plain

Lipped

Sigma

Special sections

Top hat

Modified

sections

Eaves beam

Compound sections

Figure 2.3

2.5

Examples of cold formed steel sections

Common applications

Cold formed steel sections are used widely in building applications. Decking is also used in composite floors, and in flat roofs. Roof and wall sheeting are well established and are generally sold as colour-coated products with various forms of organic surface coatings. The main advantages of using cold formed sections are: C

high load resistance for a given section depth

C

long span capability (up to 10 m)

C

dimensional accuracy

C

long term durability in internal environments

C

freedom from long term creep and shrinkage

C

capability to be formed to a particular shape for specific applications

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

6

18 April 2002

C

lightness, which is particularly important for buildings in poor ground conditions

C

no wet trades, as a ‘dry envelope’ is quickly achieved using light steel framing

C

ease of construction, as members are delivered to site cut to length and with pre-punched holes, requiring no further fabrication

C

ability to be prefabricated into sub-frames as wall panels etc;

C

robustness, but sufficiently light for site handling

C

connections are strong and easily made in factory or on site.

Examples of the structural use of cold formed sections are as follows: Roof and wall members A major use of cold formed steel in the UK is as purlins and side rails to support the cladding in industrial-type buildings (see Figure 2.4). Purlins are generally based on the Z section (and its variants), which facilitates incorporation of sleeves and overlaps to improve the structural efficiency of the members in multi-span applications.

Figure 2.4

Cold formed sections used as roof purlins

Light steel framing An increasing market for cold formed steel sections is in site-assembled frames and panels for walls and roofs, and for stand-alone buildings. This approach has been used in a wide range of light industrial and commercial buildings and also in mezzanine floors of existing buildings (see Figure 2.5). Housing In modern house construction, storey-high wall panels are factory-built and assembled on site by ‘platform’ construction. The panels are sufficiently light to be handled on site. External insulation is used in order to create a ‘warm frame’. Brickwork is attached by wall ties in vertical tracks fixed through the insulation to the wall studs. Four light steel framing systems are available in the P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

7

18 April 2002

housing sector in the UK. A major series of load tests has been carried out to establish the global action of light steel frames to vertical and horizontal loads (see Figure 2.6).

Figure 2.5

Cold formed sections used in site-assembled framing

Figure 2.6

Light steel framing for housing (Corus Framing’s Surebuild system)

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

8

18 April 2002

Lintels A significant market for cold-formed sections is for specially shaped steel lintels used over doors and windows inlow-rise masonry walls. These products are often powder-coated for extra corrosion protection in cavity conditions. Floor joists Cold formed sections may be used as an alternative to timber joists in floors of modest span in domestic and small commercial buildings. Spans of up to 5 m can be readily achieved for C or sigma-shaped sections. Lattice joists may be used for longer spanning applications. Systems for commercial buildings A prefabricated panel system using cold formed sections and lattice joists has been developed for use in buildings up to 4 storeys height (see Figure 2.7). Although primarily developed for commercial buildings, this system has wide application in such as educational and apartment buildings. Roof trusses Roof trusses may be manufactured using cold formed sections for both new construction and renovation projects. They may be of the traditional ‘Fink’ or ‘Pratt’ truss form, or alternatively, they may be designed as ‘open’ roof trusses for habitable use. ‘Over-roofing’ of existing flat roofs is also a large market for [7] long span trusses (see Figure 2.8). Separating walls and partitions Separating walls in framed buildings may be designed using C sections and multiple layers of plasterboard to provide a high level of acoustic insulation and fire resistance. Space trusses A three-dimensional space truss based on a 3 m square module using cold formed C sections is marketed in the UK by Spacedecks Ltd.. Infill walling and over-cladding A modern application of cold formed sections is in infill walls to support cladding to multi-storey steel buildings, and as mullions and transoms in standard glazing systems. ‘Over-cladding’ systems have been developed for use [8] in building renovation . Prefabricated modular buildings Prefabricated modular units are a new application of the use of cold formed sections. The units are manufactured and fitted-out in factory-controlled conditions. When installed on site with their services and cladding, the units form whole or part buildings with a high level of acoustic insulation and [9] structural integrity . They are also designed structurally for the stresses imposed during lifting and transportation. Other applications are as prefabricated ‘toilet pod’ units in multi-storey buildings.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

9

18 April 2002

Figure 2.7

Cold formed lattice joists and modular wall panels

Figure 2.8

Roof truss used in over-roofing

Frameless steel buildings Steel folded plates, barrel vaults and truncated pyramid roofs are examples of systems that have been developed as so-called frameless buildings (i.e. those without beams and which rely partly on stressed skin action). Storage racking Storage racking systems for use in warehouses and industrial buildings are made from cold formed steel sections. Most have special clip attachments, or bolted joints engineered for easy assembly, as shown in Figure 2.9.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

10

18 April 2002

Composite decking A major structural use of strip steel is in composite decking in floors which are designed to act compositely with the in-situ concrete placed on it. Composite decking is usually designed to be unpropped during construction, and typical spans are 3 to 3.6 m. This application, which is illustrated in Figure 2.10, is [10] [11] well covered in other publications . More recently, deep decking has been developed to achieve spans of 5 to 9 m in Slimdeck construction.

Figure 2.9

Typical storage racking system

Figure 2.10 Steel decking used in composite slab

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

11

18 April 2002

Applications in general civil engineering include: C

Lighting and transmission towers These towers are often made from thin tubular or angle sections that may be cold formed.

C

Motorway crash barriers These relatively thin steel members are primarily designed for strength, but also have properties of energy absorbtion under impact by permitting gross deformation.

C

Silos for agricultural use Silo walls are often stiffened and supported by cold formed steel sections.

C

Culverts Curved profiled sheets are often used as culverts and storm pipes.

Other major non-structural applications in building include such diverse uses as garage doors, and ducting for heating and ventilating systems.

2.6

Fire protection

Fire protection to cold formed sections in planar floors or walls is usually provided by special fire-resistant gypsum plasterboards placed in one or two layers to form the finished surface. Fire resistance periods of 30 or 60 minutes can be achieved by this simple method of protection provided joints between the boards are staggered. Longer members such as beams and columns can also be “boxed-out” using standard board protection, as in Figure 2.11. However, the required thickness of fire protection is usually greater than that for hot rolled sections because the [12] thinner steel elements heat up more rapidly .

Figure 2.11

Box fire protection to columns using C sections

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

12

18 April 2002

3 INTRODUCTION TO DESIGN OF COLD FORMED SECTIONS The main difference between the behaviour of cold formed sections and hot rolled steel sections is that thin plate elements tend to buckle locally under compression. Cold formed cross-sections are therefore usually classified as ‘slender’ because they cannot generally reach their full compression resistance based on the amount of material in the cross-section. Therefore, effective section properties should be used in structural calculations. The benefits of cold forming on material properties may be taken into account. A design formula for the increase in average yield strength is presented in BS 5950-5, Clause 3.4, and this increase in strength is typically 3 to 10%, depending on the number of bends in the section. For S280 and S350 steel grades, the design strength of the steel, py is taken as the yield strength, Ys as modified by Clause 3.4.

3.1

Behaviour of thin plates in compression

3.1.1 Elastic buckling The full compression resistance of a perfectly flat plate supported on two longitudinal edges can be developed for a width-to-thickness ratio of about 40. At greater widths, buckles form elastically causing a loss in the overall compressive resistance of the plate. This is due to the inability of the more flexible central portion to resist as much compression as the outer portions which are partly stabilised by the edge supports. The critical compression stress at which elastic buckling of the plate occurs is given by the expression: pcr = .

K B2 E 12 (1 & v 2)

t b

2

2

185 × 103 5 (t/b) N/mm

2

(1)

where: b is the plate width, and t is the steel thickness. The term 5, referred to as the buckling coefficient, represents the influence of the boundary conditions and the stress pattern on plate buckling. Normally, plates are considered to be infinitely long but have various support conditions along their longitudinal edges. The two common cases are, firstly, simple supports along both edges, and, secondly, one simple support and the other free edge. In the first case 5 is 4, whereas in the second, 5 reduces dramatically to 0.425. This indicates that plates with free edges do not perform well under local buckling. These cases are illustrated in Figure 3.1.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

13

18 April 2002

pcr

Buckled shape e edg ted r o p Sup

e edg ted r o p Sup

Junction remains straight

pcr

Edge is free to displace

pcr

Adequate lip

Figure 3.1

pcr

Buckled shape

No edge lip

Local buckling of plates with different boundary conditions

The value of 5 may be enhanced considerably when the rotational stiffness provided by the adjacent plates is included, or, alternatively, when the loading conditions do not result in uniform compression. Different cases for sections in bending and pure compression are given in Appendix B of BS 5950-5.

3.1.2 Post-critical behaviour Plate elements are not perfectly flat, and therefore begin to deform out-of-plane gradually with increasing load, rather than buckle instantaneously at the critical buckling stress. This means that the non-uniform stress state exists throughout the loading regime, and tends to cause the plate element to fail at loads less than the critical buckling value. This is a dominant effect in the b/t range from 30 to 60 (for plates simply supported on both edges). However, there are opposing effects for plate elements with higher b/t ratios. Firstly, “membrane” or in-plane tensions are generated which resist further buckling, and secondly, the zone of compression yielding extends from the longitudinal supports to encompass a greater width of the plate elements. These post-critical effects cause an increase in the load-carrying capacity of wide plate elements (b/t > 60) relative to that given by Equation (1). The parameter which is used to express the behaviour of plate elements in compression is the “effective width”. This is the notional width which is assumed to act at the yield strength of the steel. The remaining portion of the plate element is assumed not to contribute to the compression resistance, as illustrated in Figure 3.2. Simplified equivalent stresses

Actual stress distribution

beff /2 b beff /2 Ys

≈b

≈b

Ys

Ys

Figure 3.2 Illustration of effective width of compression plate

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

14

18 April 2002

The effective width concept can be modified to take the above factors into account. A semi-empirical formula for the effective width, beff, of a plate element under compression is presented in BS 5950-5, Clause 4.3, as follows: beff b

1 % 14

=

fc

4 &0.2

1/2

& 0.35

pcr

(2)

Where, fc is the compressive stress in the plate element, and pcr is the critical buckling stress of the plate element, as defined previously. fc is limited to a value of Ys , which is the design strength of the steel. The relationship given by Equation (2) is plotted in Figure 3.3. Also shown in this figure is the equivalent elastic buckling curve determined from Equation (1) [13] [14] and the corresponding AISI (American) requirements . The full compression resistance of a real (slightly non-flat) plate element supported on two longitudinal edges can be developed at a b/t ratio of less than approximately 30, and this therefore represents the most efficient spacing between stiffeners or folds in a cross-section. Values of effective width for plate elements of increasing b/t ratios are presented in Table 3.1 (taken from BS 5950-5). 1.0 b eff b

BS 5950:Part5 AISI/EC3 Part 1.3 Elastic Buckling

0.8

0.6

0.4

0.2

0

0

50

100

150

200

250

b/t

Figure 3.3

2

Ratio of effective width to flat width (Ys = 280 N/mm ) of compression plate with simple edge supports

3.1.3 Influence of stiffeners There are two types of stiffeners: those at the edge of a plate element, and those internally within a plate element. They are known respectively as ‘edge’ and ‘intermediate’ stiffeners, in the form of lips and folds, as illustrated in Figure 3.4. A rule of thumb is that edge stiffeners comprising a simple ‘lip’ or right angle bend should not be less in depth than one-fifth of the width of adjacent plate element, if they are to be fully effective in providing longitudinal support.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

15

18 April 2002

Table 3.1

Effective widths of compression plate elements supported on two longitudinal edges (Table 5 of BS 5950-5: 1998, reproduced with the permission of the British Standards Institution)

b/t

beff/b

b/t

beff/b

b/t

beff/b

b/t

beff/b

20 21 22 23 24 25

1.000 1.000 1.000 1.000 0.999 0.999

60 61 62 63 64 65

0.673 0.662 0.652 0.641 0.631 0.621

100 105 110 115 120 125

0.405 0.387 0.370 0.355 0.341 0.328

300 305 310 315 320 325

0.151 0.149 0.147 0.145 0.143 0.141

26 27 28 29 30

0.998 0.997 0.996 0.994 0.992

66 67 68 69 70

0.612 0.603 0.594 0.585 0.577

130 135 140 145 150

0.316 0.305 0.295 0.286 0.277

330 335 340 345 350

0.139 0.138 0.136 0.134 0.133

31 32 33 34 35

0.989 0.985 0.981 0.976 0.969

71 72 73 74 75

0.569 0.561 0.553 0.545 0.538

155 160 165 170 175

0.269 0.262 0.254 0.248 0.241

355 360 365 370 375

0.131 0.130 0.128 0.127 0.125

36 37 38 39 40

0.962 0.955 0.946 0.936 0.926

76 77 78 79 80

0.531 0.524 0.517 0.511 0.504

180 185 190 195 200

0.235 0.230 0.224 0.219 0.215

380 385 390 395 400

0.124 0.122 0.121 0.120 0.119

41 42 43 44 45

0.915 0.903 0.891 0.878 0.865

81 82 83 84 85

0.498 0.492 0.486 0.480 0.475

205 210 215 220 225

0.210 0.206 0.201 0.197 0.194

405 410 415 420 425

0.117 0.116 0.115 0.114 0.113

46 47 48 49 50

0.852 0.838 0.824 0.811 0.797

86 87 88 89 90

0.469 0.464 0.459 0.454 0.449

230 235 240 245 250

0.190 0.186 0.183 0.180 0.177

430 435 440 445 450

0.112 0.111 0.109 0.108 0.107

51 52 53 54 55

0.784 0.771 0.757 0.745 0.732

91 92 93 94 95

0.444 0.439 0.435 0.430 0.426

255 260 265 270 275

0.174 0.171 0.168 0.165 0.163

455 460 465 470 475

0.106 0.106 0.105 0.104 0.103

56 57 58 59 60

0.720 0.708 0.696 0.684 0.673

96 97 98 99 100

0.421 0.417 0.413 0.409 0.405

280 285 290 295 300

0.160 0.158 0.156 0.153 0.151

480 485 490 495 500

0.102 0.101 0.100 0.099 0.098 2

NOTE: These effective widths are based on the limit state of strength for steel with Ys = 280 N/mm and having a buckling coefficient K = 4. For steels with other values of Ys or sections having K … 4, see Clause 4.4.1 of BS 5950-5.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

16

18 April 2002

A simple formula for the minimum size of stiffener is given in BS 5950-5. If the stiffener is adequate, the plate element may then be treated as simply supported along both longitudinal edges, with a 5 value of 4. In BS 5950-5, edge stiffeners failing to meet this limit are considered to be ineffective and are disregarded, leading to much reduced effective section properties. Unstiffened element

Simple lip

Internal element

a) Section with unstiffened elements

Figure 3.4

Compound lip

b) Sections with elements stiffened by lips

Intermediate stiffener

c) Section with intermediately stiffened element

Types of element and stiffeners

Intermediate stiffeners are intended to reduce the flat width of the plate elements so that the section operates more effectively. They usually comprise folds in the section. Again, a simple formula for the minimum size of stiffener is given in BS 5950-5, Clause 4.7.1. Because these stiffeners stabilise two adjacent plate elements, they have to be relatively robust (i.e. stiff). Typically, a V shaped fold of height not less than one-fifth of the width of the adjacent plate element on one side of the stiffener will generally offer effective support. Thus, for a compression flange of 150 mm width, a single intermediate fold of 15 mm depth should be satisfactory. An additional problem with intermediate stiffeners is that the stiffened compression plate element tends to buckle towards the neutral axis of the section in bending (a phenomenon known as flange curling). This means that the effectiveness of very wide compression elements with multi-stiffeners is reduced due to this deformation. Account is taken of this effect in BS 5950-5, Clauses 4.7.2 and 4.7.3.

3.2

Behaviour of webs

Webs of cross-sections are subject to shear, bending and local compression at their supports. It is often found that these local effects dominate the design of cold formed sections. In purlin design, for example, the sections are supported by cleats attached to the webs rather than sitting directly on the supports which may reduce their effectiveness.

3.2.1 Web shear Slender webs normally fail in shear by shear buckling. The buckling coefficient 5 in Equation (1) for a simply supported plate in pure shear tends to a value of 5.35. This leads to a critical shear stress qcr given by BS 5950-5, Clause 5.4.3 as: qcr =

106

t D

2

N/mm 2

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

(3)

17

18 April 2002

qcr is compared to the average shear stress acting across the full web depth. Additionally, the average shear stress should not exceed 0.6 Ys representing the limiting stress at which shear yielding occurs. In irregular sections, the maximum shear stress should not exceed 0.7 Ys.

3.2.2 Web bending Webs of sections in bending are subject to varying compressive stress, reducing from a maximum at the junction with the flange to zero at the elastic neutral axis position. Very deep webs can be influenced by local buckling in compression. However, the varying stress in the web leads to a deeper plate element before buckling than for a plate element under pure compression. This is reflected in the theoretical value of the buckling coefficient 5 of 23.9 (rather than 4). The effective width concept is also used to determine the post-buckling bending resistance of deep webs by considering two separate zones adjacent to the neutral axis and to the compression flange. This behaviour is illustrated in Figure 3.5(b). b eff /2

b eff /2

Ys

b eff /2 Compression Ys

b eff /2

Ys

Ys

Yc

Yc

Neutral axis

Tension a) Effective width of compression flange and fully effective web b eff /2

b eff /2

po

b) Effective width of web in compression b eff /2

po

b eff /2

Ys

Ys

Yc

Yc Neutral axis

Ys c) Reduced stress, po in fully effective web

Figure 3.5

d) Full yielding of web in tension (non-symmetric section)

Effective width models for cold formed sections in bending

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

18

18 April 2002

In BS 5950-5, an alternative approach is used, whereby the maximum compressive stress in the web is determined. This is given by the term po calculated as in Clause 5.2.2.2 of BS 5950-5 (see Figure 3.5(c)): p0 ' 1.13 & 0.0019

Dw

Ys

t

280

½

py

(4)

where Dw is the depth of the web

3.2.3 Web crushing Local failure at supports, or at locations of point loads, can occur as shown in Figure 3.6. This reduces the load-carrying resistance of the member. It is taken into account by an empirical formula representing the web crushing load. A

A

Cleat

Section A - A

Figure 3.6

Use of cleat to avoid crushing

Web crushing at a support

This effect is largely a function of the width of the support, the thickness of the steel, and the height/thickness ratio of the section. The crushing load Pw (in kN) of a single vertical web with stiffened flanges is given in BS 5950-5, Clause 5.3, as: Pw = t2 k (1.33 ! 0.33 k)(1.15 ! 0.15 r/t)(2060 ! 3.8 D/t) (1 + 0.01 N/t) x 10!3

(5)

where: t D N r k

is the steel thickness (mm) is the section depth is the support width is the corner radius between the web and flange. = Ys /228.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

19

18 April 2002

Equation (4) applies where the reaction (or point load) is applied close to the end of the member and where the web is free to move laterally. The equivalent value for an internal support reaction or point load is approximately 50% higher than that given by this equation. It follows that the support reaction or point load should not exceed the web crushing resistance. This can be best achieved by increasing the width of the supports or the thickness of the steel section. Enhanced capacities are given for double C sections with back to back webs, or webs with both flanges held in [1] position (see Table 8 of BS 5950-5 ). Interaction between co-existent bending and web crushing may be taken into account using the relationship of the form indicated in Figure 3.7. This means that the bending resistance of continuous members may be reduced at internal supports, unless wet crushing is prevented by use of a stiffening element, e.g. an angle cleat. 1.0 M Mmax

Acceptable zone 0.4

0

Figure 3.7

3.3

0

0.45

P Pw

1.0

Influence of combined moment, M and web reaction, P for double C sections

Behaviour of members in bending

3.3.1 Moment resistance of section The effective properties of sections in bending may be taken into account from first principles by considering the effective widths of the compression elements, as illustrated in Figure 3.5. The neutral axis of the section is determined by balancing tension and compression. The section modulus is then calculated knowing the elastic neutral axis position. The effective bending resistance is obtained by multiplying the elastic section modulus by the design strength of the steel. Both the neutral axis position and the section modulus are therefore functions of the operating stress of the compression flange. For symmetric sections, the effective section modulus of the compression plate is not greater than that in tension and therefore compression yielding occurs P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

20

18 April 2002

first. However, for some non-symmetric sections, tension yielding may occur first causing plastification in the tension flange. This local yielding, as illustrated in Figure 3.5(d) is permitted, provided the compression plate does not yield.

3.3.2 Influence of section shape Z-shaped sections displace laterally when loaded through their webs, because the principal axis of bending is at an angle to the vertical axis through the web. These sections are normally used as roof purlins, so that the orientation of the principal axis counteracts that of the roof slope, as in Figure 3.8(a). Some sections are specially formed to reduce the angular difference between the principal and vertical axes to about 5E. Fixing to rigid flooring or deep sheeting also assists in preventing lateral displacement. Load Load

Principal axis of bending close to vertical Shear centre

Shear centre

Twisting about shear centre

pe slo f o Ro

a) Z sections as purlins

Figure 3.8

b) C sections

Behaviour of different sections under bending

C sections twist when loaded through their webs because the shear centre of the section is located outside the web (see Figure 3.8(b)). This is alleviated by placing two sections back to back, or by providing lateral restraints to both flanges. Fixing to rigid flooring also reduces twisting, depending on the location and spacing of the fixings. The shape of C sections can be modified to a zeta shape to bring the shear centre closer to the web. Non-symmetric sections, as shown in Figure 3.5(d), may displace laterally under major axis bending. These transverse bending stresses should be considered in addition to primary bending stresses unless lateral movement is prevented.

3.3.3 Continuous members For simply-supported members, it is the sagging (positive) moment conditions that determine the bending resistance of the member. For members that are continuous over one or more internal supports, moments are determined elastically (i.e. using moment distribution or other elastic methods). Plastic hinge analysis is not permitted because the ‘slender’ sections are not able to maintain their full bending resistance when rotations exceed the point at which the section reaches yield. There is, however, some residual bending resistance at large rotations as shown in Figure 3.9. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

21

18 April 2002

Elastic moment Load

Support

Moments following redistribution a) Redistribution of moments for 'plastic' sections

Elastic moment capacity Moment

Idealised behaviour Actual behaviour of 'slender' section

Rotation b) Moment - rotation characteristics of 'slender' sections

Figure 3.9

Illustration of influence of section type on behaviour of continuous beams

Design on the basis of elastic analysis means that the conditions at the internal supports of continuous members often dominate the overall design (see the relationship between moment and web crushing in Figure 3.7). In some cases, this can lead to the conclusion that simply-supported members are stronger than continuous members! Some purlin systems utilise the flexibility of sleeved or overlapping purlins at the supports in order to achieve some ‘elastic’ redistribution of moment, and hence to lead to more efficient design of the members (see Section 4.1). In order to make an accurate prediction of the amount of redistribution that will take place, it is necessary to know the moment-rotation behaviour of the sleeved or overlapped section in hogging. This should be determined by testing.

3.3.4 Lateral torsional buckling The above approach assumes that the members are laterally restrained i.e. they cannot fail by lateral buckling. This is the case where simply supported members are attached to floors etc. so that the compression flange is prevented from displacing sideways (or laterally). Where the lateral restraints are sufficiently wide apart, lateral torsional buckling may occur. This effect is illustrated in Figure 3.10. The elastic lateral buckling resistance moment of an equal flange I-section or a symmetrical C section bent in the plane of the web is given in Clause 5.6.2.2 by the formula: P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

22

18 April 2002

B2 AED 1 Cb 1 % 20 2 (LE/ry)2

ME =

LE ry

t × D

2

0.5

(6)

where: LE is the distance between points of lateral restraint ry is the radius of gyration of the section in the lateral direction Cb is the factor representing the shape of the bending moment diagram (unity for constant moment). Loading y z Support u x

φ

Figure 3.10 Deformations u and N associated with lateral-torsional buckling Account may also be taken of the support conditions in modifying the effective length LE. The ratio LE/ry defines the slenderness, 8 of the member. As the slenderness reduces, so ME increases, and eventually the bending resistance, Mc of the section is reached. Equation (5) may be converted to an effective slenderness, 8LT of the beam according to the expression: 8LT =

uv8

where u v

(7) is approximately equal to 0.9 for C or I sections, =

1 1 % 20

t 8 D

2

0.25

(8)

The effective slenderness may be non-dimensionalised to give the modified slenderness ratio, & 8 LT, by dividing by 8y where 8y = B E/Y s (see Section 3.4.1).

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

23

18 April 2002

As the D/t ratio of these sections is very large, it follows that v tends to unity. For a simply supported beam, its effective slenderness 8LT may be taken as 0.98 as a safe approximation. This reflects the beneficial effects of non-uniform stress and torsional stiffness on lateral torsional buckling of the section in comparison to a strut of slenderness 8. The relationship between the modified slenderness ratio of the member and the bending resistance, Mb of the section is shown in Figure 3.11. This is based on the Perry-Robertson approach, as defined in BS 5950-5. The full bending resistance of the section can only be reached when 8 is less than 40 Cb.

Moment ratio (M b /M c,Rd )

1.2 BS 5950 - 5 1.0 Elastic lateral torsional buckling

ECCS TC7

0.8 0.6

EC3 Part 1.3

0.4

BS 5950 - 1

0.2 0

0

0.5

1.0

1.5

2.0

Modified slenderness ratio ( λ LT) Modulus of elasticity E = 205 kN/mm² Design strength Y s= 280 N/mm²

Figure 3.11

Shape factor = 1.1

Design curves for cold formed sections used as beams

Similar formulae may be developed for singly symmetric sections such as C sections. However, in this case, the shear centre of a C section does not coincide with the plane of the web. Therefore loads applied through the web cause twisting of the section (see Figure 3.8(b)). In principle, therefore, single C sections should be restrained against torsion if they are to be used effectively. If not, then in-plane “warping” stresses due to torsion are created which should be added to bending stresses. The hogging (negative) moment region of continuous members requires special consideration, because it is usually more difficult to restrain the lower flange of the section than the upper flange. It is often assumed that the point of zero moment may be considered as a point of effective restraint, and that the part of the beam in hogging may be treated as a member with a linear variation of moment. If this gives a bending moment resistance less than the applied moment, then additional lateral restraints are needed. It should be noted, however, that treating the point of zero moment as a point of effective restraint is only appropriate when adequate torsional restraint is provided at the support (see Clause 5.5.5. of BS 5950-1:2000). In purlin design, sag bars are generally used to provide restraint to the lower flange in wind uplift conditions.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

24

18 April 2002

3.4

Behaviour of members in compression

3.4.1 Members in pure compression Members in compression are typically columns loaded by beams, or struts in trusses. Columns are usually only laterally restrained at the beam-column connections, unless they are built into a wall. The design of axially loaded sections may be treated as a series of plates in compression. This leads to an effective area of the cross-section when the effective widths of all the compressive plate elements are combined, as shown in Figure 3.12. This ratio of the effective to the gross area of the section is known as the “Q factor” and it represents the efficiency of the section under axial compression. Therefore, the compressive resistance of the section is: PCS

=

Q A Ys

(9)

where A is the gross (unreduced) cross-sectional area of the column section. Columns generally fail by buckling rather than pure compression, as shown in Figure 3.13. Perfectly straight columns buckle elastically at an “Euler load” given by:

PE =

B2 E Iy 2

=

B2

LE

EA

(10)

82

where 8 is the slenderness of the member between points of lateral restraints (see Section 3.3.4), which is the effective length Le divided by the radius of gyration. The modified slenderness ratio, & 8 is defined as 8/8y, where 8y = B E/Y s in which 8y corresponds to the slenderness of the equivalent perfect strut when acting at the yield strength, Ys.

A Centroid

a) Axial load applied through centroid

B Shear centre

Modified centroid

Eccentricity =A-B

b) Reduced cross-section in compression

Figure 3.12 Analysis of restrained section in compression

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

25

18 April 2002

Floor

A

A

Column

Lateral buckling mode

Torsional - flexural buckling mode

Section A - A Floor

Figure 3.13 Buckling of column in compression between floors Real columns are not perfectly straight; they fail before the Euler buckling load is reached. This is taken into account by a Perry-Robertson type formula which has a solution of the form: Pc '

P E Pcs

(11)

2

N% N &PE Pcs where N =

Pcs % (1 % 0) PE

, Pc is the axial buckling resistance of the 2 column and 0 is an empirical factor accounting for the initial imperfection of the column, given in Clause 6.2.3 of by 0 = 0.002 (8-20). (Therefore, Pc = Pcs when 8 # 20). The variation of load ratio (Pc/Pcs) with slenderness ratio 8 is presented in Figure 3.14.

3.4.2 Singly symmetric sections In sections which are not doubly symmetric about both axes (see Figure 3.12), the centroid of the effective section (B) may be at a different location to the centroid of the gross section (A) through which axial forces are assumed to act. This gives rise to combined bending and compression, which is taken into account by a modified value of PcN such that: PcN =

Mc Pc / (Mc + Pc es )

(12)

where Mc is the pure bending resistance of the section, and es is the eccentricity of the applied load caused by the shift of neutral axis from the gross section to the effective section (see, Clause 6.2.4).

3.4.3 Combined bending and axial loading The interaction between bending and axial load may be taken into account by the following relationship for members which fail by lateral buckling:

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

26

18 April 2002

Fc

%

Pc

Mx Mb

My

%

Cb Mcy (1 & Fc/Pey)

# 1

(13)

where Fc is the axial load applied to the column, and Mx and My are the applied moments in the x and y (major and minor axis) directions (see clause 6.4.3). Mcx and Mcy are the design bending resistance based on an independent analysis in the x and y directions. Cb takes into account the variation of moment along the member (see Equation 6). Pc is determined for an axially loaded member, as above, and PEY is the compression resistance for buckling in the y direction (from Equation 9). This equation takes into account the potentially weakening effects of the combinations of different buckling modes.

3.4.4 Torsional flexural buckling Thin open cross-sections are torsionally weak and may be more susceptible to torsional failure than lateral buckling failure when loaded axially (as illustrated in Figure 3.13). This is especially so for singly symmetric sections, such as C sections, because of the separation of the centroid and shear centre (representing the point about which the member twists). Analysis for torsional flexural buckling is quite complicated and the approach in BS 5950-5 is to modify the effective length for lateral buckling to take into account the possibility of a lower torsional flexural failure mode. This is achieved by the use of the effective length multiplication factor, ". Appropriate " values for a range of common sections are presented in Appendix C of (1) BS 5950-5 .

Load ratio

1.2

BS 5950-5

1.0 Elastic Euler buckling

0.8 0.6 EC3 Annex A

0.4

BS 5950 - 1

0.2 0

0

0.5

1.0

1.5

2.0

Slenderness ratio λ Modulus of elasticity E = 205 kN/mm² Design strength Ys = 280 N/mm²

Figure 3.14 Design curves for cold formed sections as columns

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

27

18 April 2002

3.5

Serviceability limits

3.5.1 Natural frequency The natural frequency of light steel flooring systems should be calculated in order to avoid perceptible vibrations. According to current SCI recommendations, the natural frequency of these floors should exceed 8 Hz when calculated for a load equal to the self weight plus a permanent load of 0.3 2 kN/m . This is equivalent to a static deflection of 5 mm under the same load. Assuming that the permanent load is approximately 33% of the total service load, it follows that the maximum deflection under total design loading should not exceed 15 mm. This deflection limit is equivalent to that for timber construction. The natural frequency limit often controls for floor spans greater than 5 m.

3.5.2 Deflection limits Deflection limits are introduced for floors in order that there is no serious risk of cracking of partitions or other components supported by these floors, or perceptible movement. Traditionally, an upper deflection limit of span/360 is used for floors subject to imposed load, reducing to span/250 when subject to total loads. However, these limits may be too relaxed for light steel floors, particularly in relation to control of vibrations (see above). Because of this, it is proposed that the limit on imposed load deflections should be reduced to span/450, and the limit on total deflection should be reduced to span/350 (but not exceeding 15 mm, as required for control of vibrations). Stricter limits are required for edge beams supporting cladding. For brickwork, total deflection limit of span/500 is often used.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

28

18 April 2002

4 APPLICATION OF COLD FORMED SECTIONS IN BUILDING The following Sections describe typical uses and potential applications of cold formed steel sections in buildings. A common use of these sections is in purlins and side rails in industrial buildings, but there are many new developments of cold formed sections as primary structural members in housing, light industrial and commercial buildings.

4.1

Purlins and side rails

Purlins are usually of Z shape, the argument being that the principal axis of bending of the section is close to vertical when the section is orientated so that the upper flange points up the roof for roof slopes of 10 to 15E, as shown in Figure 3.8(a). This means that vertical roof loads do not cause serious twisting of the sections. However, roof slopes in modern industrial buildings can be as low as 5E, and this has created the need for modified section shapes. The so-called “Zeta” section (see Figure 2.3) is one attempt to provide a section shape more suitable for shallow roofs. C shaped sections and their derivatives have also been developed for roof and wall applications. The web shape can be modified to a sigma shape to reduce the twisting of the section by bringing the shear centre of the section closer to the web. All purlins above a certain length are provided with sag rods which are intended to prevent twisting during erection and to stabilise the lower flange against wind uplift. The upper purlins are usually tied at ridge level. Lateral forces on the members can usually be transferred by ‘diaphragm’ or ‘stressed skin’ action of the roof sheeting. The upper flanges of the purlins are considered to be laterally restrained by the sheeting. The design of purlins has developed to an extent that empirical methods based on testing are often the only economic solution. Purlins are usually designed to be continuous in order to satisfy deflection limits. However, elastic design of continuous members can be unduly onerous, when strictly interpreting the requirements of BS 5950-5 (see Section 3.3.3). This factor has been recognised by the purlin manufacturers and many overlapped and sleeved systems at the supports have been developed. The moment-rotation characteristics of these systems can be “matched” to the performance of the purlin, leading to optimum design of the section. This behaviour is illustrated in Figure 4.1. Overlapping systems provide better hogging bending resistance then sleeved systems. Both provide double web thickness, improving the shear resistance of the section at internal supports. Shear forces are transferred to the supporting rafters by cleats bolted to the webs of the purlins. The cleats are designed so that the lower flange of the purlin does not bear directly on the rafter, and thus web crushing problems are avoided. The shear or bearing strength of the connecting bolts provides the necessary load transfer (see Section 4.10). P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

29

18 April 2002

Side rails are designed in a similar manner and are used in walling applications. Vertical loads are resisted by the use of sag rods or bracing members in the plane of the wall. Sleeve or overlap

w

Joint rotation

L

0.10wL²

Elastic moments

0.08wL²

Redistribution moments allowing for joint flexibility

Figure 4.1

4.2

Redistribution of moments in sleeved or overlap purlin system

Floor joists

Steel floor joists, usually of C section, may be used to replace timber joists in housing and other masonry buildings. The joists may be built into walls or supported on traditional joist hangers (see Figure 4.2). Thicker cold formed sections may also be used to replace lighter hot rolled sections as secondary beams in main frames. Comparisons have been made of the design of cold formed sections with the traditional alternatives. These comparisons have been characterised in terms of four typical applications that may be encountered in domestic and commercial buildings. The section sizes and weights resulting from these designs are presented in Table 4.1. In practice, designs may be controlled by bending resistance or stiffness requirements. In terms of equivalent bending resistance, a series of 175 mm × 37 mm timber joists may be replaced by 100 mm × 40 mm × 1.2 mm thick C sections at the same spacing. Other comparative performances may be taken from Table 4.2. However, in practical applications, floor joists should also be designed for relatively strict deflection and frequency limits which means that they are deeper than for pure bending resistance (see Section 3.5). The cold formed sections can also be manufactured with punched holes in their webs to allow passage of small diameter pipes and other services. The depth of these holes is normally less than half the member depth and has little effect on structural performance. Provision of these holes for services overcomes the problem of notching of timber joists. Attachment of the timber floor-boards increases the stiffness of the light steel sections and provides lateral restraint if fixed at regular intervals.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

30

18 April 2002

Table 4.1

Comparison between section sizes for cold formed steel, hot rolled steel and timber for different applications Domestic building

Section type

Commercial building

Span = 4 m Spacing = 0.6 m

Span = 5 m Spacing = 0.6 m

Span = 5 m Spacing = 1.2 m

Plain C section

150×50×3 W = 5.6

2No. 150×50×3 2No. 150×50×5 W = 11.0 W = 17.8

Lipped C section

165×63×1.6 W = 3.9

220×63×1.8 W = 4.9

2No. 220×63×2.0 W = 10.9

Timber

250×75 W = 10.1

300 ×75 W = 12.1

2No. 300×75 W = 24.2

Hot Rolled Steel

102×51 RSC W = 10.4

127×76 UB W = 13.0

152×89 UB W = 16.0

Span = 6 m Spacing = 1.2 m 2No. 300×65×2.0 W = 15.0 178×102 UB W = 19.0

2

Imposed loading

= 2.5 kN/m for domestic building 2 = 3.5 kN/m for office/commercial building 2 Dead loading = 1.0 kN/m in all cases W = weight in kg/m Data presented for S280 steel or standard timber grade.

Table 4.2

Structural equivalents of cold formed sections

Lipped C section

Timber

D×B×t

D×B

70 × 40 × 1.2

150 × 37

100 × 40 × 1.2

175 × 37

100 × 40 × 1.5

175 × 50

100 × 65 × 1.6

200 × 50

120 × 65 × 1.6

225 × 50

127 × 65 × 1.6

225 × 63

165 × 65 × 2.0

250 × 75

Lipped C sections

Hot rolled steel

D×B×t

Designation

2 No. 220 × 65 × 2.0 (12.5 kg/m)

127 × 76 UB (13.0 kg/m)

2 No. 300 × 65 × 2.4 (17.9 kg/m)

178 × 102 UB (19.0 kg/m)

2 No. 300 × 65 × 3.0 (21.0 kg/m)

203 × 133 UB (25.0 kg/m)

All dimensions in mm; S280 or grade S275 steel; Standard timber grade. Based on equivalent bending resistance.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

31

18 April 2002

Screw

Joint hanger - connection to masonry

C section

C section - C section cleat connection

Bent plate as cleat

Short C section Truss connection Screw

Figure 4.2

4.3

Examples of connections between C sections

Stud walling

Stud walling using C sections of 50 to 100 mm depth is a common form of partition construction in commercial buildings. It is much lighter than traditional blockwork and is quicker and easier to construct. Importantly, it is a “dry” construction and is easily removable.. Plasterboard or similar materials are attached by screws to the stud walling to form the finished surfaces. This adds considerably to the stiffness of the walls. An 80 mm thick stud wall can be used to replace a 100 mm or 120 mm blockwork wall. A tall wall constructed using C section studs is illustrated in Figure 4.3. These walls may be assembled on site or pre-fabricated as storeyhigh panels. Separating walls between compartments and between apartments are designed to achieve a high level of acoustic insulation and fire resistance. This is achieved by using multiple layers of fire-resistant plasterboard attached by resilient bars to the studs, with insulation and quilt placed between the studs. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

32

18 April 2002

An airborne sound reduction of over 53 dB and 60 minutes fire resistance can be easily achieved by this form of construction. Improved acoustic insulation can be achieved by using double stud walls (usually the case in “party walls”, and in special applications, such as cinemas).

Figure 4.3

4.4

Tall wall constructed using C section studs

Trusses

Purpose-made steel trusses have been marketed for many years. As shown in Figure 2.7, they comprise cold formed sections as flanges with bent bars or tubes forming the bracing elements welded to the flanges. These can be designed to span typically 5 m to 20 m (and up to 30 m in special applications) and can be used as roof or floor joists. Roof trusses for housing are rather different in shape, as the roof pitch is commonly in the range of 20 to 45E. The traditional timber truss is of the “Fink” truss form and the truss spacing is compatible with the size of tile battens normally used. Various steel truss systems have been developed. Two generic forms of light steel roof truss may be used: C

Closely spaced roof trusses: the ‘open roof’ truss uses bolted C sections which provide for habitable roof space, as shown in Figure 4.4.

C

Widely spaced roof trusses: the more traditional ‘Fink’ trusses may be spaced wider apart (3 to 5 m) and purlins may span between. The space between the trusses may be used for storage, etc.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

33

18 April 2002

Both roof systems may be used in new-build and in renovation projects by overroofing. The Capella system, shown in Figure 4.5, has been specifically developed for over-roofing in renovation applications. Generally, the connections between the members are bolted because of the relatively high forces that are transferred. Over-roofing is covered in a recent SCI publication [7] Over-roofing of existing buildings using light steel .

Figure 4.4

Open-roof truss for habitable use

Figure 4.5

Widely spaced roof trusses with purlins between the trusses

4.5

Structural Frames

Cold formed sections can be used not only as secondary members but also as beams and columns in primary structural frames. This has proved to be successful in light commercial and industrial buildings and in mezzanine floors. Often it is necessary to use C sections placed back to back in longer span applications to increase their buckling resistance. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

34

18 April 2002

Traditional C and Z sections can be made up into more complex assemblies, as shown in Figure 4.6. The sections are thin enough to facilitate connections by self-tapping screws. Alternatively, C sections can be bolted together to form load bearing frames, as shown in Figure 4.7 for a school building. Bolted connections can be made with ‘autoform’ cleated ends and with pre-punched bolt holes. Typical framing arrangements at junctions of floors and walls are shown in Figure 4.8. The transfer of vertical loads in the walls in ‘platform’ construction can be achieved by stiffening the ends of the floor joists.

Figure 4.6

Use of C sections to form joists, stud columns, and purlins

Figure 4.7

Load-bearing frames entirely composed of bolted C sections

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

35

18 April 2002

Load bearing stud

Edge support

Bottom track

Angle seat

Top track

Floor joist

(a) ‘Balloon’ construction

Load bearing stud

Edge support

Bottom track Closure section Web stiffener Floor joist Top track

(b) ‘Platform’ construction Figure 4.8

Typical framing arrangements at junctions of floors and walls

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

36

[15]

18 April 2002

The “Swagebeam” is a special form of C section that has been developed to enhance the shear and bending resistance of bolted connections between the sections. This is achieved via the bearing action of indentations in the web of the section and of embossments in the web cleats. A typical swagebeam connection in a mezzanine floor is shown in Figure 4.9. This system has been used in rectangular frames and in portal frames (up to 15 m span).

Figure 4.9

4.6

Swagebeam connection

Curtain walling and over-cladding

Curtain walling to multi-storey buildings consists of light frames which support glazing, aluminium or steel panels, or stone veneer. These can be storey high panels which are connected to the floor slabs. Cold formed steel sections can be used for the sub-frame components to the cladding and there are a number of recent examples of buildings where this has been used successfully both in new construction and in renovation (see Figure 4.10). A dry envelope is erected rapidly, which means that the internal fit-out can commence without the cladding being on the ‘critical path’. ‘Over-cladding’ of existing buildings is an important market where light steel sub-frames can be used to span directly between floors. The sub-frames are also designed to allow for adjustments due to site tolerances (see Figure 4.11). A variety of cladding materials may be used, such as composite panels or cassette panels. The design requirements for over-cladding systems are reviewed in an [8] SCI publication Over-cladding of existing buildings using light steel .

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

37

18 April 2002

Figure 4.10 Use of cold formed sections as curtain walling

Figure 4.11 Use of light steel framing as sub-frame in ‘over-cladding’ of existing buildings P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

38

18 April 2002

4.7

Housing

Light steel framing used in low-rise housing has been successful in Australia, Japan, USA, Canada and now in the UK. Currently, four light steel framing systems are used in the housing sector in the UK. Modern methods of light steel framing used in housing may be considered to be of three basic forms: C

discrete members that are assembled on site to form to which cladding is attached. These are similar to ‘frame’ systems covered in Section 4.5.

C

wall panels, prefabricated in storey high units (platform construction). This is a similar form of construction to that used in timber framed housing. The wall panels are insulated externally to create a ‘warm frame’.

C

complete house modules or modular components. Other more sophisticated steel/concrete boxes have been developed for applications in hotels or apartment blocks (see Section 4.8).

In wall panel systems, the individual panels are prefabricated by self-piercing rivets, or welding, and the panels are lifted into place, and bolted together on site (see Figure 4.12).

Figure 4.12 Erection of light steel framing for a two-storey house In the Surebuild system, steel floor joists sit on a Z shaped trimmer section attached to the top of the lower storey wall panels, and the upper panels are attached to the lower panels in so-called ‘platform’ construction. The steel stud wall panels use 75 × 32 mm C sections at 400 mm spacing. These are located on the ‘warm’ internal face of a 35 mm thick insulation board. The internal finish is a fire resistant plasterboard designed to give 30 minutes fire resistance. Heavier or multiple board systems can provide 60 minutes fire resistance. Brickwork is attached by wall ties located in a vertical track which is screwed through the insulation to the wall studs.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

39

18 April 2002

The Metsec Gypframe system uses C sections attached by bolts in countersunk holes. The Gypframe system is erected as two-storey high wall panels and the floor joists are bolted to the webs of the wall studs. It is also constructed as a ‘warm frame’ and insulation is pre-attached to the panels. The other housing systems that are available in the UK are by Ayrshire Steel Framing and Forge Llewellyn Ltd.

4.8

Modular construction

Modular or ‘volumetric’ systems are pre-assembled and generally fitted-out in the factory, so that they are delivered to site as units which are self-supporting and require only minimal site work to complete the assembly of units. The typical framework of a pre-fabricated module is shown in Figure 4.13.

Figure 4.13 Modular construction using light steel framing The units are generally less than 4.5 m wide and up to 12 m long because of the requirements for transportation and lifting. The framework of the modules comprises cold formed C sections, often supplemented by hot rolled sections at the corner posts and bottom beam supports. Some systems are corner supported which means that the braced walls act as deep beams. Others are continuously edge supported. Cladding and roofing is usually attached on-site to form the completed building. Therefore, a variety of architectural features can be achieved. Modular units can [9] also be used in refurbishment .

4.9

Frameless structures

Over the last 20 years, there have been important developments in “frameless” construction, where the members and the cladding interact by “stressed skin” action. The main structural configurations that have been used are the folded [16] plate roof , the truncated pyramid and the barrel vault. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

40

18 April 2002

The folded plate roof behaves as a series of inclined beams spanning between end frames. The fold-line members (cold formed angles) absorb the axial thrusts and tensions, and the sheeted web is in pure shear. From the point of view of aesthetics and structural performance the slope of the roof would normally be between 30 and 45E (to the horizontal) and most efficient spans are between 15 m and 25 m. The truncated pyramid roof, as shown in Figure 4.14, comprises a compression ring and a tension ring with hip members transferring the loads between. The individual sheeted panels are prefabricated and they can be bolted together and lifted into place in a few hours. Gutter outlets are placed along the valleys and down the hollow section columns.

Figure 4.14 Example of truncated pyramid roof using cold formed steel sections

4.10 Connections The common types of fixing between cold formed sections, and between sections and sheeting, are: Type

Usual Application

(a) Bolts

Connecting cold formed sections.

(b) Self-tapping screws

Fastening sheeting to sections (< 6 mm thick) or sheeting to sheeting at sidelaps.

(c) Blind rivets

Fastening sheeting to sheeting at sidelaps.

(d) Powder actuated pins

Fastening sheeting to members (>6 mm thick).

(e) Spot welding

Factory joining of thin steel.

(f) Puddle welding

Site welding of sheeting to sections.

(g) Clinching

Usually factory installed by press-joining.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

41

18 April 2002

(h) Self-piercing rivets

Usually factory installed.

(i) Nailing

Site installed using special nails.

These different types of fixing are reviewed as follows: (a) Bolts: Bolt holes can be punched in cold formed sections; the connections between members are usually arranged so that the bolts are loaded in shear. In almost all cases, the resistance of the connection is determined by the bearing resistance of the thinner steel section, rather than by shear of the bolt. Countersunk bolts can be located in recessed holes punched into the sections. In this way, the bolt head does not protrude and does not affect the fixing of the plasterboard or other lining (see Figure 4.15).

Figure 4.15

Countersunk bolts between wall elements

Autoform ends may also be formed during the cutting and punching process; these facilitate bolting (see Figure 4.16).

Figure 4.16

Creation of autoform ends to C sections

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

42

18 April 2002

In BS 5950-5, Clause 8.2.5.2 the shear resistance of bolted connections is given as: Pu

=

2.1 d t Ys

or Pu

=

(1.65 + 0.45 t) d t Ys

for t # 1 mm

(14)

for 1 mm < t # 3 mm

(15)

where: d is the diameter of bolt (mm) 2 Ys is the design strength of steel in thinner plate (N/mm ) t is the thickness of steel in thinner plate (mm) These shear resistances assume that the bolt end distance is at least 3d and that washers are used under both the head and the nut. The resistances are greater than the equivalent values in BS 5950-1, because of build up of deformed steel in front of the bolt as the thinner section fails in bearing. They also include a partial safety factor, given by the ratio of the ultimate to the yield strength of the steel (approximately 1.4). (b) Self-tapping screws: Self-drilling self-tapping screws are commonly used for connecting thin steel components. A selection of the screws and the drill that may be used is shown in Figure 4.17. The “drill” part of the screw forms a hole in the steel plate and the “tapping” part forms the thread. This is a single operation and gives a relatively strong and stiff form of attachment. “Thin-thick” and “thin-thin” attachments may be made depending on the length of the screw. The diameter of the screws is in the range of 4.2 to 8.0 mm, the most common size being about 6 mm for thin-thick connections. The shear resistance (including partial safety factors) may be obtained from Appendix A of BS 5950-5.

Figure 4.17 Different forms of self-drilling self-tapping screws and the standard drill

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

43

18 April 2002

Typically, for a 6 mm diameter screw through 1 mm thick steel, the shear resistance (including partial safety factors is 3.5 kN (thin-thick fixings) and 2.2 kN (thin-thin fixings). Premature failure of a fixing by pull-out should be avoided by careful detailing. Fixings have also been developed for stand-off applications where insulation materials or timber are to be attached (Figure 4.18).

Figure 4.18 “Stand-off” type fixing for soft insulation materials (c) Blind rivets can be in aluminium or alloyed metal (often termed “monel”). They are fitted from one side into predrilled holes and a mandrel is pulled by a special tool so that the rivet expands into and around the hole. These rivets are commonly of 2.4 to 6.3 mm diameter (dependant on the hole diameter). It is a relatively firm form of attachment with good pull out resistance and is useful for thin-thin attachments, e.g. seams in profiled decking. Again, Appendix A of BS 5950-5 can be used to obtain the shear resistance. The “huck” bolt is a similar system, but is used for thicker materials. As for the blind rivet it is fitted from one side in a pre-drilled hole. Tension is applied to the stem of the bolt by a special tool and a malleable ring is pushed to precompress the plates to be attached. When the correct tension has been applied the outer part of the stem breaks off. (d) ‘Shot-fired’ pins (more correctly powder actuated fasteners) are often used when fastening thin to thick steel. They are usually of 4.2 mm diameter and the powder of cartridge is selected for the thickness of the steel. The shear resistance of this type of fixing is given in Appendix A of BS 5950-5 as: Pu = 3.2 t d Ys

(16)

The enhanced resistance, relative to a bolt of the same diameter, is due to the tight fit and the precompression of the steel around the fixing. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

44

18 April 2002

(e) Spot welding is a technique used mainly in the factory. An arc is created between the tips of the welding tool on either side of the steel elements to be attached. It is therefore most appropriate where the welding tool can be supported and can be moved easily into place to form the weld. The shear resistance of a spot weld (in N) is given in BS 5950-5, Clause 8.5.3 as: Pu =

2.7 t d Y s

(17)

(f) Puddle welding is a common site technique in North America. An arc is created between the manually held welding rod and the bare metal. In order to weld through to the lower sheet or base steel, a hole is often cut in the upper sheet and a weld formed around the cut edges. (g) Clinching is a mechanical process in which two pieces of thin steel are pressed together to form a local embossment in the surface of the steel. Clinched connections are effective in shear but are ineffective in tension. (h) Self piercing rivets have been introduced into the Surebuild system. The machinery requires sufficient access to make the connection, and therefore short ‘gusset’ pieces are often introduced to facilitate these connections between wall studs. (i) Nailing of secondary timber elements to thin steel sections or sheeting is feasible by using a “twist-grip” nail. This is practicable where the steel is 0.7 mm to 1.0 mm thick; thicker materials require too much effort to pierce; thinner materials offer too little pull-out resistance.

4.10.1

Simple connections

Conventionally, connections between cold-formed steel sections comprising two bolts per member are considered as simple (shear resisting) connections. Hot rolled angles are often used, but cleats of this size are generally over-sized for this application. [17]

In a recent experimental investigation , it was demonstrated that cold-formed steel web-cleats may be used for improved buildability. Both bolts and self-drilling self-tapping screws may be used as fasterners for cold-formed steel web cleats, and they are simple and easy for site installation. Typical shear resistances of simple connections with cold-formed steel web cleats range from 9 kN to 20 kN, depending on the material and geometry of the cold-formed steel web-cleats. [17]

A set of design rules is available to assess the shear resistance of simple connections with cold-formed steel web cleats for different connection configurations, depending on the practical spatial orientation of members. Detailing rules on the minimum and the maximum dimensions for the position of fasteners should be observed.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

45

18 April 2002

4.10.2

Moment connections

In modern roof systems, the purlin-rafter connections between cold-formed steel sections are highly engineered for the good structural performance of the continuous purlin members. A number of different connection configurations with sleeves or overlaps have been developed in various proprietary systems, which offer partial continuity along the purlins, thereby achieving considerable economy. Purlin-rafter connections are usually cleated connections in which the bolts are designed to resist shear. For beam-column connections, only a limited range of proprietary systems is available. Mechanical enhancement may be used to increase the moment resistance of the connections by mobilising bearing actions between the profiled webs and profiled gusset plates. (A good example of this is the Swagebeam system.) An experimental investigation on lipped C sections with hot rolled steel gusset [17] plates , beam-column connections and also portal frames was carried out. The webs of the back-to-back C sections were connected by bolts to the gusset plate. The maximum moment that was resisted by these nominally simple connections was up to 85% of the bending resistance of the connected members.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

46

18 April 2002

5 SECTION PROPERTIES OF COLD FORMED SECTIONS Geometrical properties of cold formed sections are presented (see yellow pages) in the following format: C

Gross section properties

C

Effective section properties (including the effects of local buckling).

Gross properties are used to determine the elastic stiffness of members or the moments in continuous structures or frames. Effective properties are used to determine the load carrying capabilities of the sections. The geometry of the various sections included in this design guide are presented in Figures 5.1 and 5.2, and their dimensions are given in Tables 5.1 and 5.2. These sections are available for general use, but the list is not exhaustive. The tables include only those sections available for general structural applications. This ignores the smaller C sections. Gross section properties of the section include: C

Height and thickness (which define the section)

C

Self-weight

C

Cross-sectional area

C

Second moment of area about x and y axes

C

Section modulus about x and y axes

C

Radius of gyration about x and y axes

C

Torsion and warping constants

C

Position of centroid and shear centre.

For Z sections, the second moment of area about the principal axes (u and v) and also the angle, 2 between the principal axis u and the x axis, are also presented. Effective section properties incorporate the influence of local buckling and are used in resistance calculations. Properties are given for: C

Effective area ratio, or Q factor

C

Section modulus about x and y axes

C

Second moment of area about x axes

C

Shift of neutral axis position.

Gross and effective section properties are also given for double (i.e. back to back) C or equivalent sections, but not for Z sections. The effective section modulus and second moment of area are based on a steel 2 2 design strength of 280 N/mm or 350 N/mm , as specified by the relevant manufacturer.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

47

18 April 2002

The “Q factor” is a term which defines the ratio of the effective to the gross cross-sectional area of the section (see Section 3.4.1). The compression resistance, Pcs, is based on the effective section, but ignores the effects of lateral instability. The bending resistance of the section, which is assumed to be laterally restrained, is determined from: Mc =

Z( Do

where Z( is the effective section modulus (for the x or y directions, as appropriate) and po is the bending strength determined by the slenderness of the web. Tension yielding is permitted in the evaluation of Z( for asymmetric bending, which may mean that the value of Z( exceeds the elastic value for the gross section. The section property tables refer to those cold formed steel sections readily available at the time of publication. Sections are continually being modified and improved, and new sections manufactured. The individual companies mentioned should therefore be contacted to establish their latest product range. Manufacturers’ addresses and telephone numbers are given in the Appendix A. The section property data may differ slightly for that given by manufacturers who have carried out load tests to establish the key bending properties. In this publication, more section property data are given than would be included in manufacturers’ tables. Load capacity tables for discrete beams and columns are presented in Section 6 for the generic sections listed in Tables 6.1 and 6.2, these being representative of those manufactured by a number of companies. They should be used for scheme design. Double sections are recommended for columns and heavily loaded beams.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

48

18 April 2002

Table 5.1

Dimensions of C sections included in the section property tables Flange widths (mm)

Section type

Steel grades

Overall depth (mm)

Top ‘B’

Bottom ‘B’

Ayrshire (CW) C Section

Lip (mm)

280 or 350

100 to 240

65

65

13

Ayrshire Swagebeam

280

220 to 300

65

65

18

Ayrshire (St Helens) Plain C Section

280

75 to 175

50

50

-

Hi-span C Section

350

155 to 175

66

66

15

Metsec C Section

350

142 to 342

64 to 97

64 to 97

13 to 20

Metsec Plain C Section

280

52, 100, 152 63 74, 75 80

50 25 38 or 44 48

50 25 38 or 44 48

-

Albion C Section (formerly Millpac)

350

127, 145 165 to 276 230, 300

50 to 62.5 62.5 70

50 to 62.5 62.5

15 15 to 20 20

Metsec Framing SFS Section

350

70 to 300

35 to 54

35 to 60

10 to 15

Structural Sections Ultrabeam

350

145 to 285

50 to 75

50 to 75

12 to 17

Ward Multibeam

390

145 to 350

60

60

14

Ward Multichannel

350

70 to 350

50 to 95

50 to 95

20

Generic C sections

280 or 350

100 to 300

55 to 65

55 to 65

15

y

y

B

t

y

B

t

x

D

x

x

D

x

x

y

Plain C section

y

t

x

y

D

y

Lipped C section

y

B

B

Swagebeam

y

B

t

B

t

t x

x

D

y

x

x

D

y Ultrabeam

Figure 5.1

x

x

D

y

Multichannel

Multibeam

C sections and their derivatives included in section property tables

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

49

18 April 2002

Table 5.2

Dimensions of Z sections included in section property tables

Section type

Steel grades

Flange widths (mm)

Overall depth (mm)

Top ‘B’

Bottom ‘B’

Lip (mm)

Ayrshire Zed Section

280

125 140 to 200 240 300

55 58 76 94

45 49 68 86

15 to 16 15 to 16 15 to 18 15 to 18

Aryshire Zeta Section

280

125 150 to 200

60 72

50 65

18 18

Aryshire Zeta II

350

225 to 285

78

68

18 to 20

Aryshire Zeta III

350

140 to 200

55

45

15 to 16

Hi-span Z Section

350

150 and 170 205 230 and 255

66 66 83

60 60 75

17 to 19 17 to 19 17 to 19

Metsec Z Section

350

142 172 and 202 232 262 302 342

60 65 76 80 90 100

55 60 69 72 82 92

19 to 21 19 to 21 19 to 21 19 to 21 19 to 22 19 to 22

Albion Z Section (formerly Millpac)

350

120 145 and 175 200 and 225 240 and 300

50 50 to 62.5 62.5 to 75 75

50 50 to 62.5 62.5 to 75 75

15 15 to 20 20 20

Structural Sections UltraZed

350

145 170 200 to 285

62.5 67.5 76

56.5 61.5 71

14 to 15.5 14 to 15.5 18

280 to 350

100 to 300

55 to 94

45 to 86

15

Generic Z sections B top

B top

B top

y

y

y

t t

t

x

x D

x D

x

y B bot

y B bot

y B bot

Zeta section

Z section

x D

x

UltraZED section Btop

B top y

y t t

x

x

x D

y Bbot

y B bot Ayrshire Zeta III

Figure 5.2

x D

Ayrshire Z

Z sections and their derivatives included in section property tables

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

50

18 April 2002

5.1

Notation used in section property tables

xx

major axis bending

yy

minor axis bending

B

section width

D

section depth

t

section thickness (including galvanizing)

es

(for C sections) horizontal distance of the shear centre of the section from the web/flange junction

eN

shift of neutral axis

Xcg, Ycg

position of centroid

Xsc, Ysc

(for Z sections) position of shear centre

Ixx

second moment of area (gross or unreduced) for major axis bending

Iyy

second moment of area for minor axis bending

Ixy

product moment of area

Iuu

second moment of area about u axis

Iw

second moment of area about v axis

2

(for Z sections) angle between u and x axes

rxx

radius of gyration in major axis direction

ryy

radius of gyration in minor axis direction

Zxx

section modulus (gross or unreduced) for major axis bending

Zyy

section modulus (gross or unreduced) for minor axis bending

J

torsional constant (pure torsion)

Cw

warping constant

Q

factor representing the effective cross-sectional area ratio for pure compression (at a stress of Ys)

ZXR

effective section modulus for major axis bending (at a stress of Ys)

ZY1R

effective section modulus for minor axis bending (smaller outstand in tension) (at a stress of Ys)

ZY2R

effective section modulus for minor axis bending (larger outstand in compression) (at a stress of Ys

IXR

effective second moment of area (at a stress of Ys,)

Pcs

compressive capacity of short column (in kN)

Mcx

bending capacity of restrained beam in major axis direction (in kNm)

Mcy1

bending capacity of restrained beam in minor axis direction (smaller outstand in tension) (in kNm)

Mcy2

bending capacity restrained beam in minor axis direction (larger outstand in compression) (in kNm)

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

51

18 April 2002

y

Shear centre t

Mid-height of section

D/2

x

es

D/2

x

x cg

Centre of gravity

X sc

y

B

Xsc = es + x cg , Ysc = 0

Figure 5.3

Position of centroid and shear centre for C sections y B top

Shear centre

e

s

D/2

x

Ysc

y cg

xcg

D/2

Centre of gravity

x

X sc Mid-height of section

t

B bot

y

Xsc = es — x cg

Figure 5.4

5.2

Position of centroid and shear centre for Z sections

Summary of assumptions in deriving the section property tables

C

Gross section properties are independent of steel strength and operating stress (i.e. the unreduced section).

C

The actual steel thickness used in calculations is the specified thickness less the galvanizing thickness (0.04 mm).

C

Corner radii (internal) are taken as 2 × section thickness, or as recommended by the manufacturer. The effective width of the flat plates excludes corners. Corners are included in calculating section properties.

C

The horizontal distance of the shear centre of the section from the adjacent web/flange junction may be assumed to be zero for Z sections.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

52

18 April 2002

C

Double (back to back) sections are assumed to act as compound sections.

C

Effective widths of compression plates are calculated using the appropriate value of buckling coefficient, K (K $ 4) as given by Appendix C of BS 5950-5.

C

Effective section properties are calculated for the steel yield strength specified by the manufacturers.

C

The effective section modulus, Zy is calculated for a stress in the compression plate of py. This property is used in calculating the moment capacity of the section. The effects of web buckling are included.

C

Tension yielding is permitted for non-symmetric sections.

C

The effective second moment of area is calculated on the same basis as the section modulus.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

53

18 April 2002

6 LOAD AND PERFORMANCE CHARACTERISTICS OF COLD FORMED SECTIONS This Section refers to a series of Load Capacity Tables (see pink and green pages) giving load carrying capacities of generic cold formed steel sections. Values are given for the based on limitations of both bending resistance and deflection.

6.1

Generic sections

The generic sections are symmetric C and Z sections, with flange widths as given in Table 6.1. The sizes have been selected to be typical of those marketed. Back to back C sections are used as "double" sections. Properties for most of the sections are given for steel grade S280 (pink pages); some sections are also given for steel grade S350 ( green pages). These generic sections are representative of sections of similar size and thickness produced by a number of manufacturers, and can be used for scheme design in a particular application. Manufacturer's data should be used for final design. Table 6.1

Depth (mm)

100 125 125 150 150 165 165 180 180 180 200 200 200 220 220 250 300 300

List of generic lipped C sections of grade S280 and S350 steel included in Load Capacity Tables

Thickness (mm)

1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

Flange Width (mm) 55 55 55 65 65 65 65 65 65 65 65 65 65 65 65 65 65 65

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

Lip (mm)

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

54

S280 Load Capacity Tables (Pink pages)

S350 Load Capacity Tables (Green pages)

Beam

Column

Beam

Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

18 April 2002

Table 6.2

Depth (mm)

List of generic lipped Z sections of grade S250 and S350 steel included in Load Capacity Tables

Thickness (mm)

100 125 125 150 150 165 165 180 180 180 200 200 200 220 220 250 300 300

6.2

1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

Flange Width (mm) Btop

Bbot

55 55 55 58 58 58 58 58 58 58 58 58 58 58 58 76 94 94

45 45 45 49 49 49 49 49 49 49 49 49 49 49 49 68 86 86

Lip (mm)

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

S280 Load Capacity Tables (Pink pages)

S350 Load Capacity Tables (Green pages)

Beam

Column

Beam

Column

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

-

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

-

Load capacity tables for beams

For each section size and steel grade, a single load-span table is given. The table gives values of maximum working load per span for a range of spans and restraint conditions, at the limits of bending resistance, of total deflection and of web crushing. For any particular situation, the minimum of the three values is to be taken as the maximum working load that may be supported by each span of the beam. Deflections tend to govern the choice of section as the span/depth ratio of the member increases.

6.2.1 Bending resistance limits The bending resistance of a beam depends on the distance between points of lateral restraint, as explained in Section 3.3.4. The bending resistance in derived in the tables is that given by BS 5950-5 for the particular section and restraint conditions. Most beams used in floors are continuously restrained, if fixed regularly to the flooring. The load values in the table are the values of total working load per span which, when multiplied by a factor of 1.6 (see Section 1.2), cause a bending moment at midspan that is equal to the bending resistance. (That is WL/8 for distributed loads and WL/4 for point loads.) The factor of 1.6 is conservative in all cases, and becomes increasingly so as the ratio of dead to imposed load increases. No distinction is made between single and multiple spans. This is a ‘safe’ assumption, based conservatively on the same moment at failure. For C sections, values are given for both single and double sections. For Z sections, values are only given for single sections.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

55

18 April 2002

6.2.2 Deflection limits Beam deflections depend on the section stiffness, the beam span, and whether it is simply supported or continuous. Load values in the tables correspond to the total working load per span at which the total deflection is equal to the limits of either span/250 or span/350 (see comment in Section 3.5.2). Deflections are calculated using a section stiffness based on the average of the gross and the effective second moments of area of the section. The working load is unfactored when calculating these deflections. Deflections for the double span case are assumed to be 60% of the value for the single span case. The limit of span/250 corresponds to the 'normal' limitation for beams in roofs. The limit of span/350 should be used for lightweight floors. If it is assumed that the self weight component for floors is about 30% of the total load, this limit correspond to approximately L/450 under imposed load. Furthermore, the deflection under total load should not exceed 15 mm in order to satisfy the natural frequency limit of 8 Hz (see Section 3.5.1).

6.2.3 Web crushing limits Additionally, values are given for each section for the load at which web crushing will occur at supports or at a point load when no web stiffener or cleat is present. The crushing resistance depends on the support width and the lateral restraint to the top flange. Web crushing resistance is in accordance with BS 5950-5, depending on the location of the load and the restraint to the flanges. As for bending resistance, the load values are working loads which, when multiplied by a factor of 1.6, will equal the crushing resistance of the web. For single spans, the total load W is twice the crushing resistance. Continuous or multiple spans result in increased reactions at the internal supports. Thus, an additional stiffening cleat is required for all continuous beam applications.

6.3

Load capacity tables for columns

For each section size and steel grade, a single load-height table is given. The table gives values of the maximum axial working load for a range of effective lengths for both axes of the section. Values are given for single and double C sections. Double sections are assumed to be attached together at regular intervals to form an equivalent I section. No tables are given for Z sections, since they are not normally used to support axial load. The load values in the table are the values of working load which, when multiplied by a factor of 1.6, are equal to the compressive resistance of the column. The column resistance is derived in accordance with BS 5950-5, as discussed in Section 3.4. The factor of 1.6 is conservative in all cases, and becomes increasingly so as the ratio of dead to live load increases. In deriving the axial resistances, torsional restraints are assumed at the positions of the major axis restraints and at the column ends. This affects the torsionalflexural buckling mode of failure. P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

56

18 April 2002

For the concentrically loaded case, the load eccentricity is assumed to be zero. For the eccentrically loaded cases, the load is assumed to be applied at the face of the section. For members in walls, the eccentric load is typically taken to be applied at the wall face, but concentrically on the other axis. For isolated columns, load is typically taken to be applied eccentrically to both axes, i.e. at a corner of the section. Values are given for combinations of four different effective lengths about the y-y or minor axis and two different effective lengths about the x-x or major axis. Values are also given for the cases where continuous restraint is provided about each axis, in combination with the range of effective lengths about the other axis. (In the plane of walls, minor axis restraint can be provided by straps.)

6.4

Guidance on selection of cold formed steel sections

For efficient structural performance, the following general guidelines on member selection are given: (1) For compliance with normal deflection limits, the ratios of member span, L to depth, D should be: L/D # 20 L/D # 24 L/D # 30 L/D # 35

simply supported floor beams continuous floor beams simply supported roof beams continuous roof beams.

(2) Restrain the compression (upper) flange of beams by attachment of flooring or roof sheeting or other members. (3) Limit the effects of local buckling by keeping the flange widths to steel thickness ratio (b/t) to within the following limits: b/t # 40 b/t # 12 b/t # 60

lipped sections plain sections (no lips) lipped sections with intermediate stiffener

(4) Limit the effects of web buckling or web crushing by keeping the web depth to thickness ratio, (D/t), within the following limits: Single span: D/t # 120 for single sections under uniformly distributed loads D/t # 80 for single sections under point loads D/t # 150 for double sections back-to-back Double span: D/t # 80 for single sections D/t # 120 for double sections back-to-back (5) Avoid heavy point loads applied directly to the top flange of the member. Allow at least 50 mm end bearing for heavily loaded beams, and 100 mm bearing for internal supports on double span beams (or, preferably, use a stiffening cleat).

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

57

18 April 2002

(6) Restrain studs in their y-y (minor axis) direction at one or two points along their length, or use double C sections). The unsupported height H divided by the member depth should be less than 35. Designs outside the above suggested limits are permitted, but this can result in relatively inefficient structural performance. Designing within these limits does not imply that structural calculations are unnecessary, but rather that the selected section will be structurally efficient for the loads and span conditions under consideration.

6.5

Example of use of load-span tables for beams

Consider a floor spanning 4.5 m, with beams at 600 mm spacing: 2

Imposed load Self weight of floor Total working load

= 2.5 kN/m 2 = 0.5 kN/m (assumed) 2 = 3.0 kN/m

Load on beam

= 3 × 0.6 × 4.5 = 8.1 kN

Choose deep lipped C section with L/D = 20 (approx) - say 200 mm deep For D/t = 120, t = 1.67 ; say 1.8 mm thick: From Table 12: Bending resistance of section: Max. load for full restraint = 10.2 kN ~ OK Deflection of single span beam. For * # L/350: max. load = 7.3 kN, which is not adequate. Deflection of double span beam. For * # L/350: max. load = 12.2 kN, which is adequate. Web crushing: Support width = 50 mm For unrestrained section, max. load = 8.2 kN ~ OK Therefore, 200 mm × 1.8 mm thick C section is adequate, provided that the beams are double span. For single span beams, try 2.0 mm thick section. From Table 13: Bending resistance of beam: Max. load for full restraint = 11.6 kN ~ OK Deflection of single span beam. For * # L/350: max. load = 8.3 kN, which is adequate Web crushing: Support width = 50 mm For unrestrained section, max. load = 10.1 kN ~ OK Therefore, 200 mm × 2.0 mm thick C section is adequate as a single span beam P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

58

18 April 2002

7 REFERENCES 1.

BRITISH STANDARDS INSTITUTION BS 5950-5:1998 Structural use of steelwork in building. Code of practice for design of cold formed thin gauge sections

2.

BRITISH STANDARDS INSTITUTION BS EN 10147: 2000 Continuously hot-dip zinc coated structural strip and sheet. Technical delivery conditions

3.

BRITISH STANDARDS INSTITUTION BS 2989: 1991 Specification for continuously hot-dip zinc coated and iron-zinc alloy coated steel of structural qualities: wide strip, sheet/plate and slit wide strip

4.

Galvatite Technical Manual British Steel Strip Products, 1993 (now Corus Colors)

5.

ANDREW, T. O. White rust on galvanized steel British Steel Product Development Centre, Shotton, 1988

6.

POPO-OLA, S.O., BIDDLE, A.R. and LAWSON, R.M. Durability of light steel framing in residential building (P262) The Steel Construction Institute, 2000

7.

HILLIER, M., LAWSON, R. M. and GORGOLEWSKI, M. Over-roofing of existing buildings using light steel (P246) The Steel Construction Institute, 1998

8.

LAWSON, R. M., PEDRESCHI, R., POPO-OLA, S., and FALKENFLETH, I. Over-cladding of existing buildings using light steel (P247) The Steel Construction Institute, 1998

9.

LAWSON, R. M., GRUBB, P. J., PREWER, J., and TREBILCOCK, P. J. Modular construction using light steel framing: An Architect’s Guide (P272) The Steel Construction Institute,, 1999

10.

LAWSON, R. M. Design of composite slabs and beams with steel decking (P055) The Steel Construction Institute, 1989

11.

COUCHMAN, G. H., MULLETT, D. L. and RACKHAM, J. W. Composite slabs and beams using steel decking: Best practice for design and construction (P300) The Metal Cladding & Roofing Manufacturers Association and The Steel Construction Institute, 2000

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

59

18 April 2002

12.

LAWSON, R. M. Building design using cold formed steel sections: Fire protection (P129) The Steel Construction Institute, 1993

13.

AMERICAN IRON AND STEEL INSTITUTE Specification for the design of cold formed steel structural members AISI, 1986 (including Commentary)

14.

YU, W. W. Cold formed steel structures McGraw Hill, 1973

15.

CANADIAN INSTITUTE OF STEEL CONSTRUCTION Lightweight steel framing CISC, Willowdale, Ontario, 1991

16.

DAVIES, J. M. Light gauge steel folded plate roofs The Steel Construction Institute/Constrado, 1978

17.

CHUNG, K. F. and LAWSON, R. M. Structural performance of shear connections among cold-formed steel members using web cleats of cold-formed steel strips Engineering Structures, 22 (10), 2000 pp 1350-1366. Elsevier Science Ltd

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

60

18 April 2002

8 BIBLIOGRAPHY 1. EUROPEAN CONVENTION FOR CONSTRUCTIONAL STEELWORK European recommendations for the design of light gauge steel members ECCS publication 49, 1987 2. HANCOCK, G. J. Design of cold formed steel structures, 3rd Edition Australian Institute of Steel Construction, 1998 3. DAVIES, J. M. and BRYAN, E. R. Manual of stressed skin diaphragm design Granada, 1982 4. EUROPEAN CONVENTION FOR CONSTRUCTIONAL STEELWORK European recommendations for connections in thin walled structural steel elements ECCS publication, 1981 5. EUROPEAN CONVENTION FOR CONSTRUCTIONAL STEELWORK Mechanical fasteners for use in steel sheeting and sections ECCS publication, 1983 6. CURRIE, D. M. The use of light gauge cold formed steelwork in construction; developments in research and design Building Research Establishment, 1989 7. RHODES, J. (Editor) Design of cold formed steel members Elsevier Applied Science, 1991 8. BRITISH STANDARDS INSTITUTION ENV 1993: Eurocode 3: Design of steel structures DD ENV 1993-1-3:2001 General rules. Supplementary rules for cold formed thin gauge members and sheeting (includes UK NAD) 9. BRITISH STANDARDS INSTITUTION BS 2994: 1976 Specification for cold rolled steel sections 10. BRITISH GYPSUM LIMITED The White Book, 1996 11. Corus Colors C Coil and sheet steel production range C The Colorcoat in Building, 1997

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

61

18 April 2002

SCI publications in Light Steel series GORGOLEWSKI, M. T., GRUBB, P. J., and LAWSON, R. M. Building design using cold formed steel sections: Light steel framing in residential construction (P301) The Steel Construction Institute, 2001 LAWSON R. M., GRUBB, P. J., PREWER, J., and TREBILCOCK, P. Building Design Using Modular Construction: An Architect’s Guide (P272) The Steel Construction Institute, 1999. POPO-OLA, S.O., BIDDLE, A.R. and LAWSON, R.M. Durability of light steel framing in residential building (P262) The Steel Construction Institute, 2000 ROGAN, A. L., and LAWSON, R. M. Value and Benefit Assessment of Light Steel Framing in Housing (P260) The Steel Construction Institute, 1998. LAWSON, R. M., PEDRESCHI, R., POPO-OLA, S., and FALKENFLETH, I. Over-Cladding of Existing Buildings using Light Steel (P247) The Steel Construction Institute, 1998. HILLIER, M. LAWSON R. M., and GORGOLEWSKI, M. Over-Roofing of Existing Buildings using Light Steel (P246) The Steel Construction Institute, 1998. GRUBB, P. J. and LAWSON, R. M. Building Design using Cold Formed Steel Sections: Construction Detailing and Practice (P165) The Steel Construction Institute, 1997. TREBILCOCK, P. J. Building Design using Cold Formed Steel Sections: An Architect’s Guide (P130) The Steel Construction Institute, 1994. LAWSON, R. M. Building Design using Cold Formed Steel Sections: Fire Protection (P129) The Steel Construction Institute, 1993. CLOUGH, R. H. and OGDEN, R. G. Building Design using Cold Formed Steel Sections: Acoustic Insulation (P128) The Steel Construction Institute, 1993 CHUNG, K. F. Building Design using Cold Formed Steel Sections: Worked Examples (P125) The Steel Construction Institute, 1993.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

62

18 April 2002

APPENDIX A Contact Information List of cold formed section manufacturers Albion Sections Ltd Albion Road West Bromwich B70 8BD Telephone: 0121 553 1877 Fax: 0121 523 5507 Website: www.albionsections.co.uk Ayrshire Metal Products (Daventry) Limited Royal Oak Way Daventry NN11 5NR Telephone: Fax: Website:

01327 300990 01327 300885 www.ayrshire.co.uk

Ayrshire Metal Products plc 17 Church Street Irvine KA12 8PH Telephone: Fax: Website:

01294 274171 01294 275447 www.ayrshire.co.uk

Hi-Span Limited Ayton Road Wymondham NR18 0RD Telephone: Fax: Website:

01953 603081 01953 607842 www.hi-span.com

Metsec Limited Birmingham Road Oldbury Warley B69 4HE Telephone: Fax: Website:

0121 601 6000 0121 601 6119 www.metsec.co.uk

Steel Framing Systems (refer to Metsec Limited)

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

63

18 April 2002

Structural Sections Limited PO Box 92 Downing Street Smethwick Warley B66 2PA Telephone: fax: Website:

0121 555 1340 0121 555 1341 www.hadleyindustries.plc.uk

Ward Building Components Limited Sherburn Malton YO17 8PQ Telephone: Fax: Website:

01944 712000 01944 710555 www.wards.co.uk

Framing systems for housing Ayrshire Steel Framing 17 Church Street Irvine KA12 8PH Telephone: Website:

01294 274171 www.ayrshire.co.uk

Fax: 01294 275447

Corus Framing (incorporating Surebuild) Corus Building Systems Whitehead Works Mendalgief Road Newport NP20 2NF Telephone: Website:

01633 244000 Fax: 01633 211231 www.corusgroup.com

Metek UK Ltd Unit 4, Longbrook Trading Estate Ashton Vale Road Ashton Bristol BS3 2HT Telephone: Website:

01179 093893 Fax: 01179 738501 www.metekbuildingsystems.co.uk

First Industries Corbiere Works Bourne End Industrial Estate Hemel Hempstead HP1 2RN Telephone:

01422 878797

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

64

Fax: 01442 878757 18 April 2002

Forge Llewellyn Ltd Unit 13.3.1 The Leather Market Weston Street London SE1 3ER Telephone: Website:

020 7357 7323 Fax: 020 7357 8157 www.forge-llewellyn.co.uk

Metsec Framing (incorporating Gypframe) Bradwell Road Oldbury Warley B69 4HE Telephone: Website:

0121 552 1541 www.metsec.com

Fax: 0121 544 0699

Other sources of information: Corus Colors PO Box 10 Newport Gwent NP19 0XN Telephone: 01633 290022 Cold Rolled Sections Association c/o Robson Rhodes Centre City Tower 7 Hill Street Birmingham B5 4UU Telephone: Fax:

0121 697 6000 0121 697 6113

There are other manufacturers of cold formed steel sections for specific applications, and a comprehensive list can be obtained from the Cold Rolled Sections Association.

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

65

18 April 2002

P:\CMP\Cmp657\pubs\P276\P276-Final.wpd

66

18 April 2002

SECTION PROPERTY TABLES C Sections Note: Section property data are given for commonly available C sections, and for generic C sections, which may be used at the scheme design stage. These properties are calculated in accordance with BS 5950-5 and may differ slightly from manufacturers' data.

A-1

[BLANK PAGE]

A-2

B t

GROSS SECTION PROPERTIES AYRSHIRE CW SECTION Design Yield Strength = 280 N/mm2

x

x

D

SINGLE SECTION D

x

B

mm 100 x 65 120 x 65 127 x 65

140

x

65

155

x

65

170

x

65

185

x

65

200

x

65

220

x

65

240

65

t

Area

mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0

cm 3.79 4.10 4.21 4.72 5.22 4.41 4.95 4.64 5.21 4.88 5.47 5.11 5.74 5.35 6.00 6.65 5.66 6.35 7.04 7.44

2

Weight

Ix x

kg/m 2.97 3.22 3.30 3.70 4.10 3.46 3.88 3.65 4.09 3.83 4.30 4.01 4.51 4.20 4.71 5.22 4.44 4.99 5.53 5.84

cm 64.7 97.9 111.4 124.2 136.7 139.2 155.3 175.9 196.4 217.9 243.4 265.4 296.5 318.6 356.1 392.9 398.9 446.1 492.4 605.9

4

Iy y 4

cm 21.2 22.6 23.1 25.6 28.0 23.8 26.4 24.6 27.3 25.3 28.1 26.0 28.8 26.6 29.5 32.3 27.3 30.3 33.1 33.9

rx x

ry y

Zx x

cm 4.13 4.89 5.14 5.13 5.12 5.62 5.60 6.15 6.14 6.68 6.67 7.20 7.19 7.72 7.70 7.68 8.40 8.38 8.36 9.03

cm 2.37 2.35 2.34 2.33 2.31 2.32 2.31 2.30 2.29 2.28 2.27 2.26 2.24 2.23 2.22 2.20 2.20 2.18 2.17 2.14

cm 12.95 16.32 17.54 19.57 21.54 19.89 22.19 22.71 25.35 25.64 28.64 28.69 32.06 31.86 35.62 39.29 36.27 40.56 44.77 50.50

3

Zy y

J

3

cm 0.0307 0.0332 0.0341 0.0487 0.0669 0.0358 0.0511 0.0377 0.0538 0.0396 0.0565 0.0415 0.0593 0.0434 0.0620 0.0852 0.0459 0.0656 0.0902 0.0952

y

B

Cw 4

cm 5.04 5.16 5.20 5.76 6.30 5.27 5.83 5.33 5.90 5.38 5.97 5.43 6.02 5.48 6.07 6.64 5.53 6.12 6.70 6.75

6

cm 434 638 721 794 862 891 982 1116 1230 1371 1512 1657 1829 1977 2183 2378 2455 2712 2956 3608

B t

x

DOUBLE SECTION D 100 120 127

x

B

mm x 65 x 65 x 65

140

x

65

155

x

65

170

x

65

185

x

65

200

x

65

220

x

65

240

65

t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0

D

x

y

Area 2

cm 7.57 8.20 8.42 9.44 10.44 8.82 9.89 9.29 10.42 9.76 10.95 10.23 11.48 10.69 12.01 13.31 11.32 12.71 14.09 14.87

Weight kg/m 5.95 6.43 6.61 7.41 8.20 6.92 7.77 7.29 8.18 7.66 8.60 8.03 9.01 8.39 9.42 10.44 8.88 9.98 11.06 11.68

Ix x 4

cm 129.5 195.7 222.7 248.4 273.5 278.4 310.6 351.9 392.8 435.8 486.8 530.7 593.0 637.1 712.2 785.7 797.8 892.2 984.7 1211.9

Iy y 4

cm 81.9 81.9 81.9 91.1 100.0 81.9 91.1 81.9 91.1 81.9 91.1 81.9 91.1 81.9 91.1 100.0 81.9 91.1 100.0 100.0

rx x cm 4.13 4.89 5.14 5.13 5.12 5.62 5.60 6.15 6.14 6.68 6.67 7.20 7.19 7.72 7.70 7.68 8.40 8.38 8.36 9.03

A-3

ry y cm 3.29 3.16 3.12 3.11 3.09 3.05 3.03 2.97 2.96 2.90 2.88 2.83 2.82 2.77 2.75 2.74 2.69 2.68 2.66 2.59

Zx x

Zy y

3

3

cm 25.91 32.63 35.09 39.13 43.08 39.78 44.39 45.41 50.70 51.28 57.28 57.39 64.12 63.73 71.23 78.59 72.54 81.12 89.54 101.01

cm 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39

J

Cw 4

cm 0.0614 0.0665 0.0683 0.0974 0.1337 0.0716 0.1022 0.0754 0.1076 0.0792 0.1131 0.0829 0.1185 0.0867 0.1240 0.1704 0.0918 0.1312 0.1804 0.1905

cm6 2042 2908 3247 3564 3860 3927 4312 4792 5264 5744 6311 6781 7453 7905 8690 9426 9537 10487 11378 13514

es mm -30.1 -28.9 -28.5 -28.2 -27.9 -27.8 -27.5 -27.0 -26.7 -26.2 -26.0 -25.6 -25.3 -24.9 -24.6 -24.4 -24.1 -23.8 -23.6 -22.8

B

REDUCED SECTION PROPERTIES

t

AYRSHIRE CW SECTION Design Yield Strength = 280 N/mm2

x

D

x

SINGLE SECTION D

x

B

mm 100 x 65 120 x 65 127 x 65

140

x

65

155

x

65

170

x

65

185

x

65

200

x

65

220

x

65

240

65

t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0

Q

po / py

Zxr

0.99 0.97 0.96 0.99 1.00 0.95 0.97 0.93 0.96 0.91 0.94 0.90 0.93 0.88 0.91 0.94 0.86 0.89 0.92 0.90

cm 12.77 15.84 16.88 19.35 21.52 18.84 21.64 21.10 24.31 23.40 27.01 25.69 29.73 27.99 32.46 36.76 31.03 36.11 41.02 45.30

3

0.90 0.84 0.82 0.87 0.91 0.79 0.83 0.75 0.79 0.71 0.76 0.68 0.72 0.65 0.69 0.72 0.62 0.65 0.69 0.65

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

cm3 6.87 6.92 6.92 8.02 9.12 6.93 8.03 6.93 8.04 6.94 8.05 6.95 8.06 6.96 8.06 9.21 6.98 8.08 9.22 9.24

cm3 5.04 5.16 5.20 5.76 6.30 5.27 5.83 5.33 5.90 5.38 5.97 5.43 6.02 5.48 6.07 6.64 5.53 6.12 6.70 6.75

cm4 64 96 108 123 137 132 152 164 189 200 230 239 275 281 325 368 342 398 451 544

kN 96 97 97 115 133 97 115 97 116 98 116 98 116 98 116 135 98 117 135 135

kNm 3.58 4.43 4.73 5.42 6.03 5.27 6.06 5.91 6.81 6.55 7.56 7.19 8.32 7.84 9.09 10.29 8.69 10.11 11.48 12.68

kNm 1.92 1.94 1.94 2.25 2.55 1.94 2.25 1.94 2.25 1.94 2.25 1.95 2.26 1.95 2.26 2.58 1.95 2.26 2.58 2.59

kNm 1.41 1.45 1.46 1.61 1.76 1.47 1.63 1.49 1.65 1.51 1.67 1.52 1.69 1.53 1.70 1.86 1.55 1.71 1.88 1.89

B

y

B t

x

DOUBLE SECTION D

x

B

mm 100 x 65 120 x 65 127 x 65

140

x

65

155

x

65

170

x

65

185

x

65

200

x

65

220

x

65

240

65

t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0

x

D

y

Q

po / py

Zxr

0.99 0.97 0.96 0.99 1.00 0.95 0.97 0.93 0.96 0.91 0.94 0.90 0.93 0.88 0.91 0.94 0.86 0.89 0.92 0.90

cm 25.55 31.67 33.77 38.70 43.04 37.67 43.28 42.20 48.62 46.79 54.02 51.39 59.46 55.97 64.93 73.52 62.05 72.23 82.03 90.59

3

0.90 0.84 0.82 0.87 0.91 0.79 0.83 0.75 0.79 0.71 0.76 0.68 0.72 0.65 0.69 0.72 0.62 0.65 0.69 0.65

Zy1r 3

cm 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39

Zy2r 3

cm 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39

A-4

Ixr 4

cm 128 191 215 246 273 265 303 329 377 399 460 477 551 562 650 735 684 795 902 1087

Pc

Mcx

Mcy1

Mcy2x

kN 191.6 193.6 193.9 230.0 265.9 194.3 230.8 194.7 231.3 195.1 231.7 195.5 232.0 195.9 232.4 269.8 196.5 233.0 270.3 270.9

kNm 7.15 8.87 9.45 10.84 12.05 10.55 12.12 11.82 13.61 13.10 15.13 14.39 16.65 15.67 18.18 20.58 17.37 20.22 22.97 25.37

kNm 3.53 3.53 3.53 3.92 4.31 3.53 3.92 3.53 3.92 3.53 3.92 3.53 3.92 3.53 3.92 4.31 3.53 3.93 4.31 4.31

kNm 3.53 3.53 3.53 3.92 4.31 3.53 3.92 3.53 3.92 3.53 3.92 3.53 3.92 3.53 3.92 4.31 3.53 3.93 4.31 4.31

B

REDUCED SECTION PROPERTIES

t

AYRSHIRE CW SECTION Design Yield Strength = 350 N/mm2

x

x

D

SINGLE SECTION D

x

B

mm 100 x 65 120 x 65 127 x 65

140

x

65

155

x

65

170

x

65

185

x

65

200

x

65

220

x

65

240

x

65

t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0

Q 0.86 0.80 0.78 0.83 0.87 0.74 0.80 0.71 0.76 0.68 0.72 0.65 0.69 0.62 0.66 0.69 0.59 0.63 0.66 0.62

po / py

Zxr

Zy1r

Zy2r

3

3

0.96 0.94 0.93 0.97 0.99 0.91 0.95 0.90 0.93 0.88 0.92 0.86 0.90 0.84 0.88 0.91 0.82 0.86 0.89 0.87

cm 12.49 15.33 16.33 18.92 21.30 18.19 21.12 20.33 23.67 22.51 26.25 24.67 28.84 26.82 31.43 35.80 29.64 34.86 39.84 43.86

cm 6.64 6.67 6.67 7.80 8.91 6.68 7.81 6.69 7.81 6.70 7.82 6.71 7.84 6.73 7.85 8.96 6.76 7.87 8.98 9.00

cm 5.04 5.16 5.20 5.76 6.30 5.27 5.83 5.33 5.90 5.38 5.97 5.43 6.02 5.48 6.07 6.64 5.53 6.12 6.70 6.75

3

Ixr 4

cm 63.2 93.0 104.8 120.6 135.4 128.6 148.4 159.1 184.1 193.0 223.9 230.0 267.5 270.0 315.0 358.3 327.9 384.2 438.4 526.6

Pc

Mcx

Mcy1

Mcy2x

kN 113.8 114.5 114.7 137.4 159.7 115.0 137.7 115.2 138.0 115.5 138.2 115.8 138.5 116.0 138.8 161.4 116.4 139.2 161.8 162.2

kNm 4.37 5.37 5.72 6.62 7.46 6.37 7.39 7.12 8.28 7.88 9.19 8.64 10.10 9.39 11.00 12.53 10.38 12.20 13.94 15.35

kNm 2.33 2.33 2.33 2.73 3.12 2.34 2.73 2.34 2.74 2.34 2.74 2.35 2.74 2.36 2.75 3.14 2.36 2.75 3.14 3.15

kNm 1.76 1.81 1.82 2.02 2.20 1.84 2.04 1.87 2.07 1.88 2.09 1.90 2.11 1.92 2.12 2.32 1.93 2.14 2.34 2.36

B

y

B t

x

DOUBLE SECTION D

x

B

mm 100 x 65 120 x 65 127 x 65

140

x

65

155

x

65

170

x

65

185

x

65

200

x

65

220

x

65

240

x

65

x

D

y

t mm 1.6 1.6 1.6 1.8 2.0 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0

Q 0.86 0.80 0.78 0.83 0.87 0.74 0.80 0.71 0.76 0.68 0.72 0.65 0.69 0.62 0.66 0.69 0.59 0.63 0.66 0.62

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

0.96 0.94 0.93 0.97 0.99 0.91 0.95 0.90 0.93 0.88 0.92 0.86 0.90 0.84 0.88 0.91 0.82 0.86 0.89 0.87

cm3 24.97 30.66 32.66 37.83 42.61 36.38 42.23 40.66 47.34 45.01 52.51 49.35 57.69 53.64 62.86 71.61 59.29 69.71 79.67 87.72

cm3 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39

cm3 12.60 12.60 12.60 14.01 15.38 12.60 14.01 12.60 14.01 12.60 14.02 12.60 14.02 12.60 14.02 15.39 12.60 14.02 15.39 15.39

cm4 126.4 186.0 209.6 241.1 270.8 257.3 296.7 318.2 368.2 385.9 447.7 460.0 535.1 540.1 630.1 716.5 655.9 768.4 876.9 1053.1

kN 227.5 229.1 229.4 274.8 319.4 229.9 275.4 230.4 275.9 231.0 276.5 231.5 277.0 232.1 277.6 322.7 232.9 278.4 323.5 324.4

kNm 8.74 10.73 11.43 13.24 14.91 12.73 14.78 14.23 16.57 15.75 18.38 17.27 20.19 18.78 22.00 25.06 20.75 24.40 27.89 30.70

kNm 4.41 4.41 4.41 4.90 5.38 4.41 4.90 4.41 4.91 4.41 4.91 4.41 4.91 4.41 4.91 5.39 4.41 4.91 5.39 5.39

kNm 4.41 4.41 4.41 4.90 5.38 4.41 4.90 4.41 4.91 4.41 4.91 4.41 4.91 4.41 4.91 5.39 4.41 4.91 5.39 5.39

A-5

B

t

GROSS SECTION PROPERTIES AYRSHIRE SWAGEBEAM Design Yield Strength = 280 N/mm2

x

D

x

SINGLE SECTION D

x

B

mm 220 x 65

250

x

65

300

x

65

t

Area

mm 1.5 1.8 2.0 2.4 1.5 1.8 2.0 2.4 1.8 2.0 2.4 3.0

cm 6.01 7.17 7.94 9.45 6.44 7.70 8.53 10.15 8.58 9.51 11.33 14.00

2

Weight

Ix x

kg/m 4.71 5.63 6.23 7.42 5.06 6.05 6.70 7.97 6.74 7.47 8.90 10.99

cm 416.9 495.8 547.1 646.8 566.6 674.3 744.4 880.8 1049.9 1159.8 1373.8 1680.7

4

Iy y

rx x

ry y

Zx x

cm4 33.5 39.4 43.2 50.4 34.9 41.1 45.1 52.5 43.5 47.6 55.5 66.3

cm 8.33 8.31 8.30 8.27 9.38 9.36 9.34 9.31 11.06 11.04 11.01 10.96

cm 2.36 2.34 2.33 2.31 2.33 2.31 2.30 2.27 2.25 2.24 2.21 2.18

cm 37.90 45.08 49.75 58.81 45.33 53.95 59.56 70.47 70.01 77.33 91.60 112.06

3

Zy y

J

Cw

es

cm3 7.36 8.65 9.48 11.04 7.46 8.78 9.62 11.20 8.95 9.80 11.42 13.62

cm4 0.0427 0.0741 0.1017 0.1754 0.0458 0.0795 0.1092 0.1885 0.0886 0.1218 0.2104 0.4089

cm6 3595 4211 4597 5315 4676 5481 5986 6927 8047 8793 10187 12044

mm -26.1 -25.7 -25.5 -25.0 -25.2 -24.9 -24.6 -24.1 -23.6 -23.3 -22.8 -22.1

B

y

B t

x

y

DOUBLE SECTION D

x

B

mm 220 x 65

250

x

65

300

x

65

D

x

t

Area

mm 1.5 1.8 2.0 2.4 1.5 1.8 2.0 2.4 1.8 2.0 2.4 3.0

cm 12.01 14.35 15.88 18.89 12.89 15.41 17.06 20.31 17.17 19.02 22.67 28.00

2

Weight

Ix x

kg/m 9.43 11.26 12.47 14.83 10.12 12.09 13.39 15.94 13.48 14.93 17.80 21.98

cm 833.7 991.6 1094.3 1293.6 1133.2 1348.5 1488.8 1761.6 2099.9 2319.6 2747.7 3361.5

4

Iy y 4

cm 112.4 132.9 146.1 171.4 112.4 132.9 146.1 171.4 133.0 146.2 171.4 206.5

rx x

ry y

Zx x

cm 8.33 8.31 8.30 8.27 9.38 9.36 9.34 9.31 11.06 11.04 11.01 10.96

cm 3.06 3.04 3.03 3.01 2.95 2.94 2.93 2.91 2.78 2.77 2.75 2.72

cm 75.81 90.16 99.50 117.62 90.67 107.90 119.12 140.95 140.01 154.66 183.20 224.13

A-6

3

Zy y 3

cm 17.30 20.45 22.48 26.36 17.30 20.45 22.48 26.37 20.46 22.49 26.37 31.77

J

Cw 4

cm 0.0854 0.1482 0.2034 0.3508 0.0916 0.1591 0.2185 0.3770 0.1772 0.2436 0.4209 0.8177

6

cm 12870 14990 16311 18740 16577 19313 21019 24158 27752 30211 34738 40594

es mm

-

B

REDUCED SECTION PROPERTIES

t

AYRSHIRE SWAGEBEAM Design Yield Strength = 280 N/mm2

x

x

D

SINGLE SECTION D

x

B

mm 220 x 65

250

x

65

300

x

65

t mm 1.5 1.8 2.0 2.4 1.5 1.8 2.0 2.4 1.8 2.0 2.4 3.0

Q

po / py

Zxr

0.88 0.93 0.95 0.98 0.85 0.90 0.93 0.96 0.86 0.89 0.93 0.97

cm 33.20 41.80 47.23 57.67 38.49 48.74 55.26 67.83 60.45 68.94 85.40 108.96

3

0.95 0.99 1.00 1.00 0.94 0.99 0.99 1.00 0.92 0.94 0.97 0.99

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

cm3 10.30 12.29 13.53 15.87 10.56 12.62 13.90 16.30 12.79 14.13 16.64 20.03

cm3 7.36 8.65 9.48 11.04 7.46 8.78 9.62 11.20 8.95 9.80 11.42 13.62

cm4 367.0 460.1 519.6 634.2 483.1 609.6 690.7 847.7 907.1 1034.2 1280.8 1634.2

kN 159.3 198.2 221.3 264.4 170.0 212.5 237.6 284.2 220.2 250.3 308.2 389.2

kNm 9.30 11.70 13.22 16.15 10.78 13.65 15.47 18.99 16.93 19.30 23.91 30.51

kNm 2.91 3.46 3.81 4.46 2.97 3.54 3.90 4.56 3.58 3.95 4.66 5.61

kNm 2.06 2.42 2.65 3.09 2.09 2.46 2.69 3.14 2.50 2.74 3.20 3.81

B

y

B t

x

DOUBLE SECTION D

x

B

mm 220 x 65

250

x

65

300

x

65

x

D

y

t mm 1.5 1.8 2.0 2.4 1.5 1.8 2.0 2.4 1.8 2.0 2.4 3.0

Q

po / py

Zxr

0.88 0.93 0.95 0.98 0.85 0.90 0.93 0.96 0.86 0.89 0.93 0.97

cm 66.39 83.59 94.46 115.33 76.97 97.47 110.51 135.65 120.90 137.89 170.79 217.93

3

0.95 0.99 1.00 1.00 0.94 0.99 0.99 1.00 0.92 0.94 0.97 0.99

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

cm3 17.30 20.45 22.48 26.36 17.30 20.45 22.48 26.37 20.46 22.49 26.37 31.77

cm3 17.30 20.45 22.48 26.36 17.30 20.45 22.48 26.37 20.46 22.49 26.37 31.77

cm4 734.0 920.2 1039.2 1268.4 966.2 1219.2 1381.5 1695.4 1814.2 2068.3 2561.5 3268.5

kN 318.5 396.3 442.6 528.8 340.0 425.1 475.2 568.4 440.3 500.6 616.4 778.3

kNm 18.59 23.41 26.45 32.29 21.55 27.29 30.94 37.98 33.85 38.61 47.82 61.02

kNm 4.84 5.73 6.29 7.38 4.84 5.73 6.30 7.38 5.73 6.30 7.38 8.90

kNm 4.84 5.73 6.29 7.38 4.84 5.73 6.30 7.38 5.73 6.30 7.38 8.90

A-7

B

t

GROSS SECTION PROPERTIES AYRSHIRE (ST HELENS) PLAIN SECTION Design Yield Strength = 280 N/mm2

x

D

x

SINGLE SECTION D

x

B

mm 75 x 50

100 x

50

125 x

50

150 x

50

160 x 175 x

50 50

t

Area

mm 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 5.0 4.0 3.0

cm 4.81 6.27 7.65 5.55 7.26 8.89 6.29 8.25 10.13 7.03 11.37 9.64 7.77

2

Weight

Ix x

kg/m 3.78 4.92 6.01 4.36 5.70 6.98 4.94 6.48 7.95 5.52 8.93 7.57 6.10

cm 43.8 55.2 64.9 85.4 108.6 129.0 144.3 184.7 220.9 222.9 344.5 335.2 323.5

4

Iy y 4

cm 12.4 15.8 18.9 13.8 17.7 21.3 14.8 19.1 23.0 15.6 24.4 20.6 16.3

rx x

ry y

Zx x

cm 3.02 2.97 2.91 3.92 3.87 3.81 4.79 4.73 4.67 5.63 5.50 5.90 6.45

cm 1.61 1.59 1.57 1.57 1.56 1.55 1.53 1.52 1.51 1.49 1.47 1.46 1.45

cm 11.70 14.72 17.31 17.09 21.72 25.81 23.10 29.56 35.36 29.73 45.95 41.92 36.98

3

Zy y 3

cm 3.65 4.75 5.77 3.83 5.00 6.10 3.96 5.17 6.33 4.05 6.50 5.34 4.12

J

Cw 4

B

es

6

cm 0.1405 0.3279 0.6275 0.1621 0.3797 0.7292 0.1838 0.4314 0.8309 0.2054 0.9325 0.5039 0.2270

cm 103 121 132 210 253 283 364 446 507 570 810 828 830

y

mm -18.6 -17.9 -17.1 -17.4 -16.8 -16.1 -16.2 -15.7 -15.1 -15.2 -14.1 -14.3 -14.3

B t

x

DOUBLE SECTION D

x

B

mm 75 x 50

100 x

50

125 x

50

150 x

50

160 x 175 x

50 50

x

D

y

t

Area

mm 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 5.0 4.0 3.0

cm 9.62 12.55 15.30 11.10 14.53 17.78 12.58 16.51 20.26 14.06 22.74 19.28 15.54

2

Weight

Ix x

kg/m 7.55 9.85 12.01 8.72 11.40 13.96 9.88 12.96 15.91 11.04 17.85 15.13 12.20

cm 87.7 110.3 129.8 170.8 217.2 258.0 288.7 369.4 441.9 445.8 689.1 670.5 646.9

4

Iy y

rx x

ry y

Zx x

cm4 49.4 66.2 83.2 49.5 66.3 83.4 49.5 66.5 83.6 49.5 83.8 66.6 49.6

cm 3.02 2.97 2.91 3.92 3.87 3.81 4.79 4.73 4.67 5.63 5.50 5.90 6.45

cm 2.27 2.30 2.33 2.11 2.14 2.17 1.98 2.01 2.03 1.88 1.92 1.86 1.79

cm 23.39 29.44 34.62 34.18 43.45 51.63 46.20 59.11 70.73 59.46 91.90 83.83 73.95

A-8

3

Zy y

J

Cw

es

cm3 9.88 13.25 16.64 9.89 13.27 16.68 9.90 13.29 16.72 9.91 16.76 13.32 9.92

cm4 0.2811 0.6558 1.2550 0.3243 0.7593 1.4583 0.3675 0.8628 1.6617 0.4107 1.8651 1.0077 0.4540

cm6 510 599 650 936 1120 1241 1490 1802 2022 2173 2993 3028 2985

mm

-

B

t

REDUCED SECTION PROPERTIES AYRSHIRE (ST HELENS) PLAIN SECTION Design Yield Strength = 280 N/mm2

x

D

x

SINGLE SECTION D

x

B

mm 75 x 50

100 x

50

125 x

50

150 x

50

160 x 175 x

50 50

t mm 3 4 5 3 4 5 3 4 5 3 5 4 3

Q

po / py

Zxr

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99

cm 11.66 14.72 17.31 17.03 21.72 25.81 23.00 29.56 35.36 29.58 45.95 41.91 36.76

3

1.00 1.00 1.00 0.99 1.00 1.00 0.96 1.00 1.00 0.90 1.00 0.98 0.84

Zy1r 3

cm 6.09 7.73 9.13 6.62 8.51 10.21 6.86 8.91 10.79 6.94 11.12 9.15 6.98

Zy2r 3

cm 3.65 4.75 5.77 3.83 5.00 6.10 3.96 5.17 6.33 4.05 6.50 5.34 4.12

Ixr 4

cm 43.8 55.2 64.9 85.2 108.6 129.0 143.9 184.7 220.9 222.2 344.5 335.2 322.2

Pc

Mcx

Mcy1

Mcy2x

kN 134.1 175.6 214.1 153.9 203.3 249.0 169.8 230.8 283.7 176.9 318.3 265.7 182.2

kNm 3.27 4.12 4.85 4.77 6.08 7.23 6.44 8.28 9.90 8.28 12.87 11.74 10.29

kNm 1.71 2.17 2.56 1.86 2.39 2.87 1.92 2.50 3.03 1.95 3.12 2.57 1.96

kNm 1.02 1.33 1.62 1.07 1.40 1.71 1.11 1.45 1.77 1.13 1.82 1.50 1.15

B

y

B t

x

DOUBLE SECTION D

x

B

mm 75 x 50

100 x

50

125 x

50

150 x

50

160 x 175 x

50 50

t mm 3.0 4.0 5.0 3.0 4.0 5.0 3.0 4.0 5.0 3.0 5.0 4.0 3.0

x

D

y

Q

po / py

Zxr

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99

cm 23.33 29.44 34.62 34.05 43.45 51.63 46.00 59.11 70.73 59.15 91.90 83.83 73.51

3

1.00 1.00 1.00 0.99 1.00 1.00 0.96 1.00 1.00 0.90 1.00 0.98 0.84

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

cm3 9.88 13.25 16.64 9.89 13.27 16.68 9.90 13.29 16.72 9.91 16.76 13.32 9.92

cm3 9.88 13.25 16.64 9.89 13.27 16.68 9.90 13.29 16.72 9.91 16.76 13.32 9.92

cm4 87.5 110.3 129.8 170.4 217.1 258.0 287.9 369.3 441.9 444.4 689.1 670.5 644.5

kN 268.2 351.3 428.2 307.7 406.7 497.9 339.6 461.7 567.4 353.8 636.6 531.3 364.5

kNm 6.53 8.24 9.69 9.54 12.17 14.46 12.88 16.55 19.80 16.56 25.73 23.47 20.58

kNm 2.77 3.71 4.66 2.77 3.72 4.67 2.77 3.72 4.68 2.77 4.69 3.73 2.78

kNm 2.77 3.71 4.66 2.77 3.72 4.67 2.77 3.72 4.68 2.77 4.69 3.73 2.78

A-9

B t

GROSS SECTION PROPERTIES HI-SPAN C SECTION Design Yield Strength = 350 N/mm2

x

D

x

SINGLE SECTION D

x

B

mm 150

x

66

170

x

66

200

x

66

t

Area

mm 1.5 1.6 1.8 2.0 1.5 1.6 1.8 2.0 2.4 1.5 1.6 1.8 2.0 2.4

cm 4.37 4.66 5.23 5.79 4.67 4.97 5.58 6.18 7.37 5.10 5.44 6.11 6.77 8.07

2

Weight

Ix x

kg/m 3.43 3.66 4.10 4.55 3.66 3.90 4.38 4.85 5.78 4.01 4.27 4.80 5.31 6.34

cm 157.2 167.2 186.6 205.7 210.0 223.3 249.4 275.0 324.6 306.7 326.3 364.8 402.5 475.8

4

Iy y 4

cm 25.1 26.6 29.5 32.3 26.1 27.7 30.7 33.6 39.2 27.4 29.1 32.3 35.4 41.1

rx x

ry y

Zx x

cm 6.00 5.99 5.97 5.96 6.71 6.70 6.69 6.67 6.64 7.75 7.74 7.73 7.71 7.68

cm 2.40 2.39 2.38 2.36 2.37 2.36 2.35 2.33 2.31 2.32 2.31 2.30 2.29 2.26

cm 20.97 22.29 24.89 27.43 24.71 26.27 29.35 32.37 38.20 30.68 32.63 36.48 40.26 47.59

3

Zy y 3

cm 5.47 5.79 6.42 7.03 5.55 5.88 6.52 7.13 8.29 5.64 5.97 6.63 7.25 8.43

J

Cw 4

cm 1106 1169 1290 1405 1453 1537 1697 1849 2130 2084 2204 2436 2657 3065

y

B

es

6

cm 0.0311 0.0378 0.0540 0.0741 0.0332 0.0403 0.0576 0.0792 0.1367 0.0363 0.0441 0.0631 0.0867 0.1499

mm -28.7 -28.6 -28.3 -28.1 -27.7 -27.6 -27.3 -27.0 -26.5 -26.3 -26.2 -25.9 -25.7 -25.1

B t

x

DOUBLE SECTION D

x

B

mm 150

x

66

170

x

66

200

x

66

D

x

y

t

Area

mm 1.5 1.6 1.8 2.0 1.5 1.6 1.8 2.0 2.4 1.5 1.6 1.8 2.0 2.4

cm 8.75 9.32 10.46 11.58 9.33 9.94 11.16 12.36 14.73 10.21 10.88 12.22 13.54 16.15

2

Weight

Ix x

kg/m 6.87 7.32 8.21 9.09 7.32 7.81 8.76 9.71 11.56 8.01 8.54 9.59 10.63 12.68

cm 314.5 334.3 373.3 411.4 419.9 446.5 498.8 550.1 649.3 613.4 652.5 729.5 805.0 951.6

4

Iy y 4

cm 85.4 90.7 100.9 110.9 85.4 90.7 100.9 110.9 129.9 85.4 90.7 100.9 110.9 129.9

rx x

ry y

Zx x

cm 6.00 5.99 5.97 5.96 6.71 6.70 6.69 6.67 6.64 7.75 7.74 7.73 7.71 7.68

cm 3.12 3.12 3.11 3.09 3.03 3.02 3.01 2.99 2.97 2.89 2.89 2.87 2.86 2.84

cm 41.94 44.59 49.78 54.86 49.41 52.54 58.70 64.73 76.40 61.36 65.26 72.97 80.52 95.17

A - 10

3

Zy y 3

cm 12.94 13.74 15.29 16.80 12.94 13.74 15.29 16.80 19.68 12.94 13.74 15.29 16.80 19.69

J

Cw 4

cm 0.0622 0.0756 0.1080 0.1483 0.0663 0.0807 0.1152 0.1583 0.2735 0.0725 0.0883 0.1261 0.1734 0.2998

6

cm 4808 5072 5578 6052 6130 6469 7116 7724 8827 8415 8882 9775 10616 12144

es mm

-

B t

REDUCED SECTION PROPERTIES HI-SPAN C SECTION Design Yield Strength = 350 N/mm2

x

D

x

SINGLE SECTION D

x

B

mm 150

x

66

170

x

66

200

x

66

t mm 1.5 1.6 1.8 2.0 1.5 1.6 1.8 2.0 2.4 1.5 1.6 1.8 2.0 2.4

Q

po / py

Zxr

0.87 0.90 0.94 0.96 0.85 0.88 0.92 0.94 0.98 0.81 0.84 0.88 0.91 0.95

cm 18.30 20.05 23.36 26.44 20.96 23.00 26.87 30.50 37.31 24.93 27.40 32.16 36.66 45.20

3

0.69 0.72 0.77 0.81 0.65 0.68 0.72 0.76 0.83 0.60 0.62 0.66 0.70 0.76

Zy1r

Zy2r

3

cm 5.47 5.79 6.42 7.03 5.55 5.88 6.52 7.13 8.29 5.64 5.97 6.63 7.25 8.43

cm 6.47 7.06 8.27 9.49 6.49 7.08 8.29 9.50 11.85 6.53 7.12 8.32 9.52 11.87

3

Ixr 4

cm 139.6 152.0 175.9 198.5 180.8 197.4 229.2 259.6 317.1 252.2 276.2 322.5 367.0 451.9

Pc

Mcx

Mcy1

Mcy2x

kN 106.0 117.8 141.2 164.4 106.3 118.2 141.6 164.8 212.7 106.9 118.7 142.1 165.3 213.4

kNm 6.41 7.02 8.17 9.25 7.34 8.05 9.40 10.68 13.06 8.72 9.59 11.25 12.83 15.82

kNm 2.26 2.47 2.90 3.32 2.27 2.48 2.90 3.32 4.15 2.29 2.49 2.91 3.33 4.15

kNm 1.91 2.03 2.25 2.46 1.94 2.06 2.28 2.50 2.90 1.97 2.09 2.32 2.54 2.95

B

y

B t

x

DOUBLE SECTION D

x

B

mm 150

x

66

170

x

66

200

x

66

t mm 1.5 1.6 1.8 2.0 1.5 1.6 1.8 2.0 2.4 1.5 1.6 1.8 2.0 2.4

x

D

y

Q

po / py

Zxr

0.87 0.90 0.94 0.96 0.85 0.88 0.92 0.94 0.98 0.81 0.84 0.88 0.91 0.95

cm 36.60 40.10 46.71 52.87 41.92 45.99 53.74 61.01 74.63 49.85 54.81 64.31 73.33 90.40

3

0.69 0.72 0.77 0.81 0.65 0.68 0.72 0.76 0.83 0.60 0.62 0.66 0.70 0.76

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

cm3 12.94 13.74 15.29 16.80 12.94 13.74 15.29 16.80 19.68 12.94 13.74 15.29 16.80 19.69

cm3 12.94 13.74 15.29 16.80 12.94 13.74 15.29 16.80 19.68 12.94 13.74 15.29 16.80 19.69

cm4 279.14 304.06 351.80 397.04 361.65 394.76 458.44 519.12 634.23 504.42 552.31 644.96 733.90 903.86

kN 211.90 235.65 282.46 328.81 212.62 236.37 283.16 329.55 425.49 213.72 237.49 284.28 330.62 426.72

kNm 12.81 14.04 16.35 18.51 14.67 16.10 18.81 21.35 26.12 17.45 19.18 22.51 25.67 31.64

kNm 4.53 4.81 5.35 5.88 4.53 4.81 5.35 5.88 6.89 4.53 4.81 5.35 5.88 6.89

kNm 4.53 4.81 5.35 5.88 4.53 4.81 5.35 5.88 6.89 4.53 4.81 5.35 5.88 6.89

A - 11

B t

GROSS SECTION PROPERTIES METSEC C SECTION Design Yield Strength = 350 N/mm2

x

x

D

SINGLE SECTION D

x

B

mm 142 x 64

172

x

69

202

x

69

232

x

76

262

x

80

302

x

89

342

x

97

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2

cm2 3.87 4.14 4.41 4.95 5.48 4.44 4.75 5.07 5.69 6.30 7.21 7.80 5.19 5.53 6.21 6.89 7.89 8.54 6.28 7.06 7.83 8.97 9.72 7.73 8.57 9.83 10.66 12.30 11.23 12.18 14.07 13.66 15.79 17.36

kg/m 3.04 3.25 3.46 3.88 4.30 3.48 3.73 3.98 4.46 4.95 5.66 6.13 4.08 4.34 4.88 5.41 6.19 6.71 4.93 5.54 6.15 7.04 7.63 6.07 6.73 7.72 8.37 9.65 8.82 9.56 11.04 10.72 12.39 13.63

cm4 125.4 133.9 142.3 158.7 174.8 206.5 220.6 234.6 262.2 289.1 328.6 354.1 320.6 341.0 381.3 420.9 478.8 516.4 507.7 568.3 627.9 715.4 772.5 781.0 863.4 984.7 1064.0 1218.7 1488.9 1610.2 1847.7 2302.7 2646.0 2897.9

cm4 20.4 21.8 23.0 25.5 27.9 26.8 28.6 30.3 33.6 36.8 41.4 44.3 30.0 31.8 35.3 38.6 43.5 46.5 44.1 49.0 53.8 60.6 65.0 57.6 63.3 71.4 76.6 86.5 101.4 108.9 123.4 145.4 165.2 179.3

cm 5.69 5.69 5.68 5.66 5.65 6.82 6.81 6.81 6.79 6.77 6.75 6.74 7.86 7.85 7.83 7.82 7.79 7.77 8.99 8.97 8.96 8.93 8.91 10.05 10.04 10.01 9.99 9.96 11.51 11.50 11.46 12.98 12.95 12.92

cm 2.30 2.29 2.29 2.27 2.26 2.46 2.45 2.44 2.43 2.42 2.40 2.38 2.40 2.40 2.38 2.37 2.35 2.33 2.65 2.63 2.62 2.60 2.59 2.73 2.72 2.70 2.68 2.65 3.00 2.99 2.96 3.26 3.23 3.21

cm3 17.66 18.86 20.04 22.36 24.63 24.01 25.66 27.29 30.49 33.63 38.21 41.19 31.75 33.77 37.76 41.68 47.41 51.14 43.78 49.00 54.14 61.69 66.61 59.63 65.92 75.18 81.23 93.04 98.61 106.65 122.38 134.67 154.76 169.49

cm3 4.57 4.86 5.15 5.70 6.23 5.43 5.78 6.12 6.79 7.44 8.35 8.93 5.88 6.23 6.91 7.57 8.50 9.09 7.80 8.67 9.51 10.72 11.49 9.53 10.46 11.80 12.66 14.28 14.98 16.09 18.22 19.60 22.25 24.14

cm4 0.0238 0.0294 0.0358 0.0511 0.0701 0.0274 0.0338 0.0411 0.0587 0.0807 0.1227 0.1574 0.0369 0.0449 0.0642 0.0882 0.1343 0.1723 0.0510 0.0729 0.1002 0.1527 0.1961 0.0798 0.1098 0.1673 0.2150 0.3353 0.1912 0.2458 0.3836 0.2755 0.4304 0.5779

cm6 790 839 886 976 1060 1504 1598 1690 1866 2034 2270 2417 2289 2422 2677 2921 3263 3477 4457 4939 5402 6059 6473 7362 8060 9055 9685 10864 17159 18392 20724 31640 35769 38686

mm -27.4 -27.3 -27.2 -26.9 -26.6 -28.7 -28.6 -28.5 -28.2 -28.0 -27.5 -27.3 -27.2 -27.1 -26.8 -26.6 -26.2 -25.9 -29.9 -29.6 -29.3 -29.0 -28.7 -30.2 -29.9 -29.6 -29.3 -28.8 -32.9 -32.6 -32.1 -35.5 -35.0 -34.6

A - 12

y

B

B t

GROSS SECTION PROPERTIES x

METSEC C SECTION Design Yield Strength = 350 N/mm2 DOUBLE SECTION D

x

B

mm 142 x 64

172

x

69

202

x

69

232

x

76

262

x

80

302

x

89

342

x

97

D

x

y

t

Area

mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2

cm 7.74 8.28 8.82 9.89 10.95 8.88 9.51 10.13 11.37 12.60 14.42 15.61 10.38 11.07 12.43 13.78 15.77 17.09 12.57 14.12 15.66 17.94 19.45 15.46 17.15 19.66 21.32 24.59 22.46 24.37 28.14 27.32 31.57 34.73

2

Weight

Ix x

kg/m 6.07 6.50 6.92 7.77 8.60 6.97 7.46 7.95 8.93 9.89 11.32 12.25 8.15 8.69 9.76 10.81 12.38 13.41 9.86 11.08 12.29 14.08 15.27 12.13 13.46 15.43 16.73 19.31 17.63 19.13 22.09 21.45 24.78 27.26

cm 250.7 267.7 284.5 317.5 349.7 413.0 441.2 469.2 524.3 578.3 657.1 708.3 641.2 682.1 762.7 841.8 957.5 1032.8 1015.4 1136.6 1255.8 1430.9 1545.0 1562.0 1726.9 1969.4 2127.9 2437.4 2977.7 3220.4 3695.5 4605.3 5292.1 5795.9

Iy y 4

4

cm 69.4 74.0 78.5 87.3 95.9 87.6 93.5 99.2 110.4 121.4 137.1 147.2 93.5 99.2 110.5 121.4 137.2 147.3 135.9 151.5 166.8 188.9 203.1 174.0 191.6 217.1 233.6 265.3 304.4 327.9 373.4 432.6 493.5 537.6

rx x

ry y

Zx x

cm 5.69 5.69 5.68 5.66 5.65 6.82 6.81 6.81 6.79 6.77 6.75 6.74 7.86 7.85 7.83 7.82 7.79 7.77 8.99 8.97 8.96 8.93 8.91 10.05 10.04 10.01 9.99 9.96 11.51 11.50 11.46 12.98 12.95 12.92

cm 3.00 2.99 2.98 2.97 2.96 3.14 3.14 3.13 3.12 3.10 3.08 3.07 3.00 2.99 2.98 2.97 2.95 2.94 3.29 3.28 3.26 3.24 3.23 3.36 3.34 3.32 3.31 3.28 3.68 3.67 3.64 3.98 3.95 3.93

cm 35.33 37.72 40.08 44.73 49.26 48.03 51.32 54.57 60.98 67.26 76.43 82.38 63.49 67.54 75.53 83.36 94.83 102.28 87.55 98.00 108.28 123.37 133.22 119.25 131.84 150.36 162.46 186.09 197.23 213.30 244.77 269.35 309.51 338.98

A - 13

3

Zy y 3

cm 10.85 11.57 12.27 13.65 14.98 12.70 13.54 14.38 16.01 17.59 19.87 21.34 13.54 14.38 16.01 17.59 19.88 21.34 17.88 19.94 21.94 24.85 26.72 21.75 23.95 27.14 29.20 33.16 34.20 36.85 41.95 44.59 50.88 55.42

J

Cw 4

cm 0.0477 0.0588 0.0716 0.1022 0.1403 0.0547 0.0675 0.0822 0.1174 0.1613 0.2454 0.3149 0.0738 0.0898 0.1283 0.1764 0.2685 0.3447 0.1019 0.1458 0.2005 0.3055 0.3923 0.1596 0.2196 0.3347 0.4300 0.6705 0.3824 0.4915 0.7672 0.5511 0.8608 1.1559

es 6

cm 3467 3672 3871 4249 4602 6420 6809 7186 7909 8589 9530 10107 9329 9849 10844 11782 13084 13883 17975 19846 21624 24118 25668 28978 31609 35315 37629 41889 66506 71043 79502 121287 136249 146652

mm -

B t

REDUCED SECTION PROPERTIES METSEC C SECTION Design Yield Strength = 350 N/mm2

x

x

D

SINGLE SECTION D

x

B

mm 142 x 64

172

x

69

202

x

69

232

x

76

262

x

80

302

x

89

342

x

97

t mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2

Q

po / py

Zxr

0.86 0.89 0.91 0.95 0.97 0.80 0.83 0.86 0.91 0.94 0.97 0.98 0.80 0.83 0.88 0.91 0.94 0.96 0.78 0.83 0.87 0.91 0.93 0.79 0.83 0.88 0.90 0.94 0.84 0.86 0.90 0.83 0.87 0.90

cm 15.17 16.78 18.33 21.26 23.98 19.20 21.40 23.56 27.69 31.54 36.96 40.41 25.41 28.02 33.05 37.79 44.54 48.86 33.96 40.66 47.05 56.10 61.86 47.09 54.96 66.16 73.29 87.02 82.57 92.24 110.74 111.31 135.25 152.46

Zy1r 3

0.68 0.71 0.74 0.79 0.83 0.60 0.64 0.67 0.72 0.76 0.81 0.84 0.59 0.61 0.66 0.69 0.74 0.77 0.56 0.61 0.65 0.69 0.72 0.57 0.61 0.65 0.67 0.72 0.61 0.63 0.67 0.59 0.64 0.66

3

Zy2r

cm 5.37 5.91 6.47 7.58 8.64 6.10 6.71 7.33 8.64 9.88 11.75 13.03 6.75 7.37 8.68 9.90 11.77 13.05 8.75 10.28 11.88 14.14 15.66 11.10 12.83 15.31 16.96 20.36 18.61 20.62 24.73 24.19 29.03 32.73

3

cm 4.57 4.86 5.15 5.70 6.23 5.43 5.78 6.12 6.79 7.44 8.35 8.93 5.88 6.23 6.91 7.57 8.50 9.09 7.80 8.67 9.51 10.72 11.49 9.53 10.46 11.80 12.66 14.28 14.98 16.09 18.22 19.60 22.25 24.14

A - 14

Ixr 4

cm 110.0 120.8 131.3 151.4 170.4 169.8 187.8 205.4 239.5 271.8 317.9 347.5 260.8 286.2 335.3 382.3 449.9 493.4 401.0 475.8 547.9 651.3 717.8 623.6 723.8 867.9 960.6 1139.8 1251.5 1395.2 1672.6 1910.0 2314.4 2607.3

Pc

Mcx

Mcy1

Mcy2x

kN 91.7 103.1 114.5 136.8 159.1 93.9 106.1 118.4 142.8 166.9 203.3 228.5 106.7 119.0 143.4 167.4 203.9 229.2 123.7 150.9 177.8 217.6 244.6 153.3 181.8 223.6 251.5 309.5 238.0 269.0 331.4 283.3 350.9 402.4

kNm 5.31 5.87 6.42 7.44 8.39 6.72 7.49 8.25 9.69 11.04 12.94 14.14 8.89 9.81 11.57 13.23 15.59 17.10 11.89 14.23 16.47 19.64 21.65 16.48 19.24 23.16 25.65 30.46 28.90 32.29 38.76 38.96 47.34 53.36

kNm 1.88 2.07 2.26 2.65 3.02 2.14 2.35 2.57 3.02 3.46 4.11 4.56 2.36 2.58 3.04 3.47 4.12 4.57 3.06 3.60 4.16 4.95 5.48 3.89 4.49 5.36 5.94 7.13 6.51 7.22 8.65 8.47 10.16 11.46

kNm 1.60 1.70 1.80 1.99 2.18 1.90 2.02 2.14 2.38 2.60 2.92 3.13 2.06 2.18 2.42 2.65 2.98 3.18 2.73 3.04 3.33 3.75 4.02 3.34 3.66 4.13 4.43 5.00 5.24 5.63 6.38 6.86 7.79 8.45

B

y

B t

REDUCED SECTION PROPERTIES x

METSEC C SECTION Design Yield Strength = 350 N/mm2 DOUBLE SECTION D

x

B

mm 142 x 64

172

x

69

202

x

69

232

x

76

262

x

80

302

x

89

342

x

97

x

D

y

t mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2

Q

po / py

Zxr

0.86 0.89 0.91 0.95 0.97 0.80 0.83 0.86 0.91 0.94 0.97 0.98 0.80 0.83 0.88 0.91 0.94 0.96 0.78 0.83 0.87 0.91 0.93 0.79 0.83 0.88 0.90 0.94 0.84 0.86 0.90 0.83 0.87 0.90

cm 30.34 33.56 36.67 42.51 47.96 38.40 42.80 47.12 55.37 63.09 73.93 80.83 50.82 56.04 66.09 75.59 89.07 97.71 67.93 81.31 94.10 112.20 123.73 94.18 109.92 132.32 146.59 174.04 165.15 184.49 221.49 222.62 270.50 304.91

Zy1r 3

0.68 0.71 0.74 0.79 0.83 0.60 0.64 0.67 0.72 0.76 0.81 0.84 0.59 0.61 0.66 0.69 0.74 0.77 0.56 0.61 0.65 0.69 0.72 0.57 0.61 0.65 0.67 0.72 0.61 0.63 0.67 0.59 0.64 0.66

3

Zy2r

cm 10.85 11.57 12.27 13.65 14.98 12.70 13.54 14.38 16.01 17.59 19.87 21.34 13.54 14.38 16.01 17.59 19.88 21.34 17.88 19.94 21.94 24.85 26.72 21.75 23.95 27.14 29.20 33.16 34.20 36.85 41.95 44.59 50.88 55.42

3

cm 10.85 11.57 12.27 13.65 14.98 12.70 13.54 14.38 16.01 17.59 19.87 21.34 13.54 14.38 16.01 17.59 19.88 21.34 17.88 19.94 21.94 24.85 26.72 21.75 23.95 27.14 29.20 33.16 34.20 36.85 41.95 44.59 50.88 55.42

A - 15

Ixr 4

cm 220.1 241.7 262.7 302.8 340.8 339.6 375.6 410.9 479.0 543.7 635.9 695.0 521.6 572.3 670.6 764.6 899.7 986.8 802.0 951.6 1095.9 1302.6 1435.5 1247.3 1447.6 1735.8 1921.2 2279.7 2503.0 2790.5 3345.1 3820.0 4628.9 5214.7

Pc

Mcx

Mcy1

Mcy2x

kN 183.3 206.2 228.9 273.6 318.2 187.8 212.2 236.9 285.7 333.7 406.7 457.0 213.3 238.0 286.8 334.8 407.8 458.5 247.4 301.9 355.7 435.3 489.1 306.6 363.6 447.3 503.0 618.9 476.1 538.1 662.8 566.5 701.8 804.7

kNm 10.62 11.75 12.83 14.88 16.78 13.44 14.98 16.49 19.38 22.08 25.87 28.29 17.79 19.62 23.13 26.46 31.18 34.20 23.77 28.46 32.94 39.27 43.31 32.96 38.47 46.31 51.31 60.91 57.80 64.57 77.52 77.92 94.67 106.72

kNm 3.80 4.05 4.29 4.78 5.24 4.44 4.74 5.03 5.60 6.16 6.96 7.47 4.74 5.03 5.60 6.16 6.96 7.47 6.26 6.98 7.68 8.70 9.35 7.61 8.38 9.50 10.22 11.60 11.97 12.90 14.68 15.61 17.81 19.40

kNm 3.80 4.05 4.29 4.78 5.24 4.44 4.74 5.03 5.60 6.16 6.96 7.47 4.74 5.03 5.60 6.16 6.96 7.47 6.26 6.98 7.68 8.70 9.35 7.61 8.38 9.50 10.22 11.60 11.97 12.90 14.68 15.61 17.81 19.40

B

t

GROSS SECTION PROPERTIES METSEC PLAIN SECTION Design Yield Strength = 280 N/mm2

x

x

D

SINGLE SECTION D

x

52 63 75 74 80

mm x x x x x

B 50 25 38 44 48

100

x

50

152

x

50

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.2 1.5 1.5 2.4 1.6 2.4 3.0 1.5 2.0 3.0 3.0

cm2 1.71 1.56 2.11 3.59 2.64 3.92 4.84 2.83 3.76 5.55 7.09

kg/m 1.34 1.22 1.66 2.82 2.07 3.08 3.80 2.22 2.95 4.36 5.57

cm4 8.5 9.1 18.9 31.5 28.1 40.6 49.1 45.3 59.4 85.4 230.1

cm4 4.6 0.9 3.1 7.1 6.4 9.3 11.3 7.2 9.5 13.8 15.7

cm 2.23 2.41 2.99 2.96 3.26 3.22 3.19 4.00 3.98 3.92 5.70

cm 1.65 0.77 1.21 1.41 1.55 1.54 1.53 1.59 1.59 1.57 1.49

cm3 3.26 2.88 5.03 8.52 7.02 10.14 12.28 9.07 11.89 17.09 30.29

cm3 1.41 0.49 1.12 2.31 1.87 2.77 3.41 1.96 2.60 3.83 4.05

cm4

cm6 21 6 28 59 66 92 107 119 152 210 589

mm -20.9 -8.1 -13.7 -16.1 -18.1 -17.7 -17.4 -18.1 -17.9 -17.4 -15.1

0.0076 0.0111 0.0150 0.0666 0.0214 0.0728 0.1414 0.0201 0.0481 0.1621 0.2071

B

y

B t

x

x

DOUBLE SECTION D

x

B

D

y

t

Area

Weight

Ix x

Iy y

rx x

mm cm2 kg/m cm4 cm4 cm 52 50 1.2 3.41 2.68 16.9 19.3 2.23 63 25 1.5 3.12 2.45 18.1 3.0 2.41 75 38 1.5 4.23 3.32 37.7 10.7 2.99 74 44 2.4 7.18 5.63 63.0 26.8 2.96 80 48 1.6 5.28 4.15 56.1 23.0 3.26 2.4 7.84 6.15 81.1 34.8 3.22 3.0 9.68 7.60 98.2 43.7 3.19 100 x 50 1.5 5.66 4.44 90.7 24.3 4.00 2.0 7.51 5.90 118.8 32.7 3.98 3.0 11.10 8.72 170.8 49.5 3.92 152 x 50 3.0 14.18 11.13 460.2 49.5 5.70 Note: This table lists only a selection of the plain sections available. mm x x x x x

A - 16

ry y

Zx x

Zy y

J

Cw

es

cm 2.38 0.99 1.59 1.93 2.09 2.11 2.13 2.07 2.09 2.11 1.87

cm3 6.52 5.76 10.07 17.03 14.03 20.29 24.57 18.15 23.78 34.18 60.57

cm3 3.86 1.22 2.81 6.10 4.79 7.26 9.11 4.87 6.54 9.89 9.91

cm4

cm6 115 23 126 282 316 438 512 535 686 936 2234

mm -

0.0153 0.0222 0.0300 0.1332 0.0429 0.1455 0.2828 0.0402 0.0962 0.3243 0.4142

B

t

REDUCED SECTION PROPERTIES METSEC PLAIN SECTION Design Yield Strength = 280 N/mm2

x

D

x

SINGLE SECTION D

x

B

52 63 75 74 80

mm x x x x x

50 25 38 44 48

100

x

50

152

x

50

t mm 1.2 1.5 1.5 2.4 1.6 2.4 3.0 1.5 2.0 3.0 3.0

Q

po / py

Zxr 3

0.69 0.96 0.82 0.98 0.78 0.97 1.00 0.64 0.83 0.99 0.89

0.68 1.00 0.90 0.99 0.83 0.98 1.00 0.79 0.91 1.00 0.99

cm 2.22 2.87 4.54 8.44 5.84 9.93 12.26 7.20 10.82 17.03 30.13

Zy1r

Zy2r

3

3

cm 2.26 0.85 1.95 3.97 3.22 4.76 5.80 3.29 4.53 6.64 6.96

cm 1.41 0.49 1.12 2.31 1.87 2.77 3.41 1.96 2.60 3.83 4.05

Ixr 4

cm 6.7 9.0 17.7 31.3 25.0 40.0 49.1 39.2 56.0 85.2 229.4

Pc

Mcx

Mcy1

Mcy2x

kN 33.0 41.8 48.8 98.9 57.6 106.2 135.1 50.7 87.5 153.9 177.1

kNm 0.62 0.80 1.27 2.36 1.63 2.78 3.43 2.02 3.03 4.77 8.44

kNm 0.63 0.24 0.54 1.11 0.90 1.33 1.62 0.92 1.27 1.86 1.95

kNm 0.39 0.14 0.31 0.65 0.52 0.77 0.96 0.55 0.73 1.07 1.14

B

y

B t

x

DOUBLE SECTION D

x

B

x

D

y

t

Q

po / py

Zxr

Zy1r

Zy2r

mm cm3 cm3 cm3 52 50 1.2 0.69 0.68 4.45 3.86 3.86 63 25 1.5 0.96 1.00 5.73 1.22 1.22 75 38 1.5 0.82 0.90 9.09 2.81 2.81 74 44 2.4 0.98 0.99 16.87 6.10 6.10 80 48 1.6 0.78 0.83 11.67 4.79 4.79 2.4 0.97 0.98 19.86 7.26 7.26 3.0 1.00 1.00 24.53 9.11 9.11 100 x 50 1.5 0.64 0.79 14.40 4.87 4.87 2.0 0.83 0.91 21.63 6.54 6.54 3.0 0.99 1.00 34.05 9.89 9.89 152 x 50 3.0 0.89 0.99 60.26 9.91 9.91 Note: This table lists only a selection of the plain sections available. mm x x x x x

A - 17

Ixr cm4 13.4 18.1 35.4 62.6 50.1 80.1 98.1 78.3 112.1 170.4 458.7

Pc

Mcx

kN kNm 66.0 1.25 83.7 1.61 97.6 2.54 197.8 4.72 115.3 3.27 212.5 5.56 270.1 6.87 101.4 4.03 175.0 6.06 307.7 9.54 354.1 16.87

Mcy1

Mcy2x

kNm 1.08 0.34 0.79 1.71 1.34 2.03 2.55 1.36 1.83 2.77 2.77

kNm 1.08 0.34 0.79 1.71 1.34 2.03 2.55 1.36 1.83 2.77 2.77

B t

GROSS SECTION PROPERTIES ALBION C SECTION 2 Design Yield Strength = 350 N/mm

x

D

x

SINGLE SECTION D

x

127 127 145

mm x x x

B 50 62.5 50

165

x

62.5

203

x

62.5

230

x

70

276

x

62.5

300

x

70

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

mm 1.6 1.6 1.6 2.0 1.6 2.0 1.6 2.0 2.5 2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0

cm2 3.80 4.19 4.08 5.06 4.79 5.95 5.53 6.89 8.54 7.71 9.58 11.40 8.32 10.34 12.32 9.08 11.30 13.47

kg/m 2.98 3.29 3.21 3.98 3.76 4.67 4.34 5.41 6.71 6.05 7.52 8.95 6.53 8.12 9.67 7.13 8.87 10.58

cm4 94.5 109.8 128.9 158.1 201.0 247.5 337.8 416.9 511.4 599.5 737.2 868.9 870.5 1071.4 1263.8 1131.5 1395.0 1648.4

cm4 12.8 22.0 13.4 16.1 24.0 29.1 28.7 34.9 42.1 47.7 57.8 66.9 38.1 45.9 53.0 51.3 62.1 72.0

cm 4.99 5.12 5.62 5.59 6.48 6.45 7.81 7.78 7.74 8.82 8.77 8.73 10.23 10.18 10.13 11.16 11.11 11.06

cm 1.84 2.29 1.81 1.78 2.24 2.21 2.28 2.25 2.22 2.49 2.46 2.42 2.14 2.11 2.07 2.38 2.34 2.31

cm3 14.89 17.30 17.79 21.82 24.37 30.00 33.29 41.08 50.39 52.14 64.12 75.57 63.09 77.65 91.59 75.44 93.01 109.91

cm3 3.70 5.22 3.76 4.52 5.38 6.52 6.35 7.72 9.30 9.29 11.23 12.99 7.92 9.55 11.02 9.50 11.49 13.30

J

Cw

es

cm4 cm6 0.0308 423 0.0340 719 0.0331 561 0.0649 669 0.0388 1263 0.0762 1517 0.0449 2380 0.0882 2875 0.1723 3431 0.0987 4931 0.1932 5911 0.3329 6783 0.1065 5657 0.2086 6772 0.3597 7758 0.1163 8909 0.2279 10707 0.3934 12320

B

y

mm -22.0 -28.2 -21.1 -20.6 -26.1 -25.6 -26.4 -25.9 -25.2 -28.2 -27.6 -26.9 -23.0 -22.3 -21.7 -25.5 -24.9 -24.2

B t

x

x

DOUBLE SECTION D

x

B

127 127 145

mm x x x

50 62.5 50

165

x

62.5

203

x

62.5

230

x

70

276

x

62.5

300

x

70

D

y

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.6 1.6 1.6 2.0 1.6 2.0 1.6 2.0 2.5 2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0

cm2 7.60 8.38 8.17 10.13 9.57 11.89 11.07 13.78 17.09 15.42 19.15 22.80 16.64 20.68 24.63 18.17 22.60 26.94

kg/m 5.97 6.58 6.41 7.95 7.51 9.34 8.69 10.81 13.41 12.11 15.03 17.90 13.06 16.23 19.34 14.26 17.74 21.15

cm4 189.0 219.6 257.9 316.2 402.1 494.9 675.6 833.7 1022.8 1198.9 1474.4 1737.8 1741.1 2142.9 2527.6 2263.0 2790.1 3296.8

cm4 43.6 78.4 43.6 53.0 78.4 95.8 90.3 110.6 134.5 148.6 181.1 211.5 110.7 134.6 156.8 148.6 181.2 211.6

cm 4.99 5.12 5.62 5.59 6.48 6.45 7.81 7.78 7.74 8.82 8.77 8.73 10.23 10.18 10.13 11.16 11.11 11.06

cm 2.39 3.06 2.31 2.29 2.86 2.84 2.86 2.83 2.81 3.10 3.08 3.05 2.58 2.55 2.52 2.86 2.83 2.80

cm3 29.77 34.60 35.58 43.63 48.75 60.01 66.57 82.16 100.79 104.27 128.23 151.14 126.18 155.30 183.19 150.89 186.03 219.82

cm3 8.71 12.55 8.71 10.59 12.55 15.33 14.45 17.70 21.52 21.23 25.87 30.21 17.71 21.53 25.09 21.24 25.88 30.23

cm4 0.0617 0.0680 0.0662 0.1297 0.0776 0.1523 0.0898 0.1764 0.3447 0.1975 0.3863 0.6659 0.2130 0.4171 0.7195 0.2326 0.4558 0.7869

cm6 1763 3180 2272 2679 5275 6284 9458 11329 13370 19416 23044 26175 20511 24250 27434 32543 38678 44001

mm -

A - 18

B t

REDUCED SECTION PROPERTIES ALBION C SECTION 2 Design Yield Strength = 350 N/mm

x

D

x

SINGLE SECTION D

x

127 127 145

mm x x x

B 50 62.5 50

165

x

62.5

203

x

62.5

230

x

70

276

x

62.5

300

x

70

t mm 1.6 1.6 1.6 2.0 1.6 2.0 1.6 2.0 2.5 2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0

Q 0.79 0.79 0.74 0.81 0.69 0.77 0.63 0.70 0.77 0.66 0.72 0.78 0.58 0.64 0.69 0.56 0.62 0.67

po / py

Zxr

Zy1r

0.96 0.94 0.93 0.97 0.89 0.95 0.84 0.91 0.95 0.88 0.93 0.96 0.83 0.89 0.93 0.80 0.87 0.91

cm3 14.22 16.23 16.56 21.22 21.69 28.49 28.07 37.34 48.11 45.72 59.70 72.92 52.39 69.24 85.36 60.57 81.00 100.53

cm3 4.75 6.53 4.76 6.25 6.55 8.76 7.13 9.57 12.56 11.26 14.91 18.32 9.66 12.61 15.28 11.37 14.98 18.35

Zy2r

Ixr

Pc

cm3 cm4 kN 3.70 90.3 105.2 5.22 103.8 115.5 3.76 120.1 105.4 4.52 153.8 144.0 5.38 180.1 116.1 6.52 235.1 160.5 6.35 286.1 122.3 7.72 379.0 168.0 9.30 488.2 228.9 9.29 526.5 177.3 11.23 686.5 241.7 12.99 838.4 312.3 7.92 723.0 169.6 9.55 955.4 230.3 11.02 1177.8 298.3 9.50 909.2 179.0 11.49 1214.9 243.4 13.30 1507.8 313.8

Mcx

Mcy1

Mcy2x

kNm 4.98 5.68 5.80 7.43 7.59 9.97 9.82 13.07 16.84 16.00 20.90 25.52 18.34 24.23 29.88 21.20 28.35 35.19

kNm 1.66 2.28 1.67 2.19 2.29 3.07 2.49 3.35 4.40 3.94 5.22 6.41 3.38 4.41 5.35 3.98 5.24 6.42

kNm 1.30 1.83 1.31 1.58 1.88 2.28 2.22 2.70 3.25 3.25 3.93 4.55 2.77 3.34 3.86 3.32 4.02 4.66

B

y

B t

x

DOUBLE SECTION D

x

B

127 127 145

mm x x x

50 62.5 50

165

x

62.5

203

x

62.5

230

x

70

276

x

62.5

300

x

70

x

D

y

t mm 1.6 1.6 1.6 2.0 1.6 2.0 1.6 2.0 2.5 2.0 2.5 3.0 2.0 2.5 3.0 2.0 2.5 3.0

Q 0.79 0.79 0.74 0.81 0.69 0.77 0.63 0.70 0.77 0.66 0.72 0.78 0.58 0.64 0.69 0.56 0.62 0.67

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

0.96 0.94 0.93 0.97 0.89 0.95 0.84 0.91 0.95 0.88 0.93 0.96 0.83 0.89 0.93 0.80 0.87 0.91

cm3 28.44 32.46 33.13 42.45 43.39 56.97 56.14 74.67 96.22 91.43 119.41 145.84 104.78 138.48 170.72 121.14 162.00 201.07

cm3 8.71 12.55 8.71 10.59 12.55 15.33 14.45 17.70 21.52 21.23 25.87 30.21 17.71 21.53 25.09 21.24 25.88 30.23

cm3 8.71 12.55 8.71 10.59 12.55 15.33 14.45 17.70 21.52 21.23 25.87 30.21 17.71 21.53 25.09 21.24 25.88 30.23

cm4 180.7 207.7 240.3 307.6 360.2 470.2 572.3 758.1 976.5 1053.0 1373.1 1676.9 1446.0 1910.7 2355.5 1818.5 2429.8 3015.6

kN 210.4 231.0 210.8 288.0 232.3 320.9 244.6 335.9 457.8 354.7 483.4 624.7 339.1 460.7 596.7 358.0 486.7 627.6

kNm 9.95 11.36 11.59 14.86 15.19 19.94 19.65 26.13 33.68 32.00 41.79 51.04 36.67 48.47 59.75 42.40 56.70 70.37

kNm 3.05 4.39 3.05 3.71 4.39 5.37 5.06 6.20 7.53 7.43 9.06 10.57 6.20 7.54 8.78 7.43 9.06 10.58

kNm 3.05 4.39 3.05 3.71 4.39 5.37 5.06 6.20 7.53 7.43 9.06 10.57 6.20 7.54 8.78 7.43 9.06 10.58

A - 19

B t

GROSS SECTION PROPERTIES METSEC FRAMING SFS SECTION Design Yield Strength = 350 N/mm2

x

D

x

SINGLE SECTION D

x

B

mm 70 x 100 x

35 54

150

x

54

200

x

54

250

x

54

300

x

54

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.5 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0 1.5 2.0 2.0

cm2 2.24 2.60 3.23 4.26 3.18 4.26 5.63 3.76 4.99 6.61 5.42 7.20 8.18

kg/m 1.76 2.04 2.54 3.35 2.50 3.34 4.42 2.95 3.91 5.19 4.26 5.65 6.42

cm4 17.1 43.1 53.2 68.9 109.7 151.9 198.5 216.1 296.6 389.0 458.7 602.0 943.4

cm4 3.9 10.4 12.7 16.2 11.9 22.1 28.4 12.9 24.2 31.0 16.7 21.4 22.3

cm 2.76 4.07 4.05 4.02 5.88 5.97 5.94 7.58 7.71 7.67 9.20 9.14 10.74

cm 1.32 2.00 1.98 1.95 1.94 2.28 2.25 1.86 2.20 2.17 1.76 1.72 1.65

cm3 4.90 8.63 10.64 13.79 14.63 20.25 26.47 21.61 29.67 38.91 36.70 48.17 62.90

cm3 1.76 2.92 3.56 4.53 3.06 4.89 6.27 3.15 5.04 6.47 3.91 4.99 5.05

cm4 0.0159 0.0117 0.0230 0.0546 0.0143 0.0302 0.0721 0.0169 0.0354 0.0847 0.0385 0.0922 0.1048

cm6 46 218 263 328 518 946 1197 984 1801 2289 1985 2514 3818

mm -17.1 -25.2 -24.8 -24.1 -22.5 -26.9 -26.2 -20.4 -24.6 -23.9 -18.2 -17.6 -16.2

y

B

B t

x

y

DOUBLE SECTION D

x

B

70 100

mm x x

35 54

150

x

54

200

x

54

250

x

54

300

x

54

D

x

t mm 1.5 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0 1.5 2.0 2.0

Area 2

cm 4.48 5.20 6.47 8.52 6.36 8.51 11.27 7.52 9.97 13.23 10.85 14.40 16.36

Weight

Ix x 4

kg/m cm 3.52 34.3 4.08 86.3 5.08 106.4 6.69 137.9 4.99 219.5 6.68 303.7 8.84 396.9 5.90 432.1 7.83 593.3 10.38 778.0 8.52 917.4 11.31 1203.9 12.84 1886.7

Iy y 4

cm 15.1 38.2 46.9 60.5 38.2 74.0 95.9 38.2 74.0 95.9 47.0 60.6 60.6

rx x cm 2.76 4.07 4.05 4.02 5.88 5.97 5.94 7.58 7.71 7.67 9.20 9.14 10.74

A - 20

ry y cm 1.83 2.71 2.69 2.66 2.45 2.95 2.92 2.25 2.72 2.69 2.08 2.05 1.92

Zx x

Zy y

3

3

cm 9.79 17.26 21.28 27.58 29.27 40.50 52.94 43.22 59.34 77.82 73.40 96.33 125.80

cm 4.31 7.07 8.69 11.20 7.08 11.57 14.98 7.08 11.57 14.98 8.70 11.21 11.22

J

Cw 4

cm 0.0319 0.0233 0.0460 0.1091 0.0285 0.0605 0.1443 0.0337 0.0709 0.1694 0.0771 0.1844 0.2095

6

cm 193 983 1179 1458 2146 4087 5124 3761 7184 9028 7025 8761 12564

es mm -

B

REDUCED SECTION PROPERTIES

t

METSEC FRAMING SFS SECTION 2 Design Yield Strength = 350 N/mm

x

D

x

SINGLE SECTION D

x

B

mm 70 x 100 x

35 54

150 150

x x

54 64

200 200

x x

54 64

250

x

54

300

x

54

t mm 1.5 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0 1.5 2.0 2.0

Q 0.97 0.75 0.85 0.95 0.62 0.69 0.81 0.53 0.60 0.69 0.52 0.59 0.52

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

1.00 0.90 0.97 1.00 0.82 0.88 0.96 0.74 0.82 0.91 0.76 0.86 0.80

cm3 4.90 7.73 10.37 13.79 12.00 17.81 25.54 16.07 24.26 35.47 28.04 41.37 50.62

cm3 2.41 3.44 4.67 6.58 3.47 5.99 8.73 3.52 6.04 8.76 4.78 6.77 6.80

cm3 1.76 2.92 3.56 4.53 3.06 4.89 6.27 3.15 5.04 6.47 3.91 4.99 5.05

cm4 17.1 39.5 52.0 68.9 91.4 135.4 191.7 162.2 244.9 354.9 350.8 517.1 759.3

kN 76.1 67.8 96.7 142.3 68.6 103.2 159.3 69.3 104.1 160.2 99.3 148.4 149.5

kNm 1.71 2.71 3.63 4.83 4.20 6.23 8.94 5.62 8.49 12.41 9.81 14.48 17.72

kNm 0.84 1.20 1.63 2.30 1.22 2.10 3.05 1.23 2.12 3.06 1.67 2.37 2.38

kNm 0.62 1.02 1.25 1.59 1.07 1.71 2.19 1.10 1.77 2.26 1.37 1.75 1.77

B

y

B t

x

DOUBLE SECTION D

x

B

mm 70 x 100 x

35 54

150 150

x x

54 64

200 200

x x

54 64

250

x

54

300

x

54

x

D

y

t mm 1.5 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0 1.5 2.0 2.0

Q 0.97 0.75 0.85 0.95 0.62 0.69 0.81 0.53 0.60 0.69 0.52 0.59 0.52

po / py

Zxr

Zy1r

1.00 0.90 0.97 1.00 0.82 0.88 0.96 0.74 0.82 0.91 0.76 0.86 0.80

cm3 9.79 15.46 20.74 27.58 24.00 35.61 51.08 32.13 48.53 70.94 56.08 82.75 101.25

cm3 4.31 7.07 8.69 11.20 7.08 11.57 14.98 7.08 11.57 14.98 8.70 11.21 11.22

Zy2r

Ixr

Pc

cm3 cm4 kN 4.31 34.3 152.3 7.07 79.0 135.6 8.69 104.1 193.4 11.20 137.8 284.6 7.08 182.8 137.1 11.57 270.8 206.5 14.98 383.4 318.6 7.08 324.4 138.6 11.57 489.8 208.3 14.98 709.7 320.3 8.70 701.6 198.6 11.21 1034.2 296.7 11.22 1518.5 299.0

A - 21

Mcx

Mcy1

Mcy2x

kNm 3.43 5.41 7.26 9.65 8.40 12.46 17.88 11.25 16.98 24.83 19.63 28.96 35.44

kNm 1.51 2.48 3.04 3.92 2.48 4.05 5.24 2.48 4.05 5.24 3.04 3.93 3.93

kNm 1.51 2.48 3.04 3.92 2.48 4.05 5.24 2.48 4.05 5.24 3.04 3.93 3.93

B

GROSS SECTION PROPERTIES

t

STRUCTURAL SECTIONS ULTRABEAM Design Yield Strength = 350 N/mm2

x

x

D

SINGLE SECTION D

x

145

mm x

B 50

170

x

50

200

x

63

225

x

63

255

x

75

285

x

75

t

Area

mm 1.2 1.3 1.4 1.6 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.6 1.8 2.0 2.5 1.6 1.8 2.5 1.8 2.0 2.5

cm 3.16 3.43 3.69 4.21 5.23 3.45 3.74 4.03 4.60 5.16 5.72 4.17 4.52 4.87 5.57 6.26 6.94 5.25 6.00 6.74 7.48 9.30 6.93 7.80 10.78 8.33 9.24 11.52

2

Weight

Ix x

kg/m 2.48 2.69 2.90 3.30 4.11 2.71 2.94 3.16 3.61 4.05 4.49 3.27 3.55 3.82 4.37 4.91 5.45 4.12 4.71 5.29 5.87 7.30 5.44 6.12 8.46 6.54 7.26 9.04

cm 99.9 108.1 116.2 132.1 163.2 145.6 157.6 169.4 192.8 215.7 238.3 248.0 268.5 288.9 329.3 369.2 408.5 382.8 436.4 489.4 541.6 669.4 661.2 742.0 1017.9 967.2 1071.7 1327.9

4

Iy y

rx x

ry y

Zx x

cm4 9.4 10.1 10.8 12.3 15.0 9.9 10.6 11.4 12.9 14.3 15.7 18.8 20.3 21.8 24.7 27.5 30.3 22.8 25.9 28.9 31.8 38.8 44.6 49.9 67.4 51.5 56.8 69.6

cm 5.62 5.62 5.61 5.60 5.59 6.49 6.49 6.48 6.47 6.46 6.45 7.71 7.71 7.70 7.69 7.68 7.67 8.54 8.53 8.52 8.51 8.48 9.77 9.75 9.72 10.78 10.77 10.74

cm 1.72 1.72 1.71 1.71 1.69 1.69 1.69 1.68 1.67 1.67 1.66 2.12 2.12 2.11 2.11 2.10 2.09 2.09 2.08 2.07 2.06 2.04 2.54 2.53 2.50 2.49 2.48 2.46

cm 13.79 14.91 16.03 18.23 22.52 17.14 18.54 19.93 22.68 25.39 28.04 24.80 26.86 28.90 32.94 36.92 40.86 34.03 38.80 43.51 48.15 59.51 51.87 58.21 79.84 67.89 75.21 93.20

A - 22

3

Zy y

J

Cw

es

cm3 2.61 2.81 3.01 3.41 4.16 2.66 2.86 3.07 3.47 3.86 4.24 4.08 4.41 4.73 5.37 5.99 6.59 4.83 5.47 6.11 6.73 8.21 7.97 8.91 12.05 9.01 9.94 12.19

cm4 0.0142 0.0181 0.0227 0.0341 0.0670 0.0155 0.0198 0.0248 0.0373 0.0533 0.0733 0.0187 0.0239 0.0300 0.0452 0.0646 0.0889 0.0324 0.0487 0.0696 0.0958 0.1876 0.0562 0.0805 0.2174 0.0860 0.1184 0.2323

cm6 377 405 434 488 592 533 574 614 692 768 840 1393 1502 1611 1822 2027 2227 2137 2418 2692 2957 3585 5399 6023 8084 7719 8500 10374

mm -18.1 -18.1 -18.0 -17.8 -17.5 -17.5 -17.4 -17.4 -17.2 -17.0 -16.9 -21.3 -21.3 -21.2 -21.0 -20.9 -20.7 -21.0 -20.8 -20.6 -20.5 -20.1 -26.5 -26.3 -25.7 -25.5 -25.4 -24.9

B

y

GROSS SECTION PROPERTIES

t

STRUCTURAL SECTIONS ULTRABEAM Design Yield Strength = 350 N/mm2

x

DOUBLE SECTION D

x

B

145

mm x

50

170

x

50

200

x

63

225

x

63

255

x

75

285

x

75

B

x

D

y

t

Area

mm 1.2 1.3 1.4 1.6 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.6 1.8 2.0 2.5 1.6 1.8 2.5 1.8 2.0 2.5

cm 6.33 6.85 7.38 8.42 10.46 6.91 7.48 8.06 9.20 10.33 11.44 8.34 9.04 9.74 11.13 12.51 13.88 10.50 12.00 13.48 14.96 18.60 13.87 15.60 21.55 16.65 18.49 23.03

2

Weight

Ix x

kg/m 4.97 5.38 5.79 6.61 8.21 5.42 5.87 6.33 7.22 8.11 8.98 6.55 7.10 7.65 8.74 9.82 10.90 8.24 9.42 10.58 11.74 14.60 10.89 12.24 16.92 13.07 14.51 18.08

cm 199.9 216.2 232.4 264.3 326.4 291.3 315.1 338.8 385.5 431.5 476.7 496.0 537.0 577.8 658.6 738.3 817.0 765.6 872.8 978.7 1083.3 1338.8 1322.4 1484.1 2035.7 1934.5 2143.3 2655.7

4

Iy y

rx x

ry y

Zx x

cm4 31.1 33.6 36.1 40.9 50.4 31.1 33.6 36.1 41.0 45.7 50.4 61.5 66.6 71.5 81.4 91.0 100.5 71.5 81.3 90.9 100.4 123.4 139.2 155.9 212.6 155.9 172.4 212.6

cm 5.62 5.62 5.61 5.60 5.59 6.49 6.49 6.48 6.47 6.46 6.45 7.71 7.71 7.70 7.69 7.68 7.67 8.54 8.53 8.52 8.51 8.48 9.77 9.75 9.72 10.78 10.77 10.74

cm 2.22 2.21 2.21 2.21 2.19 2.12 2.12 2.12 2.11 2.10 2.10 2.72 2.71 2.71 2.70 2.70 2.69 2.61 2.60 2.60 2.59 2.58 3.17 3.16 3.14 3.06 3.05 3.04

cm 27.58 29.83 32.06 36.46 45.04 34.28 37.09 39.87 45.37 50.77 56.09 49.61 53.72 57.80 65.88 73.85 81.72 68.06 77.60 87.01 96.31 119.03 103.74 116.41 159.69 135.77 150.43 186.39

A - 23

3

Zy y

J

Cw

es

cm3 6.22 6.72 7.21 8.19 10.07 6.22 6.72 7.22 8.19 9.14 10.08 9.77 10.57 11.36 12.92 14.45 15.95 11.34 12.90 14.43 15.94 19.58 18.56 20.79 28.35 20.79 22.99 28.35

cm4 0.0284 0.0363 0.0455 0.0683 0.1340 0.0310 0.0396 0.0497 0.0746 0.1066 0.1466 0.0374 0.0479 0.0601 0.0903 0.1292 0.1778 0.0647 0.0973 0.1392 0.1916 0.3753 0.1125 0.1610 0.4348 0.1719 0.2367 0.4646

cm6 1411 1516 1619 1817 2186 1960 2107 2250 2525 2788 3037 5044 5434 5817 6563 7281 7974 7636 8612 9552 10456 12566 20084 22335 29667 28065 30804 37274

mm -

B

REDUCED SECTION PROPERTIES

t x

STRUCTURAL SECTIONS ULTRABEAM Design Yield Strength = 350 N/mm2

x

D

SINGLE SECTION D

x

145

mm x

B 50

170

x

50

200

x

63

225

x

63

255

x

75

285

x

75

t mm 1.2 1.3 1.4 1.6 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.6 1.8 2.0 2.5 1.6 1.8 2.5 1.8 2.0 2.5

Q

po / py

Zxr

0.87 0.90 0.93 0.96 1.00 0.83 0.87 0.89 0.93 0.95 0.97 0.76 0.79 0.83 0.88 0.92 0.95 0.80 0.86 0.90 0.92 0.97 0.79 0.84 0.94 0.81 0.85 0.92

cm 12.02 13.46 14.86 17.52 22.51 14.31 16.06 17.77 21.06 24.21 27.27 18.74 21.35 23.97 29.15 34.11 38.85 27.22 33.21 38.99 44.54 57.72 40.78 48.83 75.15 54.90 63.94 85.35

3

0.86 0.88 0.90 0.93 0.97 0.79 0.81 0.82 0.85 0.88 0.90 0.79 0.81 0.83 0.87 0.89 0.92 0.78 0.81 0.84 0.86 0.90 0.75 0.78 0.85 0.73 0.75 0.79

Zy1r 3

cm 3.54 3.85 4.16 4.78 6.00 3.59 3.90 4.21 4.84 5.46 6.07 5.45 5.93 6.40 7.35 8.30 9.25 6.58 7.55 8.52 9.48 11.85 10.71 12.11 16.98 12.20 13.60 17.08

Zy2r 3

cm 2.61 2.81 3.01 3.41 4.16 2.66 2.86 3.07 3.47 3.86 4.24 4.08 4.41 4.73 5.37 5.99 6.59 4.83 5.47 6.11 6.73 8.21 7.97 8.91 12.05 9.01 9.94 12.19

A - 24

Ixr 4

cm 88.5 98.6 108.4 127.3 163.2 123.2 137.6 151.8 179.3 205.9 231.8 194.5 219.7 244.9 294.7 342.9 389.3 311.8 377.0 440.4 501.9 649.3 531.9 631.0 959.2 791.1 916.5 1217.4

Pc

Mcx

Mcy1

Mcy2x

kN 95.7 106.0 116.3 136.9 177.7 95.8 106.1 116.3 137.0 158.3 180.2 114.7 128.5 142.2 169.3 195.9 222.7 143.7 170.8 197.5 224.4 294.4 182.0 213.1 320.1 213.5 243.9 320.1

kNm 4.21 4.71 5.20 6.13 7.88 5.01 5.62 6.22 7.37 8.47 9.55 6.56 7.47 8.39 10.20 11.94 13.60 9.53 11.62 13.65 15.59 20.20 14.27 17.09 26.30 19.22 22.38 29.87

kNm 1.24 1.35 1.46 1.67 2.10 1.26 1.37 1.48 1.69 1.91 2.12 1.91 2.07 2.24 2.57 2.91 3.24 2.30 2.64 2.98 3.32 4.15 3.75 4.24 5.94 4.27 4.76 5.98

kNm 0.91 0.98 1.05 1.19 1.46 0.93 1.00 1.07 1.22 1.35 1.48 1.43 1.54 1.66 1.88 2.10 2.31 1.69 1.92 2.14 2.35 2.87 2.79 3.12 4.22 3.15 3.48 4.27

B

y

REDUCED SECTION PROPERTIES

t

STRUCTURAL SECTIONS ULTRABEAM Design Yield Strength = 350 N/mm2

x

DOUBLE SECTION D

x

B

145

mm x

50

170

x

50

200

x

63

225

x

63

255

x

75

285

x

75

B

x

D

y

t mm 1.2 1.3 1.4 1.6 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.6 1.8 2.0 2.5 1.6 1.8 2.5 1.8 2.0 2.5

Q

po / py

Zxr

0.87 0.90 0.93 0.96 1.00 0.83 0.87 0.89 0.93 0.95 0.97 0.76 0.79 0.83 0.88 0.92 0.95 0.80 0.86 0.90 0.92 0.97 0.79 0.84 0.94 0.81 0.85 0.92

cm 24.04 26.92 29.72 35.04 45.01 28.62 32.13 35.54 42.12 48.42 54.55 37.49 42.70 47.94 58.30 68.23 77.71 54.44 66.42 77.98 89.07 115.44 81.56 97.66 150.29 109.80 127.87 170.71

3

0.86 0.88 0.90 0.93 0.97 0.79 0.81 0.82 0.85 0.88 0.90 0.79 0.81 0.83 0.87 0.89 0.92 0.78 0.81 0.84 0.86 0.90 0.75 0.78 0.85 0.73 0.75 0.79

Zy1r 3

cm 6.22 6.72 7.21 8.19 10.07 6.22 6.72 7.22 8.19 9.14 10.08 9.77 10.57 11.36 12.92 14.45 15.95 11.34 12.90 14.43 15.94 19.58 18.56 20.79 28.35 20.79 22.99 28.35

Zy2r 3

cm 6.22 6.72 7.21 8.19 10.07 6.22 6.72 7.22 8.19 9.14 10.08 9.77 10.57 11.36 12.92 14.45 15.95 11.34 12.90 14.43 15.94 19.58 18.56 20.79 28.35 20.79 22.99 28.35

A - 25

Ixr 4

cm 177.1 197.2 216.7 254.5 326.3 246.3 275.2 303.5 358.5 411.7 463.6 388.9 439.4 489.9 589.4 685.7 778.6 623.5 754.1 880.9 1003.7 1298.6 1063.8 1262.0 1918.3 1582.2 1833.1 2434.8

Pc

Mcx

Mcy1

Mcy2x

kN 191.3 212.1 232.7 273.8 355.3 191.6 212.2 232.7 274.1 316.6 360.4 229.3 256.9 284.5 338.5 391.9 445.4 287.5 341.6 395.0 448.9 588.7 364.1 426.2 640.3 427.1 487.7 640.2

kNm 8.42 9.42 10.40 12.27 15.75 10.02 11.24 12.44 14.74 16.95 19.09 13.12 14.94 16.78 20.40 23.88 27.20 19.05 23.25 27.29 31.18 40.40 28.55 34.18 52.60 38.43 44.76 59.75

kNm 2.18 2.35 2.53 2.87 3.53 2.18 2.35 2.53 2.87 3.20 3.53 3.42 3.70 3.97 4.52 5.06 5.58 3.97 4.52 5.05 5.58 6.85 6.49 7.28 9.92 7.28 8.05 9.92

kNm 2.18 2.35 2.53 2.87 3.53 2.18 2.35 2.53 2.87 3.20 3.53 3.42 3.70 3.97 4.52 5.06 5.58 3.97 4.52 5.05 5.58 6.85 6.49 7.28 9.92 7.28 8.05 9.92

B

t

GROSS SECTION PROPERTIES WARD MULTIBEAM Design Yield Strength = 390 N/mm2

x

x

D

SINGLE SECTION D

x

B

mm 145 x

60

175

x

60

205

x

60

235

x

60

265

x

60

300

x

60

350

x

60

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.30 1.45 1.55 1.70 1.40 1.50 1.60 1.70 2.00 1.45 1.55 1.65 1.80 1.90 2.00 1.70 1.90 2.00 2.30 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00

cm2 3.89 4.33 4.62 5.06 4.59 4.92 5.24 5.56 6.50 5.18 5.53 5.88 6.40 6.75 7.09 6.55 7.31 7.68 8.79 7.46 8.27 9.27 10.45 12.20 8.08 8.95 10.04 11.33 13.23 8.95 9.93 11.15 12.59 14.71

kg/m 3.05 3.40 3.63 3.97 3.61 3.86 4.11 4.36 5.11 4.06 4.34 4.62 5.03 5.30 5.57 5.14 5.74 6.03 6.90 5.86 6.49 7.28 8.21 9.57 6.34 7.03 7.88 8.89 10.39 7.03 7.80 8.75 9.88 11.55

cm4 128.9 143.1 152.4 166.3 214.7 229.4 243.9 258.3 300.5 322.4 343.7 364.8 396.0 416.6 436.9 519.5 577.0 605.3 688.8 731.9 808.3 901.8 1011.3 1169.6 988.6 1092.3 1219.3 1368.2 1584.1 1442.1 1594.1 1780.8 1999.9 2318.4

cm4 17.87 19.69 20.88 22.60 19.54 20.76 21.96 23.12 26.45 20.54 21.77 22.97 24.71 25.84 26.93 23.92 26.23 27.34 30.50 25.42 27.70 30.37 33.34 37.31 25.75 28.05 30.75 33.75 37.75 26.14 28.47 31.20 34.23 38.27

cm 5.76 5.75 5.74 5.73 6.84 6.83 6.82 6.82 6.80 7.89 7.88 7.88 7.86 7.86 7.85 8.90 8.89 8.88 8.85 9.91 9.89 9.86 9.84 9.79 11.06 11.04 11.02 10.99 10.94 12.69 12.67 12.64 12.61 12.55

cm 2.14 2.13 2.12 2.11 2.06 2.05 2.05 2.04 2.02 1.99 1.98 1.98 1.96 1.96 1.95 1.91 1.89 1.89 1.86 1.85 1.83 1.81 1.79 1.75 1.79 1.77 1.75 1.73 1.69 1.71 1.69 1.67 1.65 1.61

cm3 17.78 19.74 21.03 22.94 24.54 26.22 27.88 29.52 34.35 31.46 33.54 35.59 38.64 40.65 42.64 44.22 49.11 51.53 58.63 55.24 61.01 68.07 76.33 88.29 65.92 72.83 81.30 91.23 105.62 82.41 91.10 101.77 114.29 132.50

cm3 4.68 5.15 5.46 5.90 4.99 5.29 5.59 5.89 6.72 5.13 5.44 5.73 6.16 6.44 6.71 5.87 6.43 6.70 7.46 6.15 6.69 7.33 8.04 8.98 6.14 6.69 7.32 8.03 8.97 6.13 6.68 7.32 8.02 8.96

cm4 0.0206 0.0287 0.0351 0.0465 0.0283 0.0349 0.0425 0.0510 0.0833 0.0343 0.0420 0.0508 0.0661 0.0778 0.0908 0.0602 0.0843 0.0983 0.1496 0.0770 0.1059 0.1509 0.2195 0.3562 0.0834 0.1147 0.1635 0.2380 0.3864 0.0925 0.1272 0.1815 0.2643 0.4296

cm6 948 1039 1098 1182 1496 1586 1673 1757 1995 2150 2274 2395 2570 2683 2791 3274 3581 3727 4141 4417 4803 5253 5749 6402 5731 6233 6821 7469 8324 7911 8608 9423 10321 11511

mm -20.6 -20.3 -20.1 -19.8 -16.5 -16.3 -16.1 -16.0 -15.4 -13.6 -13.4 -13.2 -12.9 -12.7 -12.5 -10.9 -10.5 -10.3 -9.8 -8.9 -8.6 -8.1 -7.6 -6.8 -7.3 -6.9 -6.5 -5.9 -5.1 -5.4 -5.0 -4.6 -4.1 -3.3

A - 26

y

B

B

t

GROSS SECTION PROPERTIES WARD MULTIBEAM Design Yield Strength = 390 N/mm2

x

x

DOUBLE SECTION D

x

B

mm 145 x

60

175

x

60

205

x

60

235

x

60

265

x

60

300

x

60

350

x

60

D

y

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.30 1.45 1.55 1.70 1.40 1.50 1.60 1.70 2.00 1.45 1.55 1.65 1.80 1.90 2.00 1.70 1.90 2.00 2.30 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00

cm2 7.78 8.66 9.25 10.12 9.19 9.83 10.48 11.12 13.01 10.36 11.06 11.76 12.81 13.50 14.18 13.11 14.61 15.36 17.58 14.92 16.54 18.54 20.90 24.39 16.15 17.91 20.08 22.66 26.46 17.91 19.87 22.29 25.17 29.42

kg/m 6.11 6.80 7.26 7.94 7.21 7.72 8.22 8.73 10.21 8.13 8.68 9.23 10.05 10.60 11.13 10.29 11.47 12.06 13.80 11.71 12.98 14.55 16.41 19.15 12.68 14.06 15.77 17.79 20.77 14.06 15.60 17.50 19.76 23.10

cm4 257.7 286.2 304.9 332.6 429.4 458.7 487.8 516.5 600.9 644.8 687.4 729.5 792.0 833.2 873.9 1038.9 1153.9 1210.7 1377.5 1463.8 1616.5 1803.6 2022.5 2339.2 1977.2 2184.5 2438.7 2736.4 3168.2 2884.1 3188.2 3561.6 3999.8 4636.8

cm4 72.7 80.3 85.3 92.6 78.7 83.8 88.9 93.8 108.0 82.3 87.4 92.5 99.9 104.8 109.5 96.2 106.1 111.0 125.0 102.5 112.4 124.4 138.0 157.2 104.0 114.1 126.4 140.4 160.0 106.1 116.6 129.2 143.7 164.1

cm 5.76 5.75 5.74 5.73 6.84 6.83 6.82 6.82 6.80 7.89 7.88 7.88 7.86 7.86 7.85 8.90 8.89 8.88 8.85 9.91 9.89 9.86 9.84 9.79 11.06 11.04 11.02 10.99 10.94 12.69 12.67 12.64 12.61 12.55

cm 3.06 3.04 3.04 3.03 2.93 2.92 2.91 2.90 2.88 2.82 2.81 2.80 2.79 2.79 2.78 2.71 2.69 2.69 2.67 2.62 2.61 2.59 2.57 2.54 2.54 2.52 2.51 2.49 2.46 2.43 2.42 2.41 2.39 2.36

cm3 35.56 39.48 42.06 45.88 49.08 52.44 55.76 59.04 68.70 62.92 67.07 71.19 77.28 81.30 85.27 88.43 98.22 103.05 117.26 110.49 122.02 136.14 152.66 176.57 131.83 145.65 162.60 182.45 211.24 164.83 182.21 203.54 228.59 264.99

cm3 12.11 13.39 14.22 15.43 13.12 13.97 14.81 15.63 18.01 13.72 14.57 15.42 16.65 17.46 18.25 16.03 17.69 18.49 20.83 17.08 18.74 20.73 23.01 26.20 17.33 19.02 21.06 23.39 26.67 17.69 19.43 21.53 23.94 27.35

cm4 0.0412 0.0574 0.0703 0.0929 0.0566 0.0699 0.0850 0.1021 0.1666 0.0686 0.0841 0.1016 0.1322 0.1556 0.1816 0.1204 0.1685 0.1967 0.2993 0.1540 0.2117 0.3018 0.4390 0.7123 0.1668 0.2293 0.3270 0.4759 0.7728 0.1849 0.2544 0.3629 0.5286 0.8593

cm6 2988 3257 3428 3670 4166 4397 4619 4831 5414 5490 5784 6065 6466 6719 6962 7786 8445 8755 9608 10009 10801 11704 12666 13879 12509 13515 14668 15907 17487 16656 18023 19602 21312 23531

mm

A - 27

-

B

t

REDUCED SECTION PROPERTIES WARD MULTIBEAM Design Yield Strength = 390 N/mm2

x

x

D

SINGLE SECTION D

x

B

mm 145 x

60

175

x

60

205

x

60

235

x

60

265

x

60

300

x

60

350

x

60

t mm 1.30 1.45 1.55 1.70 1.40 1.50 1.60 1.70 2.00 1.45 1.55 1.65 1.80 1.90 2.00 1.70 1.90 2.00 2.30 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00

Q 0.92 0.95 0.97 0.98 0.89 0.92 0.94 0.96 0.99 0.83 0.86 0.87 0.90 0.91 0.92 0.82 0.84 0.85 0.88 0.77 0.79 0.81 0.84 0.87 0.71 0.73 0.75 0.77 0.81 0.65 0.66 0.68 0.70 0.73

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

0.83 0.88 0.91 0.94 0.84 0.87 0.90 0.92 0.96 0.83 0.86 0.88 0.91 0.92 0.94 0.86 0.90 0.91 0.94 0.85 0.88 0.91 0.94 0.97 0.81 0.85 0.88 0.91 0.94 0.75 0.79 0.83 0.87 0.91

cm3 14.83 17.47 19.19 21.67 20.68 22.88 25.02 27.10 32.98 26.12 28.77 31.35 35.10 37.51 39.87 38.16 44.04 46.89 55.17 47.17 53.98 62.21 71.76 85.55 53.65 61.77 71.63 83.12 99.75 61.96 72.12 84.52 99.03 120.11

cm3 5.54 6.21 6.65 7.32 6.08 6.51 6.94 7.37 8.62 6.36 6.79 7.20 7.82 8.23 8.63 7.44 8.25 8.64 9.79 7.86 8.65 9.60 10.68 12.21 7.87 8.65 9.59 10.66 12.16 7.88 8.65 9.58 10.64 12.12

cm3 4.68 5.15 5.46 5.90 4.99 5.29 5.59 5.89 6.72 5.13 5.44 5.73 6.16 6.44 6.71 5.87 6.43 6.70 7.46 6.15 6.69 7.33 8.04 8.98 6.14 6.69 7.32 8.03 8.97 6.13 6.68 7.32 8.02 8.96

cm4 111.2 129.3 141.1 158.3 184.7 203.1 221.1 238.6 288.9 271.6 297.8 323.4 360.9 385.2 409.1 450.2 518.3 551.4 648.3 626.4 715.8 824.3 950.7 1133.4 806.0 927.0 1074.5 1246.6 1496.0 1085.4 1262.4 1479.0 1732.8 2101.7

kN 139.6 160.6 174.2 193.7 160.3 176.3 192.1 207.3 249.9 168.5 184.6 200.7 224.3 239.8 255.2 208.6 239.8 255.3 302.0 224.5 255.4 294.1 341.6 416.0 225.0 255.8 294.3 341.7 415.9 225.8 256.7 295.2 342.4 416.2

kNm 5.78 6.81 7.48 8.45 8.07 8.92 9.76 10.57 12.86 10.19 11.22 12.23 13.69 14.63 15.55 14.88 17.18 18.29 21.52 18.40 21.05 24.26 27.99 33.36 20.92 24.09 27.94 32.41 38.90 24.17 28.13 32.96 38.62 46.84

kNm 2.16 2.42 2.59 2.85 2.37 2.54 2.71 2.87 3.36 2.48 2.65 2.81 3.05 3.21 3.37 2.90 3.22 3.37 3.82 3.07 3.37 3.74 4.17 4.76 3.07 3.37 3.74 4.16 4.74 3.07 3.37 3.74 4.15 4.73

kNm 1.83 2.01 2.13 2.30 1.94 2.06 2.18 2.30 2.62 2.00 2.12 2.24 2.40 2.51 2.62 2.29 2.51 2.61 2.91 2.40 2.61 2.86 3.13 3.50 2.40 2.61 2.86 3.13 3.50 2.39 2.60 2.85 3.13 3.49

A - 28

B

y

t

REDUCED SECTION PROPERTIES WARD MULTIBEAM 2 Design Yield Strength = 390 N/mm

x

DOUBLE SECTION D

x

B

145

mm x

60

175

x

60

205

x

60

235

x

60

265

x

60

300

x

60

350

x

60

B

x

D

y

t mm 1.30 1.45 1.55 1.70 1.40 1.50 1.60 1.70 2.00 1.45 1.55 1.65 1.80 1.90 2.00 1.70 1.90 2.00 2.30 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00 1.80 2.00 2.25 2.55 3.00

Q

po / py

Zxr 3

0.92 0.95 0.97 0.98 0.89 0.92 0.94 0.96 0.99 0.83 0.86 0.87 0.90 0.91 0.92 0.82 0.84 0.85 0.88 0.77 0.79 0.81 0.84 0.87 0.71 0.73 0.75 0.77 0.81 0.65 0.66 0.68 0.70 0.73

0.83 0.88 0.91 0.94 0.84 0.87 0.90 0.92 0.96 0.83 0.86 0.88 0.91 0.92 0.94 0.86 0.90 0.91 0.94 0.85 0.88 0.91 0.94 0.97 0.81 0.85 0.88 0.91 0.94 0.75 0.79 0.83 0.87 0.91

cm 29.65 34.93 38.38 43.34 41.36 45.75 50.04 54.20 65.95 52.24 57.53 62.70 70.19 75.02 79.74 76.31 88.08 93.78 110.34 94.35 107.97 124.42 143.52 171.10 107.30 123.55 143.26 166.23 199.50 123.92 144.24 169.04 198.05 240.22

Zy1r

Zy2r

3

3

cm 12.11 13.39 14.22 15.43 13.12 13.97 14.81 15.63 18.01 13.72 14.57 15.42 16.65 17.46 18.25 16.03 17.69 18.49 20.83 17.08 18.74 20.73 23.01 26.20 17.33 19.02 21.06 23.39 26.67 17.69 19.43 21.53 23.94 27.35

cm 12.11 13.39 14.22 15.43 13.12 13.97 14.81 15.63 18.01 13.72 14.57 15.42 16.65 17.46 18.25 16.03 17.69 18.49 20.83 17.08 18.74 20.73 23.01 26.20 17.33 19.02 21.06 23.39 26.67 17.69 19.43 21.53 23.94 27.35

A - 29

Ixr 4

cm 222.3 258.6 282.3 316.7 369.4 406.2 442.2 477.3 577.9 543.2 595.5 646.8 721.8 770.5 818.3 900.4 1036.5 1102.9 1296.5 1252.7 1431.6 1648.6 1901.4 2266.7 1612.1 1854.1 2148.9 2493.2 2992.1 2170.7 2524.8 2958.1 3465.6 4203.4

Pc

Mcx

Mcy1

Mcy2x

kN 279.2 321.1 348.3 387.4 320.6 352.7 384.1 414.7 499.8 336.9 369.3 401.3 448.6 479.7 510.5 417.2 479.6 510.6 604.0 448.9 510.7 588.2 683.3 832.0 449.9 511.6 588.7 683.3 831.8 451.6 513.3 590.4 684.7 832.3

kNm 11.56 13.62 14.97 16.90 16.13 17.84 19.52 21.14 25.72 20.37 22.44 24.45 27.37 29.26 31.10 29.76 34.35 36.58 43.03 36.79 42.11 48.52 55.97 66.73 41.85 48.18 55.87 64.83 77.80 48.33 56.25 65.92 77.24 93.69

kNm 4.72 5.22 5.54 6.02 5.12 5.45 5.78 6.10 7.02 5.35 5.68 6.01 6.49 6.81 7.12 6.25 6.90 7.21 8.12 6.66 7.31 8.08 8.97 10.22 6.76 7.42 8.21 9.12 10.40 6.90 7.58 8.40 9.34 10.67

kNm 4.72 5.22 5.54 6.02 5.12 5.45 5.78 6.10 7.02 5.35 5.68 6.01 6.49 6.81 7.12 6.25 6.90 7.21 8.12 6.66 7.31 8.08 8.97 10.22 6.76 7.42 8.21 9.12 10.40 6.90 7.58 8.40 9.34 10.67

B

GROSS SECTION PROPERTIES

t

WARD MULTICHANNEL 2 Design Yield Strength = 350 N/mm

x

x

D

SINGLE SECTION D

x

70 145

mm x x

B 50 65

175

x

65

205

x

65

220

x

70

250

x

70

270 300 300 350

x x x x

95 70 95 95

t

Area

Weight

mm 1.3 1.5 2.0 1.6 1.8 2.4 1.6 1.8 2.4 2.0 2.7 1.8 2.4 2.4 2.7 2.7 3.2

cm2 2.33 4.21 5.57 4.96 5.56 7.34 5.42 6.09 8.05 7.24 9.67 7.06 9.35 11.00 11.80 13.13 17.05

kg/m 1.83 3.31 4.38 3.89 4.37 5.76 4.26 4.78 6.32 5.68 7.59 5.54 7.34 8.63 9.26 10.31 13.38

Ix x

Iy y

cm4 cm4 19.5 8.2 142.0 22.8 185.5 29.2 233.1 25.6 260.4 28.4 338.8 36.0 337.6 26.8 377.4 29.7 492.2 37.8 515.7 40.0 678.7 51.2 632.2 37.8 827.3 48.2 1206.5 108.6 1431.2 55.5 1725.1 123.6 2913.4 147.8

rx x

ry y

cm 2.89 5.80 5.77 6.86 6.84 6.79 7.89 7.87 7.82 8.44 8.38 9.46 9.41 10.47 11.01 11.46 13.07

cm 1.87 2.32 2.29 2.27 2.26 2.22 2.22 2.21 2.17 2.35 2.30 2.31 2.27 3.14 2.17 3.07 2.94

Zx x

Zy y

J

Cw

es

cm3 cm3 cm4 cm6 5.59 2.66 0.0124 97 19.59 4.99 0.0299 912 25.59 6.40 0.0714 1154 26.65 5.40 0.0402 1463 29.77 5.98 0.0574 1614 38.73 7.59 0.1363 2020 32.95 5.49 0.0440 2091 36.83 6.08 0.0629 2309 48.03 7.72 0.1494 2897 46.89 7.57 0.0927 3548 61.71 9.67 0.2281 4473 50.59 7.00 0.0729 4356 66.20 8.92 0.1735 5500 89.38 15.14 0.2042 14139 95.43 9.95 0.2783 9170 115.02 16.90 0.3097 19861 166.50 19.69 0.5674 32471

y

B

mm -25.0 -27.6 -27.0 -26.0 -25.7 -24.9 -24.7 -24.4 -23.6 -25.8 -24.9 -24.9 -24.1 -34.7 -22.0 -33.1 -30.6

B t

x

DOUBLE SECTION D

x

70 145

mm x x

B 50 65

175

x

65

205

x

65

220

x

70

250

x

70

270 300 300 350

x x x x

95 70 95 95

D

x

y

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.3 1.5 2.0 1.6 1.8 2.4 1.6 1.8 2.4 2.0 2.7 1.8 2.4 2.4 2.7 2.7 3.2

cm2 4.67 8.43 11.15 9.91 11.13 14.68 10.85 12.18 16.10 14.48 19.34 14.12 18.70 22.00 23.60 26.26 34.09

kg/m 3.66 6.61 8.75 7.78 8.73 11.53 8.52 9.56 12.64 11.37 15.19 11.08 14.68 17.27 18.53 20.61 26.76

cm4 39.1 283.9 371.0 466.2 520.8 677.6 675.3 754.9 984.4 1031.3 1357.5 1264.5 1654.6 2413.0 2862.4 3450.2 5826.9

cm4 33.6 77.2 100.0 81.9 91.1 117.0 81.9 91.1 117.0 122.5 158.4 111.5 143.5 336.0 158.5 372.6 430.8

cm 2.89 5.80 5.77 6.86 6.84 6.79 7.89 7.87 7.82 8.44 8.38 9.46 9.41 10.47 11.01 11.46 13.07

cm 2.68 3.03 2.99 2.87 2.86 2.82 2.75 2.73 2.70 2.91 2.86 2.81 2.77 3.91 2.59 3.77 3.55

cm3 11.18 39.17 51.19 53.29 59.53 77.46 65.89 73.66 96.05 93.77 123.43 101.17 132.39 178.76 190.85 230.04 333.00

cm3 6.72 11.88 15.38 12.60 14.02 18.00 12.60 14.02 18.00 17.50 22.63 15.93 20.51 35.37 22.65 39.22 45.34

cm4 0.0247 0.0599 0.1428 0.0804 0.1149 0.2726 0.0880 0.1258 0.2989 0.1854 0.4562 0.1458 0.3471 0.4084 0.5566 0.6194 1.1348

cm6 437 3989 5005 6080 6681 8258 8299 9123 11293 13986 17369 16574 20642 57371 32202 77504 119341

mm

A - 30

-

B

REDUCED SECTION PROPERTIES

t

WARD MULTICHANNEL 2 Design Yield Strength = 350 N/mm

x

x

D

SINGLE SECTION D

x

70 145

mm x x

B 50 65

175

x

65

205

x

65

220

x

70

250

x

70

270 300 300 350

x x x x

95 70 95 95

t mm 1.3 1.5 2.0 1.6 1.8 2.4 1.6 1.8 2.4 2.0 2.7 1.8 2.4 2.4 2.7 2.7 3.2

Q 0.91 0.70 0.82 0.67 0.71 0.81 0.61 0.65 0.74 0.66 0.76 0.58 0.66 0.65 0.62 0.65 0.64

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

0.98 0.88 0.97 0.87 0.91 0.97 0.84 0.88 0.95 0.89 0.95 0.82 0.90 0.87 0.89 0.89 0.89

cm3 5.48 17.28 24.82 23.23 27.12 37.66 27.53 32.29 45.40 41.60 58.89 41.47 59.88 77.95 84.97 101.90 148.90

cm3 3.37 6.04 8.84 6.64 7.77 11.10 6.68 7.80 11.12 9.95 14.23 8.77 12.49 20.07 14.27 23.28 28.82

cm3 2.66 4.99 6.40 5.40 5.98 7.59 5.49 6.08 7.72 7.57 9.67 7.00 8.92 15.14 9.95 16.90 19.69

cm4 19.3 127.2 180.1 205.0 238.0 329.5 284.0 331.7 465.3 458.3 647.7 520.2 748.5 1058.9 1274.4 1531.2 2606.0

kN 74.5 103.5 160.4 115.6 138.3 208.0 116.1 138.9 208.6 167.5 255.9 144.0 217.3 250.7 257.6 299.9 383.0

kNm 1.92 6.05 8.69 8.13 9.49 13.18 9.64 11.30 15.89 14.56 20.61 14.51 20.96 27.28 29.74 35.66 52.12

kNm 1.18 2.11 3.09 2.32 2.72 3.89 2.34 2.73 3.89 3.48 4.98 3.07 4.37 7.02 4.99 8.15 10.09

kNm 0.93 1.75 2.24 1.89 2.09 2.66 1.92 2.13 2.70 2.65 3.38 2.45 3.12 5.30 3.48 5.92 6.89

B

y

B t

x

x

DOUBLE SECTION D

x

70 145

mm x x

B 50 65

175

x

65

205

x

65

220

x

70

250

x

70

270 300 300 350

x x x x

95 70 95 95

D

y

t mm 1.3 1.5 2.0 1.6 1.8 2.4 1.6 1.8 2.4 2.0 2.7 1.8 2.4 2.4 2.7 2.7 3.2

Q 0.91 0.70 0.82 0.67 0.71 0.81 0.61 0.65 0.74 0.66 0.76 0.58 0.66 0.65 0.62 0.65 0.64

po / py

Zxr

Zy1r

Zy2r

Ixr

0.98 0.88 0.97 0.87 0.91 0.97 0.84 0.88 0.95 0.89 0.95 0.82 0.90 0.87 0.89 0.89 0.89

cm3 10.96 34.56 49.63 46.46 54.23 75.32 55.06 64.58 90.81 83.19 117.78 82.94 119.76 155.89 169.94 203.80 297.81

cm3 6.72 11.88 15.38 12.60 14.02 18.00 12.60 14.02 18.00 17.50 22.63 15.93 20.51 35.37 22.65 39.22 45.34

cm3 6.72 11.88 15.38 12.60 14.02 18.00 12.60 14.02 18.00 17.50 22.63 15.93 20.51 35.37 22.65 39.22 45.34

cm4 38.6 254.5 360.2 409.9 476.0 658.9 568.1 663.4 930.6 916.6 1295.4 1040.5 1497.0 2117.7 2548.7 3062.3 5211.9

A - 31

Pc

Mcx

Mcy1

kN kNm kNm 149.1 3.83 2.35 207.0 12.10 4.16 320.7 17.37 5.38 231.2 16.26 4.41 276.6 18.98 4.91 416.0 26.36 6.30 232.3 19.27 4.41 277.8 22.60 4.91 417.1 31.78 6.30 335.0 29.12 6.12 511.8 41.22 7.92 287.9 29.03 5.58 434.6 41.92 7.18 501.4 54.56 12.38 515.3 59.48 7.93 599.9 71.33 13.73 766.0 104.23 15.87

Mcy2x kNm 2.35 4.16 5.38 4.41 4.91 6.30 4.41 4.91 6.30 6.12 7.92 5.58 7.18 12.38 7.93 13.73 15.87

B

t

GROSS SECTION PROPERTIES GENERIC C SECTION 2 Design Yield Strength = 280 N/mm

x

x

D

SINGLE SECTION D

x

100 125

mm x x

B 55 55

150

x

65

165

x

65

180

x

65

200

x

65

220

x

65

250 300

x x

65 65

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

cm2 2.67 2.96 3.93 4.63 5.19 4.86 5.46 5.10 5.72 6.34 5.41 6.07 6.73 7.12 8.50 9.21 10.39 12.88

kg/m 2.09 2.32 3.08 3.63 4.08 3.82 4.28 4.00 4.49 4.98 4.25 4.77 5.28 5.59 6.67 7.23 8.15 10.11

cm4 44.3 73.9 97.0 165.4 184.7 206.2 230.4 252.5 282.2 311.2 323.2 361.3 398.7 499.6 590.9 802.8 1249.4 1531.2

cm4 11.5 12.4 16.1 25.6 28.4 26.4 29.3 27.1 30.1 33.0 28.0 31.1 34.0 35.0 40.7 42.1 44.1 52.4

cm 4.07 5.00 4.97 5.98 5.96 6.51 6.50 7.04 7.02 7.01 7.73 7.71 7.70 8.37 8.34 9.34 10.97 10.90

cm 2.07 2.05 2.02 2.35 2.34 2.33 2.32 2.31 2.29 2.28 2.28 2.26 2.25 2.22 2.19 2.14 2.06 2.02

cm3 8.87 11.83 15.52 22.06 24.63 25.00 27.93 28.06 31.36 34.59 32.32 36.14 39.87 45.43 53.73 64.23 83.31 102.09

cm3 3.22 3.31 4.28 5.66 6.27 5.72 6.34 5.77 6.40 7.00 5.83 6.47 7.08 7.14 8.30 8.40 8.53 10.14

cm4 0.0120 0.0133 0.0319 0.0376 0.0536 0.0394 0.0563 0.0413 0.0591 0.0812 0.0439 0.0627 0.0862 0.0912 0.1578 0.1709 0.1928 0.3762

cm6 255 401 513 1127 1244 1387 1532 1681 1856 2023 2125 2348 2560 3174 3664 4903 7444 8780

mm -26.6 -25.1 -24.6 -28.1 -27.8 -27.3 -27.1 -26.6 -26.4 -26.1 -25.7 -25.5 -25.2 -24.4 -23.8 -22.7 -21.0 -20.2

B

y

B t

x

x

DOUBLE SECTION D

x

B

100 125

mm x x

55 55

150

x

65

165

x

65

180

x

65

200

x

65

220

x

65

250 300

x x

65 65

D

y

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

J

Cw

es

mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

cm2 5.34 5.92 7.85 9.26 10.39 9.73 10.91 10.19 11.44 12.68 10.82 12.15 13.46 14.25 17.00 18.41 20.77 25.76

kg/m 4.19 4.64 6.17 7.27 8.15 7.63 8.57 8.00 8.98 9.95 8.49 9.54 10.57 11.18 13.34 14.45 16.31 20.22

cm4 88.6 147.8 194.0 330.9 369.4 412.5 460.7 505.0 564.3 622.4 646.4 722.6 797.3 999.2 1181.9 1605.5 2498.9 3062.3

cm4 42.8 42.9 55.9 87.0 96.9 87.0 96.9 87.0 96.9 106.4 87.1 96.9 106.4 106.5 124.7 124.7 124.8 150.1

cm 4.07 5.00 4.97 5.98 5.96 6.51 6.50 7.04 7.02 7.01 7.73 7.71 7.70 8.37 8.34 9.34 10.97 10.90

cm 2.83 2.69 2.67 3.07 3.05 2.99 2.98 2.92 2.91 2.90 2.84 2.82 2.81 2.73 2.71 2.60 2.45 2.41

cm3 17.73 23.66 31.05 44.13 49.27 50.01 55.86 56.13 62.72 69.17 64.65 72.27 79.75 90.85 107.46 128.46 166.61 204.18

cm3 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09

cm4 0.0239 0.0265 0.0637 0.0751 0.1072 0.0789 0.1127 0.0827 0.1181 0.1623 0.0878 0.1254 0.1724 0.1824 0.3155 0.3418 0.3857 0.7523

cm6 1135 1733 2198 4869 5353 5859 6443 6940 7634 8285 8524 9379 10183 12277 14042 18067 25902 30070

mm

A - 32

-

B

t

REDUCED SECTION PROPERTIES GENERIC C SECTION Design Yield Strength = 280 N/mm2

x

x

D

SINGLE SECTION D

x

100 125

mm x x

B 55 55

150

x

65

165

x

65

180

x

65

200

x

65

220

x

65

250 300

x x

65 65

t mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

Q 0.80 0.72 0.83 0.76 0.81 0.73 0.77 0.70 0.74 0.77 0.66 0.70 0.73 0.69 0.75 0.69 0.62 0.69

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

0.93 0.90 0.98 0.94 0.96 0.92 0.95 0.90 0.93 0.95 0.88 0.91 0.94 0.92 0.95 0.93 0.89 0.94

cm3 8.27 10.60 15.14 20.64 23.75 22.96 26.49 25.29 29.25 33.02 28.40 32.94 37.30 41.62 51.20 59.65 74.02 95.70

cm3 3.83 3.84 5.67 7.22 8.43 7.23 8.44 7.24 8.44 9.64 7.26 8.46 9.65 9.66 11.91 11.92 11.95 14.88

cm3 3.22 3.31 4.28 5.66 6.27 5.72 6.34 5.77 6.40 7.00 5.83 6.47 7.08 7.14 8.30 8.40 8.53 10.14

cm4 41.9 67.0 94.7 155.5 178.4 190.2 218.8 228.5 263.5 297.2 284.9 329.7 373.0 457.8 563.1 745.5 1110.1 1435.4

kN 59.5 59.8 91.7 99.1 117.5 99.2 117.7 99.4 117.9 136.8 99.7 118.2 137.1 137.3 177.7 178.1 179.0 247.4

kNm 2.32 2.97 4.24 5.78 6.65 6.43 7.42 7.08 8.19 9.25 7.95 9.22 10.44 11.65 14.34 16.70 20.72 26.80

kNm 1.07 1.08 1.59 2.02 2.36 2.02 2.36 2.03 2.36 2.70 2.03 2.37 2.70 2.70 3.34 3.34 3.35 4.17

kNm 0.90 0.93 1.20 1.58 1.76 1.60 1.78 1.62 1.79 1.96 1.63 1.81 1.98 2.00 2.33 2.35 2.39 2.84

B

y

B t

x

DOUBLE SECTION D

x

B

100 125

mm x x

55 55

150

x

65

165

x

65

180

x

65

200

x

65

220

x

65

250 300

x x

65 65

x

D

y

t mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

Q 0.80 0.72 0.83 0.76 0.81 0.73 0.77 0.70 0.74 0.77 0.66 0.70 0.73 0.69 0.75 0.69 0.62 0.69

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

0.93 0.90 0.98 0.94 0.96 0.92 0.95 0.90 0.93 0.95 0.88 0.91 0.94 0.92 0.95 0.93 0.89 0.94

cm3 16.54 21.19 30.29 41.28 47.51 45.92 52.98 50.59 58.49 66.04 56.79 65.88 74.60 83.24 102.40 119.31 148.03 191.41

cm3 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09

cm3 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09

cm4 83.8 134.1 189.4 311.0 356.8 380.5 437.6 457.0 527.0 594.4 569.7 659.4 746.1 915.6 1126.2 1491.1 2220.2 2870.7

kN 118.9 119.6 183.4 198.1 235.1 198.5 235.5 198.9 235.9 273.7 199.4 236.4 274.2 274.7 355.5 356.3 358.0 494.9

kNm 4.63 5.93 8.48 11.56 13.30 12.86 14.83 14.16 16.38 18.49 15.90 18.45 20.89 23.31 28.67 33.41 41.45 53.59

kNm 2.18 2.18 2.85 3.75 4.17 3.75 4.17 3.75 4.17 4.58 3.75 4.17 4.59 4.59 5.37 5.37 5.37 6.46

kNm 2.18 2.18 2.85 3.75 4.17 3.75 4.17 3.75 4.17 4.58 3.75 4.17 4.59 4.59 5.37 5.37 5.37 6.46

A - 33

B t

REDUCED SECTION PROPERTIES GENERIC C SECTION Design Yield Strength = 350 N/mm2

x

D

x

SINGLE SECTION D

x

100 125

mm x x

B 55 55

150

x

65

165

x

65

180

x

65

200

x

65

220

x

65

250 300

x x

65 65

t mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

Q

po / py

Zxr

0.89 0.85 0.95 0.90 0.94 0.88 0.92 0.87 0.91 0.93 0.84 0.88 0.91 0.89 0.93 0.90 0.86 0.91

cm 7.89 10.08 14.81 19.91 23.15 22.10 25.76 24.31 28.39 32.25 27.22 31.89 36.33 40.42 50.07 58.12 71.64 93.38

3

0.75 0.68 0.80 0.72 0.77 0.69 0.74 0.66 0.70 0.74 0.62 0.66 0.70 0.66 0.71 0.66 0.59 0.65

Zy1r 3

cm 3.66 3.67 5.44 6.91 8.09 6.93 8.10 6.94 8.11 9.29 6.97 8.13 9.31 9.32 11.60 11.62 11.66 14.68

Zy2r 3

cm 3.22 3.31 4.28 5.66 6.27 5.72 6.34 5.77 6.40 7.00 5.83 6.47 7.08 7.14 8.30 8.40 8.53 10.14

Ixr 4

cm 40.4 64.4 92.7 150.8 174.2 184.0 213.2 220.5 256.3 290.5 274.0 319.7 363.6 444.9 550.7 726.4 1074.4 1400.6

Pc

Mcx

Mcy1

Mcy2x

kN 69.6 70.0 109.8 117.3 140.3 117.6 140.6 117.9 140.9 163.8 118.2 141.2 164.1 164.5 212.1 212.7 214.0 293.5

kNm 2.76 3.53 5.18 6.97 8.10 7.74 9.02 8.51 9.94 11.29 9.53 11.16 12.72 14.15 17.53 20.34 25.07 32.68

kNm 1.28 1.29 1.91 2.42 2.83 2.42 2.84 2.43 2.84 3.25 2.44 2.85 3.26 3.26 4.06 4.07 4.08 5.14

kNm 1.13 1.16 1.50 1.98 2.19 2.00 2.22 2.02 2.24 2.45 2.04 2.26 2.48 2.50 2.91 2.94 2.98 3.55

B

y

B t

x

x

D

y

DOUBLE SECTION D

x

B

100 125

mm x x

55 55

150

x

65

165

x

65

180

x

65

200

x

65

220

x

65

250 300

x x

65 65

t mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

Q

po / py

Zxr 3

0.75 0.68 0.80 0.72 0.77 0.69 0.74 0.66 0.70 0.74 0.62 0.66 0.70 0.66 0.71 0.66 0.59 0.65

0.89 0.85 0.95 0.90 0.94 0.88 0.92 0.87 0.91 0.93 0.84 0.88 0.91 0.89 0.93 0.90 0.86 0.91

cm 15.79 20.16 29.62 39.81 46.30 44.20 51.53 48.61 56.78 64.50 54.43 63.78 72.67 80.85 100.14 116.25 143.28 186.77

Zy1r

Zy2r

3

3

cm 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09

A - 34

cm 7.79 7.79 10.17 13.39 14.90 13.39 14.90 13.39 14.91 16.37 13.39 14.91 16.38 16.38 19.18 19.19 19.19 23.09

Ixr 4

cm 80.8 128.7 185.5 301.5 348.5 368.0 426.5 441.0 512.5 580.9 548.0 639.3 727.1 889.8 1101.4 1452.9 2148.9 2801.1

Pc

Mcx

Mcy1

Mcy2x

kN 139.2 140.0 219.6 234.6 280.7 235.2 281.2 235.7 281.7 327.5 236.5 282.5 328.2 329.0 424.3 425.5 428.0 587.0

kNm 5.53 7.06 10.37 13.93 16.20 15.47 18.03 17.01 19.87 22.57 19.05 22.32 25.43 28.30 35.05 40.69 50.15 65.37

kNm 2.73 2.73 3.56 4.69 5.22 4.69 5.22 4.69 5.22 5.73 4.69 5.22 5.73 5.73 6.71 6.72 6.72 8.08

kNm 2.73 2.73 3.56 4.69 5.22 4.69 5.22 4.69 5.22 5.73 4.69 5.22 5.73 5.73 6.71 6.72 6.72 8.08

SECTION PROPERTY TABLES Z Sections Note: Section property data are given for commonly available Z sections, and for generic Z sections, which may be used at the scheme design stage. These properties are calculated in accordance with BS 5950-5 and may differ slightly from manufacturers' data.

A - 35

B top

t

x

x

D

GROSS SECTION PROPERTIES AYRSHIRE ZED Design Yield Strength = 280 N/mm2 B bot

SINGLE SECTION D

x

B

mm top 125 x 55

bot 45

140

x

58

49

155

x

58

49

170

x

58

49

185

x

58

49

200

x

58

49

240

x

76

68

300

x

94

86

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

Ix y

θ

J

Cw

mm 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 2.5 2.0 2.5 3.2 2.5 3.0

cm2 3.15 3.39 3.63 4.12 4.84 3.42 3.69 3.95 4.48 5.27 3.61 3.89 4.17 4.73 5.56 3.80 4.10 4.39 4.98 5.85 3.99 4.30 4.61 5.23 6.15 4.18 4.50 4.83 5.48 6.44 8.04 7.97 9.93 12.61 12.29 14.69

kg/m 2.47 2.66 2.85 3.23 3.80 2.69 2.90 3.10 3.52 4.13 2.83 3.06 3.28 3.71 4.37 2.98 3.22 3.45 3.91 4.60 3.13 3.38 3.62 4.10 4.83 3.28 3.54 3.79 4.30 5.06 6.31 6.26 7.79 9.90 9.65 11.53

cm4 77.1 82.9 88.6 99.9 116.4 104.7 112.6 120.4 135.8 158.5 132.7 142.7 152.7 172.3 201.3 164.8 177.3 189.7 214.2 250.3 201.1 216.4 231.6 261.6 305.9 242.0 260.4 278.7 314.9 368.4 455.3 675.7 834.6 1048.1 1619.3 1923.2

cm4 20.3 21.8 23.2 26.2 30.4 23.9 25.7 27.5 30.9 36.0 23.9 25.7 27.5 30.9 36.0 23.9 25.7 27.5 30.9 36.0 23.9 25.7 27.5 31.0 36.0 24.0 25.7 27.5 31.0 36.0 44.1 75.0 91.1 111.5 166.9 195.2

cm 4.95 4.95 4.94 4.93 4.91 5.53 5.52 5.52 5.51 5.49 6.06 6.06 6.05 6.04 6.02 6.59 6.58 6.57 6.56 6.54 7.10 7.09 7.09 7.07 7.05 7.61 7.60 7.60 7.58 7.56 7.53 9.20 9.17 9.12 11.48 11.44

cm 2.54 2.53 2.53 2.52 2.51 2.64 2.64 2.64 2.63 2.61 2.57 2.57 2.57 2.56 2.54 2.51 2.51 2.50 2.49 2.48 2.45 2.45 2.44 2.43 2.42 2.39 2.39 2.39 2.38 2.36 2.34 3.07 3.03 2.97 3.69 3.65

cm3 11.87 12.76 13.64 15.37 17.92 14.49 15.58 16.66 18.79 21.93 16.61 17.87 19.11 21.57 25.19 18.83 20.26 21.68 24.48 28.60 21.15 22.76 24.35 27.51 32.16 23.57 25.36 27.14 30.67 35.88 44.33 55.69 68.79 86.38 107.02 127.10

cm3 3.44 3.70 3.95 4.46 5.21 3.84 4.13 4.42 4.99 5.83 3.84 4.13 4.41 4.98 5.82 3.83 4.12 4.41 4.98 5.81 3.83 4.12 4.40 4.97 5.81 3.82 4.11 4.40 4.97 5.80 7.15 10.14 12.35 15.19 18.18 21.33

cm4 29.2 31.4 33.6 37.8 44.0 36.9 39.6 42.4 47.8 55.7 41.1 44.1 47.2 53.2 62.0 45.2 48.6 52.0 58.6 68.4 49.4 53.1 56.8 64.1 74.7 53.6 57.6 61.6 69.5 81.1 99.8 161.5 197.6 244.9 370.9 436.9

(deg) 22.90 22.89 22.88 22.86 22.83 21.20 21.19 21.18 21.16 21.13 18.52 18.51 18.50 18.48 18.45 16.36 16.34 16.33 16.31 16.27 14.57 14.56 14.55 14.53 14.49 13.09 13.08 13.06 13.04 13.01 12.95 14.14 14.00 13.80 13.53 13.41

cm4 0.0166 0.0209 0.0258 0.0378 0.0619 0.0181 0.0227 0.0281 0.0412 0.0674 0.0191 0.0240 0.0296 0.0434 0.0712 0.0201 0.0253 0.0312 0.0457 0.0750 0.0211 0.0265 0.0328 0.0480 0.0787 0.0221 0.0278 0.0343 0.0503 0.0825 0.1621 0.1021 0.2003 0.4196 0.2479 0.4290

cm6 514 552 588 661 766 774 831 887 997 1157 969 1040 1110 1248 1449 1187 1274 1360 1530 1776 1430 1535 1639 1843 2140 1697 1822 1945 2188 2541 3102 7634 9235 11254 26439 30844

A - 36

es mm 2.5 2.5 2.5 2.6 2.7 2.2 2.3 2.3 2.3 2.4 2.1 2.2 2.2 2.3 2.3 2.1 2.1 2.1 2.2 2.3 2.0 2.0 2.1 2.1 2.2 2.0 2.0 2.0 2.1 2.1 2.3 1.6 1.7 1.8 1.6 1.7

B top

t

x

x

D

REDUCED SECTION PROPERTIES

PRINCIPAL AXIS PROPERTIES

AYRSHIRE ZED Design Yield Strength = 280 N/mm2 B bot

SINGLE SECTION D

x

t

B

mm top 125 x 55

bot 45

140

x

58

49

155

x

58

49

170

x

58

49

185

x

58

49

200

x

58

49

240

x

76

68

300

x

94

86

mm 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 2.5 2.0 2.5 3.2 2.5 3.0

Q 0.71 0.73 0.75 0.79 0.85 0.67 0.69 0.72 0.75 0.80 0.64 0.66 0.68 0.71 0.76 0.60 0.63 0.65 0.68 0.72 0.58 0.60 0.62 0.65 0.69 0.55 0.57 0.59 0.62 0.66 0.72 0.62 0.68 0.75 0.61 0.66

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

Iu u

Iv v

0.94 0.95 0.97 0.99 1.00 0.91 0.93 0.95 0.97 0.99 0.89 0.91 0.93 0.95 0.98 0.87 0.89 0.91 0.94 0.97 0.85 0.87 0.89 0.92 0.95 0.83 0.85 0.87 0.90 0.94 0.98 0.90 0.94 0.99 0.90 0.94

cm3 11.15 12.17 13.18 15.17 17.92 13.25 14.52 15.76 18.21 21.80 14.83 16.28 17.72 20.54 24.68 16.39 18.04 19.67 22.89 27.61 17.94 19.80 21.63 25.25 30.58 19.46 21.53 23.58 27.63 33.59 43.25 49.92 64.98 85.15 96.02 119.13

cm3 3.65 3.94 4.22 4.78 5.60 4.04 4.36 4.67 5.28 6.20 4.04 4.36 4.67 5.28 6.20 4.04 4.36 4.67 5.28 6.20 4.05 4.36 4.67 5.28 6.20 4.05 4.36 4.67 5.29 6.20 7.68 10.76 13.14 16.23 19.09 22.43

cm3 3.44 3.70 3.95 4.46 5.21 3.84 4.13 4.42 4.99 5.83 3.84 4.13 4.41 4.98 5.82 3.83 4.12 4.41 4.98 5.81 3.83 4.12 4.40 4.97 5.81 3.82 4.11 4.40 4.97 5.80 7.15 10.14 12.35 15.19 18.18 21.33

cm4 72.0 78.9 85.5 98.5 116.4 95.0 104.5 113.7 131.6 157.6 117.6 129.6 141.3 164.0 197.2 142.6 157.3 171.8 200.2 241.6 169.7 187.7 205.4 240.1 290.8 198.9 220.5 241.8 283.6 344.9 444.2 604.5 788.2 1033.1 1450.4 1802.2

kN 62.4 69.5 76.7 91.3 114.6 64.1 71.7 79.2 94.4 118.5 64.2 71.8 79.3 94.5 118.4 64.3 71.9 79.4 94.6 118.4 64.5 72.0 79.5 94.7 118.5 64.6 72.1 79.7 94.8 118.6 162.5 138.5 188.0 264.9 211.6 271.7

kNm 3.12 3.41 3.69 4.25 5.02 3.71 4.06 4.41 5.10 6.10 4.15 4.56 4.96 5.75 6.91 4.59 5.05 5.51 6.41 7.73 5.02 5.54 6.06 7.07 8.56 5.45 6.03 6.60 7.74 9.40 12.11 13.98 18.19 23.84 26.89 33.36

kNm 1.02 1.10 1.18 1.34 1.57 1.13 1.22 1.31 1.48 1.73 1.13 1.22 1.31 1.48 1.73 1.13 1.22 1.31 1.48 1.74 1.13 1.22 1.31 1.48 1.74 1.13 1.22 1.31 1.48 1.74 2.15 3.01 3.68 4.54 5.34 6.28

kNm 0.96 1.04 1.11 1.25 1.46 1.08 1.16 1.24 1.40 1.63 1.07 1.16 1.24 1.40 1.63 1.07 1.15 1.23 1.39 1.63 1.07 1.15 1.23 1.39 1.63 1.07 1.15 1.23 1.39 1.62 2.00 2.84 3.46 4.25 5.09 5.97

cm4 89.5 96.2 102.8 115.8 134.9 119.0 127.9 136.8 154.3 180.0 146.5 157.5 168.5 190.1 222.0 178.1 191.5 204.9 231.3 270.3 214.0 230.2 246.3 278.2 325.2 254.4 273.8 293.0 331.0 387.2 478.2 716.3 883.9 1108.3 1708.5 2027.3

cm4 7.9 8.5 9.1 10.2 11.9 9.6 10.3 11.0 12.4 14.5 10.2 10.9 11.7 13.2 15.3 10.7 11.5 12.2 13.8 16.0 11.1 11.9 12.7 14.4 16.7 11.5 12.4 13.2 14.9 17.3 21.2 34.3 41.8 51.4 77.7 91.1

A - 37

B top

t

GROSS SECTION PROPERTIES

x

x

D

AYRSHIRE ZETA Design Yield Strength = 280 N/mm2 B bot

SINGLE SECTION D

B

x

mm top 125 x 60

bot 50

150

x

72

65

175

x

72

65

200

x

72

65

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

Ix y

θ

J

Cw

mm 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.6 1.8 2.0 2.5

cm2 3.52 3.79 4.06 4.60 5.40 4.18 4.50 4.82 5.46 6.42 4.49 4.84 5.19 5.88 6.91 4.81 5.18 5.55 5.92 6.66 7.40 9.22

kg/m 2.76 2.98 3.19 3.61 4.24 3.28 3.53 3.79 4.29 5.04 3.53 3.80 4.07 4.61 5.42 3.77 4.07 4.36 4.65 5.23 5.81 7.24

cm4 84.5 90.8 97.0 109.4 127.5 149.0 160.2 171.4 193.5 226.1 213.3 229.5 245.5 277.4 324.4 291.7 313.9 335.9 357.8 401.3 444.3 549.7

cm4 12.2 13.1 14.0 15.8 18.5 22.4 24.1 25.8 29.2 34.1 22.5 24.2 25.8 29.2 34.1 22.5 24.2 25.9 27.5 30.8 34.1 42.2

cm 4.90 4.89 4.89 4.88 4.86 5.97 5.97 5.96 5.95 5.94 6.89 6.89 6.88 6.87 6.85 7.79 7.78 7.78 7.77 7.76 7.75 7.72

cm 1.86 1.86 1.86 1.85 1.85 2.32 2.32 2.31 2.31 2.30 2.24 2.23 2.23 2.23 2.22 2.16 2.16 2.16 2.16 2.15 2.15 2.14

cm3 12.73 13.68 14.63 16.49 19.22 19.04 20.48 21.90 24.73 28.90 23.43 25.20 26.97 30.46 35.62 28.10 30.23 32.36 34.47 38.65 42.79 52.93

cm3 2.57 2.77 2.96 3.34 3.91 3.76 4.05 4.33 4.89 5.73 3.75 4.04 4.32 4.88 5.71 3.75 4.03 4.31 4.60 5.15 5.70 7.06

cm4 7.3 7.9 8.4 9.4 10.9 22.4 24.1 25.8 29.1 33.9 26.1 28.1 30.0 33.9 39.5 29.8 32.1 34.3 36.5 40.8 45.1 55.5

(deg) 5.74 5.73 5.71 5.68 5.64 9.77 9.76 9.75 9.74 9.72 7.66 7.65 7.64 7.63 7.61 6.25 6.24 6.23 6.23 6.21 6.20 6.17

cm4 0.0186 0.0234 0.0289 0.0423 0.0691 0.0221 0.0277 0.0343 0.0502 0.0822 0.0238 0.0298 0.0369 0.0540 0.0885 0.0254 0.0319 0.0394 0.0480 0.0688 0.0947 0.1860

cm6 564 606 647 728 847 1428 1534 1639 1847 2153 1900 2041 2182 2459 2866 2435 2617 2797 2975 3327 3675 4522

es mm -4.81 -4.95 -4.88 -4.97 -4.82 -1.95 -2.09 -2.01 -2.09 -1.89 -1.62 -1.75 -1.68 -1.75 -1.56 -1.37 -1.49 -1.42 -1.35 -1.41 -1.30 -1.43

B top

t

REDUCED SECTION PROPERTIES

x

x

AYRSHIRE ZETA Design Yield Strength = 280 N/mm2

D

PRINCIPAL AXIS PROPERTIES

B bot

SINGLE SECTION D

B

x

t

mm top 125 x 60

bot 50

150

x

72

65

175

x

72

65

200

x

72

65

mm 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.7 2.0 1.3 1.4 1.5 1.6 1.8 2.0 2.5

Q 0.99 0.99 1.00 1.00 1.00 0.93 0.94 0.95 0.97 0.99 0.86 0.88 0.89 0.91 0.95 0.81 0.82 0.83 0.84 0.87 0.89 0.94

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

Iu u

Iv v

0.97 0.99 1.00 1.00 1.00 0.95 0.96 0.97 0.99 1.00 0.92 0.93 0.95 0.97 0.99 0.88 0.90 0.92 0.93 0.95 0.97 1.00

cm3 12.41 13.50 14.57 16.49 19.22 18.00 19.65 21.28 24.50 28.90 21.49 23.52 25.54 29.53 35.41 24.79 27.24 29.67 32.08 36.85 41.57 52.93

cm3 3.72 4.00 4.28 4.83 5.64 4.70 5.09 5.47 6.22 7.29 4.55 4.94 5.33 6.11 7.23 4.45 4.83 5.21 5.59 6.35 7.11 8.93

cm3 2.57 2.77 2.96 3.34 3.91 3.76 4.05 4.33 4.89 5.73 3.75 4.04 4.32 4.88 5.71 3.75 4.03 4.31 4.60 5.15 5.70 7.06

cm4 82.3 89.5 96.6 109.4 127.5 140.4 153.5 166.4 191.7 226.1 195.2 213.9 232.4 268.8 322.4 257.0 282.6 307.9 333.0 382.6 431.6 549.7

kN 97.7 105.6 113.4 128.7 151.1 108.4 118.7 128.9 149.1 178.0 108.4 118.8 129.3 150.6 183.2 108.4 118.8 129.3 139.8 161.5 183.8 242.1

kNm 3.48 3.78 4.08 4.62 5.38 5.04 5.50 5.96 6.86 8.09 6.02 6.59 7.15 8.27 9.91 6.94 7.63 8.31 8.98 10.32 11.64 14.82

kNm 1.04 1.12 1.20 1.35 1.58 1.31 1.42 1.53 1.74 2.04 1.28 1.38 1.49 1.71 2.03 1.25 1.35 1.46 1.57 1.78 1.99 2.50

kNm 0.72 0.77 0.83 0.94 1.09 1.05 1.13 1.21 1.37 1.60 1.05 1.13 1.21 1.37 1.60 1.05 1.13 1.21 1.29 1.44 1.60 1.98

cm4 85.2 91.6 97.9 110.3 128.6 152.8 164.4 175.8 198.5 231.9 216.8 233.3 249.6 281.9 329.7 294.9 317.4 339.7 361.8 405.7 449.2 555.7

cm4 11.4 12.3 13.2 14.9 17.4 18.6 20.0 21.4 24.2 28.3 18.9 20.4 21.8 24.6 28.8 19.2 20.7 22.1 23.5 26.4 29.2 36.2

A - 38

B top

t

x

x

D

GROSS SECTION PROPERTIES AYRSHIRE ZETA II Design Yield Strength = 350 N/mm2 B bot

SINGLE SECTION D 225

B

x mm top x 78

bot 68

245

x

78

68

265

x

78

68

285

x

78

68

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

Ix y

θ

J

Cw

mm 1.4 1.5 1.6 1.8 2.0 2.5 1.4 1.5 1.6 1.8 2.0 2.5 1.5 1.6 1.8 2.0 2.5 3.0 1.5 1.6 1.8 2.0 2.5 3.0

cm2 5.51 5.90 6.29 7.07 7.84 9.75 5.78 6.19 6.61 7.42 8.24 10.24 6.49 6.92 7.78 8.63 10.73 12.79 6.78 7.23 8.13 9.02 11.22 13.39

kg/m 4.32 4.63 4.94 5.55 6.16 7.65 4.54 4.86 5.19 5.83 6.47 8.04 5.09 5.43 6.10 6.77 8.42 10.04 5.32 5.68 6.38 7.08 8.81 10.51

cm4 419.4 448.6 477.4 534.5 590.6 726.8 512.7 548.3 583.7 653.7 722.5 889.9 660.5 703.2 787.7 871.0 1073.5 1268.2 785.6 836.6 937.3 1036.7 1278.6 1511.4

cm4 60.4 64.3 68.1 75.7 83.0 100.0 60.4 64.3 68.2 75.7 83.0 100.0 64.3 68.2 75.7 83.0 100.1 115.6 64.3 68.2 75.7 83.0 100.1 115.6

cm 8.73 8.72 8.71 8.69 8.68 8.64 9.42 9.41 9.40 9.38 9.37 9.32 10.09 10.08 10.06 10.05 10.00 9.96 10.77 10.76 10.74 10.72 10.67 10.63

cm 3.31 3.30 3.29 3.27 3.25 3.20 3.23 3.22 3.21 3.19 3.17 3.13 3.15 3.14 3.12 3.10 3.05 3.01 3.08 3.07 3.05 3.03 2.99 2.94

cm3 36.56 39.09 41.61 46.58 51.46 63.32 41.07 43.93 46.76 52.37 57.88 71.28 48.96 52.13 58.39 64.56 79.56 93.97 54.20 57.71 64.66 71.50 88.18 104.22

cm3 7.44 7.94 8.43 9.39 10.33 12.56 7.44 7.93 8.42 9.39 10.32 12.55 7.93 8.42 9.38 10.31 12.54 14.61 7.92 8.41 9.37 10.31 12.53 14.60

cm4 117.7 125.6 133.5 148.9 163.9 199.8 128.6 137.3 145.9 162.7 179.1 218.5 149.0 158.3 176.6 194.4 237.1 277.2 160.6 170.7 190.4 209.7 255.8 299.0

(deg) 16.62 16.59 16.55 16.49 16.42 16.26 14.81 14.78 14.75 14.69 14.63 14.47 13.28 13.25 13.19 13.13 12.99 12.84 12.00 11.98 11.92 11.87 11.73 11.60

cm4 0.0340 0.0419 0.0511 0.0730 0.1005 0.1966 0.0356 0.0440 0.0536 0.0767 0.1055 0.2065 0.0461 0.0561 0.0803 0.1105 0.2165 0.3736 0.0482 0.0586 0.0839 0.1155 0.2264 0.3909

cm6 4923 5237 5545 6142 6714 8039 5957 6338 6712 7436 8131 9742 7557 8003 8869 9700 11627 13346 8893 9419 10440 11420 13696 15729

es mm 2.9 2.9 2.9 2.9 2.9 2.9 2.8 2.8 2.8 2.8 2.8 2.8 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.6

B top

t

x

x

REDUCED SECTION PROPERTIES

D

PRINCIPAL AXIS PROPERTIES

AYRSHIRE ZETA II Design Yield Strength = 350 N/mm2 B bot

SINGLE SECTION D 225

x

B

mm top x 78

t bot 68

245

x

78

68

265

x

78

68

285

x

78

68

mm 1.4 1.5 1.6 1.8 2.0 2.5 1.4 1.5 1.6 1.8 2.0 2.5 1.5 1.6 1.8 2.0 2.5 3.0 1.5 1.6 1.8 2.0 2.5 3.0

Q 0.70 0.73 0.75 0.79 0.82 0.88 0.67 0.70 0.72 0.76 0.78 0.83 0.67 0.69 0.72 0.75 0.80 0.84 0.64 0.66 0.69 0.72 0.76 0.80

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

Iu u

Iv v

0.79 0.83 0.86 0.89 0.92 0.96 0.77 0.81 0.83 0.87 0.90 0.95 0.78 0.80 0.84 0.88 0.93 0.96 0.75 0.78 0.82 0.85 0.91 0.95

cm3 28.99 32.45 35.64 41.52 47.24 60.95 31.56 35.38 38.84 45.45 51.89 67.38 38.18 41.93 49.30 56.49 73.83 90.43 40.76 44.90 53.05 61.04 80.31 98.79

cm3 7.96 8.50 9.02 10.06 11.07 13.47 7.97 8.50 9.03 10.07 11.08 13.49 8.51 9.04 10.08 11.09 13.50 15.75 8.51 9.04 10.08 11.09 13.51 15.76

cm3 7.44 7.94 8.43 9.39 10.33 12.56 7.44 7.93 8.42 9.39 10.32 12.55 7.93 8.42 9.38 10.31 12.54 14.61 7.92 8.41 9.37 10.31 12.53 14.60

cm4 329.7 366.1 402.3 472.8 540.4 699.4 389.7 433.9 477.8 563.5 646.0 841.1 506.0 558.5 661.1 760.3 996.1 1220.3 581.7 643.7 765.2 883.0 1164.3 1432.7

kN 135.7 150.7 165.9 196.1 225.8 298.8 135.9 150.9 166.0 196.2 225.8 298.8 151.1 166.3 196.4 226.0 298.7 374.4 151.4 166.5 196.7 226.2 298.8 374.4

kNm 10.15 11.36 12.48 14.53 16.54 21.33 11.05 12.38 13.59 15.91 18.16 23.58 13.36 14.67 17.25 19.77 25.84 31.65 14.26 15.71 18.57 21.36 28.11 34.58

kNm 2.79 2.97 3.16 3.52 3.87 4.72 2.79 2.98 3.16 3.52 3.88 4.72 2.98 3.16 3.53 3.88 4.72 5.51 2.98 3.17 3.53 3.88 4.73 5.52

kNm 2.60 2.78 2.95 3.29 3.62 4.40 2.60 2.78 2.95 3.29 3.61 4.39 2.77 2.95 3.28 3.61 4.39 5.11 2.77 2.94 3.28 3.61 4.39 5.11

cm4 454.6 486.0 517.1 578.5 638.9 785.1 546.7 584.6 622.1 696.3 769.3 946.3 695.6 740.5 829.1 916.3 1128.2 1331.4 819.8 872.8 977.5 1080.7 1331.7 1572.8

cm4 25.2 26.9 28.5 31.6 34.7 41.8 26.4 28.1 29.8 33.0 36.2 43.6 29.2 30.9 34.3 37.6 45.4 52.4 30.2 32.0 35.5 38.9 46.9 54.2

A - 39

B top

t

x

x

D

GROSS SECTION PROPERTIES AYRSHIRE ZETA III Design Yield Strength = 350 N/mm2 B bot

SINGLE SECTION D

x

B

mm 140 x

top 55

bot 45

155

x

55

45

170

x

55

45

185

x

55

45

200

x

55

45

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

Ix y

θ

J

Cw

mm 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 2.50

cm2 3.37 3.63 3.88 4.39 5.13 3.56 3.83 4.10 4.63 5.42 3.75 4.03 4.32 4.88 5.72 3.94 4.24 4.54 5.13 6.01 4.13 4.44 4.76 5.38 6.31 7.82

kg/m 2.64 2.85 3.05 3.44 4.03 2.79 3.01 3.22 3.64 4.26 2.94 3.17 3.39 3.83 4.49 3.09 3.33 3.56 4.03 4.72 3.24 3.49 3.73 4.22 4.95 6.14

cm4 98.6 105.7 112.8 126.8 147.0 125.4 134.6 143.6 161.5 187.4 156.2 167.7 179.1 201.4 233.9 191.3 205.4 219.3 246.8 286.8 230.7 247.8 264.7 298.0 346.5 423.9

cm4 18.7 20.0 21.2 23.6 26.9 18.7 20.0 21.2 23.6 26.9 18.8 20.0 21.2 23.6 26.9 18.8 20.0 21.3 23.6 27.0 18.8 20.0 21.3 23.6 27.0 31.9

cm 5.41 5.40 5.39 5.38 5.35 5.94 5.93 5.92 5.90 5.88 6.46 6.45 6.44 6.42 6.40 6.97 6.96 6.95 6.93 6.91 7.48 7.47 7.46 7.44 7.41 7.36

cm 2.36 2.35 2.34 2.32 2.29 2.30 2.29 2.28 2.26 2.23 2.24 2.23 2.22 2.20 2.17 2.18 2.17 2.16 2.15 2.12 2.13 2.12 2.11 2.10 2.07 2.02

cm3 13.63 14.62 15.60 17.53 20.32 15.69 16.84 17.97 20.20 23.44 17.85 19.16 20.46 23.00 26.71 20.11 21.59 23.06 25.94 30.14 22.47 24.13 25.77 29.01 33.73 41.25

cm3 3.33 3.56 3.79 4.23 4.86 3.32 3.55 3.78 4.22 4.85 3.32 3.55 3.78 4.22 4.85 3.31 3.54 3.77 4.21 4.84 3.31 3.54 3.77 4.21 4.83 5.80

cm4 31.7 34.0 36.2 40.4 46.5 35.4 37.9 40.4 45.1 52.0 39.1 41.8 44.5 49.8 57.4 42.8 45.8 48.7 54.5 62.8 46.4 49.7 52.9 59.2 68.2 82.1

(deg) 19.25 19.20 19.15 19.04 18.89 16.79 16.75 16.70 16.61 16.46 14.81 14.77 14.72 14.64 14.50 13.18 13.14 13.10 13.02 12.90 11.83 11.79 11.75 11.67 11.56 11.37

cm4 0.0178 0.0224 0.0276 0.0403 0.0657 0.0188 0.0236 0.0291 0.0426 0.0695 0.0198 0.0249 0.0307 0.0449 0.0732 0.0208 0.0261 0.0322 0.0471 0.0770 0.0218 0.0274 0.0338 0.0494 0.0808 0.1577

cm6 596 635 673 745 843 742 791 838 927 1051 906 965 1023 1133 1285 1089 1160 1229 1362 1545 1290 1375 1457 1614 1832 2148

2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.6 2.6 2.6 2.7 2.7 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5

PRINCIPAL AXIS PROPERTIES

REDUCED SECTION PROPERTIES

AYRSHIRE ZETA III Design Yield Strength = 350 N/mm2

es mm

SINGLE SECTION D

x

t

B

mm 140 x

top 55

bot 45

155

x

55

45

170

x

55

45

185

x

55

45

200

x

55

45

mm 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 1.30 1.40 1.50 1.70 2.00 2.50

Q 0.98 0.99 0.99 1.00 1.00 0.98 0.99 0.99 1.00 1.00 0.95 0.96 0.98 0.99 1.00 0.91 0.92 0.94 0.96 0.98 0.86 0.88 0.90 0.92 0.95 0.984

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

Iu u

Iv v

0.93 0.95 0.96 0.98 1.00 0.91 0.93 0.94 0.97 0.99 0.89 0.91 0.93 0.95 0.98 0.87 0.89 0.91 0.94 0.97 0.85 0.88 0.89 0.92 0.95 0.99

cm3 12.67 13.83 14.97 17.18 20.32 14.29 15.63 16.94 19.51 23.23 15.92 17.45 18.95 21.89 26.15 17.56 19.29 20.99 24.31 29.15 19.20 21.14 23.04 26.77 32.20 40.85

cm3 3.65 3.91 4.16 4.65 5.35 3.66 3.91 4.17 4.66 5.36 3.66 3.92 4.17 4.66 5.37 3.67 3.92 4.18 4.67 5.38 3.67 3.93 4.18 4.67 5.38 6.47

cm3 3.33 3.56 3.79 4.23 4.86 3.32 3.55 3.78 4.22 4.85 3.32 3.55 3.78 4.22 4.85 3.31 3.54 3.77 4.21 4.84 3.31 3.54 3.77 4.21 4.83 5.80

cm4 91.0 99.7 108.0 124.2 147.0 113.5 124.5 135.2 155.9 185.7 138.7 152.4 165.7 191.6 229.0 166.3 183.1 199.4 231.3 277.3 196.5 216.7 236.4 275.0 330.8 419.8

kN 115.6 125.5 135.0 153.3 179.6 121.7 132.3 142.5 161.9 189.8 124.4 136.2 147.6 169.2 199.7 124.7 137.0 149.1 172.8 206.9 124.7 137.0 149.2 173.6 210.1 269.2

kNm 4.43 4.84 5.24 6.01 7.11 5.00 5.47 5.93 6.83 8.13 5.57 6.11 6.63 7.66 9.15 6.15 6.75 7.35 8.51 10.20 6.72 7.40 8.06 9.37 11.27 14.30

kNm 1.28 1.37 1.46 1.63 1.87 1.28 1.37 1.46 1.63 1.88 1.28 1.37 1.46 1.63 1.88 1.28 1.37 1.46 1.63 1.88 1.28 1.37 1.46 1.64 1.88 2.26

kNm 1.16 1.25 1.33 1.48 1.70 1.16 1.24 1.32 1.48 1.70 1.16 1.24 1.32 1.48 1.70 1.16 1.24 1.32 1.47 1.69 1.16 1.24 1.32 1.47 1.69 2.03

cm4 109.6 117.6 125.4 140.7 162.9 136.1 146.0 155.8 174.9 202.7 166.5 178.7 190.8 214.4 248.7 201.3 216.1 230.7 259.4 301.2 240.5 258.2 275.7 310.2 360.5 440.5

cm4 7.7 8.2 8.7 9.6 11.0 8.1 8.6 9.1 10.2 11.6 8.4 9.0 9.5 10.6 12.1 8.7 9.3 9.9 11.0 12.6 9.0 9.7 10.3 11.4 13.0 15.4

A - 40

B

t

GROSS SECTION PROPERTIES x

HI-SPAN ZED Design Yield Strength = 350 N/mm2

x

D

SINGLE SECTION D

x

B

mm top 150 x 66

bot 60

170

x

66

60

205

x

66

60

230

x

83

75

255

x

83

75

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

Ix y

θ

J

Cw

mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.4 1.4 1.5 1.6 1.8 2.0 2.4 1.6 1.8 2.0 2.4 3.2 1.8 2.0 2.4 3.0 3.2

cm2 4.12 4.41 4.70 5.28 5.86 4.39 4.70 5.02 5.63 6.25 7.46 4.87 5.21 5.56 6.25 6.94 8.29 6.45 7.25 8.05 9.63 12.73 7.69 8.54 10.22 12.71 13.52

kg/m 3.23 3.46 3.69 4.15 4.60 3.45 3.69 3.94 4.42 4.91 5.86 3.82 4.09 4.37 4.91 5.44 6.51 5.06 5.69 6.32 7.56 10.00 6.04 6.71 8.03 9.97 10.62

cm4 147.3 157.5 167.6 187.4 207.0 196.9 210.5 224.0 250.8 277.0 328.3 305.0 326.3 347.4 389.1 430.2 510.5 521.2 584.4 646.7 769.1 1004.1 744.2 823.9 980.4 1207.7 1281.6

cm4 38.2 40.7 43.1 48.0 52.6 38.2 40.7 43.1 48.0 52.6 61.5 38.2 40.7 43.1 48.0 52.6 61.5 78.6 87.6 96.3 113.2 144.1 87.6 96.4 113.2 136.7 144.1

cm 5.98 5.97 5.97 5.96 5.94 6.70 6.69 6.68 6.67 6.66 6.63 7.92 7.91 7.90 7.89 7.88 7.85 8.99 8.98 8.96 8.93 8.88 9.84 9.82 9.79 9.75 9.73

cm 3.04 3.04 3.03 3.01 3.00 2.95 2.94 2.93 2.92 2.90 2.87 2.80 2.79 2.79 2.77 2.76 2.72 3.49 3.47 3.46 3.43 3.36 3.37 3.36 3.33 3.28 3.26

cm3 19.36 20.70 22.02 24.64 27.21 22.86 24.44 26.01 29.11 32.16 38.11 29.41 31.46 33.49 37.52 41.48 49.21 44.65 50.06 55.41 65.88 86.00 57.56 63.72 75.82 93.39 99.10

cm3 5.95 6.34 6.73 7.50 8.24 5.94 6.34 6.73 7.49 8.23 9.65 5.93 6.33 6.72 7.48 8.22 9.64 9.73 10.86 11.96 14.08 18.02 10.85 11.95 14.07 17.06 18.00

cm4 56.2 60.0 63.8 71.1 78.3 64.1 68.5 72.7 81.1 89.3 105.1 78.0 83.3 88.5 98.7 108.7 127.9 147.7 165.1 182.2 215.2 277.3 183.7 202.6 239.4 291.9 308.6

(deg) 22.93 22.89 22.85 22.78 22.70 19.47 19.44 19.40 19.33 19.26 19.12 15.15 15.12 15.09 15.03 14.96 14.84 16.86 16.81 16.75 16.64 16.41 14.61 14.56 14.45 14.30 14.24

cm4 0.0254 0.0313 0.0382 0.0545 0.0750 0.0271 0.0334 0.0407 0.0582 0.0800 0.1385 0.0300 0.0370 0.0451 0.0645 0.0888 0.1539 0.0523 0.0749 0.1031 0.1789 0.4238 0.0794 0.1094 0.1898 0.3711 0.4501

cm6 1429 1521 1611 1787 1956 1882 2004 2123 2356 2580 3002 2843 3028 3210 3563 3904 4548 7106 7909 8687 10173 12869 9954 10936 12813 15413 16224

es mm 1.62 1.62 1.62 1.61 1.61 1.57 1.57 1.57 1.57 1.56 1.55 1.48 1.48 1.48 1.47 1.47 1.46 2.08 2.08 2.07 2.06 2.04 1.99 1.99 1.98 1.96 1.96

REDUCED SECTION PROPERTIES PRINCIPAL

HI-SPAN ZED Design Yield Strength = 350 N/mm2

AXIS PROPERTIES

SINGLE SECTION D

x

B

mm 150 x

66

60

170

x

66

60

205

x

66

60

230

x

83

75

255

x

83

75

t mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.4 1.4 1.5 1.6 1.8 2.0 2.4 1.6 1.8 2.0 2.4 3.2 1.8 2.0 2.4 3.0 3.2

Q 0.62 0.65 0.68 0.72 0.76 0.59 0.61 0.64 0.68 0.71 0.76 0.53 0.56 0.58 0.61 0.64 0.69 0.52 0.57 0.61 0.66 0.74 0.54 0.57 0.63 0.68 0.70

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

Iu u

Iv v

0.86 0.90 0.92 0.95 0.97 0.84 0.87 0.89 0.92 0.94 0.98 0.79 0.83 0.85 0.88 0.91 0.95 0.78 0.84 0.88 0.92 0.98 0.81 0.85 0.90 0.95 0.96

cm3 16.71 18.54 20.25 23.31 26.29 19.15 21.28 23.22 26.85 30.39 37.23 23.30 25.96 28.35 33.04 37.62 46.53 34.71 41.96 48.50 60.72 83.88 46.74 54.10 68.18 88.43 94.99

cm3 6.22 6.64 7.05 7.86 8.65 6.22 6.64 7.05 7.86 8.65 10.16 6.22 6.64 7.05 7.86 8.65 10.16 10.21 11.40 12.57 14.83 19.04 11.40 12.57 14.83 18.03 19.04

cm3 5.95 6.34 6.73 7.50 8.24 5.94 6.34 6.73 7.49 8.23 9.65 5.93 6.33 6.72 7.48 8.22 9.64 9.73 10.86 11.96 14.08 18.02 10.85 11.95 14.07 17.06 18.00

cm4 126.7 139.5 152.1 176.4 199.6 164.2 181.2 197.9 230.3 261.3 320.6 240.0 266.0 291.7 341.5 389.7 482.5 405.1 483.8 560.7 707.2 979.3 596.5 693.7 880.0 1143.5 1228.4

kN 90.0 101.0 112.0 133.7 155.1 90.2 101.2 112.2 133.8 155.2 199.0 90.6 101.7 112.6 134.3 155.6 199.1 117.3 144.0 170.9 223.6 331.6 144.3 171.3 224.0 303.7 331.7

kNm 5.85 6.49 7.09 8.16 9.20 6.70 7.45 8.13 9.40 10.64 13.03 8.16 9.09 9.92 11.56 13.17 16.28 12.15 14.69 16.97 21.25 29.36 16.36 18.93 23.86 30.95 33.25

kNm 2.18 2.32 2.47 2.75 3.03 2.18 2.32 2.47 2.75 3.03 3.56 2.18 2.32 2.47 2.75 3.03 3.56 3.57 3.99 4.40 5.19 6.66 3.99 4.40 5.19 6.31 6.66

kNm 2.08 2.22 2.36 2.62 2.88 2.08 2.22 2.35 2.62 2.88 3.38 2.08 2.22 2.35 2.62 2.88 3.37 3.41 3.80 4.19 4.93 6.31 3.80 4.18 4.92 5.97 6.30

cm4 171.1 182.8 194.4 217.3 239.7 219.5 234.7 249.7 279.2 308.3 364.7 326.2 348.8 371.2 415.6 459.2 544.4 566.0 634.2 701.6 833.4 1085.7 792.1 876.6 1042.1 1282.1 1359.9

cm4 14.4 15.3 16.3 18.1 19.9 15.5 16.5 17.5 19.5 21.4 25.1 17.0 18.2 19.3 21.5 23.6 27.6 33.8 37.7 41.5 48.9 62.4 39.7 43.7 51.5 62.3 65.8

A - 41

B

t

GROSS SECTION PROPERTIES METSEC ZED 2 Design Yield Strength = 350 N/mm

x

x

D

SINGLE SECTION D

x

B

mm 142 x 57.5

172

x

62.5

202

x

62.5

232

x

72.5

262

x

76.0

302

x

86.0

342

x

96.0

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

Ix y

θ

J

Cw

mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2

cm2 3.91 4.19 4.47 5.02 5.56 4.46 4.78 5.09 5.72 6.35 7.27 7.89 5.21 5.56 6.25 6.94 7.95 8.62 6.34 7.13 7.92 9.08 9.85 7.78 8.64 9.92 10.76 12.44 11.32 12.29 14.21 13.77 15.93 17.54

kg/m 3.07 3.29 3.51 3.94 4.37 3.50 3.75 4.00 4.49 4.98 5.71 6.19 4.09 4.37 4.91 5.44 6.24 6.77 4.98 5.60 6.21 7.13 7.74 6.11 6.78 7.79 8.45 9.76 8.89 9.65 11.16 10.81 12.50 13.77

cm4 123.9 132.4 140.9 157.5 173.9 203.8 217.9 231.9 259.6 286.9 326.9 353.0 317.7 338.2 378.8 418.8 477.7 516.2 510.8 572.7 633.7 723.8 782.8 784.2 868.2 992.3 1073.8 1233.6 1501.9 1626.3 1871.1 2330.1 2683.8 2944.4

cm4 31.8 33.9 35.9 39.9 43.7 39.4 42.0 44.5 49.5 54.4 61.4 65.8 42.0 44.5 49.5 54.4 61.4 65.8 65.7 73.1 80.4 90.9 97.7 82.9 91.2 103.2 110.9 125.7 146.8 158.0 179.6 212.4 241.9 263.1

cm 5.63 5.62 5.61 5.60 5.59 6.76 6.75 6.75 6.74 6.72 6.70 6.69 7.81 7.80 7.78 7.77 7.75 7.74 8.98 8.96 8.95 8.93 8.91 10.04 10.02 10.00 9.99 9.96 11.52 11.50 11.47 13.01 12.98 12.96

cm 2.85 2.84 2.83 2.82 2.80 2.97 2.96 2.96 2.94 2.93 2.90 2.89 2.84 2.83 2.82 2.80 2.78 2.76 3.22 3.20 3.19 3.16 3.15 3.26 3.25 3.23 3.21 3.18 3.60 3.59 3.55 3.93 3.90 3.87

cm3 17.25 18.43 19.61 21.92 24.20 23.45 25.08 26.69 29.88 33.02 37.62 40.63 31.16 33.18 37.16 41.09 46.86 50.63 43.48 48.74 53.93 61.59 66.62 59.04 65.36 74.70 80.83 92.85 98.25 106.39 122.40 134.79 155.24 170.32

cm3 5.44 5.80 6.16 6.86 7.53 6.21 6.62 7.03 7.83 8.61 9.74 10.46 6.62 7.02 7.82 8.60 9.73 10.45 8.87 9.90 10.90 12.35 13.29 10.66 11.74 13.31 14.33 16.29 16.77 18.07 20.58 21.79 24.86 27.09

cm4 47.0 50.1 53.2 59.3 65.3 66.3 70.8 75.2 83.9 92.4 104.7 112.7 83.8 89.0 99.4 109.4 124.1 133.6 132.5 148.1 163.3 185.5 200.0 182.3 201.1 228.6 246.5 281.1 333.9 360.4 412.0 497.7 569.8 622.2

(deg) 22.78 22.74 22.70 22.63 22.55 19.44 19.41 19.37 19.30 19.24 19.13 19.06 15.65 15.62 15.56 15.49 15.40 15.34 15.39 15.33 15.28 15.19 15.14 13.73 13.68 13.61 13.56 13.46 13.12 13.07 12.99 12.59 12.51 12.45

cm4 0.0241 0.0298 0.0363 0.0518 0.0712 0.0275 0.0339 0.0413 0.0591 0.0813 0.1238 0.1591 0.0370 0.0451 0.0645 0.0888 0.1354 0.1740 0.0514 0.0736 0.1014 0.1546 0.1988 0.0804 0.1106 0.1689 0.2171 0.3392 0.1927 0.2479 0.3875 0.2777 0.4343 0.5837

cm6 1098 1168 1237 1371 1500 2021 2152 2281 2532 2774 3120 3339 3061 3245 3603 3949 4445 4760 6227 6928 7606 8584 9210 10128 11128 12572 13498 15263 23886 25685 29135 44418 50497 54856

A - 42

es mm 1.21 1.24 1.26 1.31 1.36 1.19 1.21 1.24 1.28 1.33 1.40 1.45 1.19 1.22 1.27 1.31 1.39 1.43 1.59 1.64 1.68 1.76 1.80 1.79 1.83 1.91 1.95 2.05 1.87 1.92 2.01 1.87 1.96 2.03

B

t

REDUCED SECTION PROPERTIES METSEC ZED 2 Design Yield Strength = 350 N/mm

x

x

D

PRINCIPAL AXIS PROPERTIES

SINGLE SECTION D

x

B

mm 142 x 57.5

172

x

62.5

202

x

62.5

232

x

72.5

262

x

76.0

302

x

86.0

342

x

96.0

t mm 1.4 1.5 1.6 1.8 2.0 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.9 2.3 2.5 2.9 2.5 2.9 3.2

Q 0.66 0.69 0.71 0.74 0.78 0.59 0.62 0.64 0.68 0.71 0.75 0.77 0.57 0.59 0.62 0.65 0.68 0.71 0.53 0.58 0.61 0.65 0.67 0.54 0.57 0.61 0.63 0.66 0.57 0.59 0.62 0.55 0.59 0.61

po / p y

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

Iu u

Iv v

0.89 0.92 0.93 0.96 0.98 0.83 0.87 0.89 0.92 0.94 0.97 0.98 0.83 0.85 0.88 0.91 0.94 0.96 0.80 0.84 0.88 0.91 0.93 0.81 0.84 0.88 0.90 0.94 0.84 0.87 0.91 0.83 0.87 0.90

cm3 15.43 16.92 18.30 20.99 23.61 19.54 21.70 23.77 27.50 31.13 36.42 39.87 25.76 28.22 32.87 37.40 44.05 48.38 34.62 41.17 47.24 56.12 61.91 47.68 55.08 65.93 73.01 86.85 82.86 92.32 110.82 112.06 135.83 153.24

cm3 5.65 6.03 6.40 7.13 7.84 6.42 6.86 7.28 8.12 8.94 10.12 10.89 6.86 7.28 8.12 8.94 10.12 10.89 9.23 10.31 11.36 12.90 13.89 11.14 12.28 13.95 15.03 17.12 17.46 18.83 21.49 22.59 25.82 28.16

cm3 5.44 5.80 6.16 6.86 7.53 6.21 6.62 7.03 7.83 8.61 9.74 10.46 6.62 7.02 7.82 8.60 9.73 10.45 8.87 9.90 10.90 12.35 13.29 10.66 11.74 13.31 14.33 16.29 16.77 18.07 20.58 21.79 24.86 27.09

cm4 109.9 120.4 130.7 150.5 169.5 169.7 187.3 204.6 238.0 270.0 316.4 346.4 260.6 285.5 334.0 380.8 448.9 493.2 403.6 479.2 552.6 658.6 727.1 626.4 727.7 874.3 969.2 1153.7 1260.6 1407.8 1693.1 1926.4 2344.3 2647.6

kN 90.4 100.6 110.8 130.8 151.0 92.1 103.2 114.2 135.9 157.4 190.2 213.0 103.5 114.6 136.3 157.7 190.4 213.0 118.5 143.8 168.7 205.4 230.0 145.8 172.0 210.5 236.0 288.3 224.1 252.9 310.1 265.0 328.6 376.0

kNm 5.40 5.92 6.41 7.35 8.26 6.84 7.59 8.32 9.62 10.89 12.75 13.96 9.02 9.88 11.50 13.09 15.42 16.93 12.12 14.41 16.54 19.64 21.67 16.69 19.28 23.08 25.55 30.40 29.00 32.31 38.79 39.22 47.54 53.63

kNm 1.98 2.11 2.24 2.50 2.74 2.25 2.40 2.55 2.84 3.13 3.54 3.81 2.40 2.55 2.84 3.13 3.54 3.81 3.23 3.61 3.98 4.52 4.86 3.90 4.30 4.88 5.26 5.99 6.11 6.59 7.52 7.91 9.04 9.86

kNm 1.91 2.03 2.16 2.40 2.64 2.17 2.32 2.46 2.74 3.01 3.41 3.66 2.32 2.46 2.74 3.01 3.41 3.66 3.11 3.46 3.81 4.32 4.65 3.73 4.11 4.66 5.01 5.70 5.87 6.32 7.20 7.63 8.70 9.48

cm4 143.6 153.4 163.1 182.3 201.0 227.2 242.8 258.4 289.0 319.1 363.2 392.0 341.1 363.1 406.5 449.2 511.9 552.8 547.3 613.3 678.3 774.1 836.9 828.7 917.2 1047.7 1133.2 1300.9 1579.7 1710.0 1966.1 2441.2 2810.2 3081.8

cm4 12.1 12.8 13.6 15.2 16.6 16.0 17.1 18.1 20.2 22.1 25.0 26.9 18.5 19.7 21.9 24.0 27.2 29.2 29.2 32.5 35.8 40.6 43.6 38.3 42.2 47.8 51.5 58.5 68.9 74.3 84.6 101.2 115.5 125.8

A - 43

B

t

GROSS SECTION PROPERTIES ALBION ZED 2 Design Yield Strength = 350 N/mm

x

x

D

SINGLE SECTION D

x

B

mm 120 x

50

145

x

50

145

x

62.5

175

x

50

175

x

62.5

200

x

62.5

200

x

75

225

x

62.5

225

x

75

240

x

75

300

x

75

t

Area

Weight

Ix x

Iy y

rx x

ry y

Zx x

Zy y

Ix y

θ

J

Cw

mm 1.5 1.6 1.5 1.6 1.4 1.5 1.6 1.8 2.0 1.5 1.6 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.5 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.8 2.3 2.5 2.8

cm2 3.51 3.74 3.87 4.13 4.09 4.38 4.67 5.25 5.82 4.31 4.59 4.50 4.82 5.14 5.78 6.41 7.34 7.96 5.18 5.53 6.22 6.90 8.57 6.66 7.39 8.47 9.19 5.92 6.66 7.39 8.47 9.19 7.10 7.88 9.04 9.80 7.36 8.17 9.38 10.17 11.36 10.73 11.65 13.02

kg/m 2.75 2.93 3.04 3.24 3.21 3.44 3.67 4.12 4.57 3.38 3.61 3.53 3.78 4.03 4.53 5.03 5.76 6.25 4.07 4.34 4.88 5.41 6.73 5.22 5.80 6.65 7.21 4.65 5.22 5.80 6.65 7.21 5.57 6.18 7.09 7.70 5.78 6.41 7.36 7.99 8.92 8.42 9.14 10.22

cm4 79.3 84.3 123.4 131.2 137.1 146.6 156.0 174.5 192.7 192.3 204.6 212.2 226.9 241.5 270.4 298.8 340.5 367.8 310.4 330.4 370.1 409.2 504.2 413.3 457.2 521.9 564.2 436.6 489.2 541.1 617.5 667.5 544.0 602.0 687.5 743.6 633.0 700.6 800.4 865.8 962.4 1361.1 1473.3 1639.2

cm4 20.2 21.4 20.2 21.4 39.4 42.0 44.5 49.5 54.3 20.2 21.4 39.4 42.0 44.5 49.5 54.3 61.3 65.8 42.0 44.5 49.5 54.3 65.8 79.9 87.8 99.4 106.8 44.5 49.5 54.4 61.3 65.8 79.9 87.8 99.4 106.8 79.9 87.8 99.4 106.8 117.6 99.4 106.8 117.6

cm 4.76 4.75 5.65 5.64 5.79 5.78 5.78 5.77 5.75 6.68 6.67 6.87 6.86 6.86 6.84 6.83 6.81 6.80 7.74 7.73 7.72 7.70 7.67 7.88 7.87 7.85 7.84 8.59 8.57 8.56 8.54 8.52 8.76 8.74 8.72 8.71 9.27 9.26 9.24 9.23 9.20 11.26 11.25 11.22

cm 2.40 2.39 2.29 2.28 3.10 3.09 3.09 3.07 3.06 2.17 2.16 2.96 2.95 2.94 2.93 2.91 2.89 2.87 2.84 2.84 2.82 2.81 2.77 3.46 3.45 3.42 3.41 2.74 2.73 2.71 2.69 2.68 3.35 3.34 3.32 3.30 3.29 3.28 3.26 3.24 3.22 3.04 3.03 3.01

cm3 13.23 14.06 17.02 18.10 18.92 20.23 21.52 24.07 26.58 21.98 23.39 24.26 25.94 27.61 30.91 34.16 38.93 42.04 31.04 33.05 37.02 40.93 50.43 41.34 45.73 52.20 56.43 38.82 43.49 48.11 54.90 59.34 48.37 53.52 61.13 66.11 52.76 58.39 66.71 72.16 80.21 90.75 98.24 109.30

cm3 4.11 4.35 4.11 4.35 6.37 6.80 7.22 8.04 8.84 4.11 4.35 6.37 6.80 7.22 8.04 8.84 10.00 10.74 6.80 7.22 8.04 8.84 10.74 10.78 11.87 13.46 14.49 7.22 8.04 8.84 10.00 10.74 10.78 11.87 13.46 14.49 10.78 11.87 13.46 14.49 15.98 13.46 14.49 15.98

cm4 30.1 31.9 36.7 38.9 55.3 59.0 62.7 70.0 77.0 44.7 47.4 67.5 72.1 76.6 85.5 94.1 106.7 114.8 82.9 88.1 98.3 108.3 132.2 134.6 148.4 168.6 181.8 99.7 111.2 122.5 139.0 149.6 152.1 167.8 190.7 205.6 162.7 179.4 203.9 219.9 243.1 256.9 277.0 306.4

(deg) 22.74 22.69 17.72 17.67 24.26 24.23 24.19 24.12 24.04 13.72 13.68 19.00 18.96 18.93 18.86 18.80 18.69 18.63 15.86 15.83 15.77 15.70 15.55 19.45 19.39 19.30 19.24 13.48 13.42 13.36 13.28 13.22 16.62 16.57 16.48 16.42 15.23 15.18 15.10 15.04 14.96 11.08 11.03 10.97

cm4 0.0249 0.0303 0.0275 0.0335 0.0252 0.0311 0.0379 0.0542 0.0745 0.0306 0.0373 0.0277 0.0342 0.0417 0.0596 0.0820 0.1250 0.1606 0.0368 0.0449 0.0642 0.0883 0.1730 0.0687 0.0946 0.1442 0.1854 0.0480 0.0687 0.0946 0.1442 0.1854 0.0733 0.1009 0.1539 0.1978 0.0760 0.1046 0.1596 0.2052 0.2884 0.1827 0.2350 0.3305

cm6 489 517 742 784 1398 1489 1578 1750 1916 1123 1188 2108 2245 2380 2642 2894 3256 3485 3008 3189 3542 3882 4679 5446 5980 6748 7240 4129 4587 5029 5662 6066 7070 7765 8768 9410 8157 8960 10119 10861 11931 16583 17807 19573

A - 44

es mm 0.36 0.39 0.36 0.39 0.34 0.37 0.39 0.44 0.49 0.36 0.39 0.34 0.36 0.39 0.44 0.49 0.57 0.61 0.36 0.39 0.44 0.49 0.61 0.44 0.49 0.57 0.61 0.39 0.44 0.49 0.57 0.61 0.44 0.49 0.57 0.61 0.44 0.49 0.57 0.61 0.69 0.56 0.61 0.69

B

t

REDUCED SECTION PROPERTIES ALBION ZED 2 Design Yield Strength = 350 N/mm

x

x

D

PRINCIPAL AXIS PROPERTIES

SINGLE SECTION D

x

B

mm 120 x

50

145

x

50

145

x

62.5

175

x

50

175

x

62.5

200

x

62.5

200

x

75

225

x

62.5

225

x

75

240

x

75

300

x

75

t mm 1.5 1.6 1.5 1.6 1.4 1.5 1.6 1.8 2.0 1.5 1.6 1.4 1.5 1.6 1.8 2.0 2.3 2.5 1.5 1.6 1.8 2.0 2.5 1.8 2.0 2.3 2.5 1.6 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 1.8 2.0 2.3 2.5 2.8 2.3 2.5 2.8

Q 0.74 0.76 0.67 0.69 0.64 0.67 0.70 0.74 0.77 0.60 0.62 0.59 0.61 0.64 0.67 0.70 0.74 0.76 0.57 0.59 0.63 0.65 0.71 0.62 0.66 0.70 0.73 0.56 0.59 0.61 0.64 0.66 0.58 0.62 0.66 0.68 0.56 0.60 0.64 0.66 0.69 0.56 0.58 0.60

po / p y

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

Iu u

Iv v

0.95 0.96 0.91 0.93 0.85 0.88 0.91 0.94 0.97 0.87 0.89 0.81 0.84 0.87 0.91 0.94 0.96 0.98 0.81 0.84 0.88 0.91 0.96 0.86 0.90 0.94 0.95 0.81 0.85 0.88 0.92 0.94 0.83 0.87 0.91 0.93 0.82 0.86 0.90 0.92 0.94 0.85 0.87 0.90

cm3 12.5 13.5 15.5 16.8 16.1 17.8 19.5 22.7 25.7 19.1 20.8 19.7 21.9 24.0 28.1 32.0 37.6 41.1 25.3 27.8 32.6 37.3 48.3 35.4 41.0 48.9 53.9 31.4 37.1 42.5 50.4 55.5 40.2 46.7 55.9 61.7 43.0 50.0 60.1 66.5 75.8 76.7 85.5 98.2

cm3 4.1 4.3 4.1 4.3 6.3 6.8 7.2 8.0 8.8 4.1 4.3 6.3 6.8 7.2 8.0 8.8 9.9 10.7 6.8 7.2 8.0 8.8 10.7 10.7 11.8 13.4 14.4 7.2 8.0 8.8 9.9 10.7 10.7 11.8 13.4 14.4 10.7 11.8 13.4 14.4 15.9 13.4 14.4 15.9

cm3 4.11 4.35 4.11 4.35 6.37 6.80 7.22 8.04 8.84 4.11 4.35 6.37 6.80 7.22 8.04 8.84 10.00 10.74 6.80 7.22 8.04 8.84 10.74 10.78 11.87 13.46 14.49 7.22 8.04 8.84 10.00 10.74 10.78 11.87 13.46 14.49 10.78 11.87 13.46 14.49 15.98 13.46 14.49 15.98

cm4 75.4 81.3 112.9 122.1 119.2 131.1 142.8 165.4 186.9 167.8 182.1 176.1 194.3 212.2 246.9 280.3 328.7 360.0 255.6 279.9 327.2 373.0 482.7 358.8 412.6 489.8 539.3 355.9 418.2 478.7 567.0 624.5 457.6 528.1 629.5 694.9 522.1 603.8 721.8 798.0 909.5 1152.0 1282.2 1473.6

kN 90.4 98.9 90.6 99.0 91.9 103.0 114.1 135.8 157.4 90.9 99.3 92.2 103.3 114.4 136.1 157.5 190.2 213.0 103.6 114.7 136.4 157.8 213.0 144.7 170.6 208.5 233.8 115.0 136.7 158.1 190.7 213.2 145.1 171.0 208.8 234.0 145.3 171.2 209.0 234.2 272.9 210.1 235.3 273.8

kNm 4.39 4.73 5.44 5.89 5.62 6.23 6.82 7.95 9.01 6.70 7.28 6.91 7.67 8.41 9.84 11.20 13.15 14.40 8.85 9.73 11.42 13.04 16.90 12.38 14.34 17.11 18.86 11.01 12.98 14.88 17.64 19.43 14.07 16.33 19.55 21.61 15.06 17.52 21.02 23.26 26.53 26.85 29.91 34.39

kNm 1.43 1.51 1.43 1.51 2.22 2.36 2.51 2.80 3.07 1.43 1.51 2.22 2.36 2.51 2.80 3.07 3.48 3.74 2.36 2.51 2.80 3.07 3.74 3.75 4.13 4.68 5.04 2.51 2.80 3.07 3.48 3.74 3.75 4.13 4.68 5.04 3.75 4.13 4.68 5.04 5.56 4.68 5.04 5.56

kNm 1.44 1.52 1.44 1.52 2.23 2.38 2.53 2.81 3.09 1.44 1.52 2.23 2.38 2.53 2.81 3.09 3.50 3.76 2.38 2.53 2.81 3.09 3.76 3.77 4.16 4.71 5.07 2.53 2.81 3.09 3.50 3.76 3.77 4.16 4.71 5.07 3.77 4.16 4.71 5.07 5.59 4.71 5.07 5.59

cm4 91.9 97.7 135.1 143.6 162.1 173.2 184.2 205.8 227.0 203.2 216.1 235.5 251.7 267.8 299.6 330.8 376.6 406.5 333.9 355.4 397.9 439.6 541.0 460.8 509.4 580.9 627.6 460.5 515.8 570.2 650.3 702.6 589.4 651.9 744.0 804.2 677.3 749.3 855.4 924.9 1027.3 1411.4 1527.4 1698.6

cm4 7.6 8.1 8.5 9.0 14.4 15.4 16.3 18.2 20.0 9.3 9.9 16.1 17.2 18.2 20.3 22.3 25.2 27.1 18.4 19.5 21.7 23.9 29.0 32.3 35.6 40.3 43.4 20.6 23.0 25.2 28.5 30.6 34.4 37.9 43.0 46.2 35.6 39.2 44.4 47.7 52.6 49.1 52.8 58.2

A - 45

B top

t

GROSS SECTION PROPERTIES

x

STRUCTURAL SECTIONS ULTRAZED Design Yield Strength = 350 N/mm2

B bot

SINGLE SECTION D 145

x

B

mm top x 62.5

D

x

bot 56.5

170

x

67.5

61.5

200

x

76.0

71.0

225

x

76.0

71.0

255

x

76.0

71.0

285

x

76.0

71.0

t

Area

mm 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.5 1.6 2.0 1.6 1.8 2.0 2.5 3.0 1.8 2.0 2.3 2.5 3.0

cm 3.60 3.91 4.22 4.84 5.45 6.07 4.01 4.35 4.70 5.38 6.07 6.76 4.66 5.05 5.45 6.24 7.03 7.82 5.79 6.21 6.63 8.31 7.10 8.00 8.90 11.14 13.36 8.53 9.49 10.92 11.88 14.25

2

Weight

Ix x

kg/m 2.83 3.07 3.31 3.80 4.28 4.76 3.15 3.42 3.69 4.22 4.76 5.30 3.66 3.97 4.28 4.90 5.52 6.14 4.55 4.88 5.21 6.52 5.57 6.28 6.99 8.74 10.49 6.70 7.45 8.57 9.32 11.19

cm 120.4 130.5 140.5 160.5 180.2 199.9 182.6 197.9 213.2 243.7 273.9 303.9 289.7 314.0 338.2 386.2 433.9 481.2 445.5 477.3 508.9 634.5 683.7 768.6 852.9 1061.2 1266.1 1001.2 1111.4 1275.3 1383.8 1652.1

4

Iy y 4

cm 29.6 32.1 34.5 39.5 44.3 49.2 36.2 39.2 42.3 48.3 54.3 60.2 56.2 60.9 65.6 74.7 83.8 92.8 65.6 70.2 74.8 92.8 74.8 83.9 92.8 114.8 136.1 83.9 92.8 106.1 114.8 136.1

rx x

ry y

Zx x

cm 5.78 5.78 5.77 5.76 5.75 5.74 6.75 6.74 6.74 6.73 6.72 6.71 7.89 7.88 7.88 7.87 7.85 7.84 8.77 8.76 8.76 8.74 9.81 9.80 9.79 9.76 9.73 10.83 10.82 10.81 10.79 10.77

cm 2.87 2.86 2.86 2.86 2.85 2.85 3.00 3.00 3.00 3.00 2.99 2.99 3.48 3.47 3.47 3.46 3.45 3.44 3.36 3.36 3.36 3.34 3.24 3.24 3.23 3.21 3.19 3.14 3.13 3.12 3.11 3.09

cm 16.35 17.72 19.08 21.79 24.48 27.15 21.18 22.97 24.74 28.28 31.79 35.29 28.69 31.09 33.49 38.25 42.97 47.65 39.24 42.04 44.84 55.90 53.18 59.79 66.35 82.57 98.52 69.73 77.41 88.83 96.39 115.10

3

Zy y 3

cm 4.45 4.83 5.20 5.94 6.67 7.40 5.06 5.49 5.91 6.75 7.59 8.42 6.90 7.47 8.04 9.18 10.29 11.40 8.04 8.60 9.17 11.39 9.16 10.28 11.38 14.09 16.71 10.27 11.37 13.00 14.08 16.70

Ix y 4

cm 45.5 49.3 53.1 60.6 68.1 75.5 61.2 66.3 71.4 81.6 91.7 101.7 97.9 106.1 114.2 130.4 146.3 162.1 129.4 138.6 147.7 183.7 168.6 189.2 209.7 260.0 309.0 212.6 235.6 269.7 292.2 347.4

θ

J

(deg) 22.53 22.53 22.53 22.53 22.54 22.54 19.94 19.94 19.94 19.93 19.93 19.92 20.00 19.99 19.98 19.97 19.95 19.93 17.14 17.13 17.12 17.08 14.48 14.46 14.44 14.39 14.34 12.44 12.42 12.38 12.36 12.31

cm 0.0162 0.0207 0.0260 0.0392 0.0563 0.0777 0.0180 0.0230 0.0289 0.0437 0.0627 0.0865 0.0209 0.0267 0.0336 0.0506 0.0726 0.1002 0.0357 0.0441 0.0538 0.1064 0.0576 0.0826 0.1140 0.2247 0.3903 0.0881 0.1215 0.1859 0.2395 0.4162

Cw 4

6

cm 881 954 1027 1171 1314 1455 1539 1668 1795 2048 2299 2547 3174 3434 3691 4201 4700 5192 4823 5158 5490 6790 7306 8180 9042 11138 13150 10553 11667 13306 14379 16986

es mm 2.6 2.6 2.6 2.6 2.6 2.6 2.5 2.5 2.4 2.5 2.5 2.4 2.1 2.1 2.1 2.1 2.2 2.0 2.1 2.0 2.1 1.9 2.0 2.0 1.9 1.8 1.8 1.9 1.8 1.9 1.7 1.8

B top

t

REDUCED SECTION PROPERTIES x

STRUCTURAL SECTIONS ULTRAZED Design Yield Strength = 350 N/mm2

145

x

B

mm top x 62.5

D

PRINCIPAL AXIS PROPERTIES

B bot

SINGLE SECTION D

x

t bot 56.5

170

x

67.5

61.5

200

x

76.0

71.0

225

x

76.0

71.0

255

x

76.0

71.0

285

x

76.0

71.0

mm 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.2 1.3 1.4 1.6 1.8 2.0 1.4 1.5 1.6 2.0 1.6 1.8 2.0 2.5 3.0 1.8 2.0 2.3 2.5 3.0

Q 0.84 0.86 0.87 0.89 0.91 0.94 0.78 0.79 0.81 0.83 0.85 0.87 0.83 0.84 0.86 0.89 0.91 0.93 0.81 0.82 0.83 0.87 0.78 0.80 0.81 0.85 0.89 0.75 0.76 0.79 0.80 0.84

po / py

Zxr

Zy1r

Zy2r

Ixr

Pc

Mcx

Mcy1

Mcy2x

Iu u

Iv v

0.90 0.92 0.94 0.96 0.98 1.00 0.86 0.88 0.90 0.93 0.95 0.97 0.83 0.85 0.88 0.91 0.94 0.96 0.85 0.87 0.88 0.93 0.84 0.88 0.90 0.95 0.98 0.84 0.87 0.90 0.92 0.96

cm3 14.78 16.34 17.89 20.97 24.03 27.06 18.15 20.19 22.22 26.25 30.25 34.21 23.70 26.56 29.32 34.79 40.18 45.52 33.19 36.41 39.60 52.22 44.82 52.36 59.83 78.29 96.44 58.54 67.29 80.30 88.90 110.19

cm3 4.67 5.07 5.46 6.24 7.01 7.77 5.30 5.75 6.19 7.08 7.96 8.83 7.15 7.74 8.33 9.51 10.67 11.81 8.34 8.93 9.52 11.82 9.52 10.69 11.83 14.65 17.39 10.69 11.84 13.55 14.66 17.40

cm3 4.45 4.83 5.20 5.94 6.67 7.40 5.06 5.49 5.91 6.75 7.59 8.42 6.90 7.47 8.04 9.18 10.29 11.40 8.04 8.60 9.17 11.39 9.16 10.28 11.38 14.09 16.71 10.27 11.37 13.00 14.08 16.70

cm4 108.6 120.2 131.7 154.4 176.9 199.2 155.8 173.6 191.3 226.1 260.5 294.7 237.4 266.2 294.6 350.6 405.5 459.5 375.2 412.2 448.8 592.7 575.4 672.8 769.0 1006.3 1239.4 840.3 966.0 1152.8 1276.3 1581.7

kN 106.1 117.0 128.1 150.9 174.6 198.9 109.4 121.0 132.6 156.2 180.7 206.2 134.6 149.5 164.3 193.8 223.4 253.6 164.4 179.1 193.8 253.6 194.0 223.5 253.7 332.9 417.9 223.9 253.9 300.6 332.9 418.0

kNm 5.17 5.72 6.26 7.34 8.41 9.47 6.35 7.07 7.78 9.19 10.59 11.97 8.30 9.30 10.26 12.18 14.06 15.93 11.62 12.74 13.86 18.28 15.69 18.33 20.94 27.40 33.76 20.49 23.55 28.10 31.12 38.57

kNm 1.64 1.77 1.91 2.18 2.45 2.72 1.86 2.01 2.17 2.48 2.78 3.09 2.50 2.71 2.92 3.33 3.73 4.13 2.92 3.13 3.33 4.14 3.33 3.74 4.14 5.13 6.09 3.74 4.15 4.74 5.13 6.09

kNm 1.56 1.69 1.82 2.08 2.34 2.59 1.77 1.92 2.07 2.36 2.66 2.95 2.42 2.62 2.82 3.21 3.60 3.99 2.81 3.01 3.21 3.99 3.21 3.60 3.98 4.93 5.85 3.59 3.98 4.55 4.93 5.85

cm4 139.3 150.9 162.6 185.6 208.5 231.2 204.8 222.0 239.1 273.3 307.1 340.8 325.3 352.6 379.7 433.6 487.0 539.9 485.4 520.0 554.4 690.9 727.2 817.4 906.9 1127.9 1345.0 1048.1 1163.2 1334.5 1447.8 1727.9

cm4 10.7 11.6 12.5 14.3 16.1 17.9 14.0 15.2 16.3 18.7 21.0 23.4 20.6 22.3 24.0 27.4 30.7 34.0 25.6 27.5 29.3 36.4 31.2 35.0 38.8 48.1 57.1 37.0 41.0 46.9 50.8 60.3

B

t

GROSS SECTION PROPERTIES GENERIC Z SECTIONS Design Yield Strength = 280 N/mm2

x

x

D

SINGLE SECTION D

B

x

mm top 100 x 55 125 x 55

bot 45 45

150

x

58

49

165

x

58

49

180

x

58

49

200

x

58

49

220

x

58

49

250 300

x x

76 94

68 86

t

Area

mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

cm 2.65 2.94 3.91 4.41 4.95 4.64 5.21 4.87 5.48 6.07 5.19 5.83 6.47 6.86 8.19 9.78 11.81 14.69

Weight

2

Ix x

Iy y

4 cm4 cm kg/m 2.08 42.8 18.2 2.30 71.7 18.2 3.07 94.5 23.7 3.46 151.1 28.2 3.88 169.0 31.3 3.64 189.1 28.2 4.09 211.5 31.3 3.83 232.3 28.2 4.30 259.9 31.3 4.77 287.1 34.3 4.07 298.5 28.2 4.58 334.1 31.3 5.08 369.1 34.3 5.38 464.1 34.3 6.43 550.5 39.9 7.67 885.0 87.9 9.27 1557.5 161.0 11.53 1923.2 195.2

rx x

ry y

cm 4.02 4.94 4.92 5.86 5.84 6.38 6.37 6.90 6.89 6.88 7.59 7.57 7.56 8.23 8.20 9.51 11.49 11.44

cm 2.62 2.49 2.46 2.53 2.51 2.46 2.45 2.40 2.39 2.37 2.33 2.32 2.30 2.24 2.21 3.00 3.69 3.65

Zx x

Zy y

3 cm3 cm 8.29 3.48 11.17 3.47 14.72 4.52 19.75 5.05 22.08 5.62 22.49 5.05 25.15 5.61 25.35 5.04 28.37 5.61 31.33 6.15 29.35 5.04 32.86 5.60 36.30 6.14 41.54 6.14 49.26 7.17 70.05 11.92 102.94 17.53 127.10 21.33

Ix y

θ

cm4 21.2 27.0 35.3 48.2 53.6 53.3 59.3 58.4 65.0 71.5 65.2 72.6 79.9 88.2 103.6 198.8 357.3 436.9

(deg) 29.96 22.63 22.46 19.03 18.96 16.75 16.68 14.89 14.82 14.75 12.88 12.82 12.75 11.16 11.04 13.26 13.55 13.41

REDUCED SECTION PROPERTIES

J

Cw

4 cm6 cm 0.0119 297 0.0132 479 0.0317 619 0.0357 1086 0.0511 1202 0.0376 1338 0.0538 1481 0.0395 1618 0.0565 1792 0.0778 1959 0.0421 2038 0.0602 2258 0.0828 2469 0.0878 3042 0.1521 3530 0.1815 9774 0.2192 25520 0.4290 30844

es mm 2.65 2.63 2.63 2.18 2.17 2.13 2.13 2.09 2.08 2.07 2.02 2.01 2.00 1.93 1.91 1.55 1.46 1.44

PRINCIPAL AXIS PROPERTIES

GENERIC Z SECTIONS Design Yield Strength = 280 N/mm2 SINGLE SECTION D

B

x

t

mm top 100 x 55 125 x 55

bot 45 45

150

x

58

49

165

x

58

49

180

x

58

49

200

x

58

49

220

x

58

49

250 300

x x

76 94

68 86

mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

p o / py

Q 0.76 0.68 0.78 0.71 0.74 0.68 0.71 0.64 0.67 0.70 0.61 0.63 0.66 0.62 0.67 0.65 0.60 0.66

0.97 0.93 0.98 0.95 0.97 0.93 0.95 0.91 0.94 0.96 0.89 0.91 0.94 0.92 0.95 0.93 0.89 0.94

Zxr

Zy1r

3 cm3 cm 7.97 3.81 10.28 3.81 14.39 4.98 18.69 5.52 21.37 6.14 20.88 5.52 23.94 6.14 23.08 5.52 26.54 6.14 29.93 6.75 26.01 5.52 30.03 6.14 33.98 6.75 38.08 6.75 46.94 7.91 65.05 12.76 91.30 18.54 119.13 22.59

Zy2r

Ixr

Pc

cm3 cm4 kN 3.48 40.7 56.2 3.47 65.4 56.3 4.52 92.3 84.9 5.05 142.9 87.7 5.62 163.5 103.1 5.05 175.4 87.8 5.61 201.3 103.1 5.04 211.3 87.9 5.61 243.1 103.2 6.15 274.3 119.1 5.04 264.2 88.1 5.60 305.3 103.3 6.14 345.5 119.2 6.14 425.5 119.4 7.17 524.5 153.4 11.92 821.6 177.9 17.53 1377.9 199.7 21.33 1802.2 271.7

Mcx

Mcy1

Mcy2x

Iu u

kNm 2.23 2.88 4.03 5.23 5.98 5.85 6.70 6.46 7.43 8.38 7.28 8.41 9.51 10.66 13.14 18.21 25.56 33.36

kNm 1.07 1.07 1.40 1.54 1.72 1.54 1.72 1.54 1.72 1.89 1.54 1.72 1.89 1.89 2.21 3.57 5.19 6.33

kNm 0.97 0.97 1.27 1.42 1.57 1.41 1.57 1.41 1.57 1.72 1.41 1.57 1.72 1.72 2.01 3.34 4.91 5.97

cm 55.0 83.0 109.1 167.7 187.4 205.1 229.3 247.8 277.1 305.9 313.4 350.6 387.2 481.6 570.7 931.8 1643.6 2027.3

Mcx

Mcy1

Mcy2x

kNm 2.72 3.49 4.94 6.39 7.33 7.11 8.19 7.84 9.06 10.25 8.80 10.21 11.60 12.96 16.07 22.18 30.87 40.67

kNm 1.33 1.33 1.74 1.93 2.15 1.93 2.15 1.93 2.15 2.36 1.93 2.15 2.36 2.36 2.77 4.46 6.49 7.90

kNm 1.22 1.21 1.58 1.77 1.97 1.77 1.96 1.77 1.96 2.15 1.76 1.96 2.15 2.15 2.51 4.17 6.14 7.46

REDUCED SECTION PROPERTIES GENERIC Z SECTIONS Design Yield Strength = 350 N/mm2 SINGLE SECTION D

B

x

t

mm top 100 x 55 125 x 55

bot 45 45

150

x

58

49

165

x

58

49

180

x

58

49

200

x

58

49

220

x

58

49

250 300

x x

76 94

68 86

mm 1.2 1.2 1.6 1.6 1.8 1.6 1.8 1.6 1.8 2.0 1.6 1.8 2.0 2.0 2.4 2.4 2.4 3.0

Q 0.72 0.65 0.75 0.68 0.72 0.65 0.68 0.62 0.65 0.67 0.58 0.61 0.63 0.60 0.64 0.62 0.58 0.63

p o / py 0.95 0.90 0.96 0.93 0.95 0.91 0.93 0.89 0.91 0.93 0.86 0.89 0.91 0.89 0.93 0.91 0.86 0.91

Zxr

Zy1r

3 cm3 cm 7.77 3.80 9.97 3.80 14.11 4.98 18.25 5.51 20.94 6.14 20.33 5.51 23.40 6.14 22.40 5.51 25.88 6.14 29.28 6.74 25.14 5.51 29.19 6.14 33.15 6.74 37.03 6.74 45.91 7.90 63.36 12.76 88.19 18.53 116.20 22.58

Zy2r

Ixr

Pc

cm3 cm4 kN 3.48 39.3 66.33 3.47 62.9 66.49 4.52 90.5 101.93 5.05 139.3 105.26 5.62 160.1 123.89 5.05 170.5 105.40 5.61 196.6 124.00 5.04 204.8 105.58 5.61 237.0 124.15 6.15 268.3 143.11 5.04 255.2 105.83 5.60 296.6 124.40 6.14 337.0 143.33 6.14 413.7 143.61 7.17 513.0 183.68 11.92 800.0 213.82 17.53 1327.2 237.76 21.33 1757.1 326.13

A - 48

4

Iv v cm4 6.0 7.0 9.1 11.6 12.8 12.1 13.5 12.7 14.1 15.4 13.3 14.8 16.2 16.9 19.7 41.1 74.9 91.1

LOAD CAPACITY TABLES FOR BEAMS S280 Generic C Sections Note: These tables are presented for generic C sections, which may be used for scheme design.

B-1

BENDING

Table 1

GENERIC C SECTION

Depth 100 mm Thickness 1.2 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

1.0

1.5

5.0

11.6 11.6 11.6

7.7 7.7 7.7

5.8 5.8 5.8

4.2 4.6 4.6

2.6 3.9 3.9

1.7 3.3 3.3

1.1 2.9 2.9

0.8 2.5 2.6

0.6 1.9 2.3

26.4 18.9

11.7 8.4

6.6 4.7

4.2 3.0

2.9 2.1

2.2 1.5

1.6 1.2

1.3 0.9

1.1 0.8

44.0 31.4

19.6 14.0

11.0 7.9

7.0 5.0

4.9 3.5

3.6 2.6

2.7 2.0

2.2 1.6

1.8 1.3

23.2 23.2 23.2

15.4 15.4 15.4

11.6 11.6 11.6

9.3 9.3 9.3

7.7 7.7 7.7

5.8 6.6 6.6

4.0 5.8 5.8

2.9 5.1 5.1

2.2 4.6 4.6

52.8 37.7

23.5 16.8

13.2 9.4

8.4 6.0

5.9 4.2

4.3 3.1

3.3 2.4

2.6 1.9

2.1 1.5

88.0 62.9

39.1 27.9

22.0 15.7

14.1 10.1

9.8 7.0

7.2 5.1

5.5 3.9

4.3 3.1

3.5 2.5

1.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

5.0

5.8 5.8 5.8

3.9 3.9 3.9

2.9 2.9 2.9

2.3 2.3 2.3

1.5 1.9 1.9

1.0 1.7 1.7

0.7 1.4 1.4

0.5 1.3 1.3

0.4 1.0 1.2

16.5 11.8

7.3 5.2

4.1 2.9

2.6 1.9

1.8 1.3

1.3 1.0

1.0 0.7

0.8 0.6

0.7 0.5

11.6 11.6 11.6

7.7 7.7 7.7

5.8 5.8 5.8

4.6 4.6 4.6

3.9 3.9 3.9

3.3 3.3 3.3

2.4 2.9 2.9

1.7 2.6 2.6

1.3 2.3 2.3

33.0 23.6

14.7 10.5

8.2 5.9

5.3 3.8

3.7 2.6

2.7 1.9

2.1 1.5

1.6 1.2

1.3 0.9

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 3.9 8.3

4.3 8.9

4.9 9.8

5.6 10.6

6.2 11.2

6.8 11.8

7.8 16.5

8.6 17.8

9.8 19.6

11.1 21.1

12.4 22.4

13.6 23.6

For double span beams, web cleats should be provided to prevent crushing at internal supports

B-2

BENDING

Table 2

GENERIC C SECTION

Depth 125 mm Thickness 1.2 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

1.0

1.5

5.0

14.8 14.8 14.8

9.9 9.9 9.9

7.4 7.4 7.4

5.6 5.9 5.9

3.4 4.9 4.9

2.2 4.2 4.2

1.5 3.7 3.7

1.1 3.3 3.3

0.8 2.5 3.0

42.2 30.2

18.8 13.4

10.6 7.5

6.8 4.8

4.7 3.4

3.4 2.5

2.6 1.9

2.1 1.5

1.7 1.2

70.4 50.3

31.3 22.3

17.6 12.6

11.3 8.0

7.8 5.6

5.7 4.1

4.4 3.1

3.5 2.5

2.8 2.0

29.7 29.7 29.7

19.8 19.8 19.8

14.8 14.8 14.8

11.9 11.9 11.9

9.9 9.9 9.9

7.2 8.5 8.5

5.0 7.4 7.4

3.5 6.6 6.6

2.6 5.9 5.9

84.4 60.3

37.5 26.8

21.1 15.1

13.5 9.7

9.4 6.7

6.9 4.9

5.3 3.8

4.2 3.0

3.4 2.4

140.7 100.5

62.6 44.7

35.2 25.1

22.5 16.1

15.6 11.2

11.5 8.2

8.8 6.3

7.0 5.0

5.6 4.0

1.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

5.0

7.4 7.4 7.4

4.9 4.9 4.9

3.7 3.7 3.7

3.0 3.0 3.0

2.0 2.5 2.5

1.3 2.1 2.1

0.9 1.9 1.9

0.6 1.6 1.6

0.5 1.3 1.5

26.4 18.8

11.7 8.4

6.6 4.7

4.2 3.0

2.9 2.1

2.2 1.5

1.6 1.2

1.3 0.9

1.1 0.8

14.8 14.8 14.8

9.9 9.9 9.9

7.4 7.4 7.4

5.9 5.9 5.9

4.9 4.9 4.9

4.2 4.2 4.2

3.0 3.7 3.7

2.1 3.3 3.3

1.6 3.0 3.0

52.8 37.7

23.5 16.8

13.2 9.4

8.4 6.0

5.9 4.2

4.3 3.1

3.3 2.4

2.6 1.9

2.1 1.5

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 3.7 8.5

4.1 9.1

4.7 10.0

5.3 10.8

5.9 11.5

6.5 12.1

7.5 16.9

8.2 18.3

9.4 20.1

10.6 21.6

11.8 23.0

13.0 24.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B-3

BENDING

Table 3

GENERIC C SECTION

Depth 125 mm Thickness 1.6 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

1.0

1.5

5.0

21.2 21.2 21.2

14.1 14.1 14.1

10.6 10.6 10.6

7.5 8.5 8.5

4.6 7.1 7.1

3.0 6.1 6.1

2.1 5.3 5.3

1.5 4.4 4.7

1.1 3.4 4.2

59.6 42.6

26.5 18.9

14.9 10.7

9.5 6.8

6.6 4.7

4.9 3.5

3.7 2.7

2.9 2.1

2.4 1.7

99.4 71.0

44.2 31.6

24.9 17.8

15.9 11.4

11.0 7.9

8.1 5.8

6.2 4.4

4.9 3.5

4.0 2.8

42.4 42.4 42.4

28.3 28.3 28.3

21.2 21.2 21.2

17.0 17.0 17.0

13.7 14.1 14.1

9.7 12.1 12.1

6.7 10.6 10.6

4.8 9.4 9.4

3.6 8.5 8.5

119.3 85.2

53.0 37.9

29.8 21.3

19.1 13.6

13.3 9.5

9.7 7.0

7.5 5.3

5.9 4.2

4.8 3.4

198.8 142.0

88.4 63.1

49.7 35.5

31.8 22.7

22.1 15.8

16.2 11.6

12.4 8.9

9.8 7.0

8.0 5.7

1.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

5.0

10.6 10.6 10.6

7.1 7.1 7.1

5.3 5.3 5.3

4.1 4.2 4.2

2.7 3.5 3.5

1.8 3.0 3.0

1.2 2.6 2.7

0.9 2.2 2.4

0.7 1.7 2.1

37.3 26.6

16.6 11.8

9.3 6.7

6.0 4.3

4.1 3.0

3.0 2.2

2.3 1.7

1.8 1.3

1.5 1.1

21.2 21.2 21.2

14.1 14.1 14.1

10.6 10.6 10.6

8.5 8.5 8.5

7.0 7.1 7.1

5.6 6.1 6.1

4.0 5.3 5.3

2.9 4.7 4.7

2.2 4.2 4.2

74.6 53.3

33.1 23.7

18.6 13.3

11.9 8.5

8.3 5.9

6.1 4.3

4.7 3.3

3.7 2.6

3.0 2.1

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.6 13.8

7.1 14.8

8.0 16.2

8.9 17.3

9.7 18.3

10.6 19.2

13.3 27.6

14.3 29.6

16.0 32.3

17.7 34.6

19.4 36.7

21.1 38.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

B-4

BENDING

Table 4

GENERIC C SECTION

Depth 150 mm Thickness 1.6 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

14.4 14.4 14.4

11.6 11.6 11.6

8.3 9.6 9.6

5.4 8.3 8.3

3.7 7.2 7.2

2.6 6.4 6.4

2.0 5.8 5.8

1.2 3.7 4.8

0.8 2.4 4.1

24.5 17.5

15.7 11.2

10.9 7.8

8.0 5.7

6.1 4.4

4.8 3.5

3.9 2.8

2.7 1.7

2.0 1.1

40.8 29.1

26.1 18.7

18.1 13.0

13.3 9.5

10.2 7.3

8.1 5.8

6.5 4.7

4.5 2.8

3.3 1.8

28.9 28.9 28.9

23.1 23.1 23.1

19.3 19.3 19.3

16.5 16.5 16.5

11.9 14.4 14.4

8.6 12.8 12.8

6.4 11.6 11.6

3.8 9.6 9.6

2.5 7.7 8.3

49.0 35.0

31.3 22.4

21.8 15.5

16.0 11.4

12.2 8.7

9.7 6.9

7.8 5.6

5.4 3.4

4.0 2.1

81.6 58.3

52.2 37.3

36.3 25.9

26.7 19.0

20.4 14.6

16.1 11.5

13.1 9.3

9.1 5.7

6.7 3.6

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

9.6 9.6 9.6

7.2 7.2 7.2

5.8 5.8 5.8

4.7 4.8 4.8

3.2 4.1 4.1

2.2 3.6 3.6

1.2 2.9 2.9

0.7 1.9 2.4

0.5 1.2 2.1

27.2 19.4

15.3 10.9

9.8 7.0

6.8 4.9

5.0 3.6

3.8 2.7

2.4 1.7

1.7 1.1

1.2 0.7

19.3 19.3 19.3

14.4 14.4 14.4

11.6 11.6 11.6

9.6 9.6 9.6

8.3 8.3 8.3

6.9 7.2 7.2

3.8 5.8 5.8

2.3 4.8 4.8

1.5 3.8 4.1

54.4 38.9

30.6 21.9

19.6 14.0

13.6 9.7

10.0 7.1

7.7 5.5

4.9 3.5

3.4 2.1

2.5 1.3

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.4 14.1

6.9 15.1

7.7 16.5

8.6 17.6

9.4 18.7

10.2 19.6

12.8 28.1

13.8 30.1

15.5 32.9

17.1 35.3

18.7 37.3

20.4 39.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B-5

BENDING

Table 5

GENERIC C SECTION

Depth 150 mm Thickness 1.8 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

16.6 16.6 16.6

13.3 13.3 13.3

9.3 11.1 11.1

6.1 9.5 9.5

4.2 8.3 8.3

3.0 7.4 7.4

2.2 6.5 6.7

1.4 4.2 5.5

0.9 2.7 4.8

28.1 20.1

18.0 12.8

12.5 8.9

9.2 6.6

7.0 5.0

5.5 4.0

4.5 3.2

3.1 2.0

2.3 1.2

46.8 33.4

30.0 21.4

20.8 14.9

15.3 10.9

11.7 8.4

9.2 6.6

7.5 5.3

5.2 3.3

3.8 2.0

33.3 33.3 33.3

26.6 26.6 26.6

22.2 22.2 22.2

18.4 19.0 19.0

13.4 16.6 16.6

9.7 14.8 14.8

7.2 13.3 13.3

4.3 11.1 11.1

2.8 8.6 9.5

56.2 40.1

35.9 25.7

25.0 17.8

18.3 13.1

14.0 10.0

11.1 7.9

9.0 6.4

6.2 3.9

4.6 2.5

93.6 66.9

59.9 42.8

41.6 29.7

30.6 21.8

23.4 16.7

18.5 13.2

15.0 10.7

10.4 6.5

7.6 4.1

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

11.1 11.1 11.1

8.3 8.3 8.3

6.7 6.7 6.7

5.2 5.5 5.5

3.6 4.8 4.8

2.5 4.2 4.2

1.3 3.3 3.3

0.8 2.1 2.8

0.5 1.3 2.4

31.2 22.3

17.6 12.5

11.2 8.0

7.8 5.6

5.7 4.1

4.4 3.1

2.8 2.0

2.0 1.2

1.4 0.8

22.2 22.2 22.2

16.6 16.6 16.6

13.3 13.3 13.3

11.1 11.1 11.1

9.5 9.5 9.5

7.7 8.3 8.3

4.3 6.7 6.7

2.6 5.5 5.5

1.7 4.3 4.8

62.4 44.6

35.1 25.1

22.5 16.0

15.6 11.1

11.5 8.2

8.8 6.3

5.6 4.0

3.9 2.4

2.9 1.5

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.1 17.2

8.7 18.4

9.7 20.0

10.6 21.4

11.5 22.6

12.5 23.7

16.3 34.4

17.4 36.8

19.3 40.1

21.2 42.8

23.1 45.3

25.0 47.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

B-6

BENDING

Table 6

GENERIC C SECTION

Depth 165 mm Thickness 1.6 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

16.1 16.1 16.1

12.9 12.9 12.9

9.3 10.7 10.7

6.0 9.2 9.2

4.1 8.0 8.0

2.9 7.1 7.1

2.2 6.4 6.4

1.3 4.2 5.4

0.9 2.7 4.6

29.9 21.4

19.2 13.7

13.3 9.5

9.8 7.0

7.5 5.3

5.9 4.2

4.8 3.4

3.3 2.1

2.4 1.3

49.9 35.7

31.9 22.8

22.2 15.8

16.3 11.6

12.5 8.9

9.9 7.0

8.0 5.7

5.5 3.5

4.1 2.2

32.1 32.1 32.1

25.7 25.7 25.7

21.4 21.4 21.4

18.3 18.4 18.4

13.1 16.1 16.1

9.4 14.3 14.3

6.9 12.9 12.9

4.1 10.7 10.7

2.7 8.5 9.2

59.9 42.8

38.3 27.4

26.6 19.0

19.6 14.0

15.0 10.7

11.8 8.5

9.6 6.8

6.7 4.2

4.9 2.6

99.8 71.3

63.9 45.6

44.4 31.7

32.6 23.3

25.0 17.8

19.7 14.1

16.0 11.4

11.1 6.9

8.1 4.4

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

10.7 10.7 10.7

8.0 8.0 8.0

6.4 6.4 6.4

5.3 5.4 5.4

3.6 4.6 4.6

2.5 4.0 4.0

1.3 3.2 3.2

0.8 2.1 2.7

0.5 1.3 2.3

33.3 23.8

18.7 13.4

12.0 8.6

8.3 5.9

6.1 4.4

4.7 3.3

3.0 2.1

2.1 1.3

1.5 0.8

21.4 21.4 21.4

16.1 16.1 16.1

12.9 12.9 12.9

10.7 10.7 10.7

9.2 9.2 9.2

7.6 8.0 8.0

4.1 6.4 6.4

2.5 5.4 5.4

1.6 4.2 4.6

66.6 47.5

37.4 26.7

24.0 17.1

16.6 11.9

12.2 8.7

9.4 6.7

6.0 4.3

4.2 2.6

3.1 1.6

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.3 14.2

6.8 15.2

7.6 16.6

8.4 17.8

9.2 18.9

10.0 19.8

12.6 28.4

13.5 30.5

15.1 33.3

16.7 35.7

18.4 37.8

20.0 39.6

For double span beams, web cleats should be provided to prevent crushing at internal supports

B-7

BENDING

Table 7

GENERIC C SECTION

Depth 165 mm Thickness 1.8 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

18.5 18.5 18.5

14.8 14.8 14.8

10.4 12.4 12.4

6.8 10.6 10.6

4.7 9.3 9.3

3.3 8.2 8.2

2.5 7.4 7.4

1.5 4.7 6.2

1.0 3.0 5.3

34.4 24.6

22.0 15.7

15.3 10.9

11.2 8.0

8.6 6.2

6.8 4.9

5.5 3.9

3.8 2.4

2.8 1.5

57.4 41.0

36.7 26.2

25.5 18.2

18.7 13.4

14.4 10.3

11.3 8.1

9.2 6.6

6.4 4.0

4.7 2.5

37.1 37.1 37.1

29.7 29.7 29.7

24.7 24.7 24.7

20.5 21.2 21.2

14.7 18.5 18.5

10.6 16.5 16.5

7.8 14.8 14.8

4.7 12.4 12.4

3.1 9.5 10.6

68.9 49.2

44.1 31.5

30.6 21.9

22.5 16.1

17.2 12.3

13.6 9.7

11.0 7.9

7.7 4.8

5.6 3.0

114.8 82.0

73.5 52.5

51.0 36.4

37.5 26.8

28.7 20.5

22.7 16.2

18.4 13.1

12.8 8.0

9.4 5.0

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

12.4 12.4 12.4

9.3 9.3 9.3

7.4 7.4 7.4

5.9 6.2 6.2

4.0 5.3 5.3

2.8 4.6 4.6

1.5 3.7 3.7

0.9 2.3 3.1

0.6 1.5 2.6

38.3 27.3

21.5 15.4

13.8 9.8

9.6 6.8

7.0 5.0

5.4 3.8

3.4 2.5

2.4 1.5

1.8 0.9

24.7 24.7 24.7

18.5 18.5 18.5

14.8 14.8 14.8

12.4 12.4 12.4

10.6 10.6 10.6

8.5 9.3 9.3

4.7 7.4 7.4

2.8 6.2 6.2

1.8 4.7 5.3

76.5 54.7

43.1 30.8

27.6 19.7

19.1 13.7

14.1 10.0

10.8 7.7

6.9 4.9

4.8 3.0

3.5 1.9

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.0 17.4

8.6 18.6

9.5 20.2

10.4 21.6

11.3 22.9

12.3 24.0

16.0 34.7

17.1 37.2

19.0 40.5

20.8 43.3

22.7 45.7

24.5 48.0

For double span beams, web cleats should be provided to prevent crushing at internal supports

B-8

BENDING

Table 8

GENERIC C SECTION

Depth 180 mm Thickness 1.6 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

17.7 17.7 17.7

14.2 14.2 14.2

10.4 11.8 11.8

6.7 10.1 10.1

4.6 8.9 8.9

3.3 7.9 7.9

2.4 7.1 7.1

1.5 4.7 5.9

0.9 3.0 5.1

36.0 25.7

23.0 16.4

16.0 11.4

11.7 8.4

9.0 6.4

7.1 5.1

5.8 4.1

4.0 2.5

2.9 1.6

60.0 42.8

38.4 27.4

26.6 19.0

19.6 14.0

15.0 10.7

11.8 8.5

9.6 6.9

6.7 4.2

4.9 2.6

35.4 35.4 35.4

28.3 28.3 28.3

23.6 23.6 23.6

20.2 20.2 20.2

14.2 17.7 17.7

10.2 15.7 15.7

7.5 14.2 14.2

4.5 11.8 11.8

2.9 9.2 10.1

71.9 51.4

46.0 32.9

32.0 22.8

23.5 16.8

18.0 12.8

14.2 10.2

11.5 8.2

8.0 5.0

5.9 3.1

119.9 85.7

76.7 54.8

53.3 38.1

39.2 28.0

30.0 21.4

23.7 16.9

19.2 13.7

13.3 8.3

9.8 5.2

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

11.8 11.8 11.8

8.9 8.9 8.9

7.1 7.1 7.1

5.9 5.9 5.9

4.0 5.1 5.1

2.7 4.4 4.4

1.5 3.5 3.5

0.9 2.3 3.0

0.6 1.5 2.5

40.0 28.6

22.5 16.1

14.4 10.3

10.0 7.1

7.3 5.2

5.6 4.0

3.6 2.6

2.5 1.6

1.8 1.0

23.6 23.6 23.6

17.7 17.7 17.7

14.2 14.2 14.2

11.8 11.8 11.8

10.1 10.1 10.1

8.3 8.9 8.9

4.5 7.1 7.1

2.7 5.9 5.9

1.7 4.6 5.1

79.9 57.1

45.0 32.1

28.8 20.6

20.0 14.3

14.7 10.5

11.2 8.0

7.2 5.1

5.0 3.1

3.7 2.0

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.1 14.4

6.6 15.4

7.4 16.8

8.2 18.0

9.0 19.1

9.8 20.0

12.3 28.7

13.2 30.8

14.8 33.7

16.4 36.1

18.0 38.2

19.5 40.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

B-9

BENDING

Table 9

GENERIC C SECTION

Depth 180 mm Thickness 1.8 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

20.5 20.5 20.5

16.4 16.4 16.4

11.6 13.6 13.6

7.5 11.7 11.7

5.2 10.2 10.2

3.7 9.1 9.1

2.7 8.2 8.2

1.7 5.2 6.8

1.1 3.3 5.8

41.5 29.6

26.5 19.0

18.4 13.2

13.5 9.7

10.4 7.4

8.2 5.9

6.6 4.7

4.6 2.9

3.4 1.8

69.1 49.4

44.2 31.6

30.7 21.9

22.6 16.1

17.3 12.3

13.7 9.8

11.1 7.9

7.7 4.8

5.6 3.0

40.9 40.9 40.9

32.8 32.8 32.8

27.3 27.3 27.3

22.6 23.4 23.4

16.0 20.5 20.5

11.5 18.2 18.2

8.5 16.4 16.4

5.1 13.6 13.6

3.3 10.4 11.7

83.0 59.3

53.1 37.9

36.9 26.3

27.1 19.4

20.7 14.8

16.4 11.7

13.3 9.5

9.2 5.8

6.8 3.6

138.3 98.8

88.5 63.2

61.5 43.9

45.2 32.3

34.6 24.7

27.3 19.5

22.1 15.8

15.4 9.6

11.3 6.0

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

13.6 13.6 13.6

10.2 10.2 10.2

8.2 8.2 8.2

6.6 6.8 6.8

4.5 5.8 5.8

3.1 5.1 5.1

1.7 4.1 4.1

1.0 2.6 3.4

0.7 1.7 2.9

46.1 32.9

25.9 18.5

16.6 11.9

11.5 8.2

8.5 6.0

6.5 4.6

4.1 3.0

2.9 1.8

2.1 1.1

27.3 27.3 27.3

20.5 20.5 20.5

16.4 16.4 16.4

13.6 13.6 13.6

11.7 11.7 11.7

9.3 10.2 10.2

5.1 8.2 8.2

3.0 6.8 6.8

2.0 5.2 5.8

92.2 65.8

51.9 37.0

33.2 23.7

23.0 16.5

16.9 12.1

13.0 9.3

8.3 5.9

5.8 3.6

4.2 2.3

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.8 17.5

8.4 18.8

9.3 20.4

10.2 21.8

11.1 23.1

12.0 24.2

15.7 35.1

16.8 37.5

18.6 40.9

20.4 43.7

22.3 46.2

24.1 48.4

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 10

BENDING

Table 10

GENERIC C SECTION

Depth 180 mm Thickness 2.0 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

23.1 23.1 23.1

18.5 18.5 18.5

12.9 15.4 15.4

8.4 13.2 13.2

5.7 11.6 11.6

4.1 10.3 10.3

3.1 9.1 9.2

1.9 5.8 7.7

1.2 3.7 6.6

46.8 33.4

29.9 21.4

20.8 14.9

15.3 10.9

11.7 8.4

9.2 6.6

7.5 5.3

5.2 3.2

3.8 2.0

78.0 55.7

49.9 35.7

34.7 24.8

25.5 18.2

19.5 13.9

15.4 11.0

12.5 8.9

8.7 5.4

6.4 3.4

46.2 46.2 46.2

37.0 37.0 37.0

30.8 30.8 30.8

25.0 26.4 26.4

17.7 23.1 23.1

12.7 20.5 20.5

9.5 18.5 18.5

5.7 15.4 15.4

3.7 11.5 13.2

93.6 66.8

59.9 42.8

41.6 29.7

30.6 21.8

23.4 16.7

18.5 13.2

15.0 10.7

10.4 6.5

7.6 4.1

156.0 111.4

99.8 71.3

69.3 49.5

50.9 36.4

39.0 27.9

30.8 22.0

25.0 17.8

17.3 10.8

12.7 6.8

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

15.4 15.4 15.4

11.6 11.6 11.6

9.2 9.2 9.2

7.3 7.7 7.7

5.0 6.6 6.6

3.4 5.8 5.8

1.8 4.6 4.6

1.1 2.9 3.9

0.7 1.9 3.3

52.0 37.1

29.2 20.9

18.7 13.4

13.0 9.3

9.5 6.8

7.3 5.2

4.7 3.3

3.2 2.0

2.4 1.3

30.8 30.8 30.8

23.1 23.1 23.1

18.5 18.5 18.5

15.4 15.4 15.4

13.2 13.2 13.2

10.3 11.6 11.6

5.7 9.2 9.2

3.4 7.7 7.7

2.2 5.7 6.6

104.0 74.3

58.5 41.8

37.4 26.7

26.0 18.6

19.1 13.6

14.6 10.4

9.4 6.7

6.5 4.1

4.8 2.6

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.7 21.0

10.4 22.4

11.4 24.4

12.4 26.0

13.5 27.4

14.5 28.7

19.5 42.0

20.7 44.8

22.8 48.7

24.9 52.0

26.9 54.9

29.0 57.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 11

BENDING

Table 11

GENERIC C SECTION

Depth 200 mm Thickness 1.6 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

19.9 19.9 19.9

15.9 15.9 15.9

11.9 13.3 13.3

7.7 11.4 11.4

5.2 9.9 9.9

3.7 8.8 8.8

2.7 8.0 8.0

1.6 5.3 6.6

1.1 3.4 5.7

44.8 32.0

28.7 20.5

19.9 14.2

14.6 10.5

11.2 8.0

8.9 6.3

7.2 5.1

5.0 3.1

3.7 2.0

74.7 53.4

47.8 34.2

33.2 23.7

24.4 17.4

18.7 13.3

14.8 10.5

12.0 8.5

8.3 5.2

6.1 3.3

39.8 39.8 39.8

31.8 31.8 31.8

26.5 26.5 26.5

22.6 22.7 22.7

15.8 19.9 19.9

11.2 17.7 17.7

8.3 15.9 15.9

4.9 13.3 13.3

3.2 10.3 11.4

89.7 64.1

57.4 41.0

39.9 28.5

29.3 20.9

22.4 16.0

17.7 12.7

14.4 10.3

10.0 6.2

7.3 3.9

149.5 106.8

95.7 68.3

66.4 47.5

48.8 34.9

37.4 26.7

29.5 21.1

23.9 17.1

16.6 10.4

12.2 6.5

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

13.3 13.3 13.3

9.9 9.9 9.9

8.0 8.0 8.0

6.6 6.6 6.6

4.6 5.7 5.7

3.1 5.0 5.0

1.6 4.0 4.0

1.0 2.7 3.3

0.6 1.7 2.8

49.8 35.6

28.0 20.0

17.9 12.8

12.5 8.9

9.2 6.5

7.0 5.0

4.5 3.2

3.1 1.9

2.3 1.2

26.5 26.5 26.5

19.9 19.9 19.9

15.9 15.9 15.9

13.3 13.3 13.3

11.4 11.4 11.4

9.3 9.9 9.9

5.0 8.0 8.0

2.9 6.6 6.6

1.9 5.1 5.7

99.7 71.2

56.1 40.0

35.9 25.6

24.9 17.8

18.3 13.1

14.0 10.0

9.0 6.4

6.2 3.9

4.6 2.5

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.0 14.6

6.4 15.6

7.2 17.1

8.0 18.3

8.7 19.4

9.5 20.3

11.9 29.2

12.9 31.3

14.4 34.1

15.9 36.6

17.4 38.7

19.0 40.7

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 12

P276: Building Design Using Cold Formed Steel Sections: Structural Design to BS 5950-5:1998. Section Properties and L

BENDING

Table 12

GENERIC C SECTION

Depth 200 mm Thickness 1.8 mm

Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

23.1 23.1 23.1

18.4 18.4 18.4

13.3 15.4 15.4

8.6 13.2 13.2

5.9 11.5 11.5

4.2 10.2 10.2

3.1 9.2 9.2

1.9 5.9 7.7

1.2 3.8 6.6

51.9 37.1

33.2 23.7

23.1 16.5

16.9 12.1

13.0 9.3

10.3 7.3

8.3 5.9

5.8 3.6

4.2 2.3

86.5 61.8

55.4 39.5

38.4 27.5

28.2 20.2

21.6 15.4

17.1 12.2

13.8 9.9

9.6 6.0

7.1 3.8

46.1 46.1 46.1

36.9 36.9 36.9

30.7 30.7 30.7

25.3 26.4 26.4

17.7 23.1 23.1

12.6 20.5 20.5

9.3 18.4 18.4

5.6 15.4 15.4

3.6 11.5 13.2

103.8 74.2

66.4 47.5

46.1 33.0

33.9 24.2

26.0 18.5

20.5 14.6

16.6 11.9

11.5 7.2

8.5 4.5

173.0 123.6

110.7 79.1

76.9 54.9

56.5 40.4

43.3 30.9

34.2 24.4

27.7 19.8

19.2 12.0

14.1 7.6

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

15.4 15.4 15.4

11.5 11.5 11.5

9.2 9.2 9.2

7.6 7.7 7.7

5.1 6.6 6.6

3.5 5.8 5.8

1.9 4.6 4.6

1.1 3.0 3.8

0.7 1.9 3.3

57.7 41.2

32.4 23.2

20.8 14.8

14.4 10.3

10.6 7.6

8.1 5.8

5.2 3.7

3.6 2.3

2.6 1.4

30.7 30.7 30.7

23.1 23.1 23.1

18.4 18.4 18.4

15.4 15.4 15.4

13.2 13.2 13.2

10.4 11.5 11.5

5.6 9.2 9.2

3.3 7.7 7.7

2.2 5.7 6.6

115.3 82.4

64.9 46.3

41.5 29.7

28.8 20.6

21.2 15.1

16.2 11.6

10.4 7.4

7.2 4.5

5.3 2.8

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.6 17.8

8.2 19.0

9.1 20.7

10.0 22.1

10.8 23.4

11.7 24.5

15.3 35.5

16.4 38.0

18.1 41.4

19.9 44.3

21.7 46.8

23.5 49.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 13

Created for Dr MAHMOOD MD TAHIR (Universiti Teknologi Malaysia) from www.steelbiz.org on 6/10/2003 This material is copyright - all rights reserved. Use of this document is subject to the terms and conditions of the Steelbiz Licence Agreement

Design Strength 280 N/mm2

BENDING

Table 13

GENERIC C SECTION

Depth 200 mm Thickness 2.0 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0

3.0

3.5

8.0

14.6 17.4 17.4

9.5 14.9 14.9

6.5 13.1 13.1

4.7 11.6 11.6

3.5 10.4 10.4

2.7 8.3 9.5

2.1 6.5 8.7

1.4 4.2 7.5

1.0 2.9 6.5

26.1 18.6

19.2 13.7

14.7 10.5

11.6 8.3

9.4 6.7

7.8 5.3

6.5 4.1

4.8 2.6

3.7 1.7

43.5 31.1

32.0 22.8

24.5 17.5

19.3 13.8

15.7 11.2

12.9 8.8

10.9 6.8

8.0 4.3

6.1 2.9

34.8 34.8 34.8

28.0 29.8 29.8

19.6 26.1 26.1

14.0 23.2 23.2

10.4 20.9 20.9

7.9 19.0 19.0

6.2 17.4 17.4

4.0 12.7 14.9

2.8 8.7 13.1

52.2 37.3

38.4 27.4

29.4 21.0

23.2 16.6

18.8 13.4

15.5 10.6

13.1 8.2

9.6 5.1

7.3 3.4

87.0 62.1

63.9 45.7

48.9 35.0

38.7 27.6

31.3 22.4

25.9 17.6

21.8 13.6

16.0 8.6

12.2 5.7

2.0

2.5

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0

8.0

13.1 13.1 13.1

10.4 10.4 10.4

8.4 8.7 8.7

5.7 7.5 7.5

3.9 6.5 6.5

2.1 5.2 5.2

1.3 3.3 4.4

0.8 2.1 3.7

0.6 1.4 3.3

36.7 26.2

23.5 16.8

16.3 11.7

12.0 8.6

9.2 6.6

5.9 4.2

4.1 2.5

3.0 1.6

2.3 1.1

26.1 26.1 26.1

20.9 20.9 20.9

17.4 17.4 17.4

14.9 14.9 14.9

11.5 13.1 13.1

6.2 10.4 10.4

3.7 8.7 8.7

2.4 6.4 7.5

1.7 4.4 6.5

73.4 52.4

47.0 33.6

32.6 23.3

24.0 17.1

18.4 13.1

11.7 8.4

8.2 5.1

6.0 3.2

4.6 2.2

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.5 21.3

10.1 22.7

11.1 24.7

12.2 26.3

13.2 27.8

14.2 29.1

19.1 42.5

20.3 45.4

22.3 49.3

24.3 52.6

26.4 55.5

28.4 58.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 14

BENDING

Table 14

GENERIC C SECTION

Depth 220 mm Thickness 2.0 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0

3.0

3.5

8.0

16.5 19.4 19.4

10.7 16.6 16.6

7.3 14.6 14.6

5.2 12.9 12.9

3.9 11.7 11.7

3.0 9.4 10.6

2.3 7.4 9.7

1.5 4.7 8.3

1.1 3.2 7.3

32.0 22.9

23.5 16.8

18.0 12.9

14.2 10.2

11.5 8.2

9.5 6.5

8.0 5.0

5.9 3.2

4.5 2.1

53.4 38.1

39.2 28.0

30.0 21.5

23.7 16.9

19.2 13.7

15.9 10.8

13.3 8.3

9.8 5.3

7.5 3.5

38.8 38.8 38.8

31.0 33.3 33.3

21.5 29.1 29.1

15.3 25.9 25.9

11.4 23.3 23.3

8.6 21.2 21.2

6.8 19.4 19.4

4.4 14.0 16.6

3.0 9.5 14.6

64.1 45.8

47.1 33.6

36.0 25.7

28.5 20.3

23.1 16.5

19.1 13.0

16.0 10.0

11.8 6.3

9.0 4.2

106.8 76.3

78.5 56.0

60.1 42.9

47.5 33.9

38.4 27.5

31.8 21.7

26.7 16.7

19.6 10.5

15.0 7.0

2.0

2.5

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0

8.0

14.6 14.6 14.6

11.7 11.7 11.7

9.4 9.7 9.7

6.3 8.3 8.3

4.4 7.3 7.3

2.3 5.8 5.8

1.4 3.7 4.9

0.9 2.4 4.2

0.6 1.6 3.6

45.0 32.2

28.8 20.6

20.0 14.3

14.7 10.5

11.3 8.0

7.2 5.1

5.0 3.1

3.7 2.0

2.8 1.3

29.1 29.1 29.1

23.3 23.3 23.3

19.4 19.4 19.4

16.6 16.6 16.6

12.7 14.6 14.6

6.8 11.7 11.7

4.1 9.7 9.7

2.6 7.0 8.3

1.8 4.8 7.3

90.1 64.4

57.7 41.2

40.0 28.6

29.4 21.0

22.5 16.1

14.4 10.3

10.0 6.3

7.4 3.9

5.6 2.6

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.3 21.5

9.9 23.0

10.9 24.9

11.9 26.6

12.9 28.1

13.9 29.4

18.6 43.0

19.8 45.9

21.8 49.9

23.8 53.2

25.8 56.2

27.7 58.8

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 15

BENDING

Table 15

GENERIC C SECTION

Depth 220 mm Thickness 2.4 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0

3.0

3.5

8.0

19.5 23.9 23.9

12.7 20.5 20.5

8.7 17.9 17.9

6.2 15.9 15.9

4.7 13.9 14.3

3.6 11.1 13.0

2.8 8.7 11.9

1.9 5.6 10.2

1.3 3.8 9.0

39.4 28.1

28.9 20.7

22.2 15.8

17.5 12.5

14.2 10.1

11.7 8.0

9.9 6.2

7.2 3.9

5.5 2.6

65.7 46.9

48.2 34.5

36.9 26.4

29.2 20.8

23.6 16.9

19.5 13.3

16.4 10.3

12.1 6.5

9.2 4.3

47.8 47.8 47.8

36.8 41.0 41.0

25.6 35.8 35.8

18.4 31.9 31.9

13.7 28.7 28.7

10.5 26.1 26.1

8.2 23.8 23.9

5.4 16.6 20.5

3.8 11.4 17.9

78.8 56.3

57.9 41.4

44.3 31.7

35.0 25.0

28.4 20.3

23.4 16.0

19.7 12.3

14.5 7.8

11.1 5.2

131.3 93.8

96.5 68.9

73.9 52.8

58.4 41.7

47.3 33.8

39.1 26.6

32.8 20.5

24.1 12.9

18.5 8.7

2.0

2.5

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0

8.0

17.9 17.9 17.9

14.3 14.3 14.3

11.2 11.9 11.9

7.5 10.2 10.2

5.2 9.0 9.0

2.8 7.0 7.2

1.7 4.4 6.0

1.1 2.8 5.1

0.8 1.9 4.5

55.4 39.6

35.5 25.3

24.6 17.6

18.1 12.9

13.9 9.9

8.9 6.3

6.2 3.8

4.5 2.4

3.5 1.6

35.8 35.8 35.8

28.7 28.7 28.7

23.9 23.9 23.9

20.1 20.5 20.5

15.1 17.9 17.9

8.2 14.3 14.3

4.9 11.9 11.9

3.2 8.3 10.2

2.3 5.7 9.0

110.8 79.2

70.9 50.7

49.3 35.2

36.2 25.8

27.7 19.8

17.7 12.7

12.3 7.7

9.0 4.8

6.9 3.2

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 13.6 29.4

14.4 31.3

15.6 33.8

16.9 36.0

18.1 37.9

19.3 39.6

27.3 58.8

28.7 62.5

31.2 67.6

33.7 71.9

36.2 75.7

38.7 79.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 16

BENDING

Table 16

GENERIC C SECTION

Depth 250 mm Thickness 2.4 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0

3.5

4.0

10.0

14.7 23.9 23.9

10.1 20.9 20.9

7.2 18.6 18.6

5.4 16.5 16.7

3.2 10.1 13.9

2.1 6.5 11.9

1.5 4.5 10.4

1.1 3.2 9.3

0.9 2.4 8.4

38.3 27.4

29.3 21.0

23.2 16.6

18.8 13.4

13.0 8.2

9.6 5.1

7.3 3.4

5.8 2.4

4.7 1.8

63.9 45.6

48.9 34.9

38.6 27.6

31.3 22.4

21.7 13.6

16.0 8.6

12.2 5.7

9.7 4.0

7.8 2.9

41.9 47.7 47.7

28.9 41.8 41.8

20.7 37.1 37.1

15.3 33.4 33.4

9.2 27.8 27.8

6.0 18.8 23.9

4.2 12.8 20.9

3.0 9.2 18.6

2.3 6.8 16.7

76.7 54.8

58.7 41.9

46.4 33.1

37.6 26.8

26.1 16.3

19.2 10.3

14.7 6.9

11.6 4.8

9.4 3.5

127.8 91.3

97.8 69.9

77.3 55.2

62.6 44.7

43.5 27.2

31.9 17.1

24.5 11.5

19.3 8.1

15.7 5.9

2.0

3.0

Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0

10.0

20.9 20.9 20.9

13.1 13.9 13.9

6.0 10.4 10.4

3.2 8.2 8.4

2.0 5.1 7.0

1.3 3.3 6.0

0.9 2.2 5.2

0.7 1.6 4.6

0.5 1.2 4.2

73.4 52.4

32.6 23.3

18.3 13.1

11.7 8.4

8.2 5.1

6.0 3.2

4.6 2.1

3.6 1.5

2.9 1.1

41.8 41.8 41.8

27.8 27.8 27.8

17.1 20.9 20.9

9.2 16.7 16.7

5.5 13.9 13.9

3.6 9.4 11.9

2.5 6.4 10.4

1.8 4.6 9.3

1.4 3.4 8.4

146.7 104.8

65.2 46.6

36.7 26.2

23.5 16.8

16.3 10.2

12.0 6.4

9.2 4.3

7.2 3.0

5.9 2.2

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 13.3 29.8

14.0 31.7

15.2 34.3

16.4 36.5

17.6 38.4

18.8 40.2

26.5 59.7

28.0 63.5

30.4 68.6

32.8 73.0

35.2 76.9

37.6 80.3

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 17

BENDING

Table 17

GENERIC C SECTION

Depth 300 mm Thickness 2.4 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0

3.5

4.0

10.0

18.2 29.6 29.6

12.4 25.9 25.9

8.9 23.0 23.0

6.6 20.7 20.7

3.9 12.6 17.3

2.6 8.1 14.8

1.8 5.5 13.0

1.3 3.9 11.5

1.0 2.9 10.4

57.1 40.8

43.7 31.2

34.5 24.7

28.0 20.0

19.4 12.1

14.3 7.6

10.9 5.1

8.6 3.6

7.0 2.6

95.1 67.9

72.8 52.0

57.5 41.1

46.6 33.3

32.4 20.2

23.8 12.7

18.2 8.5

14.4 6.0

11.7 4.4

50.3 59.2 59.2

34.4 51.8 51.8

24.5 46.1 46.1

18.1 41.4 41.4

10.8 34.3 34.5

7.0 22.5 29.6

4.8 15.3 25.9

3.5 10.9 23.0

2.6 8.0 20.7

114.1 81.5

87.4 62.4

69.0 49.3

55.9 39.9

38.8 24.3

28.5 15.3

21.8 10.2

17.3 7.2

14.0 5.2

190.2 135.9

145.6 104.0

115.1 82.2

93.2 66.6

64.7 40.5

47.6 25.5

36.4 17.1

28.8 12.0

23.3 8.7

2.0

3.0

Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0

10.0

25.9 25.9 25.9

16.5 17.3 17.3

7.4 13.0 13.0

3.9 10.4 10.4

2.4 6.3 8.6

1.5 4.0 7.4

1.1 2.7 6.5

0.8 2.0 5.8

0.6 1.5 5.2

109.2 78.0

48.5 34.7

27.3 19.5

17.5 12.5

12.1 7.6

8.9 4.8

6.8 3.2

5.4 2.2

4.4 1.6

51.8 51.8 51.8

34.5 34.5 34.5

20.5 25.9 25.9

10.9 20.7 20.7

6.5 17.1 17.3

4.2 11.2 14.8

2.9 7.6 13.0

2.1 5.4 11.5

1.6 4.0 10.4

218.5 156.0

97.1 69.4

54.6 39.0

35.0 25.0

24.3 15.2

17.8 9.6

13.7 6.4

10.8 4.5

8.7 3.3

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 12.6 30.6

13.3 32.5

14.5 35.2

15.6 37.4

16.8 39.4

17.9 41.2

25.2 61.2

26.6 65.0

28.9 70.3

31.2 74.8

33.5 78.7

35.8 82.3

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 18

BENDING

Table 18

GENERIC C SECTION

Depth 300 mm Thickness 3.0 mm

Design Strength 280 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0

3.5

4.0

10.0

22.3 38.3 38.3

15.3 33.5 33.5

11.0 29.8 29.8

8.2 25.2 26.8

5.0 15.3 22.3

3.3 9.9 19.1

2.3 6.8 16.7

1.7 4.9 14.9

1.3 3.6 13.4

73.8 52.7

56.5 40.4

44.6 31.9

36.2 25.8

25.1 15.7

18.4 9.9

14.1 6.6

11.2 4.6

9.0 3.4

123.0 87.8

94.2 67.3

74.4 53.1

60.3 43.0

41.8 26.2

30.7 16.5

23.5 11.0

18.6 7.7

15.1 5.6

61.6 76.6 76.6

42.4 67.0 67.0

30.4 59.5 59.5

22.6 53.6 53.6

13.6 41.8 44.7

8.9 27.5 38.3

6.2 18.8 33.5

4.6 13.4 29.8

3.5 10.0 26.8

147.6 105.4

113.0 80.7

89.3 63.8

72.3 51.7

50.2 31.4

36.9 19.8

28.2 13.2

22.3 9.3

18.1 6.8

246.0 175.7

188.3 134.5

148.8 106.3

120.5 86.1

83.7 52.3

61.5 32.9

47.1 22.1

37.2 15.5

30.1 11.3

2.0

3.0

Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0

10.0

33.5 33.5 33.5

20.1 22.3 22.3

9.2 16.7 16.7

4.9 12.6 13.4

3.0 7.7 11.2

2.0 4.9 9.6

1.4 3.4 8.4

1.0 2.4 7.4

0.8 1.8 6.7

141.2 100.9

62.8 44.8

35.3 25.2

22.6 16.1

15.7 9.8

11.5 6.2

8.8 4.1

7.0 2.9

5.6 2.1

67.0 67.0 67.0

44.7 44.7 44.7

25.2 33.5 33.5

13.5 26.8 26.8

8.2 20.9 22.3

5.4 13.7 19.1

3.8 9.4 16.7

2.8 6.7 14.9

2.1 5.0 13.4

282.5 201.8

125.5 89.7

70.6 50.4

45.2 32.3

31.4 19.6

23.1 12.4

17.7 8.3

13.9 5.8

11.3 4.2

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 20.4 44.8

21.3 47.4

22.8 51.1

24.3 54.1

25.8 56.8

27.4 59.2

40.7 89.7

42.6 94.9

45.6 102.1

48.7 108.2

51.7 113.5

54.7 118.4

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 19

[BLANK PAGE]

B - 20

LOAD CAPACITY TABLES FOR BEAMS S280 Generic Z Sections Note: These tables are presented for generic Z sections, which may be used for scheme design.

B - 21

BENDING

Table 19

GENERIC ZED SECTION Design Strength 280N/mm

Depth 100 mm Thickness 1.2 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

11.2 11.2 11.2

7.4 7.4 7.4

5.6 5.6 5.6

3.4 4.5 4.5

2.0 3.7 3.7

1.3 3.2 3.2

0.9 2.7 2.8

0.6 2.0 2.5

0.5 1.5 2.2

25.6 18.3

11.4 8.1

6.4 4.6

4.1 2.9

2.8 2.0

2.1 1.5

1.6 1.1

1.3 0.9

1.0 0.7

42.7 30.5

19.0 13.6

10.7 7.6

6.8 4.9

4.7 3.4

3.5 2.5

2.7 1.9

2.1 1.5

1.7 1.2

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

5.6 5.6 5.6

3.7 3.7 3.7

2.8 2.8 2.8

2.0 2.2 2.2

1.2 1.9 1.9

0.8 1.6 1.6

0.5 1.4 1.4

0.4 1.0 1.2

0.3 0.8 1.1

16.0 11.4

7.1 5.1

4.0 2.9

2.6 1.8

1.8 1.3

1.3 0.9

1.0 0.7

0.8 0.6

0.6 0.5

26.7 19.1

11.9 8.5

6.7 4.8

4.3 3.1

3.0 2.1

2.2 1.6

1.7 1.2

1.3 0.9

1.1 0.8

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 3.9 8.3

4.3 8.9

4.9 9.8

5.6 10.6

6.2 11.2

6.8 11.8

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 22

BENDING

Table 20

GENERIC ZED SECTION Design Strength 280N/mm

Depth 125 mm Thickness 1.2 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

14.4 14.4 14.4

9.6 9.6 9.6

7.2 7.2 7.2

4.2 5.8 5.8

2.5 4.8 4.8

1.6 4.1 4.1

1.1 3.5 3.6

0.8 2.5 3.2

0.6 1.9 2.9

41.2 29.4

18.3 13.1

10.3 7.4

6.6 4.7

4.6 3.3

3.4 2.4

2.6 1.8

2.0 1.5

1.6 1.2

68.7 49.0

30.5 21.8

17.2 12.3

11.0 7.8

7.6 5.4

5.6 4.0

4.3 3.1

3.4 2.4

2.7 2.0

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

7.2 7.2 7.2

4.8 4.8 4.8

3.6 3.6 3.6

2.5 2.9 2.9

1.5 2.4 2.4

1.0 2.1 2.1

0.6 1.8 1.8

0.5 1.3 1.6

0.3 0.9 1.4

25.7 18.4

11.4 8.2

6.4 4.6

4.1 2.9

2.9 2.0

2.1 1.5

1.6 1.1

1.3 0.9

1.0 0.7

42.9 30.7

19.1 13.6

10.7 7.7

6.9 4.9

4.8 3.4

3.5 2.5

2.7 1.9

2.1 1.5

1.7 1.2

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 3.7 8.5

4.1 9.1

4.7 10

5.3 10.8

5.9 11.5

6.5 12.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 23

BENDING

Table 21

GENERIC ZED SECTION Design Strength 280N/mm

Depth 125 mm Thickness 1.6 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

20.1 20.1 20.1

13.4 13.4 13.4

9.8 10.1 10.1

5.6 8.1 8.1

3.3 6.7 6.7

2.1 5.8 5.8

1.5 4.6 5.0

1.0 3.4 4.5

0.8 2.5 4.0

58.2 41.5

25.8 18.5

14.5 10.4

9.3 6.6

6.5 4.6

4.7 3.4

3.6 2.6

2.9 2.1

2.3 1.7

96.9 69.2

43.1 30.8

24.2 17.3

15.5 11.1

10.8 7.7

7.9 5.7

6.1 4.3

4.8 3.4

3.9 2.8

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

10.1 10.1 10.1

6.7 6.7 6.7

5.0 5.0 5.0

3.3 4.0 4.0

2.0 3.4 3.4

1.3 2.9 2.9

0.9 2.3 2.5

0.6 1.7 2.2

0.5 1.2 2.0

36.3 26.0

16.2 11.5

9.1 6.5

5.8 4.2

4.0 2.9

3.0 2.1

2.3 1.6

1.8 1.3

1.5 1.0

60.6 43.3

26.9 19.2

15.1 10.8

9.7 6.9

6.7 4.8

4.9 3.5

3.8 2.7

3.0 2.1

2.4 1.7

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.6 13.8

7.1 14.8

8.0 16.2

8.9 17.3

9.7 18.3

10.6 19.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 24

BENDING

Table 22

GENERIC ZED SECTION Design Strength 280N/mm

Depth 150 mm Thickness 1.6 m

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

13.1 13.1 13.1

7.8 10.5 10.5

4.6 8.7 8.7

3.0 7.5 7.5

2.0 6.4 6.5

1.4 4.7 5.8

1.1 3.5 5.2

0.6 2.0 4.4

0.4 1.3 3.7

22.5 16.1

14.4 10.3

10.0 7.1

7.3 5.2

5.6 4.0

4.4 3.2

3.6 2.6

2.5 1.6

1.8 1.0

37.5 26.8

24.0 17.1

16.7 11.9

12.2 8.7

9.4 6.7

7.4 5.3

6.0 4.3

4.2 2.6

3.1 1.6

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

8.7 8.7 8.7

6.5 6.5 6.5

4.6 5.2 5.2

2.8 4.4 4.4

1.8 3.7 3.7

1.2 3.2 3.3

0.6 1.7 2.6

0.4 1.0 2.2

0.3 0.7 1.9

25.0 17.9

14.1 10.0

9.0 6.4

6.2 4.5

4.6 3.3

3.5 2.5

2.2 1.6

1.6 1.0

1.1 0.6

41.7 29.8

23.4 16.7

15.0 10.7

10.4 7.4

7.7 5.5

5.9 4.2

3.7 2.7

2.6 1.6

1.9 1.0

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.4 14.1

6.9 15.1

7.7 16.5

8.6 17.6

9.4 18.7

10.2 19.6

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 25

BENDING

Table 23

GENERIC ZED SECTION Design Strength 280N/mm

Depth 150 mm Thickness 1.8 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

14.9 15.0 15.0

8.8 12.0 12.0

5.2 10.0 10.0

3.3 8.5 8.5

2.3 7.2 7.5

1.6 5.3 6.6

1.2 3.9 6.0

0.7 2.3 5.0

0.5 1.5 4.3

25.7 18.4

16.5 11.8

11.4 8.2

8.4 6.0

6.4 4.6

5.1 3.6

4.1 2.9

2.9 1.8

2.1 1.1

42.9 30.6

27.5 19.6

19.1 13.6

14.0 10.0

10.7 7.7

8.5 6.1

6.9 4.9

4.8 3.0

3.5 1.9

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

10.0 10.0 10.0

7.5 7.5 7.5

5.2 6.0 6.0

3.1 5.0 5.0

2.0 4.3 4.3

1.4 3.6 3.7

0.7 1.9 3.0

0.4 1.1 2.5

0.3 0.7 2.1

28.6 20.4

16.1 11.5

10.3 7.4

7.2 5.1

5.3 3.8

4.0 2.9

2.6 1.8

1.8 1.1

1.3 0.7

47.7 34.1

26.8 19.2

17.2 12.3

11.9 8.5

8.8 6.3

6.7 4.8

4.3 3.1

3.0 1.9

2.2 1.2

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.1 17.2

8.7 18.4

9.7 20.0

10.6 21.4

11.5 22.6

12.5 23.7

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 26

BENDING

Table 24

GENERIC ZED SECTION Design Strength 280N/mm

Depth 165 mm Thickness 1.6 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

14.6 14.6 14.6

8.6 11.7 11.7

5.1 9.7 9.7

3.2 8.4 8.4

2.2 7.2 7.3

1.6 5.2 6.5

1.2 3.8 5.8

0.7 2.2 4.9

0.5 1.4 4.2

27.6 19.7

17.7 12.6

12.3 8.8

9.0 6.4

6.9 4.9

5.5 3.9

4.4 3.2

3.1 1.9

2.3 1.2

46.0 32.9

29.5 21.0

20.5 14.6

15.0 10.7

11.5 8.2

9.1 6.5

7.4 5.3

5.1 3.2

3.8 2.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

9.7 9.7 9.7

7.3 7.3 7.3

5.1 5.8 5.8

3.0 4.9 4.9

1.9 4.2 4.2

1.3 3.6 3.7

0.7 1.9 2.9

0.4 1.1 2.4

0.3 0.7 2.1

30.7 21.9

17.3 12.3

11.0 7.9

7.7 5.5

5.6 4.0

4.3 3.1

2.8 2.0

1.9 1.2

1.4 0.8

51.1 36.5

28.8 20.5

18.4 13.1

12.8 9.1

9.4 6.7

7.2 5.1

4.6 3.3

3.2 2.0

2.3 1.3

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.3 14.2

6.8 15.2

7.6 16.6

8.4 17.8

9.2 18.9

10.0 19.8

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 27

BENDING

Table 25

GENERIC ZED SECTION Design Strength 280N/mm

Depth 165 mm Thickness 1.8 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

16.8 16.8 16.8

9.6 13.4 13.4

5.7 11.2 11.2

3.6 9.6 9.6

2.5 8.0 8.4

1.8 5.8 7.4

1.3 4.3 6.7

0.8 2.5 5.6

0.5 1.6 4.8

31.7 22.6

20.3 14.5

14.1 10.1

10.3 7.4

7.9 5.7

6.3 4.5

5.1 3.6

3.5 2.2

2.6 1.4

52.8 37.7

33.8 24.1

23.5 16.8

17.2 12.3

13.2 9.4

10.4 7.5

8.4 6.0

5.9 3.7

4.3 2.3

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

11.2 11.2 11.2

8.4 8.4 8.4

5.7 6.7 6.7

3.4 5.6 5.6

2.2 4.8 4.8

1.5 4.0 4.2

0.8 2.1 3.4

0.5 1.3 2.8

0.3 0.8 2.4

35.2 25.1

19.8 14.1

12.7 9.1

8.8 6.3

6.5 4.6

5.0 3.5

3.2 2.3

2.2 1.4

1.6 0.9

58.7 41.9

33.0 23.6

21.1 15.1

14.7 10.5

10.8 7.7

8.3 5.9

5.3 3.8

3.7 2.3

2.7 1.4

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.0 17.4

8.6 18.6

9.5 20.2

10.4 21.6

11.3 22.9

12.3 24.0

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 28

BENDING

Table 26

GENERIC ZED SECTION Design Strength 280N/mm

Depth 180 mm Thickness 1.6 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

16.2 16.2 16.2

9.4 12.9 12.9

5.5 10.8 10.8

3.5 9.2 9.2

2.4 7.9 8.1

1.7 5.7 7.2

1.3 4.2 6.5

0.7 2.4 5.4

0.5 1.6 4.6

33.3 23.8

21.3 15.2

14.8 10.6

10.9 7.8

8.3 5.9

6.6 4.7

5.3 3.8

3.7 2.3

2.7 1.5

55.4 39.6

35.5 25.3

24.6 17.6

18.1 12.9

13.9 9.9

11.0 7.8

8.9 6.3

6.2 3.8

4.5 2.4

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

10.8 10.8 10.8

8.1 8.1 8.1

5.6 6.5 6.5

3.3 5.4 5.4

2.1 4.6 4.6

1.4 3.9 4.0

0.8 2.1 3.2

0.5 1.2 2.7

0.3 0.8 2.3

37.0 26.4

20.8 14.8

13.3 9.5

9.2 6.6

6.8 4.8

5.2 3.7

3.3 2.4

2.3 1.4

1.7 0.9

61.6 44.0

34.6 24.7

22.2 15.8

15.4 11.0

11.3 8.1

8.7 6.2

5.5 4.0

3.8 2.4

2.8 1.5

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.1 14.4

6.6 15.4

7.4 16.8

8.2 18

9 19.1

9.8 20.0

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 29

BENDING

Table 27

GENERIC ZED SECTION Design Strength 280N/mm

Depth 180 mm Thickness 1.8 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

18.6 18.6 18.6

10.5 14.9 14.9

6.2 12.4 12.4

3.9 10.6 10.6

2.7 8.8 9.3

1.9 6.3 8.3

1.4 4.6 7.4

0.9 2.7 6.2

0.6 1.7 5.3

38.3 27.3

24.5 17.5

17.0 12.2

12.5 8.9

9.6 6.8

7.6 5.4

6.1 4.4

4.3 2.7

3.1 1.7

63.8 45.6

40.8 29.2

28.4 20.3

20.8 14.9

15.9 11.4

12.6 9.0

10.2 7.3

7.1 4.4

5.2 2.8

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

12.4 12.4 12.4

9.3 9.3 9.3

6.2 7.4 7.4

3.7 6.2 6.2

2.4 5.3 5.3

1.6 4.4 4.6

0.9 2.3 3.7

0.5 1.4 3.1

0.3 0.9 2.7

42.5 30.4

23.9 17.1

15.3 10.9

10.6 7.6

7.8 5.6

6.0 4.3

3.8 2.7

2.7 1.7

2.0 1.0

70.9 50.6

39.9 28.5

25.5 18.2

17.7 12.7

13.0 9.3

10.0 7.1

6.4 4.6

4.4 2.8

3.3 1.7

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.8 17.5

8.4 18.8

9.3 20.4

10.2 21.8

11.1 23.1

12.0 24.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 30

BENDING

Table 28

GENERIC ZED SECTION Design Strength 280N/mm

Depth 180 mm Thickness 2.0 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

20.7 21.0 21.0

11.5 16.8 16.8

6.8 14.0 14.0

4.4 12.0 12.0

3.0 9.6 10.5

2.1 6.9 9.3

1.6 5.1 8.4

1.0 3.0 7.0

0.6 1.9 6.0

43.2 30.8

27.6 19.7

19.2 13.7

14.1 10.1

10.8 7.7

8.5 6.1

6.9 4.9

4.8 3.0

3.5 1.9

72.0 51.4

46.1 32.9

32.0 22.8

23.5 16.8

18.0 12.9

14.2 10.2

11.5 8.2

8.0 5.0

5.9 3.1

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

14.0 14.0 14.0

10.5 10.5 10.5

6.9 8.4 8.4

4.1 7.0 7.0

2.6 6.0 6.0

1.8 4.8 5.2

1.0 2.6 4.2

0.6 1.5 3.5

0.4 1.0 3.0

48.0 34.3

27.0 19.3

17.3 12.3

12.0 8.6

8.8 6.3

6.7 4.8

4.3 3.1

3.0 1.9

2.2 1.2

80.0 57.1

45.0 32.1

28.8 20.6

20.0 14.3

14.7 10.5

11.2 8.0

7.2 5.1

5.0 3.1

3.7 2.0

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.7 21.0

10.4 22.4

11.4 24.4

12.4 26.0

13.5 27.4

14.5 28.7

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 31

BENDING

Table 29

GENERIC ZED SECTION Design Strength 280N/mm

Depth 200 mm Thickness 1.6 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

18.2 18.2 18.2

10.4 14.6 14.6

6.1 12.1 12.1

3.9 10.4 10.4

2.6 8.8 9.1

1.9 6.3 8.1

1.4 4.6 7.3

0.8 2.7 6.1

0.5 1.7 5.2

41.6 29.7

26.6 19.0

18.5 13.2

13.6 9.7

10.4 7.4

8.2 5.9

6.7 4.8

4.6 2.9

3.4 1.8

69.3 49.5

44.4 31.7

30.8 22.0

22.6 16.2

17.3 12.4

13.7 9.8

11.1 7.9

7.7 4.8

5.7 3.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

12.1 12.1 12.1

9.1 9.1 9.1

6.2 7.3 7.3

3.7 6.1 6.1

2.3 5.2 5.2

1.6 4.4 4.6

0.8 2.3 3.6

0.5 1.3 3.0

0.3 0.9 2.6

46.2 33.0

26.0 18.6

16.6 11.9

11.6 8.3

8.5 6.1

6.5 4.6

4.2 3.0

2.9 1.8

2.1 1.1

77.0 55.0

43.3 31.0

27.7 19.8

19.3 13.8

14.2 10.1

10.8 7.7

6.9 5.0

4.8 3.0

3.5 1.9

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.0 14.6

6.4 15.6

7.2 17.1

8.0 18.3

8.7 19.4

9.5 20.3

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 32

BENDING

Table 30

GENERIC ZED SECTION Design Strength 280N/mm

Depth 200 mm Thickness 1.8 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

21.0 21.0 21.0

11.6 16.8 16.8

6.8 14.0 14.0

4.3 12.0 12.0

3.0 9.8 10.5

2.1 7.0 9.3

1.6 5.1 8.4

0.9 3.0 7.0

0.6 1.9 6.0

48.1 34.3

30.8 22.0

21.4 15.3

15.7 11.2

12.0 8.6

9.5 6.8

7.7 5.5

5.3 3.3

3.9 2.1

80.1 57.2

51.3 36.6

35.6 25.4

26.2 18.7

20.0 14.3

15.8 11.3

12.8 9.2

8.9 5.6

6.5 3.5

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

14.0 14.0 14.0

10.5 10.5 10.5

6.9 8.4 8.4

4.1 7.0 7.0

2.6 6.0 6.0

1.8 4.9 5.3

0.9 2.6 4.2

0.6 1.5 3.5

0.4 1.0 3.0

53.4 38.1

30.0 21.5

19.2 13.7

13.4 9.5

9.8 7.0

7.5 5.4

4.8 3.4

3.3 2.1

2.5 1.3

89.0 63.6

50.1 35.8

32.0 22.9

22.3 15.9

16.3 11.7

12.5 8.9

8.0 5.7

5.6 3.5

4.1 2.2

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.6 17.8

8.2 19

9.1 20.7

10 22.1

10.8 23.4

11.7 24.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 33

BENDING

Table 31

GENERIC ZED SECTION Design Strength 280N/mm

Depth 200 mm Thickness 2.0 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.0

Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0

8.0

7.5 15.9 15.9

4.8 13.6 13.6

3.3 10.8 11.9

2.3 7.7 10.6

1.7 5.7 9.5

1.3 4.3 8.6

1.0 3.3 7.9

0.7 2.1 6.8

0.5 1.4 5.9

24.2 17.3

17.8 12.7

13.6 9.7

10.7 7.7

8.7 6.2

7.2 4.9

6.0 3.8

4.4 2.4

3.4 1.6

40.3 28.8

29.6 21.1

22.7 16.2

17.9 12.8

14.5 10.4

12.0 8.2

10.1 6.3

7.4 4.0

5.7 2.7

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0

8.0

11.9 11.9 11.9

7.6 9.5 9.5

4.5 7.9 7.9

2.9 6.8 6.8

2.0 5.4 5.9

1.0 2.8 4.8

0.6 1.7 4.0

0.4 1.1 3.4

0.3 0.7 3.0

34.0 24.3

21.8 15.5

15.1 10.8

11.1 7.9

8.5 6.1

5.4 3.9

3.8 2.4

2.8 1.5

2.1 1.0

56.7 40.5

36.3 25.9

25.2 18.0

18.5 13.2

14.2 10.1

9.1 6.5

6.3 3.9

4.6 2.5

3.5 1.7

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.5 21.3

10.1 22.7

11.1 24.7

12.2 26.3

13.2 27.8

14.2 29.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 34

BENDING

Table 32

GENERIC ZED SECTION Design Strength 280N/mm

Depth 220 mm Thickness 2.0 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.0

Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0

8.0

8.2 17.8 17.8

5.3 15.2 15.2

3.6 11.9 13.3

2.6 8.5 11.8

1.9 6.2 10.7

1.4 4.7 9.7

1.1 3.6 8.9

0.7 2.3 7.6

0.5 1.6 6.7

29.8 21.3

21.9 15.6

16.7 12.0

13.2 9.5

10.7 7.7

8.9 6.0

7.4 4.7

5.5 2.9

4.2 2.0

49.6 35.4

36.5 26.0

27.9 19.9

22.1 15.8

17.9 12.8

14.8 10.1

12.4 7.8

9.1 4.9

7.0 3.3

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0

8.0

13.3 13.3 13.3

8.4 10.7 10.7

4.9 8.9 8.9

3.2 7.6 7.6

2.2 5.9 6.7

1.1 3.1 5.3

0.7 1.8 4.4

0.4 1.2 3.8

0.3 0.8 3.3

41.9 29.9

26.8 19.1

18.6 13.3

13.7 9.8

10.5 7.5

6.7 4.8

4.7 2.9

3.4 1.8

2.6 1.2

69.8 49.8

44.7 31.9

31.0 22.2

22.8 16.3

17.4 12.5

11.2 8.0

7.8 4.8

5.7 3.1

4.4 2.0

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.3 21.5

9.9 23

10.9 24.9

11.9 26.6

12.9 28.1

13.9 29.4

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 35

BENDING

Table 33

GENERIC ZED SECTION Design Strength 280N/mm

Depth 220 mm Thickness 2.4 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.0

Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0

8.0

9.7 21.9 21.9

6.3 18.8 18.8

4.3 13.9 16.4

3.1 9.9 14.6

2.3 7.3 13.1

1.8 5.6 11.9

1.4 4.3 11.0

0.9 2.8 9.4

0.7 1.9 8.2

36.7 26.2

27.0 19.3

20.6 14.7

16.3 11.7

13.2 9.4

10.9 7.4

9.2 5.7

6.7 3.6

5.2 2.4

61.2 43.7

44.9 32.1

34.4 24.6

27.2 19.4

22.0 15.7

18.2 12.4

15.3 9.6

11.2 6.0

8.6 4.0

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0

8.0

16.4 16.4 16.4

9.9 13.1 13.1

5.9 11.0 11.0

3.8 9.4 9.4

2.6 7.0 8.2

1.4 3.7 6.6

0.8 2.2 5.5

0.6 1.4 4.7

0.4 0.9 4.1

51.6 36.9

33.0 23.6

22.9 16.4

16.9 12.0

12.9 9.2

8.3 5.9

5.7 3.6

4.2 2.3

3.2 1.5

86.0 61.4

55.1 39.3

38.2 27.3

28.1 20.1

21.5 15.4

13.8 9.8

9.6 6.0

7.0 3.8

5.4 2.5

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 13.6 29.4

14.4 31.3

15.6 33.8

16.9 36

18.1 37.9

19.3 39.6

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 36

BENDING

Table 34

GENERIC ZED SECTION Design Strength 280N/mm

Depth 250 mm Thickness 2.4 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.5

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0

10.0

15.0 26.0 26.0

10.2 22.8 22.8

7.2 20.2 20.2

5.3 17.5 18.2

3.2 10.4 15.2

2.0 6.7 13.0

1.4 4.5 11.4

1.0 3.2 10.1

0.8 2.4 9.1

42.2 30.2

32.3 23.1

25.6 18.3

20.7 14.8

14.4 9.0

10.6 5.7

8.1 3.8

6.4 2.7

5.2 1.9

70.4 50.3

53.9 38.5

42.6 30.4

34.5 24.6

24.0 15.0

17.6 9.4

13.5 6.3

10.6 4.4

8.6 3.2

2.0

Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0

22.8 22.8 22.8

13.8 15.2 15.2

6.1 11.4 11.4

3.2 8.7 9.1

1.9 5.2 7.6

1.2 3.3 6.5

0.9 2.3 5.7

0.6 1.6 5.1

0.5 1.2 4.6

80.8 57.7

35.9 25.7

20.2 14.4

12.9 9.2

9.0 5.6

6.6 3.5

5.1 2.4

4.0 1.7

3.2 1.2

134.7 96.2

59.9 42.8

33.7 24.1

21.6 15.4

15.0 9.4

11.0 5.9

8.4 3.9

6.7 2.8

5.4 2.0

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 13.3 29.8

14 31.7

15.2 34.3

16.4 36.5

17.6 38.4

18.8 40.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 37

BENDING

Table 35

GENERIC ZED SECTION Design Strength 280N/mm

Depth 300 mm Thickness 2.4 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.5

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0

10.0

32.1 36.5 36.5

21.8 32.0 32.0

15.4 28.4 28.4

11.3 25.6 25.6

6.6 21.3 21.3

4.2 14.3 18.3

2.9 9.7 16.0

2.1 6.8 14.2

1.5 5.0 12.8

70.8 50.6

54.2 38.7

42.9 30.6

34.7 24.8

24.1 15.1

17.7 9.5

13.6 6.4

10.7 4.5

8.7 3.3

118.1 84.3

90.4 64.6

71.4 51.0

57.9 41.3

40.2 25.1

29.5 15.8

22.6 10.6

17.9 7.4

14.5 5.4

2.0

Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0

32.0 32.0 32.0

21.3 21.3 21.3

13.0 16.0 16.0

6.8 12.8 12.8

4.0 10.7 10.7

2.6 7.1 9.1

1.7 4.8 8.0

1.2 3.4 7.1

0.9 2.5 6.4

135.6 96.9

60.3 43.0

33.9 24.2

21.7 15.5

15.1 9.4

11.1 5.9

8.5 4.0

6.7 2.8

5.4 2.0

226.0 161.4

100.4 71.7

56.5 40.4

36.2 25.8

25.1 15.7

18.4 9.9

14.1 6.6

11.2 4.6

9.0 3.4

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 12.6 30.6

13.3 32.5

14.5 35.2

15.6 37.4

16.8 39.4

17.9 41.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 38

BENDING

Table 36

GENERIC ZED SECTION Design Strength 280N/mm

Depth 300 mm Thickness 3.0 mm

2

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.5

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0

10.0

39.3 47.7 47.7

26.7 41.7 41.7

19.0 37.1 37.1

14.0 33.4 33.4

8.2 26.8 27.8

5.3 17.5 23.8

3.6 11.8 20.8

2.6 8.4 18.5

2.0 6.2 16.7

92.6 66.2

70.9 50.7

56.0 40.0

45.4 32.4

31.5 19.7

23.2 12.4

17.7 8.3

14.0 5.8

11.3 4.3

154.4 110.3

118.2 84.4

93.4 66.7

75.7 54.0

52.5 32.8

38.6 20.7

29.6 13.9

23.4 9.7

18.9 7.1

2.0

Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0

41.7 41.7 41.7

27.8 27.8 27.8

16.0 20.8 20.8

8.4 16.7 16.7

5.0 13.4 13.9

3.2 8.7 11.9

2.2 5.9 10.4

1.6 4.2 9.3

1.2 3.1 8.3

177.3 126.7

78.8 56.3

44.3 31.7

28.4 20.3

19.7 12.3

14.5 7.8

11.1 5.2

8.8 3.6

7.1 2.7

295.6 211.1

131.4 93.8

73.9 52.8

47.3 33.8

32.8 20.5

24.1 12.9

18.5 8.7

14.6 6.1

11.8 4.4

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 20.4 44.8

21.3 47.4

22.8 51.1

24.3 54.1

25.8 56.8

27.4 59.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

B - 39

[BLANK PAGE]

B - 40

LOAD CAPACITY TABLES FOR COLUMNS S280 Generic C Sections Note: These tables are presented for generic C sections, which may be used for scheme design.

B-1

COMPRESSION GENERIC C SECTION

Table 37

Depth 100 mm Thickness 1.2 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4m

3m

2m

1m

Continuous

6.8 6.8 6.8

10.0 10.8 10.8

14.8 18.4 18.8

19.5 26.1 27.3

21.2 28.3 30.1

4.3 4.5 4.5

6.1 6.6 6.7

6.9 7.9 8.2

7.2 8.3 8.6

6.1 6.5 6.5

9.0 10.8 10.9

10.1 13.2 14.2

10.4 13.6 14.8

5.9 6.2 6.2

7.9 8.8 8.8

9.7 11.1 11.3

10.4 11.9 12.2

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

3.1 3.1 3.1

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

4.1 4.1 4.1

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

4.4 4.4 4.4

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4m

3m

2m

1m

Continuous

28.7 28.7 28.7

44.6 44.6 44.6

48.9 62.6 62.6

48.9 69.0 71.8

48.9 69.0 74.3

10.6 10.6 10.6

11.7 12.7 12.8

12.1 13.5 13.8

12.2 13.7 14.1

21.2 22.0 22.0

21.9 28.4 29.6

21.9 29.6 32.0

21.9 29.6 32.5

13.4 13.4 13.4

15.2 16.2 16.2

16.1 17.8 18.0

16.4 18.2 18.6

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

8.2 8.2 8.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

14.5 14.5 14.5

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.7 10.7 10.7

B - 42

COMPRESSION GENERIC C SECTION

Table 38

Depth 125 mm Thickness 1.2 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

6.9 6.9 6.9

10.8 10.8 10.8

17.3 17.9 17.9

22.1 25.0 25.2

23.5 26.9 27.8

4.7 4.7 4.7

6.7 6.8 6.8

7.5 8.1 8.2

7.8 8.3 8.5

6.7 6.7 6.7

10.5 11.0 11.0

11.6 13.3 13.8

11.8 13.7 14.3

6.3 6.3 6.3

8.8 8.9 8.9

10.5 11.1 11.1

11.1 11.8 12.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

3.3 3.3 3.3

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

4.2 4.2 4.2

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

4.5 4.5 4.5

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

28.5 28.5 28.5

44.2 44.2 44.2

59.9 62.2 62.2

59.9 71.3 71.9

59.9 71.3 74.7

10.6 10.6 10.6

12.5 12.8 12.9

13.0 13.7 13.8

13.1 13.9 14.2

22.1 22.1 22.1

26.0 29.3 30.3

26.0 31.2 32.5

26.0 31.2 33.1

13.4 13.4 13.4

16.0 16.2 16.2

17.1 17.9 18.0

17.5 18.4 18.6

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

8.2 8.2 8.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

14.4 14.4 14.4

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.6 10.6 10.6

B - 43

COMPRESSION GENERIC C SECTION

Table 39

Depth 125 mm Thickness 1.6 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

9.6 9.6 9.6

15.4 15.4 15.4

26.4 27.3 27.3

34.8 40.9 41.2

37.3 44.2 45.9

6.3 6.3 6.3

9.1 9.3 9.3

10.6 11.5 11.6

11.0 11.9 12.2

9.2 9.2 9.2

15.3 15.7 15.7

17.1 20.3 21.2

17.4 20.8 22.0

8.5 8.5 8.5

12.1 12.3 12.3

14.8 15.7 15.8

15.7 16.8 17.1

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

4.4 4.4 4.4

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

5.8 5.8 5.8

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

6.0 6.0 6.0

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

38.4 38.4 38.4

61.7 61.7 61.7

89.0 93.0 93.0

89.0 109.3 110.1

89.0 109.3 114.6

14.1 14.1 14.1

17.0 17.3 17.3

17.8 18.8 19.0

18.0 19.1 19.4

29.9 29.9 29.9

37.3 42.3 42.3

37.3 45.7 47.9

37.3 45.7 48.7

17.8 17.8 17.8

21.5 21.7 21.7

23.1 24.3 24.3

23.7 24.9 25.2

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

10.8 10.8 10.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

19.4 19.4 19.4

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

14.0 14.0 14.0

B - 44

COMPRESSION GENERIC C SECTION

Table 40

Depth 150 mm Thickness 1.6 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

13.7 13.7 13.7

21.1 21.1 21.1

32.6 33.1 33.1

39.6 42.9 43.1

41.5 45.4 46.5

8.4 8.4 8.4

11.2 11.3 11.3

12.2 12.8 12.9

12.5 13.1 13.3

13.0 13.0 13.0

18.9 19.5 19.5

20.2 22.4 22.9

20.5 22.9 23.6

11.1 11.1 11.1

14.6 14.7 14.7

16.8 17.4 17.4

17.6 18.2 18.4

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.1 6.1 6.1

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

8.4 8.4 8.4

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

8.3 8.3 8.3

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

56.2 56.2 56.2

83.2 83.2 83.2

106.8 107.8 107.8

106.8 120.2 120.4

106.8 120.2 123.8

17.5 17.5 17.5

19.8 20.1 20.1

20.4 21.2 21.3

20.7 21.4 21.6

40.4 40.4 40.4

45.6 49.6 50.7

45.6 51.9 53.5

45.6 51.9 54.2

21.8 21.8 21.8

25.1 25.1 25.1

26.5 27.2 27.2

26.9 27.7 27.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

14.2 14.2 14.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

28.1 28.1 28.1

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

18.0 18.0 18.0

B - 45

COMPRESSION GENERIC C SECTION

Table 41

Depth 150 mm Thickness 1.8 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

15.8 15.8 15.8

24.6 24.6 24.6

39.2 39.7 39.7

48.1 52.5 52.7

50.5 55.7 57.0

9.5 9.5 9.5

12.8 12.8 12.8

14.0 14.7 14.8

14.4 15.1 15.3

14.8 14.8 14.8

22.2 22.6 22.6

23.8 26.6 27.3

24.1 27.1 28.1

12.6 12.6 12.6

16.7 16.8 16.8

19.3 20.0 20.0

20.2 21.0 21.2

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.8 6.8 6.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

9.5 9.5 9.5

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

9.3 9.3 9.3

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

63.6 63.6 63.6

96.0 96.0 96.0

126.0 127.1 127.1

126.0 142.5 142.8

126.0 142.5 146.9

19.6 19.6 19.6

22.4 22.6 22.6

23.2 24.0 24.1

23.4 24.3 24.5

45.8 45.8 45.8

52.8 57.6 58.0

52.8 60.5 62.4

52.8 60.5 63.2

24.5 24.5 24.5

28.3 28.3 28.3

29.8 30.7 30.7

30.4 31.3 31.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

15.8 15.8 15.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

31.7 31.7 31.7

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

20.2 20.2 20.2

B - 46

COMPRESSION GENERIC C SECTION

Table 42

Depth 165mm Thickness 1.6 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

13.7 13.7 13.7

20.9 20.9 20.9

32.2 32.2 32.2

39.3 41.6 41.6

41.1 44.1 44.9

8.5 8.5 8.5

11.3 11.3 11.3

12.4 12.8 12.8

12.6 13.1 13.3

13.0 13.0 13.0

19.1 19.4 19.4

20.6 22.3 22.6

20.9 22.8 23.3

11.2 11.2 11.2

14.7 14.7 14.7

16.9 17.3 17.3

17.6 18.1 18.3

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.2 6.2 6.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

8.5 8.5 8.5

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

8.4 8.4 8.4

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

55.9 55.9 55.9

82.8 82.8 82.8

107.5 107.5 107.5

110.3 120.4 120.4

110.3 121.2 124.0

17.5 17.5 17.5

19.9 20.1 20.2

20.7 21.3 21.3

20.9 21.5 21.7

40.6 40.6 40.6

46.9 50.0 51.1

47.4 52.6 53.8

47.4 52.8 54.5

21.8 21.8 21.8

25.1 25.1 25.1

26.7 27.2 27.2

27.2 27.8 27.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

14.2 14.2 14.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

28.1 28.1 28.1

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

18.0 18.0 18.0

B - 47

COMPRESSION GENERIC C SECTION

Table 43

Depth 165 mm Thickness 1.8 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

15.8 15.8 15.8

24.3 24.3 24.3

38.4 38.4 38.4

47.7 50.6 50.6

50.0 53.8 54.8

9.6 9.6 9.6

12.9 12.9 12.9

14.2 14.7 14.8

14.6 15.1 15.3

14.9 14.9 14.9

22.4 22.5 22.5

24.3 26.4 26.9

24.6 27.0 27.7

12.7 12.7 12.7

16.8 16.8 16.8

19.4 19.9 19.9

20.3 20.9 21.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.9 6.9 6.9

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

9.6 9.6 9.6

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

9.4 9.4 9.4

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

63.3 63.3 63.3

95.5 95.5 95.5

126.8 126.8 126.8

130.3 142.8 142.8

130.3 143.7 147.2

19.7 19.7 19.7

22.6 22.8 22.8

23.5 24.1 24.2

23.7 24.4 24.6

46.0 46.0 46.0

54.5 58.3 58.7

55.1 61.3 62.9

55.1 61.5 63.7

24.5 24.5 24.5

28.3 28.3 28.3

30.1 30.7 30.7

30.7 31.3 31.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

15.8 15.8 15.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

31.6 31.6 31.6

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

20.2 20.2 20.2

B - 48

COMPRESSION GENERIC C SECTION

Table 44

Depth 180 mm Thickness 1.6 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

13.7 13.7 13.7

20.8 20.8 20.8

31.4 31.4 31.4

38.9 40.3 40.3

40.6 43.0 43.5

8.6 8.6 8.6

11.4 11.4 11.4

12.5 12.8 12.8

12.7 13.1 13.2

13.1 13.1 13.1

19.1 19.3 19.3

20.8 22.1 22.4

21.1 22.6 23.1

11.3 11.3 11.3

14.7 14.7 14.7

16.9 17.2 17.2

17.6 18.0 18.1

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.2 6.2 6.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

8.6 8.6 8.6

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

8.4 8.4 8.4

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

55.7 55.7 55.7

82.4 82.4 82.4

107.3 107.3 107.3

112.7 120.4 120.4

112.7 122.1 124.3

17.6 17.6 17.6

20.0 20.2 20.2

20.9 21.3 21.4

21.1 21.6 21.8

40.8 40.8 40.8

47.9 50.4 51.3

48.9 53.1 54.1

48.9 53.4 54.9

21.8 21.8 21.8

25.1 25.1 25.1

26.8 27.2 27.2

27.3 27.8 27.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

14.2 14.2 14.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

28.0 28.0 28.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

18.0 18.0 18.0

B - 49

COMPRESSION GENERIC C SECTION

Table 45

Depth 180 mm Thickness 1.8 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

15.7 15.7 15.7

24.0 24.0 24.0

37.4 37.4 37.4

47.0 48.9 48.9

49.2 52.3 52.9

9.7 9.7 9.7

12.9 12.9 12.9

14.3 14.7 14.8

14.7 15.1 15.3

14.9 14.9 14.9

22.4 22.4 22.4

24.6 26.2 26.5

24.9 26.8 27.4

12.8 12.8 12.8

16.8 16.8 16.8

19.4 19.8 19.8

20.3 20.8 20.8

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

7.0 7.0 7.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

9.7 9.7 9.7

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

9.5 9.5 9.5

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

63.1 63.1 63.1

95.0 95.0 95.0

126.4 126.4 126.4

133.3 142.8 142.8

133.3 144.7 147.4

19.7 19.7 19.7

22.7 22.8 22.8

23.7 24.2 24.3

24.0 24.5 24.7

46.2 46.2 46.2

55.7 58.8 59.3

56.9 62.0 63.3

56.9 62.4 64.2

24.4 24.4 24.4

28.3 28.3 28.3

30.3 30.7 30.7

30.8 31.4 31.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

15.8 15.8 15.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

31.6 31.6 31.6

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

20.1 20.1 20.1

B - 50

COMPRESSION GENERIC C SECTION

Table 46

Depth 180 mm Thickness 2.0 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

17.8 17.8 17.8

27.5 27.5 27.5

43.9 43.9 43.9

56.0 58.4 58.4

58.7 62.6 63.4

10.8 10.8 10.8

14.4 14.4 14.4

16.2 16.6 16.7

16.6 17.1 17.3

16.8 16.8 16.8

25.6 25.6 25.6

28.5 30.4 30.9

28.8 31.2 31.9

14.2 14.2 14.2

18.8 18.8 18.8

22.0 22.3 22.3

22.9 23.5 23.6

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

7.8 7.8 7.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

10.9 10.9 10.9

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.5 10.5 10.5

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

70.3 70.3 70.3

107.4 107.4 107.4

145.8 145.8 145.8

154.3 165.5 165.5

154.3 167.9 171.0

21.8 21.8 21.8

25.3 25.3 25.3

26.4 26.9 27.0

26.7 27.3 27.5

51.6 51.6 51.6

63.3 66.8 66.8

64.7 70.8 72.3

64.7 71.2 73.3

27.0 27.0 27.0

31.3 31.3 31.3

33.6 34.1 34.1

34.3 34.9 35.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

17.5 17.5 17.5

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

35.1 35.1 35.1

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

22.2 22.2 22.2

B - 51

COMPRESSION GENERIC C SECTION

Table 47

Depth 200 mm Thickness 1.6 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

13.8 13.8 13.8

20.5 20.5 20.5

30.7 30.7 30.7

38.2 39.0 39.0

39.9 41.7 42.1

8.7 8.7 8.7

11.4 11.4 11.4

12.5 12.8 12.8

12.8 13.1 13.2

13.1 13.1 13.1

19.1 19.3 19.3

21.0 21.8 22.1

21.3 22.4 22.8

11.3 11.3 11.3

14.7 14.7 14.7

16.9 17.1 17.1

17.6 17.9 18.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.3 6.3 6.3

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

8.7 8.7 8.7

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

8.5 8.5 8.5

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

55.4 55.4 55.4

82.0 82.0 82.0

106.9 106.9 106.9

115.2 120.5 120.5

115.2 123.1 124.6

17.6 17.6 17.6

20.1 20.2 20.3

21.1 21.4 21.4

21.3 21.7 21.8

40.9 40.9 40.9

48.8 50.8 51.5

50.4 53.7 54.4

50.4 54.2 55.3

21.8 21.8 21.8

25.1 25.1 25.1

26.9 27.2 27.2

27.4 27.9 27.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

14.2 14.2 14.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

28.0 28.0 28.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

18.0 18.0 18.0

B - 52

COMPRESSION GENERIC C SECTION

Table 48

Depth 200 mm Thickness 1.8 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

15.7 15.7 15.7

23.8 23.8 23.8

36.3 36.3 36.3

46.0 47.1 47.1

48.2 50.5 50.9

9.8 9.8 9.8

13.0 13.0 13.0

14.4 14.7 14.7

14.8 15.1 15.2

15.0 15.0 15.0

22.3 22.3 22.3

24.8 25.9 26.2

25.1 26.6 27.0

12.8 12.8 12.8

16.7 16.7 16.7

19.4 19.6 19.6

20.2 20.6 20.7

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

7.1 7.1 7.1

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

9.8 9.8 9.8

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

9.6 9.6 9.6

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

62.8 62.8 62.8

94.5 94.5 94.5

126.0 126.0 126.0

136.3 142.8 142.8

136.3 145.9 147.7

19.7 19.7 19.7

22.8 22.9 22.9

23.9 24.3 24.3

24.2 24.7 24.8

46.4 46.4 46.4

56.9 59.3 60.2

58.8 62.8 63.8

58.8 63.4 64.8

24.4 24.4 24.4

28.3 28.3 28.3

30.4 30.7 30.7

31.0 31.5 31.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

15.8 15.8 15.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

31.5 31.5 31.5

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

20.1 20.1 20.1

B - 53

COMPRESSION GENERIC C SECTION

Table 49

Depth 200 mm Thickness 2.0 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

17.7 17.7 17.7

27.1 27.1 27.1

42.5 42.5 42.5

54.7 55.9 55.9

57.3 60.2 60.8

10.9 10.9 10.9

14.5 14.5 14.5

16.3 16.6 16.7

16.7 17.1 17.2

16.9 16.9 16.9

25.5 25.5 25.5

28.7 30.1 30.4

29.1 30.9 31.5

14.3 14.3 14.3

18.8 18.8 18.8

22.0 22.2 22.2

22.9 23.3 23.4

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

7.9 7.9 7.9

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

11.0 11.0 11.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.7 10.7 10.7

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

69.9 69.9 69.9

106.7 106.7 106.7

145.2 145.2 145.2

157.9 165.5 165.5

157.9 169.2 171.3

21.8 21.8 21.8

25.4 25.4 25.4

26.7 27.1 27.1

27.0 27.5 27.6

51.8 51.8 51.8

64.8 67.7 67.7

67.1 71.8 73.0

67.1 72.5 74.1

27.0 27.0 27.0

31.3 31.3 31.3

33.8 34.1 34.1

34.4 35.0 35.1

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

17.5 17.5 17.5

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

35.0 35.0 35.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

22.2 22.2 22.2

B - 54

COMPRESSION GENERIC C SECTION

Table 50

Depth 220 mm Thickness 2.0 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

17.7 17.7 17.7

26.8 26.8 26.8

41.3 41.3 41.3

53.4 54.0 54.0

55.9 58.3 58.6

10.9 10.9 10.9

14.6 14.6 14.6

16.4 16.6 16.6

16.8 17.1 17.2

16.9 16.9 16.9

25.4 25.4 25.4

28.8 29.8 30.0

29.3 30.7 31.1

14.3 14.3 14.3

18.7 18.7 18.7

21.9 22.0 22.0

22.8 23.2 23.2

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

8.0 8.0 8.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

11.1 11.1 11.1

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.8 10.8 10.8

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

69.6 69.6 69.6

106.1 106.1 106.1

144.7 144.7 144.7

160.5 165.4 165.4

160.5 170.3 171.7

21.8 21.8 21.8

25.5 25.6 25.6

26.9 27.2 27.2

27.2 27.6 27.7

52.0 52.0 52.0

66.0 68.3 68.6

68.9 72.6 73.5

68.9 73.5 74.8

26.9 26.9 26.9

31.3 31.3 31.3

33.9 34.1 34.1

34.6 35.0 35.1

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

17.5 17.5 17.5

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

34.9 34.9 34.9

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

22.1 22.1 22.1

B - 55

COMPRESSION GENERIC C SECTION

Table 51

Depth 220 mm Thickness 2.4 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

21.8 21.8 21.8

33.8 33.8 33.8

54.3 54.3 54.3

72.7 73.5 73.5

76.3 79.8 80.3

13.1 13.1 13.1

17.7 17.7 17.7

20.2 20.4 20.5

20.7 21.1 21.2

20.8 20.8 20.8

31.9 31.9 31.9

37.3 38.7 39.1

37.8 39.9 40.4

17.2 17.2 17.2

22.8 22.8 22.8

27.0 27.1 27.1

28.2 28.7 28.7

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

9.5 9.5 9.5

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

13.4 13.4 13.4

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

12.8 12.8 12.8

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

83.4 83.4 83.4

130.2 130.2 130.2

184.7 184.7 184.7

207.3 213.8 213.8

207.3 220.3 222.2

25.8 25.8 25.8

30.4 30.4 30.4

32.3 32.6 32.7

32.7 33.2 33.3

62.5 62.5 62.5

82.3 84.0 84.0

86.3 91.2 92.4

86.3 92.3 94.0

31.9 31.9 31.9

37.3 37.3 37.3

40.5 40.7 40.7

41.3 41.8 41.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

20.6 20.6 20.6

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

41.7 41.7 41.7

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

26.1 26.1 26.1

B - 56

COMPRESSION GENERIC C SECTION

Table 52

Depth 250 mm Thickness 2.4 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

21.7 21.7 21.7

33.2 33.2 33.2

52.2 52.2 52.2

69.7 69.7 69.7

73.4 76.0 76.2

13.2 13.2 13.2

17.8 17.8 17.8

20.3 20.4 20.4

20.8 21.1 21.2

20.8 20.8 20.8

31.8 31.8 31.8

37.3 38.2 38.4

37.9 39.5 39.8

17.3 17.3 17.3

22.7 22.7 22.7

26.8 26.8 26.8

28.0 28.3 28.4

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

9.6 9.6 9.6

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

13.5 13.5 13.5

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

12.9 12.9 12.9

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

82.9 82.9 82.9

129.1 129.1 129.1

183.6 183.6 183.6

211.1 213.6 213.6

211.1 222.0 222.7

25.9 25.9 25.9

30.6 30.6 30.6

32.6 32.8 32.8

33.1 33.4 33.5

62.8 62.8 62.8

84.3 85.5 85.5

89.4 92.8 93.7

89.4 94.3 95.4

31.8 31.8 31.8

37.3 37.3 37.3

40.6 40.7 40.7

41.5 41.9 41.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

20.6 20.6 20.6

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

41.6 41.6 41.6

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

26.0 26.0 26.0

B - 57

COMPRESSION GENERIC C SECTION

Table 53

Depth 300 mm Thickness 2.4 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

21.6 21.6 21.6

32.4 32.4 32.4

49.7 49.7 49.7

65.3 65.3 65.3

69.8 71.4 71.4

13.4 13.4 13.4

17.8 17.8 17.8

20.3 20.4 20.4

20.8 21.1 21.1

20.9 20.9 20.9

31.5 31.5 31.5

37.0 37.5 37.6

37.9 38.9 39.1

17.4 17.4 17.4

22.6 22.6 22.6

26.5 26.5 26.5

27.7 27.9 27.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

9.8 9.8 9.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

13.7 13.7 13.7

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

13.1 13.1 13.1

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

82.2 82.2 82.2

127.6 127.6 127.6

182.1 182.1 182.1

213.5 213.5 213.5

215.8 223.7 223.7

25.9 25.9 25.9

30.9 30.9 30.9

32.9 33.0 33.1

33.5 33.7 33.8

63.3 63.3 63.3

86.6 87.8 87.8

92.9 94.8 95.5

93.3 96.8 97.5

31.8 31.8 31.8

37.2 37.2 37.2

40.7 40.7 40.7

41.7 42.0 42.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

20.6 20.6 20.6

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

41.4 41.4 41.4

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

26.0 26.0 26.0

B - 58

COMPRESSION GENERIC C SECTION

Table 54

Depth 300 mm Thickness 3.0 mm

Design Strength 280N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

27.6 27.6 27.6

42.5 42.5 42.5

68.8 68.8 68.8

95.3 95.3 95.3

102.6 105.3 105.3

16.5 16.5 16.5

22.4 22.4 22.4

26.1 26.2 26.2

26.8 27.2 27.2

26.6 26.6 26.6

41.6 41.6 41.6

51.0 51.8 52.1

52.3 53.9 54.2

21.5 21.5 21.5

28.5 28.5 28.5

33.9 33.9 33.9

35.6 35.9 35.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

12.0 12.0 12.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

17.1 17.1 17.1

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

16.1 16.1 16.1

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

101.7 101.7 101.7

162.3 162.3 162.3

245.4 245.4 245.4

294.3 294.3 294.3

297.9 309.3 309.3

31.6 31.6 31.6

37.9 37.9 37.9

41.0 41.1 41.1

41.7 42.0 42.0

78.7 78.7 78.7

112.3 112.3 112.3

123.2 126.0 127.0

123.8 128.7 129.7

38.7 38.7 38.7

45.7 45.7 45.7

50.2 50.2 50.2

51.4 51.8 51.8

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

25.0 25.0 25.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

51.0 51.0 51.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

31.5 31.5 31.5

B - 59

[BLANK PAGE]

B - 60

LOAD CAPACITY TABLES FOR BEAMS S350 Generic C Sections Note: These tables are presented for generic Z sections, which may be used for scheme design.

C-1

BENDING

Table 55

GENERIC C SECTION

Depth 100 mm Thickness 1.2 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

13.8 13.8 13.8

9.2 9.2 9.2

6.9 6.9 6.9

4.4 5.5 5.5

2.6 4.6 4.6

1.7 3.9 3.9

1.2 3.5 3.5

0.8 2.6 3.1

0.6 1.9 2.8

25.5 18.2

11.3 8.1

6.4 4.5

4.1 2.9

2.8 2.0

2.1 1.5

1.6 1.1

1.3 0.9

1.0 0.7

42.4 30.3

18.9 13.5

10.6 7.6

6.8 4.8

4.7 3.4

3.5 2.5

2.7 1.9

2.1 1.5

1.7 1.2

27.6 27.6 27.6

18.4 18.4 18.4

13.8 13.8 13.8

11.1 11.1 11.1

9.1 9.2 9.2

5.9 7.9 7.9

4.1 6.9 6.9

2.9 6.1 6.1

2.2 5.5 5.5

50.9 36.4

22.6 16.2

12.7 9.1

8.1 5.8

5.7 4.0

4.2 3.0

3.2 2.3

2.5 1.8

2.0 1.5

84.9 60.6

37.7 26.9

21.2 15.2

13.6 9.7

9.4 6.7

6.9 4.9

5.3 3.8

4.2 3.0

3.4 2.4

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

6.9 6.9 6.9

4.6 4.6 4.6

3.5 3.5 3.5

2.6 2.8 2.8

1.6 2.3 2.3

1.0 2.0 2.0

0.7 1.7 1.7

0.5 1.3 1.5

0.4 1.0 1.4

15.9 11.4

7.1 5.1

4.0 2.8

2.5 1.8

1.8 1.3

1.3 0.9

1.0 0.7

0.8 0.6

0.6 0.5

13.8 13.8 13.8

9.2 9.2 9.2

6.9 6.9 6.9

5.5 5.5 5.5

4.6 4.6 4.6

3.5 3.9 3.9

2.4 3.5 3.5

1.7 3.1 3.1

1.3 2.8 2.8

31.8 22.7

14.1 10.1

8.0 5.7

5.1 3.6

3.5 2.5

2.6 1.9

2.0 1.4

1.6 1.1

1.3 0.9

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 4.4 10.3

4.8 11.1

5.5 12.2

6.2 13.2

6.9 14.0

7.6 14.8

8.7 20.6

9.6 22.3

11.0 24.5

12.4 26.4

13.8 28.0

15.2 29.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

C-2

BENDING

Table 56

GENERIC C SECTION

Depth 125 mm Thickness 1.2 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

17.3 17.3 17.3

11.8 11.8 11.8

8.8 8.8 8.8

5.8 7.1 7.1

3.4 5.9 5.9

2.2 5.0 5.0

1.5 4.4 4.4

1.1 3.5 3.9

0.8 2.6 3.5

40.5 29.0

18.0 12.9

10.1 7.2

6.5 4.6

4.5 3.2

3.3 2.4

2.5 1.8

2.0 1.4

1.6 1.2

67.6 48.3

30.0 21.4

16.9 12.1

10.8 7.7

7.5 5.4

5.5 3.9

4.2 3.0

3.3 2.4

2.7 1.9

34.6 34.6 34.6

23.5 23.5 23.5

17.6 17.6 17.6

14.1 14.1 14.1

11.3 11.8 11.8

7.3 10.1 10.1

5.0 8.8 8.8

3.6 7.8 7.8

2.6 7.1 7.1

81.1 57.9

36.0 25.7

20.3 14.5

13.0 9.3

9.0 6.4

6.6 4.7

5.1 3.6

4.0 2.9

3.2 2.3

135.1 96.5

60.0 42.9

33.8 24.1

21.6 15.4

15.0 10.7

11.0 7.9

8.4 6.0

6.7 4.8

5.4 3.9

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

8.8 8.8 8.8

5.9 5.9 5.9

4.4 4.4 4.4

3.4 3.5 3.5

2.0 2.9 2.9

1.3 2.5 2.5

0.9 2.2 2.2

0.6 1.7 2.0

0.5 1.3 1.8

25.3 18.1

11.3 8.0

6.3 4.5

4.1 2.9

2.8 2.0

2.1 1.5

1.6 1.1

1.3 0.9

1.0 0.7

17.6 17.6 17.6

11.8 11.8 11.8

8.8 8.8 8.8

7.1 7.1 7.1

5.9 5.9 5.9

4.4 5.0 5.0

3.0 4.4 4.4

2.1 3.9 3.9

1.6 3.5 3.5

50.7 36.2

22.5 16.1

12.7 9.0

8.1 5.8

5.6 4.0

4.1 3.0

3.2 2.3

2.5 1.8

2.0 1.4

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 4.2 10.6

4.6 11.4

5.2 12.6

5.9 13.5

6.6 14.4

7.2 15.1

8.3 21.2

9.1 22.8

10.5 25.1

11.8 27.0

13.1 28.7

14.5 30.3

For double span beams, web cleats should be provided to prevent crushing at internal supports

C-3

BENDING

Table 57

GENERIC C SECTION

Depth 125 mm Thickness 1.6 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

25.9 25.9 25.9

17.3 17.3 17.3

13.0 13.0 13.0

7.7 10.4 10.4

4.6 8.6 8.6

3.0 7.4 7.4

2.1 6.2 6.5

1.5 4.6 5.8

1.1 3.4 5.2

58.4 41.7

26.0 18.5

14.6 10.4

9.3 6.7

6.5 4.6

4.8 3.4

3.7 2.6

2.9 2.1

2.3 1.7

97.3 69.5

43.3 30.9

24.3 17.4

15.6 11.1

10.8 7.7

7.9 5.7

6.1 4.3

4.8 3.4

3.9 2.8

51.8 51.8 51.8

34.6 34.6 34.6

25.9 25.9 25.9

20.7 20.7 20.7

15.1 17.3 17.3

9.8 14.8 14.8

6.7 13.0 13.0

4.8 11.5 11.5

3.6 10.4 10.4

116.8 83.4

51.9 37.1

29.2 20.9

18.7 13.4

13.0 9.3

9.5 6.8

7.3 5.2

5.8 4.1

4.7 3.3

194.7 139.1

86.5 61.8

48.7 34.8

31.2 22.3

21.6 15.5

15.9 11.4

12.2 8.7

9.6 6.9

7.8 5.6

1.0

Maximum working load (kN) on one span, for span (m) 1.5 2.0 2.5 3.0 3.5 4.0 4.5

5.0

13.0 13.0 13.0

8.6 8.6 8.6

6.5 6.5 6.5

4.5 5.2 5.2

2.7 4.3 4.3

1.8 3.7 3.7

1.2 3.1 3.2

0.9 2.3 2.9

0.7 1.7 2.6

36.5 26.1

16.2 11.6

9.1 6.5

5.8 4.2

4.1 2.9

3.0 2.1

2.3 1.6

1.8 1.3

1.5 1.0

25.9 25.9 25.9

17.3 17.3 17.3

13.0 13.0 13.0

10.4 10.4 10.4

8.4 8.6 8.6

5.8 7.4 7.4

4.0 6.5 6.5

2.9 5.8 5.8

2.2 5.2 5.2

73.0 52.1

32.4 23.2

18.3 13.0

11.7 8.3

8.1 5.8

6.0 4.3

4.6 3.3

3.6 2.6

2.9 2.1

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.4 17.2

8.0 18.5

8.9 20.2

9.9 21.6

10.8 22.9

11.7 24.1

14.8 34.5

15.9 37.0

17.8 40.4

19.7 43.3

21.6 45.8

23.5 48.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

C-4

BENDING

Table 58

GENERIC C SECTION

Depth 150 mm Thickness 1.6 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

17.4 17.4 17.4

13.8 13.9 13.9

8.4 11.6 11.6

5.4 10.0 10.0

3.7 8.7 8.7

2.6 7.7 7.7

2.0 6.3 7.0

1.2 3.7 5.8

0.8 2.4 5.0

23.7 17.0

15.2 10.8

10.5 7.5

7.7 5.5

5.9 4.2

4.7 3.3

3.8 2.7

2.6 1.6

1.9 1.0

39.6 28.3

25.3 18.1

17.6 12.6

12.9 9.2

9.9 7.1

7.8 5.6

6.3 4.5

4.4 2.7

3.2 1.7

34.8 34.8 34.8

27.9 27.9 27.9

23.2 23.2 23.2

17.6 19.9 19.9

12.1 17.4 17.4

8.6 15.5 15.5

6.4 13.9 13.9

3.8 11.6 11.6

2.5 7.9 10.0

47.5 33.9

30.4 21.7

21.1 15.1

15.5 11.1

11.9 8.5

9.4 6.7

7.6 5.4

5.3 3.3

3.9 2.1

79.1 56.5

50.6 36.2

35.2 25.1

25.8 18.5

19.8 14.1

15.6 11.2

12.7 9.0

8.8 5.5

6.5 3.5

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

11.6 11.6 11.6

8.7 8.7 8.7

7.0 7.0 7.0

5.0 5.8 5.8

3.2 5.0 5.0

2.2 4.4 4.4

1.2 3.1 3.5

0.7 1.9 2.9

0.5 1.2 2.5

26.4 18.8

14.8 10.6

9.5 6.8

6.6 4.7

4.8 3.5

3.7 2.6

2.4 1.7

1.6 1.0

1.2 0.6

23.2 23.2 23.2

17.4 17.4 17.4

13.9 13.9 13.9

11.6 11.6 11.6

10.0 10.0 10.0

7.2 8.7 8.7

3.8 7.0 7.0

2.3 5.8 5.8

1.5 3.9 5.0

52.7 37.7

29.7 21.2

19.0 13.6

13.2 9.4

9.7 6.9

7.4 5.3

4.7 3.4

3.3 2.1

2.4 1.3

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.1 17.6

7.7 18.8

8.6 20.6

9.5 22.0

10.4 23.3

11.3 24.5

14.3 35.1

15.4 37.7

17.2 41.2

19.0 44.1

20.9 46.7

22.7 49.0

For double span beams, web cleats should be provided to prevent crushing at internal supports

C-5

BENDING

Table 59

GENERIC C SECTION

Depth 150 mm Thickness 1.8 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

20.3 20.3 20.3

15.4 16.2 16.2

9.4 13.5 13.5

6.1 11.6 11.6

4.2 10.1 10.1

3.0 9.0 9.0

2.2 7.0 8.1

1.4 4.2 6.8

0.9 2.7 5.8

27.4 19.6

17.6 12.5

12.2 8.7

9.0 6.4

6.9 4.9

5.4 3.9

4.4 3.1

3.0 1.9

2.2 1.2

45.7 32.7

29.3 20.9

20.3 14.5

14.9 10.7

11.4 8.2

9.0 6.5

7.3 5.2

5.1 3.2

3.7 2.0

40.5 40.5 40.5

32.4 32.4 32.4

27.0 27.0 27.0

19.8 23.1 23.1

13.6 20.3 20.3

9.7 18.0 18.0

7.2 16.2 16.2

4.3 13.3 13.5

2.8 8.8 11.6

54.9 39.2

35.1 25.1

24.4 17.4

17.9 12.8

13.7 9.8

10.8 7.7

8.8 6.3

6.1 3.8

4.5 2.4

91.4 65.3

58.5 41.8

40.6 29.0

29.9 21.3

22.9 16.3

18.1 12.9

14.6 10.5

10.2 6.3

7.5 4.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

13.5 13.5 13.5

10.1 10.1 10.1

8.1 8.1 8.1

5.6 6.8 6.8

3.6 5.8 5.8

2.5 5.1 5.1

1.3 3.5 4.1

0.8 2.1 3.4

0.5 1.3 2.9

30.5 21.8

17.1 12.2

11.0 7.8

7.6 5.4

5.6 4.0

4.3 3.1

2.7 2.0

1.9 1.2

1.4 0.7

27.0 27.0 27.0

20.3 20.3 20.3

16.2 16.2 16.2

13.5 13.5 13.5

11.2 11.6 11.6

8.1 10.1 10.1

4.3 8.1 8.1

2.6 6.6 6.8

1.7 4.4 5.8

61.0 43.5

34.3 24.5

21.9 15.7

15.2 10.9

11.2 8.0

8.6 6.1

5.5 3.9

3.8 2.4

2.8 1.5

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.1 21.5

9.7 23.0

10.7 25.0

11.8 26.8

12.9 28.3

13.9 29.7

18.1 43.0

19.4 46.0

21.5 50.1

23.6 53.5

25.7 56.6

27.8 59.4

For double span beams, web cleats should be provided to prevent crushing at internal supports

C-6

BENDING

Table 60

GENERIC C SECTION

Depth 165 mm Thickness 1.6 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

19.3 19.3 19.3

15.5 15.5 15.5

9.5 12.9 12.9

6.1 11.1 11.1

4.1 9.7 9.7

3.0 8.6 8.6

2.2 7.1 7.7

1.3 4.2 6.4

0.9 2.7 5.5

29.0 20.7

18.5 13.2

12.9 9.2

9.5 6.8

7.2 5.2

5.7 4.1

4.6 3.3

3.2 2.0

2.4 1.3

48.3 34.5

30.9 22.1

21.5 15.3

15.8 11.3

12.1 8.6

9.5 6.8

7.7 5.5

5.4 3.4

3.9 2.1

38.7 38.7 38.7

30.9 30.9 30.9

25.8 25.8 25.8

19.3 22.1 22.1

13.2 19.3 19.3

9.4 17.2 17.2

7.0 15.5 15.5

4.1 12.9 12.9

2.7 8.6 11.1

57.9 41.4

37.1 26.5

25.7 18.4

18.9 13.5

14.5 10.3

11.4 8.2

9.3 6.6

6.4 4.0

4.7 2.5

96.6 69.0

61.8 44.1

42.9 30.7

31.5 22.5

24.1 17.2

19.1 13.6

15.4 11.0

10.7 6.7

7.9 4.2

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

12.9 12.9 12.9

9.7 9.7 9.7

7.7 7.7 7.7

5.6 6.4 6.4

3.6 5.5 5.5

2.5 4.8 4.8

1.3 3.5 3.9

0.8 2.1 3.2

0.5 1.3 2.8

32.2 23.0

18.1 12.9

11.6 8.3

8.0 5.7

5.9 4.2

4.5 3.2

2.9 2.1

2.0 1.3

1.5 0.8

25.8 25.8 25.8

19.3 19.3 19.3

15.5 15.5 15.5

12.9 12.9 12.9

11.1 11.1 11.1

7.9 9.7 9.7

4.2 7.7 7.7

2.5 6.4 6.4

1.6 4.3 5.5

64.4 46.0

36.2 25.9

23.2 16.6

16.1 11.5

11.8 8.4

9.1 6.5

5.8 4.1

4.0 2.5

3.0 1.6

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.0 17.8

7.5 19.0

8.4 20.8

9.3 22.3

10.2 23.6

11.1 24.8

14.0 35.5

15.1 38.1

16.8 41.6

18.6 44.6

20.4 47.2

22.2 49.6

For double span beams, web cleats should be provided to prevent crushing at internal supports

C-7

BENDING

Table 61

GENERIC C SECTION

Depth 165 mm Thickness 1.8 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

22.5 22.5 22.5

17.4 18.0 18.0

10.6 15.0 15.0

6.8 12.9 12.9

4.7 11.3 11.3

3.3 10.0 10.0

2.5 7.9 9.0

1.5 4.7 7.5

1.0 3.0 6.4

33.6 24.0

21.5 15.3

14.9 10.7

11.0 7.8

8.4 6.0

6.6 4.7

5.4 3.8

3.7 2.3

2.7 1.5

56.0 40.0

35.8 25.6

24.9 17.8

18.3 13.1

14.0 10.0

11.1 7.9

9.0 6.4

6.2 3.9

4.6 2.4

45.1 45.1 45.1

36.1 36.1 36.1

30.1 30.1 30.1

21.7 25.8 25.8

14.9 22.5 22.5

10.6 20.0 20.0

7.9 18.0 18.0

4.7 14.7 15.0

3.1 9.7 12.9

67.1 48.0

43.0 30.7

29.8 21.3

21.9 15.7

16.8 12.0

13.3 9.5

10.7 7.7

7.5 4.7

5.5 2.9

111.9 79.9

71.6 51.2

49.7 35.5

36.5 26.1

28.0 20.0

22.1 15.8

17.9 12.8

12.4 7.8

9.1 4.9

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

15.0 15.0 15.0

11.3 11.3 11.3

9.0 9.0 9.0

6.3 7.5 7.5

4.1 6.4 6.4

2.8 5.6 5.6

1.5 4.0 4.5

0.9 2.4 3.8

0.6 1.5 3.2

37.3 26.6

21.0 15.0

13.4 9.6

9.3 6.7

6.9 4.9

5.2 3.7

3.4 2.4

2.3 1.5

1.7 0.9

30.1 30.1 30.1

22.5 22.5 22.5

18.0 18.0 18.0

15.0 15.0 15.0

12.5 12.9 12.9

8.9 11.3 11.3

4.7 9.0 9.0

2.8 7.4 7.5

1.8 4.8 6.4

74.6 53.3

42.0 30.0

26.9 19.2

18.7 13.3

13.7 9.8

10.5 7.5

6.7 4.8

4.7 2.9

3.4 1.8

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.9 21.7

9.5 23.2

10.6 25.3

11.6 27.0

12.6 28.6

13.7 30.0

17.8 43.4

19.0 46.4

21.1 50.6

23.2 54.1

25.2 57.2

27.3 59.9

For double span beams, web cleats should be provided to prevent crushing at internal supports

C-8

BENDING

Table 62

GENERIC C SECTION

Depth 180 mm Thickness 1.6 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

21.3 21.3 21.3

17.0 17.0 17.0

10.6 14.2 14.2

6.8 12.2 12.2

4.6 10.6 10.6

3.3 9.5 9.5

2.4 7.9 8.5

1.5 4.7 7.1

0.9 3.0 6.1

34.7 24.8

22.2 15.9

15.4 11.0

11.3 8.1

8.7 6.2

6.9 4.9

5.6 4.0

3.9 2.4

2.8 1.5

57.9 41.3

37.0 26.4

25.7 18.4

18.9 13.5

14.5 10.3

11.4 8.2

9.3 6.6

6.4 4.0

4.7 2.5

42.5 42.5 42.5

34.0 34.0 34.0

28.4 28.4 28.4

21.1 24.3 24.3

14.4 21.3 21.3

10.2 18.9 18.9

7.5 17.0 17.0

4.5 14.2 14.2

2.9 9.4 12.2

69.4 49.6

44.4 31.7

30.9 22.0

22.7 16.2

17.4 12.4

13.7 9.8

11.1 7.9

7.7 4.8

5.7 3.0

115.7 82.7

74.1 52.9

51.4 36.7

37.8 27.0

28.9 20.7

22.9 16.3

18.5 13.2

12.9 8.0

9.4 5.1

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

14.2 14.2 14.2

10.6 10.6 10.6

8.5 8.5 8.5

6.3 7.1 7.1

4.1 6.1 6.1

2.8 5.3 5.3

1.5 4.0 4.3

0.9 2.3 3.5

0.6 1.5 3.0

38.6 27.6

21.7 15.5

13.9 9.9

9.6 6.9

7.1 5.1

5.4 3.9

3.5 2.5

2.4 1.5

1.8 0.9

28.4 28.4 28.4

21.3 21.3 21.3

17.0 17.0 17.0

14.2 14.2 14.2

12.2 12.2 12.2

8.6 10.6 10.6

4.5 8.5 8.5

2.7 7.1 7.1

1.7 4.7 6.1

77.1 55.1

43.4 31.0

27.8 19.8

19.3 13.8

14.2 10.1

10.8 7.7

6.9 5.0

4.8 3.0

3.5 1.9

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.8 18.0

7.4 19.3

8.2 21.0

9.1 22.5

10.0 23.9

10.9 25.1

13.7 35.9

14.7 38.5

16.5 42.1

18.2 45.1

20.0 47.7

21.7 50.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

C-9

BENDING

Table 63

GENERIC C SECTION

Depth 180 mm Thickness 1.8 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

24.8 24.8 24.8

19.5 19.9 19.9

11.8 16.6 16.6

7.6 14.2 14.2

5.2 12.4 12.4

3.7 11.0 11.0

2.8 8.8 9.9

1.7 5.2 8.3

1.1 3.4 7.1

40.3 28.8

25.8 18.4

17.9 12.8

13.2 9.4

10.1 7.2

8.0 5.7

6.5 4.6

4.5 2.8

3.3 1.8

67.2 48.0

43.0 30.7

29.9 21.3

22.0 15.7

16.8 12.0

13.3 9.5

10.8 7.7

7.5 4.7

5.5 2.9

49.7 49.7 49.7

39.7 39.7 39.7

33.1 33.1 33.1

23.6 28.4 28.4

16.1 24.8 24.8

11.5 22.1 22.1

8.5 19.9 19.9

5.1 16.1 16.6

3.3 10.5 14.2

80.7 57.6

51.6 36.9

35.9 25.6

26.3 18.8

20.2 14.4

15.9 11.4

12.9 9.2

9.0 5.6

6.6 3.5

134.5 96.1

86.1 61.5

59.8 42.7

43.9 31.4

33.6 24.0

26.6 19.0

21.5 15.4

14.9 9.3

11.0 5.9

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

16.6 16.6 16.6

12.4 12.4 12.4

9.9 9.9 9.9

7.0 8.3 8.3

4.5 7.1 7.1

3.1 6.2 6.2

1.7 4.4 5.0

1.0 2.6 4.1

0.7 1.7 3.5

44.8 32.0

25.2 18.0

16.1 11.5

11.2 8.0

8.2 5.9

6.3 4.5

4.0 2.9

2.8 1.8

2.1 1.1

33.1 33.1 33.1

24.8 24.8 24.8

19.9 19.9 19.9

16.6 16.6 16.6

13.7 14.2 14.2

9.6 12.4 12.4

5.1 9.9 9.9

3.0 8.1 8.3

2.0 5.3 7.1

89.7 64.0

50.4 36.0

32.3 23.1

22.4 16.0

16.5 11.8

12.6 9.0

8.1 5.8

5.6 3.5

4.1 2.2

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.7 21.9

9.3 23.5

10.4 25.5

11.4 27.3

12.4 28.9

13.4 30.3

17.5 43.9

18.7 46.9

20.7 51.1

22.7 54.6

24.8 57.7

26.8 60.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 10

BENDING

Table 64

GENERIC C SECTION

Depth 180 mm Thickness 2.0 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

28.2 28.2 28.2

21.5 22.6 22.6

13.1 18.8 18.8

8.4 16.1 16.1

5.8 14.1 14.1

4.1 12.5 12.5

3.1 9.7 11.3

1.9 5.8 9.4

1.2 3.7 8.1

45.7 32.7

29.3 20.9

20.3 14.5

14.9 10.7

11.4 8.2

9.0 6.5

7.3 5.2

5.1 3.2

3.7 2.0

76.2 54.4

48.8 34.8

33.9 24.2

24.9 17.8

19.1 13.6

15.1 10.8

12.2 8.7

8.5 5.3

6.2 3.3

56.4 56.4 56.4

45.1 45.1 45.1

37.6 37.6 37.6

26.1 32.2 32.2

17.9 28.2 28.2

12.8 25.1 25.1

9.5 22.6 22.6

5.7 17.8 18.8

3.7 11.7 16.1

91.5 65.3

58.5 41.8

40.7 29.0

29.9 21.3

22.9 16.3

18.1 12.9

14.6 10.5

10.2 6.4

7.5 4.0

152.4 108.9

97.6 69.7

67.8 48.4

49.8 35.6

38.1 27.2

30.1 21.5

24.4 17.4

16.9 10.6

12.4 6.7

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

18.8 18.8 18.8

14.1 14.1 14.1

11.3 11.3 11.3

7.7 9.4 9.4

5.0 8.1 8.1

3.5 7.1 7.1

1.9 4.9 5.6

1.1 2.9 4.7

0.7 1.9 4.0

50.8 36.3

28.6 20.4

18.3 13.1

12.7 9.1

9.3 6.7

7.1 5.1

4.6 3.3

3.2 2.0

2.3 1.2

37.6 37.6 37.6

28.2 28.2 28.2

22.6 22.6 22.6

18.8 18.8 18.8

15.2 16.1 16.1

10.7 14.1 14.1

5.7 11.3 11.3

3.4 8.9 9.4

2.2 5.8 8.1

101.6 72.6

57.2 40.8

36.6 26.1

25.4 18.1

18.7 13.3

14.3 10.2

9.1 6.5

6.4 4.0

4.7 2.5

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.8 26.3

11.5 28.0

12.7 30.5

13.8 32.5

15.0 34.3

16.2 35.9

21.7 52.5

23.1 56.1

25.4 60.9

27.7 65.0

30.0 68.6

32.3 71.8

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 11

BENDING

Table 65

GENERIC C SECTION

Depth 200 mm Thickness 1.6 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

23.8 23.8 23.8

19.1 19.1 19.1

12.0 15.9 15.9

7.7 13.6 13.6

5.2 11.9 11.9

3.7 10.6 10.6

2.7 9.0 9.5

1.6 5.3 7.9

1.1 3.4 6.8

43.1 30.8

27.6 19.7

19.2 13.7

14.1 10.1

10.8 7.7

8.5 6.1

6.9 4.9

4.8 3.0

3.5 1.9

71.9 51.4

46.0 32.9

32.0 22.8

23.5 16.8

18.0 12.8

14.2 10.1

11.5 8.2

8.0 5.0

5.9 3.1

47.6 47.6 47.6

38.1 38.1 38.1

31.8 31.8 31.8

23.4 27.2 27.2

15.9 23.8 23.8

11.3 21.2 21.2

8.3 19.1 19.1

4.9 15.9 15.9

3.2 10.4 13.6

86.3 61.6

55.2 39.4

38.3 27.4

28.2 20.1

21.6 15.4

17.0 12.2

13.8 9.9

9.6 6.0

7.0 3.8

143.8 102.7

92.0 65.7

63.9 45.6

47.0 33.5

35.9 25.7

28.4 20.3

23.0 16.4

16.0 10.0

11.7 6.3

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

15.9 15.9 15.9

11.9 11.9 11.9

9.5 9.5 9.5

7.2 7.9 7.9

4.6 6.8 6.8

3.1 6.0 6.0

1.7 4.5 4.8

1.0 2.7 4.0

0.6 1.7 3.4

47.9 34.2

27.0 19.3

17.3 12.3

12.0 8.6

8.8 6.3

6.7 4.8

4.3 3.1

3.0 1.9

2.2 1.2

31.8 31.8 31.8

23.8 23.8 23.8

19.1 19.1 19.1

15.9 15.9 15.9

13.6 13.6 13.6

9.5 11.9 11.9

5.0 9.5 9.5

3.0 7.9 7.9

1.9 5.2 6.8

95.9 68.5

53.9 38.5

34.5 24.7

24.0 17.1

17.6 12.6

13.5 9.6

8.6 6.2

6.0 3.7

4.4 2.4

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.6 18.2

7.2 19.5

8.0 21.3

8.9 22.9

9.7 24.2

10.6 25.4

13.3 36.4

14.3 39.1

16.0 42.7

17.7 45.7

19.4 48.4

21.1 50.8

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 12

BENDING

Table 66

GENERIC C SECTION

Depth 200 mm Thickness 1.8 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 4.5 5.0 6.0

7.0

27.9 27.9 27.9

22.3 22.3 22.3

13.5 18.6 18.6

8.6 15.9 15.9

5.9 14.0 14.0

4.2 12.4 12.4

3.1 10.1 11.2

1.9 6.0 9.3

1.2 3.8 8.0

50.3 35.9

32.2 23.0

22.4 16.0

16.4 11.7

12.6 9.0

9.9 7.1

8.1 5.8

5.6 3.5

4.1 2.2

83.9 59.9

53.7 38.3

37.3 26.6

27.4 19.6

21.0 15.0

16.6 11.8

13.4 9.6

9.3 5.8

6.8 3.7

55.8 55.8 55.8

44.6 44.6 44.6

37.2 37.2 37.2

26.2 31.9 31.9

17.8 27.9 27.9

12.7 24.8 24.8

9.4 22.3 22.3

5.6 18.0 18.6

3.6 11.6 15.9

100.7 71.9

64.4 46.0

44.7 32.0

32.9 23.5

25.2 18.0

19.9 14.2

16.1 11.5

11.2 7.0

8.2 4.4

167.8 119.8

107.4 76.7

74.6 53.3

54.8 39.1

41.9 30.0

33.1 23.7

26.8 19.2

18.6 11.7

13.7 7.3

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 5.0 6.0

7.0

18.6 18.6 18.6

14.0 14.0 14.0

11.2 11.2 11.2

8.0 9.3 9.3

5.2 8.0 8.0

3.5 7.0 7.0

1.9 5.0 5.6

1.1 3.0 4.7

0.7 1.9 4.0

55.9 39.9

31.5 22.5

20.1 14.4

14.0 10.0

10.3 7.3

7.9 5.6

5.0 3.6

3.5 2.2

2.6 1.4

37.2 37.2 37.2

27.9 27.9 27.9

22.3 22.3 22.3

18.6 18.6 18.6

15.3 15.9 15.9

10.7 14.0 14.0

5.6 11.2 11.2

3.3 9.0 9.3

2.2 5.8 8.0

111.8 79.9

62.9 44.9

40.3 28.8

28.0 20.0

20.5 14.7

15.7 11.2

10.1 7.2

7.0 4.4

5.1 2.8

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.5 22.2

9.1 23.8

10.1 25.9

11.1 27.7

12.1 29.2

13.1 30.7

17.0 44.4

18.2 47.5

20.2 51.8

22.2 55.3

24.2 58.5

26.1 61.3

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 13

BENDING

Table 67

GENERIC C SECTION

Depth 200 mm Thickness 2.0 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.0

Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0

8.0

14.9 21.2 21.2

9.5 18.2 18.2

6.5 15.9 15.9

4.7 14.1 14.1

3.5 11.1 12.7

2.7 8.5 11.6

2.1 6.6 10.6

1.4 4.2 9.1

1.0 2.9 7.9

25.4 18.2

18.7 13.4

14.3 10.2

11.3 8.1

9.2 6.5

7.6 5.2

6.4 4.0

4.7 2.5

3.6 1.7

42.4 30.3

31.2 22.3

23.8 17.0

18.8 13.5

15.3 10.9

12.6 8.6

10.6 6.6

7.8 4.2

6.0 2.8

42.4 42.4 42.4

29.0 36.3 36.3

19.8 31.8 31.8

14.1 28.3 28.3

10.4 25.4 25.4

8.0 23.1 23.1

6.2 19.9 21.2

4.1 12.9 18.2

2.8 8.8 15.9

50.9 36.3

37.4 26.7

28.6 20.4

22.6 16.2

18.3 13.1

15.1 10.3

12.7 7.9

9.3 5.0

7.2 3.4

84.8 60.6

62.3 44.5

47.7 34.1

37.7 26.9

30.5 21.8

25.2 17.2

21.2 13.2

15.6 8.3

11.9 5.6

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0

8.0

15.9 15.9 15.9

12.7 12.7 12.7

8.8 10.6 10.6

5.7 9.1 9.1

3.9 7.9 7.9

2.1 5.6 6.4

1.3 3.3 5.3

0.8 2.1 4.5

0.6 1.4 4.0

35.8 25.6

22.9 16.4

15.9 11.4

11.7 8.3

8.9 6.4

5.7 4.1

4.0 2.5

2.9 1.6

2.2 1.0

31.8 31.8 31.8

25.4 25.4 25.4

21.2 21.2 21.2

16.9 18.2 18.2

11.8 15.9 15.9

6.3 12.7 12.7

3.7 9.9 10.6

2.4 6.4 9.1

1.7 4.4 7.9

71.5 51.1

45.8 32.7

31.8 22.7

23.4 16.7

17.9 12.8

11.4 8.2

7.9 5.0

5.8 3.1

4.5 2.1

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.6 26.6

11.3 28.4

12.4 30.8

13.5 32.9

14.7 34.7

15.8 36.3

21.2 53.2

22.6 56.7

24.8 61.6

27.1 65.8

29.3 69.4

31.6 72.7

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 14

BENDING

Table 68

GENERIC C SECTION

Depth 220 mm Thickness 2.0 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.0

Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0

8.0

16.7 23.6 23.6

10.7 20.2 20.2

7.3 17.7 17.7

5.2 15.7 15.7

3.9 12.5 14.1

3.0 9.5 12.9

2.3 7.4 11.8

1.5 4.7 10.1

1.1 3.2 8.8

31.1 22.2

22.9 16.3

17.5 12.5

13.8 9.9

11.2 8.0

9.3 6.3

7.8 4.9

5.7 3.1

4.4 2.1

51.9 37.1

38.1 27.2

29.2 20.8

23.1 16.5

18.7 13.3

15.4 10.5

13.0 8.1

9.5 5.1

7.3 3.4

47.2 47.2 47.2

31.8 40.4 40.4

21.6 35.4 35.4

15.4 31.4 31.4

11.4 28.3 28.3

8.7 25.7 25.7

6.8 21.9 23.6

4.4 14.1 20.2

3.0 9.6 17.7

62.3 44.5

45.7 32.7

35.0 25.0

27.7 19.8

22.4 16.0

18.5 12.6

15.6 9.7

11.4 6.1

8.8 4.1

103.8 74.1

76.2 54.5

58.4 41.7

46.1 32.9

37.4 26.7

30.9 21.0

25.9 16.2

19.1 10.2

14.6 6.8

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0

8.0

17.7 17.7 17.7

14.1 14.1 14.1

9.9 11.8 11.8

6.4 10.1 10.1

4.4 8.8 8.8

2.3 6.3 7.1

1.4 3.7 5.9

0.9 2.4 5.1

0.6 1.6 4.4

43.8 31.3

28.0 20.0

19.5 13.9

14.3 10.2

10.9 7.8

7.0 5.0

4.9 3.0

3.6 1.9

2.7 1.3

35.4 35.4 35.4

28.3 28.3 28.3

23.6 23.6 23.6

18.7 20.2 20.2

12.9 17.7 17.7

6.8 14.1 14.1

4.1 10.9 11.8

2.6 7.1 10.1

1.8 4.8 8.8

87.6 62.5

56.0 40.0

38.9 27.8

28.6 20.4

21.9 15.6

14.0 10.0

9.7 6.1

7.1 3.8

5.5 2.6

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.4 26.9

11.0 28.7

12.1 31.2

13.2 33.3

14.3 35.1

15.4 36.8

20.7 53.8

22.1 57.4

24.3 62.4

26.5 66.5

28.7 70.2

30.9 73.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 15

BENDING

Table 69

GENERIC C SECTION

Depth 220 mm Thickness 2.4 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.0

Maximum working load (kN) on one span, for span (m) 3.5 4.0 4.5 5.0 5.5 6.0 7.0

8.0

19.8 29.2 29.2

12.7 25.0 25.0

8.7 21.9 21.9

6.3 19.3 19.5

4.7 14.7 17.5

3.6 11.2 15.9

2.8 8.8 14.6

1.9 5.6 12.5

1.3 3.9 11.0

38.5 27.5

28.3 20.2

21.7 15.5

17.1 12.2

13.9 9.9

11.5 7.8

9.6 6.0

7.1 3.8

5.4 2.5

64.2 45.9

47.2 33.7

36.1 25.8

28.5 20.4

23.1 16.5

19.1 13.0

16.1 10.0

11.8 6.3

9.0 4.2

56.7 58.4 58.4

37.7 50.1 50.1

25.8 43.8 43.8

18.5 38.9 38.9

13.7 35.1 35.1

10.5 31.9 31.9

8.2 25.9 29.2

5.4 16.8 25.0

3.8 11.4 21.9

77.1 55.0

56.6 40.4

43.4 31.0

34.3 24.5

27.7 19.8

22.9 15.6

19.3 12.0

14.2 7.6

10.8 5.1

128.4 91.7

94.4 67.4

72.3 51.6

57.1 40.8

46.2 33.0

38.2 26.1

32.1 20.1

23.6 12.6

18.1 8.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0 7.0

8.0

21.9 21.9 21.9

17.5 17.5 17.5

11.7 14.6 14.6

7.6 12.5 12.5

5.2 11.0 11.0

2.8 7.4 8.8

1.7 4.4 7.3

1.1 2.8 6.3

0.8 1.9 5.5

54.2 38.7

34.7 24.8

24.1 17.2

17.7 12.6

13.5 9.7

8.7 6.2

6.0 3.8

4.4 2.4

3.4 1.6

43.8 43.8 43.8

35.1 35.1 35.1

29.2 29.2 29.2

22.2 25.0 25.0

15.4 21.9 21.9

8.2 17.5 17.5

4.9 13.0 14.6

3.2 8.4 12.5

2.3 5.7 11.0

108.4 77.4

69.4 49.5

48.2 34.4

35.4 25.3

27.1 19.4

17.3 12.4

12.0 7.5

8.8 4.7

6.8 3.2

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 15.2 36.8

16.0 39.1

17.4 42.3

18.8 45.0

20.1 47.3

21.5 49.5

30.3 73.5

32.0 78.2

34.8 84.6

37.5 89.9

40.3 94.7

43.0 99.0

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 16

BENDING

Table 70

GENERIC C SECTION

Depth 250 mm Thickness 2.4 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.5

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0

10.0

14.8 29.1 29.1

10.1 25.4 25.4

7.2 22.6 22.6

5.4 17.2 20.3

3.2 10.2 17.0

2.1 6.5 14.5

1.5 4.5 12.7

1.1 3.2 11.3

0.9 2.4 10.2

37.3 26.7

28.6 20.4

22.6 16.1

18.3 13.1

12.7 7.9

9.3 5.0

7.1 3.4

5.6 2.4

4.6 1.7

62.2 44.5

47.7 34.0

37.7 26.9

30.5 21.8

21.2 13.2

15.6 8.3

11.9 5.6

9.4 3.9

7.6 2.9

42.7 58.1 58.1

29.1 50.9 50.9

20.8 45.2 45.2

15.4 40.7 40.7

9.2 29.5 33.9

6.0 19.0 29.1

4.2 12.9 25.4

3.0 9.2 22.6

2.3 6.8 20.3

74.7 53.4

57.2 40.8

45.2 32.3

36.6 26.1

25.4 15.9

18.7 10.0

14.3 6.7

11.3 4.7

9.1 3.4

124.5 88.9

95.3 68.1

75.3 53.8

61.0 43.6

42.4 26.5

31.1 16.7

23.8 11.2

18.8 7.8

15.2 5.7

2.0

Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0

25.4 25.4 25.4

13.7 17.0 17.0

6.1 12.7 12.7

3.2 8.6 10.2

2.0 5.1 8.5

1.3 3.3 7.3

0.9 2.2 6.4

0.7 1.6 5.7

0.5 1.2 5.1

71.5 51.1

31.8 22.7

17.9 12.8

11.4 8.2

7.9 5.0

5.8 3.1

4.5 2.1

3.5 1.5

2.9 1.1

50.9 50.9 50.9

33.9 33.9 33.9

17.4 25.4 25.4

9.2 20.3 20.3

5.5 14.7 17.0

3.6 9.5 14.5

2.5 6.4 12.7

1.8 4.6 11.3

1.4 3.4 10.2

143.0 102.1

63.5 45.4

35.7 25.5

22.9 16.3

15.9 9.9

11.7 6.3

8.9 4.2

7.1 2.9

5.7 2.1

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 14.8 37.3

15.6 39.7

16.9 42.9

18.2 45.6

19.6 48.0

20.9 50.2

29.5 74.6

31.1 79.3

33.8 85.8

36.5 91.3

39.2 96.1

41.8 100.4

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 17

BENDING

Table 71

GENERIC C SECTION

Depth 300 mm Thickness 2.4 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.5

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0

10.0

18.3 35.8 35.8

12.5 31.3 31.3

8.9 27.9 27.9

6.6 21.5 25.1

3.9 12.7 20.9

2.6 8.1 17.9

1.8 5.5 15.7

1.3 3.9 13.9

1.0 2.9 12.5

55.2 39.5

42.3 30.2

33.4 23.9

27.1 19.3

18.8 11.7

13.8 7.4

10.6 5.0

8.4 3.5

6.8 2.5

92.1 65.8

70.5 50.3

55.7 39.8

45.1 32.2

31.3 19.6

23.0 12.3

17.6 8.3

13.9 5.8

11.3 4.2

50.9 71.6 71.6

34.6 62.7 62.7

24.6 55.7 55.7

18.2 50.1 50.1

10.8 35.3 41.8

7.0 22.6 35.8

4.8 15.3 31.3

3.5 10.9 27.9

2.6 8.0 25.1

110.5 78.9

84.6 60.4

66.8 47.7

54.1 38.7

37.6 23.5

27.6 14.8

21.1 9.9

16.7 7.0

13.5 5.1

184.1 131.5

141.0 100.7

111.4 79.6

90.2 64.4

62.7 39.2

46.0 24.7

35.2 16.5

27.8 11.6

22.6 8.5

2.0

Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0

31.3 31.3 31.3

17.1 20.9 20.9

7.5 15.7 15.7

4.0 10.8 12.5

2.4 6.3 10.4

1.6 4.1 9.0

1.1 2.8 7.8

0.8 2.0 7.0

0.6 1.5 6.3

105.7 75.5

47.0 33.6

26.4 18.9

16.9 12.1

11.7 7.3

8.6 4.6

6.6 3.1

5.2 2.2

4.2 1.6

62.7 62.7 62.7

41.8 41.8 41.8

20.7 31.3 31.3

10.9 25.1 25.1

6.5 17.7 20.9

4.2 11.3 17.9

2.9 7.7 15.7

2.1 5.4 13.9

1.6 4.0 12.5

211.5 151.0

94.0 67.1

52.9 37.8

33.8 24.2

23.5 14.7

17.3 9.2

13.2 6.2

10.4 4.4

8.5 3.2

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 14.0 38.2

14.8 40.6

16.1 44.0

17.4 46.7

18.6 49.2

19.9 51.4

28.1 76.4

29.6 81.3

32.2 87.9

34.7 93.5

37.3 98.4

39.8 102.9

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 18

BENDING

Table 72

GENERIC C SECTION

Depth 300 mm Thickness 3.0 mm

Design Strength 350 N/mm2 Uniformly Distributed Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

3.5

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 6.0 7.0 8.0 9.0

10.0

22.4 46.7 46.7

15.3 40.9 40.9

11.0 34.6 36.3

8.2 26.0 32.7

5.0 15.4 27.2

3.3 9.9 23.3

2.3 6.8 20.4

1.7 4.9 18.2

1.3 3.6 16.3

72.0 51.4

55.1 39.4

43.6 31.1

35.3 25.2

24.5 15.3

18.0 9.6

13.8 6.5

10.9 4.5

8.8 3.3

120.0 85.7

91.9 65.6

72.6 51.9

58.8 42.0

40.8 25.5

30.0 16.1

23.0 10.8

18.1 7.6

14.7 5.5

62.4 93.4 93.4

42.6 81.7 81.7

30.4 72.6 72.6

22.6 65.4 65.4

13.6 43.1 54.5

8.9 27.7 46.7

6.2 18.9 40.9

4.6 13.5 36.3

3.5 10.0 32.7

144.0 102.9

110.3 78.8

87.1 62.2

70.6 50.4

49.0 30.6

36.0 19.3

27.6 12.9

21.8 9.1

17.6 6.6

240.0 171.4

183.8 131.3

145.2 103.7

117.6 84.0

81.7 51.0

60.0 32.1

45.9 21.5

36.3 15.1

29.4 11.0

2.0

Maximum working load (kN) on one span, for span (m) 3.0 4.0 5.0 6.0 7.0 8.0 9.0

10.0

40.9 40.9 40.9

20.7 27.2 27.2

9.2 20.4 20.4

4.9 13.0 16.3

3.0 7.7 13.6

2.0 4.9 11.7

1.4 3.4 10.2

1.0 2.4 9.1

0.8 1.8 8.2

137.8 98.4

61.3 43.8

34.5 24.6

22.1 15.8

15.3 9.6

11.3 6.0

8.6 4.0

6.8 2.8

5.5 2.1

81.7 81.7 81.7

54.4 54.5 54.5

25.5 40.9 40.9

13.6 32.7 32.7

8.2 21.5 27.2

5.4 13.8 23.3

3.8 9.4 20.4

2.8 6.7 18.2

2.1 5.0 16.3

275.6 196.9

122.5 87.5

68.9 49.2

44.1 31.5

30.6 19.1

22.5 12.1

17.2 8.1

13.6 5.7

11.0 4.1

Central Point Load Design Case SINGLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 DOUBLE C SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Note:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE SECTION: No restraint Restrained DOUBLE SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 22.7 56.0

23.7 59.3

25.4 63.8

27.1 67.6

28.8 71.0

30.5 74.0

45.4 112.1

47.4 118.6

50.8 127.6

54.2 135.2

57.5 141.9

60.9 148.0

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 19

[BLANK PAGE]

C - 20

LOAD CAPACITY TABLES FOR BEAMS S350 Generic Z Sections Note: These tables are presented for generic Z sections, which may be used for scheme design.

C - 21

BENDING

Table 73

GENERIC ZED SECTION

Depth 100 mm Thickness 1.2 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

1.0

1.5

5.0

13.6 13.6 13.6

9.1 9.1 9.1

6.4 6.8 6.8

3.4 5.4 5.4

2.0 4.5 4.5

1.3 3.9 3.9

0.9 2.9 3.4

0.6 2.1 3.0

0.5 1.5 2.7

24.8 17.7

11.0 7.9

6.2 4.4

4.0 2.8

2.8 2.0

2.0 1.4

1.5 1.1

1.2 0.9

1.0 0.7

41.3 29.5

18.4 13.1

10.3 7.4

6.6 4.7

4.6 3.3

3.4 2.4

2.6 1.8

2.0 1.5

1.7 1.2

1.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

5.0

6.8 6.8 6.8

4.5 4.5 4.5

3.4 3.4 3.4

2.0 2.7 2.7

1.2 2.3 2.3

0.8 1.9 1.9

0.5 1.4 1.7

0.4 1.0 1.5

0.3 0.8 1.4

15.5 11.1

6.9 4.9

3.9 2.8

2.5 1.8

1.7 1.2

1.3 0.9

1.0 0.7

0.8 0.5

0.6 0.4

25.8 18.4

11.5 8.2

6.5 4.6

4.1 2.9

2.9 2.0

2.1 1.5

1.6 1.2

1.3 0.9

1.0 0.7

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 4.4 10.3

4.8 11.1

5.5 12.2

6.2 13.2

6.9 14.0

7.6 14.8

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 22

BENDING

Table 74

GENERIC ZED SECTION

Depth 125 mm Thickness 1.2 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

1.0

1.5

5.0

17.3 17.3 17.3

11.6 11.6 11.6

8.1 8.7 8.7

4.2 7.0 7.0

2.5 5.8 5.8

1.6 5.0 5.0

1.1 3.6 4.4

0.8 2.6 3.9

0.6 1.9 3.5

39.6 28.3

17.6 12.6

9.9 7.1

6.3 4.5

4.4 3.1

3.2 2.3

2.5 1.8

2.0 1.4

1.6 1.1

66.1 47.2

29.4 21.0

16.5 11.8

10.6 7.5

7.3 5.2

5.4 3.9

4.1 2.9

3.3 2.3

2.6 1.9

1.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

5.0

8.7 8.7 8.7

5.8 5.8 5.8

4.4 4.4 4.4

2.5 3.5 3.5

1.5 2.9 2.9

1.0 2.5 2.5

0.6 1.8 2.2

0.5 1.3 1.9

0.3 0.9 1.7

24.8 17.7

11.0 7.9

6.2 4.4

4.0 2.8

2.8 2.0

2.0 1.4

1.5 1.1

1.2 0.9

1.0 0.7

41.3 29.5

18.3 13.1

10.3 7.4

6.6 4.7

4.6 3.3

3.4 2.4

2.6 1.8

2.0 1.5

1.7 1.2

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 4.2 10.6

4.6 11.4

5.2 12.6

5.9 13.5

6.6 14.4

7.2 15.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 23

BENDING

Table 75

GENERIC ZED SECTION

Depth 125 mm Thickness 1.6 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

1.0

1.5

5.0

24.7 24.7 24.7

16.5 16.5 16.5

10.6 12.3 12.3

5.6 9.9 9.9

3.3 8.2 8.2

2.1 6.8 7.1

1.5 4.7 6.2

1.0 3.4 5.5

0.8 2.5 4.9

57.0 40.7

25.3 18.1

14.2 10.2

9.1 6.5

6.3 4.5

4.7 3.3

3.6 2.5

2.8 2.0

2.3 1.6

95.0 67.8

42.2 30.2

23.7 17.0

15.2 10.9

10.6 7.5

7.8 5.5

5.9 4.2

4.7 3.4

3.8 2.7

1.0

1.5

Maximum working load (kN) on one span, for span (m) 2.0 2.5 3.0 3.5 4.0 4.5

5.0

12.3 12.3 12.3

8.2 8.2 8.2

6.0 6.2 6.2

3.4 4.9 4.9

2.0 4.1 4.1

1.3 3.4 3.5

0.9 2.4 3.1

0.6 1.7 2.7

0.5 1.2 2.5

35.6 25.4

15.8 11.3

8.9 6.4

5.7 4.1

4.0 2.8

2.9 2.1

2.2 1.6

1.8 1.3

1.4 1.0

59.4 42.4

26.4 18.8

14.8 10.6

9.5 6.8

6.6 4.7

4.8 3.5

3.7 2.6

2.9 2.1

2.4 1.7

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.4 17.2

8.0 18.5

8.9 20.2

9.9 21.6

10.8 22.9

11.7 24.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 24

BENDING

Table 76

GENERIC ZED SECTION

Depth 150 mm Thickness 1.6 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

14.9 16.0 16.0

7.9 12.8 12.8

4.6 10.6 10.6

3.0 9.1 9.1

2.0 6.7 8.0

1.4 4.8 7.1

1.1 3.5 6.4

0.6 2.1 5.3

0.4 1.3 4.6

21.9 15.7

14.0 10.0

9.7 7.0

7.2 5.1

5.5 3.9

4.3 3.1

3.5 2.5

2.4 1.5

1.8 1.0

36.5 26.1

23.4 16.7

16.2 11.6

11.9 8.5

9.1 6.5

7.2 5.2

5.8 4.2

4.1 2.5

3.0 1.6

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

10.6 10.6 10.6

8.0 8.0 8.0

4.7 6.4 6.4

2.8 5.3 5.3

1.8 4.6 4.6

1.2 3.4 4.0

0.6 1.7 3.2

0.4 1.0 2.7

0.3 0.7 2.3

24.4 17.4

13.7 9.8

8.8 6.3

6.1 4.3

4.5 3.2

3.4 2.4

2.2 1.6

1.5 1.0

1.1 0.6

40.6 29.0

22.8 16.3

14.6 10.4

10.1 7.2

7.5 5.3

5.7 4.1

3.7 2.6

2.5 1.6

1.9 1.0

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.1 17.6

7.7 18.8

8.6 20.6

9.5 22

10.4 23.3

11.3 24.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 25

BENDING

Table 77

GENERIC ZED SECTION

Depth 150 mm Thickness 1.8 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

16.7 18.3 18.3

8.8 14.7 14.7

5.2 12.2 12.2

3.3 10.5 10.5

2.3 7.5 9.2

1.6 5.3 8.1

1.2 3.9 7.3

0.7 2.3 6.1

0.5 1.5 5.2

25.2 18.0

16.1 11.5

11.2 8.0

8.2 5.9

6.3 4.5

5.0 3.6

4.0 2.9

2.8 1.8

2.1 1.1

42.0 30.0

26.9 19.2

18.7 13.3

13.7 9.8

10.5 7.5

8.3 5.9

6.7 4.8

4.7 2.9

3.4 1.8

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

12.2 12.2 12.2

9.2 9.2 9.2

5.3 7.3 7.3

3.1 6.1 6.1

2.0 5.2 5.2

1.4 3.7 4.6

0.7 2.0 3.7

0.4 1.1 3.1

0.3 0.7 2.6

28.0 20.0

15.8 11.3

10.1 7.2

7.0 5.0

5.1 3.7

3.9 2.8

2.5 1.8

1.8 1.1

1.3 0.7

46.7 33.3

26.3 18.8

16.8 12.0

11.7 8.3

8.6 6.1

6.6 4.7

4.2 3.0

2.9 1.8

2.1 1.1

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 9.1 21.5

9.7 23

10.7 25

11.8 26.8

12.9 28.3

13.9 29.7

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 26

BENDING

Table 78

GENERIC ZED SECTION

Depth 165 mm Thickness 1.6 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

16.5 17.8 17.8

8.7 14.2 14.2

5.1 11.9 11.9

3.2 10.2 10.2

2.2 7.4 8.9

1.6 5.2 7.9

1.2 3.8 7.1

0.7 2.2 5.9

0.5 1.4 5.1

26.8 19.2

17.2 12.3

11.9 8.5

8.8 6.3

6.7 4.8

5.3 3.8

4.3 3.1

3.0 1.9

2.2 1.2

44.7 32.0

28.6 20.5

19.9 14.2

14.6 10.4

11.2 8.0

8.8 6.3

7.2 5.1

5.0 3.1

3.7 2.0

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

11.9 11.9 11.9

8.9 8.9 8.9

5.2 7.1 7.1

3.1 5.9 5.9

1.9 5.1 5.1

1.3 3.7 4.4

0.7 1.9 3.6

0.4 1.1 3.0

0.3 0.7 2.5

29.8 21.3

16.8 12.0

10.7 7.7

7.5 5.3

5.5 3.9

4.2 3.0

2.7 1.9

1.9 1.2

1.4 0.7

49.7 35.5

28.0 20.0

17.9 12.8

12.4 8.9

9.1 6.5

7.0 5.0

4.5 3.2

3.1 1.9

2.3 1.2

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 7.0 17.8

7.5 19

8.4 20.8

9.3 22.3

10.2 23.6

11.1 24.8

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 27

BENDING

Table 79

GENERIC ZED SECTION

Depth 165 mm Thickness 1.8 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

18.4 20.5 20.5

9.7 16.4 16.4

5.7 13.7 13.7

3.6 11.7 11.7

2.5 8.2 10.2

1.8 5.8 9.1

1.3 4.3 8.2

0.8 2.5 6.8

0.5 1.6 5.9

31.0 22.1

19.8 14.2

13.8 9.8

10.1 7.2

7.7 5.5

6.1 4.4

5.0 3.5

3.4 2.1

2.5 1.4

51.6 36.9

33.0 23.6

22.9 16.4

16.8 12.0

12.9 9.2

10.2 7.3

8.3 5.9

5.7 3.6

4.2 2.3

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

13.7 13.7 13.7

10.2 10.2 10.2

5.8 8.2 8.2

3.4 6.8 6.8

2.2 5.9 5.9

1.5 4.1 5.1

0.8 2.1 4.1

0.5 1.3 3.4

0.3 0.8 2.9

34.4 24.6

19.3 13.8

12.4 8.8

8.6 6.1

6.3 4.5

4.8 3.5

3.1 2.2

2.1 1.3

1.6 0.8

57.3 41.0

32.2 23.0

20.6 14.7

14.3 10.2

10.5 7.5

8.1 5.8

5.2 3.7

3.6 2.2

2.6 1.4

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.9 21.7

9.5 23.2

10.6 25.3

11.6 27

12.6 28.6

13.7 30

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 28

BENDING

Table 80

GENERIC ZED SECTION

Depth 180 mm Thickness 1.6 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

18.0 19.6 19.6

9.4 15.7 15.7

5.5 13.1 13.1

3.5 11.2 11.2

2.4 8.0 9.8

1.7 5.7 8.7

1.3 4.2 7.8

0.7 2.4 6.5

0.5 1.6 5.6

32.2 23.0

20.6 14.7

14.3 10.2

10.5 7.5

8.1 5.8

6.4 4.5

5.2 3.7

3.6 2.2

2.6 1.4

53.7 38.4

34.4 24.6

23.9 17.1

17.5 12.5

13.4 9.6

10.6 7.6

8.6 6.1

6.0 3.7

4.4 2.4

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

13.1 13.1 13.1

9.8 9.8 9.8

5.7 7.8 7.8

3.3 6.5 6.5

2.1 5.6 5.6

1.4 4.0 4.9

0.8 2.1 3.9

0.5 1.2 3.3

0.3 0.8 2.8

35.8 25.6

20.2 14.4

12.9 9.2

9.0 6.4

6.6 4.7

5.0 3.6

3.2 2.3

2.2 1.4

1.6 0.9

59.7 42.7

33.6 24.0

21.5 15.4

14.9 10.7

11.0 7.8

8.4 6.0

5.4 3.8

3.7 2.3

2.7 1.5

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.8 18.0

7.4 19.3

8.2 21.0

9.1 22.5

10.0 23.9

10.9 25.1

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 29

BENDING

Table 81

GENERIC ZED SECTION

Depth 180 mm Thickness 1.8 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

20.1 22.6 22.6

10.5 18.1 18.1

6.2 15.1 15.1

3.9 12.9 12.9

2.7 9.0 11.3

1.9 6.3 10.1

1.4 4.7 9.1

0.9 2.7 7.5

0.6 1.7 6.5

37.3 26.7

23.9 17.1

16.6 11.8

12.2 8.7

9.3 6.7

7.4 5.3

6.0 4.3

4.1 2.6

3.0 1.6

62.2 44.4

39.8 28.4

27.6 19.7

20.3 14.5

15.5 11.1

12.3 8.8

9.9 7.1

6.9 4.3

5.1 2.7

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

15.1 15.1 15.1

11.3 11.3 11.3

6.3 9.1 9.1

3.7 7.5 7.5

2.4 6.5 6.5

1.6 4.5 5.7

0.9 2.3 4.5

0.5 1.4 3.8

0.3 0.9 3.2

41.5 29.6

23.3 16.7

14.9 10.7

10.4 7.4

7.6 5.4

5.8 4.2

3.7 2.7

2.6 1.6

1.9 1.0

69.1 49.4

38.9 27.8

24.9 17.8

17.3 12.3

12.7 9.1

9.7 6.9

6.2 4.4

4.3 2.7

3.2 1.7

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.7 21.9

9.3 23.5

10.4 25.5

11.4 27.3

12.4 28.9

13.4 30.3

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 30

BENDING

Table 82

GENERIC ZED SECTION

Depth 180 mm Thickness 2.0 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

22.1 25.6 25.6

11.6 20.5 20.5

6.8 17.1 17.1

4.4 14.2 14.6

3.0 9.8 12.8

2.1 7.0 11.4

1.6 5.1 10.2

1.0 3.0 8.5

0.6 1.9 7.3

42.2 30.2

27.0 19.3

18.8 13.4

13.8 9.9

10.6 7.5

8.3 6.0

6.8 4.8

4.7 2.9

3.4 1.8

70.4 50.3

45.1 32.2

31.3 22.4

23.0 16.4

17.6 12.6

13.9 9.9

11.3 8.0

7.8 4.9

5.7 3.1

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

17.1 17.1 17.1

12.7 12.8 12.8

7.0 10.2 10.2

4.1 8.5 8.5

2.6 7.1 7.3

1.8 4.9 6.4

1.0 2.6 5.1

0.6 1.5 4.3

0.4 1.0 3.7

46.9 33.5

26.4 18.9

16.9 12.1

11.7 8.4

8.6 6.2

6.6 4.7

4.2 3.0

2.9 1.8

2.2 1.2

78.2 55.9

44.0 31.4

28.2 20.1

19.6 14.0

14.4 10.3

11.0 7.9

7.0 5.0

4.9 3.1

3.6 1.9

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.8 26.3

11.5 28.0

12.7 30.5

13.8 32.5

15.0 34.3

16.2 35.9

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 31

BENDING

Table 83

GENERIC ZED SECTION

Depth 200 mm Thickness 1.6 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

20.1 22.0 22.0

10.5 17.6 17.6

6.1 14.7 14.7

3.9 12.6 12.6

2.6 8.9 11.0

1.9 6.3 9.8

1.4 4.6 8.8

0.8 2.7 7.3

0.5 1.7 6.3

40.2 28.7

25.7 18.4

17.9 12.8

13.1 9.4

10.0 7.2

7.9 5.7

6.4 4.6

4.5 2.8

3.3 1.8

67.0 47.8

42.9 30.6

29.8 21.3

21.9 15.6

16.7 12.0

13.2 9.4

10.7 7.7

7.4 4.7

5.5 2.9

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

14.7 14.7 14.7

11.0 11.0 11.0

6.3 8.8 8.8

3.7 7.3 7.3

2.3 6.3 6.3

1.6 4.5 5.5

0.8 2.3 4.4

0.5 1.4 3.7

0.3 0.9 3.1

44.6 31.9

25.1 17.9

16.1 11.5

11.2 8.0

8.2 5.9

6.3 4.5

4.0 2.9

2.8 1.7

2.0 1.1

74.4 53.1

41.9 29.9

26.8 19.1

18.6 13.3

13.7 9.8

10.5 7.5

6.7 4.8

4.7 2.9

3.4 1.8

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 6.6 18.2

7.2 19.5

8 21.3

8.9 22.9

9.7 24.2

10.6 25.4

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 32

BENDING

Table 84

GENERIC ZED SECTION

Depth 200 mm Thickness 1.8 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 4.5 5.0 6.0

2.0

2.5

7.0

22.3 25.5 25.5

11.7 20.4 20.4

6.8 17.0 17.0

4.4 14.5 14.6

3.0 9.9 12.8

2.1 7.0 11.3

1.6 5.2 10.2

0.9 3.0 8.5

0.6 1.9 7.3

46.7 33.4

29.9 21.3

20.8 14.8

15.2 10.9

11.7 8.3

9.2 6.6

7.5 5.3

5.2 3.2

3.8 2.0

77.8 55.6

49.8 35.6

34.6 24.7

25.4 18.2

19.5 13.9

15.4 11.0

12.5 8.9

8.6 5.4

6.4 3.4

1.5

2.0

Maximum working load (kN) on one span, for span (m) 2.5 3.0 3.5 4.0 5.0 6.0

7.0

17.0 17.0 17.0

12.8 12.8 12.8

7.0 10.2 10.2

4.1 8.5 8.5

2.6 7.3 7.3

1.8 5.0 6.4

0.9 2.6 5.1

0.6 1.5 4.3

0.4 1.0 3.6

51.9 37.1

29.2 20.8

18.7 13.3

13.0 9.3

9.5 6.8

7.3 5.2

4.7 3.3

3.2 2.0

2.4 1.3

86.5 61.8

48.6 34.7

31.1 22.2

21.6 15.4

15.9 11.3

12.2 8.7

7.8 5.6

5.4 3.4

4.0 2.1

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 8.5 22.2

9.1 23.8

10.1 25.9

11.1 27.7

12.1 29.2

13.1 30.7

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 33

BENDING

Table 85

GENERIC ZED SECTION

Depth 200 mm Thickness 2.0 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0

3.0

3.5

8.0

7.5 19.3 19.3

4.8 15.9 16.6

3.3 10.9 14.5

2.3 7.7 12.9

1.7 5.7 11.6

1.3 4.3 10.5

1.0 3.3 9.7

0.7 2.1 8.3

0.5 1.4 7.3

23.6 16.8

17.3 12.4

13.3 9.5

10.5 7.5

8.5 6.1

7.0 4.8

5.9 3.7

4.3 2.3

3.3 1.6

39.3 28.1

28.9 20.6

22.1 15.8

17.5 12.5

14.2 10.1

11.7 8.0

9.8 6.1

7.2 3.9

5.5 2.6

2.0

2.5

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0

8.0

14.3 14.5 14.5

7.7 11.6 11.6

4.5 9.7 9.7

2.9 8.0 8.3

2.0 5.5 7.3

1.0 2.8 5.8

0.6 1.7 4.8

0.4 1.1 4.1

0.3 0.7 3.6

33.2 23.7

21.2 15.2

14.7 10.5

10.8 7.7

8.3 5.9

5.3 3.8

3.7 2.3

2.7 1.5

2.1 1.0

55.3 39.5

35.4 25.3

24.6 17.5

18.0 12.9

13.8 9.9

8.8 6.3

6.1 3.8

4.5 2.4

3.5 1.6

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.6 26.6

11.3 28.4

12.4 30.8

13.5 32.9

14.7 34.7

15.8 36.3

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 34

BENDING

Table 86

GENERIC ZED SECTION

Depth 220 mm Thickness 2.0 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0

3.0

3.5

8.0

8.3 21.6 21.6

5.3 17.6 18.5

3.6 12.0 16.2

2.6 8.5 14.4

1.9 6.2 13.0

1.4 4.7 11.8

1.1 3.6 10.8

0.7 2.3 9.3

0.5 1.6 8.1

29.0 20.7

21.3 15.2

16.3 11.6

12.9 9.2

10.4 7.4

8.6 5.9

7.2 4.5

5.3 2.8

4.1 1.9

48.3 34.5

35.4 25.3

27.1 19.4

21.4 15.3

17.4 12.4

14.4 9.8

12.1 7.5

8.9 4.7

6.8 3.2

2.0

2.5

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0

8.0

15.8 16.2 16.2

8.5 13.0 13.0

5.0 10.8 10.8

3.2 8.8 9.3

2.2 6.0 8.1

1.1 3.1 6.5

0.7 1.8 5.4

0.4 1.2 4.6

0.3 0.8 4.1

40.7 29.1

26.1 18.6

18.1 12.9

13.3 9.5

10.2 7.3

6.5 4.7

4.5 2.8

3.3 1.8

2.5 1.2

67.9 48.5

43.4 31.0

30.2 21.5

22.2 15.8

17.0 12.1

10.9 7.8

7.5 4.7

5.5 3.0

4.2 2.0

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 10.4 26.9

11.0 28.7

12.1 31.2

13.2 33.3

14.3 35.1

15.4 36.8

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 35

BENDING

Table 87

GENERIC ZED SECTION

Depth 220 mm Thickness 2.4 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.0 4.5 5.0 5.5 6.0 7.0

3.0

3.5

8.0

9.8 26.8 26.8

6.3 20.7 23.0

4.3 14.1 20.1

3.1 10.0 17.9

2.3 7.3 16.1

1.8 5.6 14.6

1.4 4.3 13.4

0.9 2.8 11.5

0.7 1.9 10.0

35.9 25.6

26.4 18.8

20.2 14.4

16.0 11.4

12.9 9.2

10.7 7.3

9.0 5.6

6.6 3.5

5.0 2.4

59.8 42.7

44.0 31.4

33.7 24.0

26.6 19.0

21.5 15.4

17.8 12.1

15.0 9.3

11.0 5.9

8.4 3.9

2.0

2.5

Maximum working load (kN) on one span, for span (m) 3.0 3.5 4.0 5.0 6.0 7.0

8.0

18.6 20.1 20.1

10.0 16.1 16.1

5.9 13.4 13.4

3.8 10.3 11.5

2.6 7.0 10.0

1.4 3.7 8.0

0.8 2.2 6.7

0.6 1.4 5.7

0.4 0.9 5.0

50.5 36.1

32.3 23.1

22.4 16.0

16.5 11.8

12.6 9.0

8.1 5.8

5.6 3.5

4.1 2.2

3.2 1.5

84.1 60.1

53.8 38.5

37.4 26.7

27.5 19.6

21.0 15.0

13.5 9.6

9.3 5.8

6.9 3.7

5.3 2.5

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 15.2 36.8

16.0 39.1

17.4 42.3

18.8 45.0

20.1 47.3

21.5 49.5

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 36

BENDING

Table 88

GENERIC ZED SECTION

Depth 250 mm Thickness 2.4 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0

3.5

4.0

10.0

15.1 31.7 31.7

10.2 27.7 27.7

7.2 24.0 24.6

5.3 17.9 22.2

3.2 10.5 18.5

2.0 6.7 15.8

1.4 4.5 13.9

1.0 3.2 12.3

0.8 2.4 11.1

41.1 29.4

31.5 22.5

24.9 17.8

20.2 14.4

14.0 8.7

10.3 5.5

7.9 3.7

6.2 2.6

5.0 1.9

68.5 49.0

52.5 37.5

41.5 29.6

33.6 24.0

23.3 14.6

17.1 9.2

13.1 6.1

10.4 4.3

8.4 3.1

2.0

3.0

Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0

10.0

27.7 27.7 27.7

14.2 18.5 18.5

6.1 13.9 13.9

3.2 8.9 11.1

1.9 5.2 9.2

1.2 3.3 7.9

0.9 2.3 6.9

0.6 1.6 6.2

0.5 1.2 5.5

78.7 56.2

35.0 25.0

19.7 14.1

12.6 9.0

8.7 5.5

6.4 3.4

4.9 2.3

3.9 1.6

3.1 1.2

131.2 93.7

58.3 41.7

32.8 23.4

21.0 15.0

14.6 9.1

10.7 5.7

8.2 3.8

6.5 2.7

5.2 2.0

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 14.8 37.3

15.6 39.7

16.9 42.9

18.2 45.6

19.6 48.0

20.9 50.2

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 37

BENDING

Table 89

GENERIC ZED SECTION

Depth 300 mm Thickness 2.4 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0

3.5

4.0

10.0

32.4 44.1 44.1

21.9 38.6 38.6

15.5 34.3 34.3

11.3 30.9 30.9

6.7 22.6 25.7

4.2 14.4 22.0

2.9 9.7 19.3

2.1 6.8 17.1

1.5 5.0 15.4

68.2 48.7

52.2 37.3

41.3 29.5

33.4 23.9

23.2 14.5

17.1 9.1

13.1 6.1

10.3 4.3

8.4 3.1

113.7 81.2

87.1 62.2

68.8 49.1

55.7 39.8

38.7 24.2

28.4 15.2

21.8 10.2

17.2 7.2

13.9 5.2

2.0

3.0

Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0

10.0

38.6 38.6 38.6

25.7 25.7 25.7

13.1 19.3 19.3

6.8 15.4 15.4

4.0 11.3 12.9

2.6 7.2 11.0

1.7 4.8 9.6

1.2 3.4 8.6

0.9 2.5 7.7

130.6 93.3

58.0 41.5

32.6 23.3

20.9 14.9

14.5 9.1

10.7 5.7

8.2 3.8

6.4 2.7

5.2 2.0

217.7 155.5

96.7 69.1

54.4 38.9

34.8 24.9

24.2 15.1

17.8 9.5

13.6 6.4

10.7 4.5

8.7 3.3

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 14.0 38.2

14.8 40.6

16.1 44.0

17.4 46.7

18.6 49.2

19.9 51.4

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 38

BENDING

Table 90

GENERIC ZED SECTION

Depth 300 mm Thickness 3.0 mm

2

Design Strength 350N/mm

Uniformly Distributed Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350

Maximum working load (kN) on one span, for span (m) 4.5 5.0 6.0 7.0 8.0 9.0

3.5

4.0

10.0

39.6 58.1 58.1

26.8 50.8 50.8

19.0 45.2 45.2

14.0 40.7 40.7

8.2 27.6 33.9

5.3 17.6 29.1

3.6 11.9 25.4

2.6 8.4 22.6

2.0 6.2 20.3

90.3 64.5

69.2 49.4

54.6 39.0

44.3 31.6

30.7 19.2

22.6 12.1

17.3 8.1

13.7 5.7

11.1 4.1

150.5 107.5

115.3 82.3

91.1 65.1

73.8 52.7

51.2 32.0

37.6 20.2

28.8 13.5

22.8 9.5

18.4 6.9

2.0

3.0

Maximum working load (kN) on one span, for span (m) 4.0 5.0 6.0 7.0 8.0 9.0

10.0

50.8 50.8 50.8

33.9 33.9 33.9

16.1 25.4 25.4

8.4 20.3 20.3

5.0 13.8 16.9

3.2 8.8 14.5

2.2 5.9 12.7

1.6 4.2 11.3

1.2 3.1 10.2

172.9 123.5

76.8 54.9

43.2 30.9

27.7 19.8

19.2 12.0

14.1 7.6

10.8 5.1

8.5 3.6

6.9 2.6

288.2 205.8

128.1 91.5

72.0 51.5

46.1 32.9

32.0 20.0

23.5 12.6

18.0 8.4

14.2 5.9

11.5 4.3

Central Point Load Design Case SINGLE Z SECTION Single & double spans: No lateral restraint Restraint at mid-span Full lateral restraint Single span: Deflection < L/250 Deflection < L/350 Double span: Deflection < L/250 Deflection < L/350 Notes:

Deflection is calculated for self weight plus imposed load

Web Crushing at Support for Single Span Design Case SINGLE Z SECTION: No restraint Restrained

Maximum load (kN) at support, for bearing width (mm) 35 50 75 100 125 150 22.7 56.0

23.7 59.3

25.4 63.8

27.1 67.6

28.8 71.0

30.5 74.0

For double span beams, web cleats should be provided to prevent crushing at internal supports

C - 39

[BLANK PAGE]

C - 40

LOAD CAPACITY TABLES FOR COLUMNS S350 Generic C Sections Note: These tables are presented for generic Z sections, which may be used for scheme design.

C - 41

COMPRESSION GENERIC C SECTION

Table 91

Depth 100 mm Thickness 1.2 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

6.9 6.9 6.9

10.3 11.2 11.2

15.5 19.6 20.0

20.9 29.5 31.0

22.9 32.5 34.6

4.7 4.9 4.9

6.8 7.6 7.7

7.9 9.5 9.8

8.3 9.9 10.3

6.3 6.8 6.8

9.8 11.9 12.1

11.1 15.3 16.5

11.5 15.8 17.3

6.4 6.8 6.8

8.8 10.0 10.1

11.2 13.2 13.4

12.1 14.3 14.7

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

3.3 3.3 3.3

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

4.2 4.2 4.2

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

4.7 4.7 4.7

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

29.6 29.6 29.6

47.7 47.7 47.7

53.0 71.6 71.6

53.0 80.4 84.0

53.0 80.4 87.0

12.2 12.2 12.2

13.7 15.2 15.4

14.2 16.3 16.8

14.4 16.6 17.2

23.4 24.1 24.1

24.3 32.9 35.2

24.3 34.5 37.9

24.3 34.5 38.5

15.5 15.5 15.5

17.8 19.3 19.3

19.1 21.7 21.9

19.5 22.3 22.8

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

9.1 9.1 9.1

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

15.2 15.2 15.2

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

11.9 11.9 11.9

C - 42

COMPRESSION GENERIC C SECTION

Table 92

Depth 125 mm Thickness 1.2 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

7.1 7.1 7.1

11.2 11.2 11.2

18.7 19.4 19.4

24.8 28.7 28.9

26.6 31.2 32.3

5.1 5.1 5.1

7.7 7.8 7.8

8.8 9.6 9.8

9.2 10.0 10.3

7.0 7.0 7.0

11.7 12.3 12.3

13.1 15.5 16.1

13.4 16.0 16.8

7.0 7.0 7.0

10.0 10.2 10.2

12.4 13.3 13.3

13.2 14.3 14.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

3.5 3.5 3.5

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

4.3 4.3 4.3

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

4.9 4.9 4.9

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

29.4 29.4 29.4

47.3 47.3 47.3

68.0 71.2 71.2

68.0 83.4 84.1

68.0 83.4 87.5

12.2 12.2 12.2

14.9 15.3 15.5

15.5 16.7 16.8

15.8 16.9 17.3

24.1 24.1 24.1

29.7 34.1 35.4

29.7 36.5 38.3

29.7 36.5 39.1

15.5 15.5 15.5

19.1 19.3 19.3

20.7 21.9 21.9

21.3 22.6 22.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

9.1 9.1 9.1

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

15.1 15.1 15.1

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

11.9 11.9 11.9

C - 43

COMPRESSION GENERIC C SECTION

Table 93

Depth 125 mm Thickness 1.6 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

9.7 9.7 9.7

15.7 15.7 15.7

27.6 28.6 28.6

38.3 46.5 46.8

41.6 51.1 53.1

6.9 6.9 6.9

10.5 10.6 10.6

12.5 13.8 14.0

13.0 14.4 14.8

9.6 9.6 9.6

16.8 17.3 17.3

19.4 23.9 25.0

19.9 24.7 26.2

9.3 9.3 9.3

13.7 14.0 14.0

17.3 18.8 18.9

18.7 20.4 20.7

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

4.7 4.7 4.7

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

5.9 5.9 5.9

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

6.5 6.5 6.5

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

39.5 39.5 39.5

65.3 65.3 65.3

101.2 107.3 107.3

101.2 130.5 131.6

101.2 130.5 137.3

16.2 16.2 16.2

20.4 20.8 20.8

21.4 23.1 23.3

21.8 23.6 24.0

32.5 32.5 32.5

42.9 50.3 50.3

42.9 54.8 58.0

42.9 54.8 59.0

20.5 20.5 20.5

25.8 26.1 26.1

28.1 29.8 29.9

28.9 30.8 31.2

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

12.0 12.0 12.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

20.3 20.3 20.3

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

15.7 15.7 15.7

C - 44

COMPRESSION GENERIC C SECTION

Table 94

Depth 150 mm Thickness 1.6 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

14.1 14.1 14.1

22.0 22.0 22.0

35.6 36.2 36.2

45.0 49.4 49.5

47.7 52.8 54.0

9.3 9.3 9.3

13.2 13.3 13.3

14.6 15.4 15.5

15.0 15.9 16.1

13.8 13.8 13.8

21.4 22.3 22.3

23.4 26.3 27.0

23.8 26.9 28.0

12.4 12.4 12.4

17.0 17.1 17.1

20.1 20.9 20.9

21.2 22.1 22.3

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.5 6.5 6.5

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

8.7 8.7 8.7

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

9.0 9.0 9.0

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

58.7 58.7 58.7

91.1 91.1 91.1

124.4 125.7 125.7

124.4 142.2 142.5

124.4 142.2 146.6

20.5 20.5 20.5

23.9 24.3 24.4

24.8 25.9 26.1

25.1 26.3 26.6

45.5 45.5 45.5

53.1 58.5 60.3

53.1 61.8 64.0

53.1 61.8 64.8

25.6 25.6 25.6

30.3 30.4 30.4

32.3 33.4 33.4

33.1 34.2 34.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

16.0 16.0 16.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

29.8 29.8 29.8

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

20.5 20.5 20.5

C - 45

COMPRESSION GENERIC C SECTION

Table 95

Depth 150 mm Thickness 1.8 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

16.1 16.1 16.1

25.4 25.4 25.4

42.2 42.8 42.8

54.3 60.2 60.3

57.8 64.5 66.0

10.5 10.5 10.5

14.9 15.0 15.0

16.8 17.8 17.9

17.3 18.3 18.6

15.7 15.7 15.7

25.2 25.8 25.8

27.5 31.3 32.3

28.0 32.1 33.4

14.0 14.0 14.0

19.4 19.5 19.5

23.1 24.1 24.1

24.4 25.5 25.8

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

7.4 7.4 7.4

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

9.8 9.8 9.8

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.1 10.1 10.1

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

66.3 66.3 66.3

104.6 104.6 104.6

147.4 149.0 149.0

147.4 170.0 170.4

147.4 170.0 175.4

23.0 23.0 23.0

27.1 27.6 27.6

28.3 29.5 29.7

28.6 29.9 30.3

51.5 51.5 51.5

61.8 68.6 70.0

61.8 72.6 75.3

61.8 72.6 76.3

28.7 28.7 28.7

34.2 34.3 34.3

36.6 37.8 37.8

37.4 38.7 39.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

17.9 17.9 17.9

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

33.5 33.5 33.5

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

22.9 22.9 22.9

C - 46

COMPRESSION GENERIC C SECTION

Table 96

Depth 165 mm Thickness 1.6 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

14.2 14.2 14.2

21.9 21.9 21.9

35.4 35.4 35.4

45.1 48.0 48.0

47.6 51.4 52.3

9.5 9.5 9.5

13.3 13.3 13.3

14.8 15.4 15.5

15.2 15.9 16.1

13.9 13.9 13.9

21.8 22.3 22.3

23.9 26.2 26.7

24.3 26.8 27.6

12.5 12.5 12.5

17.2 17.2 17.2

20.3 20.8 20.8

21.3 22.0 22.2

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.7 6.7 6.7

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

8.8 8.8 8.8

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

9.1 9.1 9.1

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

58.4 58.4 58.4

90.7 90.7 90.7

125.4 125.4 125.4

129.2 142.6 142.6

129.2 143.5 147.0

20.6 20.6 20.6

24.1 24.4 24.5

25.2 26.0 26.1

25.5 26.4 26.6

45.5 45.5 45.5

54.8 59.1 60.6

55.5 62.6 64.3

55.5 62.8 65.2

25.6 25.6 25.6

30.4 30.4 30.4

32.7 33.4 33.4

33.4 34.3 34.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

16.0 16.0 16.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

29.7 29.7 29.7

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

20.5 20.5 20.5

C - 47

COMPRESSION GENERIC C SECTION

Table 97

Depth 165 mm Thickness 1.8 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

16.1 16.1 16.1

25.3 25.3 25.3

41.8 41.8 41.8

54.4 58.2 58.2

57.7 62.6 63.7

10.7 10.7 10.7

15.1 15.1 15.1

17.1 17.8 17.9

17.5 18.3 18.6

15.8 15.8 15.8

25.6 25.7 25.7

28.3 31.2 31.8

28.8 31.9 32.9

14.1 14.1 14.1

19.5 19.5 19.5

23.3 23.9 23.9

24.5 25.3 25.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

7.5 7.5 7.5

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

10.0 10.0 10.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.3 10.3 10.3

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

66.0 66.0 66.0

104.2 104.2 104.2

148.6 148.6 148.6

153.7 170.4 170.4

153.7 171.6 175.8

23.0 23.0 23.0

27.3 27.7 27.7

28.7 29.6 29.7

29.1 30.1 30.3

51.6 51.6 51.6

64.0 69.3 70.8

64.9 73.6 75.8

64.9 73.8 76.8

28.7 28.7 28.7

34.3 34.3 34.3

36.9 37.8 37.8

37.8 38.8 39.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

17.9 17.9 17.9

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

33.4 33.4 33.4

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

22.9 22.9 22.9

C - 48

COMPRESSION GENERIC C SECTION

Table 98

Depth 180 mm Thickness 1.6 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

14.2 14.2 14.2

21.9 21.9 21.9

34.8 34.8 34.8

44.9 46.7 46.7

47.3 50.3 50.9

9.6 9.6 9.6

13.4 13.4 13.4

14.9 15.4 15.5

15.3 15.9 16.0

14.0 14.0 14.0

21.9 22.2 22.2

24.3 26.0 26.4

24.7 26.7 27.3

12.6 12.6 12.6

17.2 17.2 17.2

20.3 20.7 20.7

21.3 21.9 22.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.7 6.7 6.7

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

8.9 8.9 8.9

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

9.2 9.2 9.2

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

58.3 58.3 58.3

90.3 90.3 90.3

125.1 125.1 125.1

132.7 142.7 142.7

132.7 144.6 147.3

20.6 20.6 20.6

24.2 24.4 24.5

25.4 26.1 26.2

25.8 26.5 26.7

45.6 45.6 45.6

56.0 59.6 60.8

57.4 63.2 64.6

57.4 63.6 65.6

25.5 25.5 25.5

30.3 30.3 30.3

32.9 33.4 33.4

33.6 34.3 34.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

15.9 15.9 15.9

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

29.6 29.6 29.6

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

20.5 20.5 20.5

C - 49

COMPRESSION GENERIC C SECTION

Table 99

Depth 180 mm Thickness 1.8 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

16.2 16.2 16.2

25.1 25.1 25.1

41.0 41.0 41.0

54.0 56.4 56.4

57.1 60.9 61.7

10.8 10.8 10.8

15.2 15.2 15.2

17.3 17.8 17.8

17.7 18.3 18.5

15.9 15.9 15.9

25.7 25.7 25.7

28.8 30.9 31.4

29.3 31.8 32.6

14.2 14.2 14.2

19.5 19.5 19.5

23.4 23.8 23.8

24.5 25.2 25.3

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

7.6 7.6 7.6

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

10.1 10.1 10.1

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.4 10.4 10.4

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

65.8 65.8 65.8

103.7 103.7 103.7

148.1 148.1 148.1

158.0 170.4 170.4

158.0 172.8 176.1

23.1 23.1 23.1

27.5 27.8 27.8

29.0 29.7 29.8

29.4 30.2 30.4

51.7 51.7 51.7

65.6 70.0 71.4

67.3 74.4 76.3

67.3 74.9 77.3

28.7 28.7 28.7

34.3 34.3 34.3

37.2 37.8 37.8

38.1 38.9 39.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

17.8 17.8 17.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

33.3 33.3 33.3

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

22.9 22.9 22.9

C - 50

COMPRESSION GENERIC C SECTION

Table 100

Depth 180 mm Thickness 2.0 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

18.2 18.2 18.2

28.5 28.5 28.5

47.5 47.5 47.5

63.9 66.9 66.9

67.8 72.5 73.5

11.9 11.9 11.9

17.0 17.0 17.0

19.5 20.1 20.2

20.0 20.8 21.0

17.8 17.8 17.8

29.2 29.2 29.2

33.3 35.9 36.6

33.8 37.0 37.9

15.8 15.8 15.8

21.9 21.9 21.9

26.4 26.9 26.9

27.8 28.6 28.7

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

8.4 8.4 8.4

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

11.3 11.3 11.3

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

11.5 11.5 11.5

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

73.1 73.1 73.1

116.5 116.5 116.5

170.7 170.7 170.7

183.1 197.9 197.9

183.1 200.8 204.7

25.5 25.5 25.5

30.6 30.8 30.8

32.4 33.2 33.3

32.8 33.8 34.0

57.5 57.5 57.5

74.7 79.9 80.4

76.8 85.3 87.5

76.8 85.8 88.8

31.6 31.6 31.6

38.0 38.0 38.0

41.3 42.0 42.0

42.3 43.2 43.4

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

19.7 19.7 19.7

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

37.0 37.0 37.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

25.2 25.2 25.2

C - 51

COMPRESSION GENERIC C SECTION

Table 101

Depth 200 mm Thickness 1.6 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

14.3 14.3 14.3

21.8 21.8 21.8

34.2 34.2 34.2

44.3 45.3 45.3

46.7 49.0 49.4

9.7 9.7 9.7

13.5 13.5 13.5

15.1 15.3 15.4

15.4 15.9 16.0

14.1 14.1 14.1

21.9 22.2 22.2

24.6 25.8 26.0

25.0 26.5 27.0

12.8 12.8 12.8

17.2 17.2 17.2

20.4 20.6 20.6

21.3 21.8 21.8

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

6.8 6.8 6.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

9.0 9.0 9.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

9.3 9.3 9.3

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

58.0 58.0 58.0

89.8 89.8 89.8

124.7 124.7 124.7

136.0 142.8 142.8

136.0 145.9 147.8

20.6 20.6 20.6

24.3 24.4 24.5

25.7 26.1 26.2

26.0 26.6 26.8

45.7 45.7 45.7

57.2 60.0 60.9

59.3 63.8 64.9

59.3 64.4 65.9

25.5 25.5 25.5

30.3 30.3 30.3

33.1 33.4 33.4

33.8 34.4 34.5

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

15.9 15.9 15.9

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

29.6 29.6 29.6

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

20.5 20.5 20.5

C - 52

COMPRESSION GENERIC C SECTION

Table 102

Depth 200 mm Thickness 1.8 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

16.3 16.3 16.3

25.0 25.0 25.0

40.1 40.1 40.1

53.3 54.5 54.5

56.3 59.1 59.6

10.9 10.9 10.9

15.3 15.3 15.3

17.4 17.7 17.8

17.8 18.3 18.5

16.0 16.0 16.0

25.6 25.6 25.6

29.1 30.6 31.0

29.6 31.6 32.1

14.3 14.3 14.3

19.5 19.5 19.5

23.4 23.7 23.7

24.5 25.1 25.2

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

7.7 7.7 7.7

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

10.2 10.2 10.2

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

10.5 10.5 10.5

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

65.6 65.6 65.6

103.1 103.1 103.1

147.6 147.6 147.6

162.1 170.4 170.4

162.1 174.3 176.5

23.1 23.1 23.1

27.6 27.8 27.9

29.3 29.8 29.9

29.7 30.3 30.5

51.8 51.8 51.8

67.1 70.6 71.7

69.8 75.3 76.7

69.8 76.0 77.9

28.6 28.6 28.6

34.2 34.2 34.2

37.4 37.8 37.8

38.3 38.9 39.1

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

17.8 17.8 17.8

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

33.3 33.3 33.3

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

22.9 22.9 22.9

C - 53

COMPRESSION GENERIC C SECTION

Table 103

Depth 200 mm Thickness 2.0 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

18.2 18.2 18.2

28.3 28.3 28.3

46.3 46.3 46.3

62.8 64.4 64.4

66.5 70.1 70.7

12.1 12.1 12.1

17.1 17.1 17.1

19.7 20.1 20.2

20.2 20.8 20.9

17.9 17.9 17.9

29.1 29.1 29.1

33.8 35.6 36.0

34.3 36.7 37.4

15.9 15.9 15.9

21.9 21.9 21.9

26.4 26.7 26.7

27.8 28.3 28.4

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

8.5 8.5 8.5

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

11.4 11.4 11.4

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

11.6 11.6 11.6

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

72.8 72.8 72.8

115.9 115.9 115.9

170.0 170.0 170.0

188.0 197.9 197.9

188.0 202.5 205.1

25.5 25.5 25.5

30.8 31.0 31.0

32.7 33.3 33.4

33.2 33.9 34.1

57.6 57.6 57.6

76.7 80.8 81.5

79.8 86.4 88.1

79.8 87.3 89.5

31.6 31.6 31.6

38.0 38.0 38.0

41.6 42.0 42.0

42.6 43.3 43.4

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

19.7 19.7 19.7

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

36.9 36.9 36.9

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

25.2 25.2 25.2

C - 54

COMPRESSION GENERIC C SECTION

Table 104

Depth 220 mm Thickness 2.0 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

18.3 18.3 18.3

28.1 28.1 28.1

45.4 45.4 45.4

61.7 62.3 62.3

65.3 68.1 68.4

12.2 12.2 12.2

17.2 17.2 17.2

19.8 20.0 20.1

20.3 20.8 20.9

18.0 18.0 18.0

29.0 29.0 29.0

34.0 35.2 35.6

34.5 36.4 37.0

16.0 16.0 16.0

21.8 21.8 21.8

26.4 26.5 26.5

27.7 28.2 28.2

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

8.6 8.6 8.6

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

11.5 11.5 11.5

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

11.8 11.8 11.8

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

72.5 72.5 72.5

115.3 115.3 115.3

169.4 169.4 169.4

191.6 197.9 197.9

191.6 203.9 205.6

25.5 25.5 25.5

30.9 31.1 31.1

33.0 33.4 33.5

33.5 34.1 34.2

57.7 57.7 57.7

78.1 81.4 82.4

82.2 87.3 88.7

82.2 88.5 90.2

31.6 31.6 31.6

37.9 37.9 37.9

41.8 42.0 42.0

42.8 43.4 43.4

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

19.7 19.7 19.7

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

36.8 36.8 36.8

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

25.2 25.2 25.2

C - 55

COMPRESSION GENERIC C SECTION

Table 105

Depth 220 mm Thickness 2.4 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

22.3 22.3 22.3

34.8 34.8 34.8

58.4 58.4 58.4

82.7 83.6 83.6

87.8 91.9 92.5

14.5 14.5 14.5

20.7 20.7 20.7

24.4 24.7 24.8

25.1 25.7 25.8

21.9 21.9 21.9

36.2 36.2 36.2

43.8 45.6 46.1

44.5 47.2 47.9

19.2 19.2 19.2

26.5 26.5 26.5

32.5 32.6 32.6

34.2 34.8 34.8

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

10.3 10.3 10.3

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

13.8 13.8 13.8

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

13.9 13.9 13.9

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

86.4 86.4 86.4

139.8 139.8 139.8

214.5 214.5 214.5

246.4 254.9 254.9

246.4 262.9 265.2

30.1 30.1 30.1

37.0 37.0 37.0

39.7 40.2 40.3

40.3 41.0 41.2

69.0 69.0 69.0

97.4 100.6 100.6

103.1 109.9 111.8

103.1 111.3 113.7

37.3 37.3 37.3

45.1 45.1 45.1

49.8 50.2 50.2

51.2 51.8 51.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

23.2 23.2 23.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

43.8 43.8 43.8

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

29.6 29.6 29.6

C - 56

COMPRESSION GENERIC C SECTION

Table 106

Depth 250 mm Thickness 2.4 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

22.3 22.3 22.3

34.5 34.5 34.5

56.7 56.7 56.7

79.8 79.8 79.8

85.0 88.0 88.2

14.7 14.7 14.7

20.8 20.8 20.8

24.5 24.7 24.7

25.2 25.6 25.7

22.0 22.0 22.0

36.0 36.0 36.0

43.9 45.0 45.3

44.8 46.8 47.2

19.3 19.3 19.3

26.4 26.4 26.4

32.3 32.3 32.3

33.9 34.4 34.4

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

10.4 10.4 10.4

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

14.0 14.0 14.0

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

14.1 14.1 14.1

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

86.0 86.0 86.0

138.8 138.8 138.8

213.2 213.2 213.2

251.6 254.7 254.7

251.6 265.1 265.9

30.1 30.1 30.1

37.2 37.2 37.2

40.1 40.3 40.4

40.8 41.3 41.4

69.1 69.1 69.1

99.7 102.2 102.2

107.0 111.7 113.1

107.0 113.6 115.3

37.2 37.2 37.2

45.1 45.1 45.1

50.1 50.2 50.2

51.4 51.9 51.9

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

23.2 23.2 23.2

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

43.6 43.6 43.6

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

29.6 29.6 29.6

C - 57

COMPRESSION GENERIC C SECTION

Table 107

Depth 300 mm Thickness 2.4 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

22.3 22.3 22.3

34.1 34.1 34.1

54.6 54.6 54.6

75.4 75.4 75.4

81.3 83.3 83.3

14.9 14.9 14.9

21.0 21.0 21.0

24.5 24.6 24.6

25.3 25.6 25.6

22.2 22.2 22.2

35.8 35.8 35.8

43.6 44.2 44.4

44.8 46.1 46.3

19.5 19.5 19.5

26.3 26.3 26.3

31.9 31.9 31.9

33.6 34.0 34.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

10.6 10.6 10.6

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

14.2 14.2 14.2

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

14.4 14.4 14.4

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

85.3 85.3 85.3

137.4 137.4 137.4

211.3 211.3 211.3

254.8 254.8 254.8

257.7 267.5 267.5

30.2 30.2 30.2

37.4 37.5 37.5

40.5 40.6 40.6

41.2 41.6 41.7

69.2 69.2 69.2

102.3 104.3 104.6

111.2 113.9 114.8

111.7 116.3 117.3

37.1 37.1 37.1

45.0 45.0 45.0

50.2 50.2 50.2

51.6 52.0 52.0

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

23.1 23.1 23.1

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

43.4 43.4 43.4

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

29.6 29.6 29.6

C - 58

COMPRESSION GENERIC C SECTION

Table 108

Depth 300 mm Thickness 3.0 mm

Design Strength 350N/mm2

Single Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

28.2 28.2 28.2

43.9 43.9 43.9

73.7 73.7 73.7

107.8 107.8 107.8

117.5 120.6 120.6

18.3 18.3 18.3

26.1 26.1 26.1

31.4 31.6 31.6

32.6 32.9 33.0

27.9 27.9 27.9

46.7 46.7 46.7

59.8 60.8 61.1

61.5 63.5 63.9

24.0 24.0 24.0

33.0 33.0 33.0

40.8 40.8 40.8

43.2 43.6 43.6

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

13.0 13.0 13.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

17.7 17.7 17.7

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

17.6 17.6 17.6

Double Section Columns Effective length Lx

Working load (kN) for effective length Ly (m) 4.0

3.0

2.0

1.0

Continuous

104.8 104.8 104.8

172.0 172.0 172.0

280.5 280.5 280.5

348.6 348.6 348.6

353.1 366.8 366.8

36.7 36.7 36.7

45.9 45.9 45.9

50.4 50.5 50.6

51.4 51.8 51.9

85.4 85.4 85.4

132.8 132.8 132.8

147.5 151.5 152.9

148.3 154.8 156.3

45.1 45.1 45.1

55.2 55.2 55.2

61.8 61.8 61.8

63.7 64.1 64.1

CONCENTRIC LOADING 4m 2m Continuous

ECCENTRIC LOADING ABOUT X AND Y AXIS 4m 2m Continuous

28.0 28.0 28.0

ECCENTRIC LOADING ABOUT X AXIS 4m 2m Continuous

53.3 53.3 53.3

ECCENTRIC LOADING ABOUT Y AXIS 4m 2m Continuous

35.8 35.8 35.8

C - 59

[BLANK PAGE]

C - 60

Typeset and page make-up by The Steel Construction Institute, Ascot, Berks. Printed and bound by Hobbs The Printers, Totton, SO40 3WX. 1,500 4/2002 [BCS 849]

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF