Structural Design and Analysis
May 3, 2017 | Author: Marafu Nawen Pongtan | Category: N/A
Short Description
Download Structural Design and Analysis...
Description
Appendices
54
B. STRUCTURAL DESIGN AND ANALYSIS DESIGN PARAMETER 1] Design Codes: ACI 318-95
Building Code Requirement for Reinforce Concrete
UBC 1997
Uniform Building Code
NSCP 6TH EDITION
National Structural Code of the Philippines 2010
ASTM C33
Standard Specifications for Concrete Aggregates
PNS 16
Philippine
National Standard for C.H.B
AISC-LRFD 99 2] Design Material Strength fc’ 25 mpa
For all concrete sections without honeycomb and conformed to 40% by wt. water cement ratio (Footing,Column,Slab and Beam)
fy 415
mpa
For deformed reinforcing bars(for beam B1 450 x 680 ONLY, note use fy 275 mpa for stirrup)
fy 275
mpa
For all deformed reinforcing bars (Footing,Column,Slab and Beam Rebars)
Note 1:
Material strength provided above shall be maintained in the construction. Compression testing for concrete and tensile for steel shall be conducted to maintained structural stability of the design.
Note 2:
Frame analysis and design results are purely based on code and material strength mention above.
Appendices
3] Design Loads 3.1 Dead Loads a. concrete
23.56 kN/m3
b. structural steel
78.60 kN/m3
c. floor finishing
1.53
kPa
d. ceiling
0.38
kPa
e. construction loads
0.20
kPa
f. CHB 5”
2.75
kPa
g. soil
16.00 kN/m3
i. water
9.81
kN/m3
3.2 Live Loads a. roof
0.75 kPa
b. pedestrian walkways
4.80 kPa
3.3 Wind Loads
Where:
Velocity pressure @ height z for windward wall at height z above the ground Velocity pressure @ height z = h For leeward wall, side walls and roof at mean roof height Product of external pressure coefficient and gust effect factor Product of internal pressure coefficient and gust effect factor
55
Appendices
Velocity Pressure
Velocity pressure exposure coefficient but Shall not be less than 1.0 Basic wind speed Importance factor
3.4 Earthquake Load Base shear
Where:
Effective weight at a given mode Gravitational acceleration Spectral acceleration at a given mode
Where:
Natural period of vibration Spectral velocity taken from response spectrum
Where:
Seismic deal load at level i Mode shape at level i
Lateral force at level i [
]
56
Appendices
SEISMIC ANALYSIS
ETABS v9.6.0 File:OVERPASS Units: KN-m April 20, 2013 20:38 PROJECT INFORMATION PROPOSED OVERPASS ETABS v9.6.0 File:OVERPASS Units:KN-m S T O R Y
D A T A
STORY
SIMILAR TO
STORY2 STORY1 BASE
None STORY2 None
ETABS v9.6.0
File:OVERPASS
S T A T I C
L O A D
HEIGHT
ELEVATION
3.000 5.100
8.100 5.100 0.000
Units:KN-m
CASE TYPE
AUTO LAT LOAD
DEAD LIVE EQY EQX
DEAD LIVE QUAKE QUAKE
N/A N/A UBC97 UBC97
File:OVERPASS
A U T O S E I S M I C Case: EQX
April 20, 2013 20:38
C A S E S
STATIC CASE
ETABS v9.6.0
April 20, 2013 20:38
SELF WT MULTIPLIER
NOTIONAL FACTOR
1.0000 0.0000 0.0000 0.0000 Units:KN-m
U B C 9 7
May 20, 2013 20:38
NOTIONAL DIRECTION
57
Appendices
AUTO SEISMIC INPUT DATA Direction: X Typical Eccentricity = 5% Eccentricity Overrides: No Period Calculation: Program Calculated Ct = 0.035 (in feet units) Top Story: STORY2 Bottom Story: BASE R = 8.5 I = 1 hn = 8.100 (Building Height) Soil Profile Type = SC Z = 0.4 Ca = 0.4400 Cv = 0.7467 Seismic Source Type = B Distance to Source = 4 km Na = 1.1000 Nv = 1.3333 AUTO SEISMIC CALCULATION FORMULAS Ta = Ct (hn^(3/4)) If Z >= 0.35 (Zone 4) then: If Tetabs 0> 0> 0> 0> 0> 0> 0> 0> 0> 0>
Units:KN-m
RX-ROTN %MASS
RY-ROTN %MASS
RZ-ROTN %MASS
96.74 0.00 0.00 0.00 3.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 96.33 0.00 0.00 0.00 3.67 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 99.73 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
< 97> < 97> < 97> < 97>
TYPE
NAME
STATIC
DYNAMIC
Load Load Load Load Accel Accel Accel Accel Accel Accel
DEAD LIVE EQY EQX UX UY UZ RX RY RZ
0.0031 0.0000 100.0000 100.0000 100.0000 100.0000 0.0000 100.0000 100.0000 100.0000
0.0000 0.0000 100.0000 100.0000 100.0000 100.0000 0.0000 100.0000 100.0000 100.0000
File:OVERPASS
Units:KN-m
< 0> < 96> < 96> < 96> < 96>
< 0> < 0>
May 20, 2013 20:38
M O D A L L O A D P A R T I C I P A T I O N (STATIC AND DYNAMIC RATIOS ARE IN PERCENT)
ETABS v9.6.0
178.06135 225.86518 250.51760
May 20, 2013 20:38 M A S S
61
R A T I O S
May 20, 2013 20:38
TOTAL REACTIVE FORCES (RECOVERED LOADS) AT ORIGIN LOAD
FX
FY
FZ
MX
MY
MZ
DEAD LIVE EQY EQX
-1.185E-14 0.000E+00 3.684E-11 -3.387E+02
1.713E-14 0.000E+00 -3.387E+02 3.471E-11
2.725E+03 0.000E+00 -6.321E-14 -1.620E-12
5.450E+03 0.000E+00 2.091E+03 -2.709E-10
-4.905E+04 0.000E+00 2.811E-10 -2.091E+03
4.624E-13 0.000E+00 -6.097E+03 6.775E+02
ETABS v9.6.0
File:OVERPASS
S T O R Y
F O R C E S
STORY
LOAD
STORY2 STORY1 STORY2 STORY1
EQY EQY EQX EQX
Units:KN-m
May 20, 2013 20:38
PAGE 12
P
VX
VY
T
MX
MY
-1.877E-13 -6.321E-14 -8.147E-13 -1.620E-12
2.988E-11 3.684E-11 -1.211E+02 -3.387E+02
-1.211E+02 -3.387E+02 3.075E-11 3.471E-11
-2.179E+03 -6.097E+03 2.421E+02 6.775E+02
3.632E+02 2.091E+03 -9.343E-11 -2.709E-10
9.500E-11 2.811E-10 -3.632E+02 -2.091E+03
Appendices
ETABS v9.6.0
File:OVERPASS
Units:KN-m
May 20, 2013 20:38
STORY DRIFTS STORY
DIRECTION
LOAD
STORY2 STORY1 STORY2 STORY1
Y Y X X
EQY EQY EQX EQX
MAX DRIFT 1/616 1/122 1/902 1/124
Staad.pro analysis-frame analysis
Reactions Node 2
5
8
L/C 1:DEAD 2:LIVE 3:E1 4:E2 1:DEAD 2:LIVE 3:E1 4:E2 1:DEAD 2:LIVE 3:E1 4:E2
Horizontal FX (kN) 42.744 18.929 -77.419 77.011 0.000 0.000 -89.270 89.270 -42.744 -18.929 -77.011 77.419
Vertical FY (kN) 533.863 213.878 -35.205 33.836 908.443 388.083 1.369 1.369 533.863 213.878 33.836 -35.205
Horizontal FZ (kN) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MX (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Moment MY (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MZ (kNm) -67.427 -29.889 197.513 -196.187 -0.000 -0.000 215.877 -215.877 67.427 29.889 196.187 -197.513
Beam Maximum Moments Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 10 3.000 1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
d (m) 0.000 0.000 0.000 0.000 0.000 0.000
Max My (kNm) 0.000 0.000 0.000 0.000 0.000 0.000
d (m) 3.000
Max Mz (kNm) 228.863
3.000
112.725
2.750 0.000
0.000 -0.000
62
Appendices
4:E2 2
11
5.000
1:DEAD 2:LIVE 3:E1 4:E2
3
12
5.000
1:DEAD 2:LIVE 3:E1 4:E2
4
13
5.000
1:DEAD 2:LIVE 3:E1 4:E2
5
14
5.000
1:DEAD 2:LIVE 3:E1 4:E2
6
15
5.000
1:DEAD 2:LIVE 3:E1 4:E2
7
16
5.000
1:DEAD 2:LIVE 3:E1 4:E2
8
17
3.000
1:DEAD 2:LIVE 3:E1 4:E2
9
19
3.000
1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.000 2.750 0.000 5.000 0.000 5.000
-0.000 -0.000 389.779 -628.756 188.109 -275.724
0.000 0.000
-201.858 197.638
0.833
-620.664
1.250 5.000 0.000 0.000 5.000 5.000 0.000 5.000 0.000 5.000 0.000 0.000 5.000 0.000 5.000 0.000 5.000 5.000 0.000 0.000 5.000
-279.480 28.227 -105.283 100.386 -28.081 1.2E 3 -404.145 538.976 -169.189 127.005 -13.388 11.997 -122.568 1.2E 3 -404.145 538.976 -169.189 11.997 -122.568 127.005 -13.388
4.167
-620.664
3.750 5.000 0.000 0.000 5.000 5.000 0.000 5.000 0.000 5.000
-279.480 100.386 -28.081 28.227 -105.283 389.779 -628.756 188.109 -275.724 197.638
5.000 0.000 3.000 0.000 3.000 0.000 3.000 2.750 3.000 3.000 0.000 3.000 0.000 3.000 0.000
-201.858 228.863 -0.000 112.725 -0.000 0.000 -0.000 0.000 -0.000 97.928 -0.000 9.510 -0.000 -0.000 -0.000
63
Appendices
4:E2 10
20
5.000
1:DEAD 2:LIVE 3:E1 4:E2
11
21
5.000
1:DEAD 2:LIVE 3:E1 4:E2
12
22
5.000
1:DEAD 2:LIVE 3:E1 4:E2
13
23
5.000
1:DEAD 2:LIVE 3:E1 4:E2
14
24
5.000
1:DEAD 2:LIVE 3:E1 4:E2
15
25
5.000
1:DEAD 2:LIVE 3:E1 4:E2
16
26
3.000
1:DEAD 2:LIVE 3:E1 4:E2
18
2
4.800
1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.000 2.750 0.000 4.583 0.000 5.000 5.000 0.000 0.000 5.000 5.000 2.083
0.000 -0.000 104.406 -31.015 20.986 -17.848 14.979 -24.854 21.881 -13.262 22.498 -31.317
0.417 5.000 0.000 0.000 5.000 5.000 1.250 5.000 0.000 5.000 0.000 0.000 5.000 0.000 3.750 0.000 5.000 5.000 0.000 0.000 5.000 0.000 2.917
-9.538 20.572 -21.943 20.960 -19.755 72.049 -13.477 23.214 -11.953 17.923 -17.710 17.120 -17.497 72.049 -13.477 23.214 -11.953 17.120 -17.497 17.923 -17.710 22.498 -31.317
4.583 5.000 0.000 0.000 5.000 5.000 0.417 5.000 0.000 5.000 0.000 0.000 5.000 0.000
-9.538 20.960 -19.755 20.572 -21.943 104.406 -31.015 20.986 -17.848 21.881 -13.262 14.979 -24.854 97.928
0.000 3.000 0.000 3.000
9.510 -0.000 0.000 -0.000
0.000 4.800 0.000 4.800 0.000 0.000 4.800
-0.000 137.742 -67.427 60.971 -29.889 197.513 -174.096
64
Appendices
4:E2 21
5
4.800
1:DEAD 2:LIVE 3:E1 4:E2
24
8
4.800
1:DEAD 2:LIVE 3:E1 4:E2
27
11
3.000
1:DEAD 2:LIVE 3:E1 4:E2
28
12
3.000
1:DEAD 2:LIVE 3:E1 4:E2
29
13
3.000
1:DEAD 2:LIVE 3:E1 4:E2
30
14
3.000
1:DEAD 2:LIVE 3:E1 4:E2
31
15
3.000
1:DEAD 2:LIVE 3:E1 4:E2
32
16
3.000
1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4.800 0.000 4.800 0.000 4.800 0.000 0.000 4.800 4.800 0.000 0.000 4.800 0.000 4.800 0.000 4.800 4.800 0.000 3.000 0.000 3.000 0.000 0.000 3.000 3.000 0.000 3.000 0.000 3.000 0.000 0.000 3.000 3.000 0.000 0.000 3.000 0.000 3.000 0.000 3.000 3.000 0.000 3.000 0.000 0.000 3.000 0.000 3.000 3.000 0.000 3.000 0.000 3.000 0.000 0.000 3.000 3.000 0.000 0.000 3.000 0.000 3.000 0.000 3.000
173.468 -196.187 0.000 -0.000 0.000 -0.000 215.877 -212.620 212.620 -215.877 67.427 -137.742 29.889 -60.971 196.187 -173.468 174.096 -197.513 6.479 -23.174 11.476 -14.413 27.762 -24.854 21.881 -24.170 23.020 -22.211 8.385 -8.945 39.617 -36.923 34.222 -36.788 30.161 -27.395 13.325 -11.908 41.615 -38.282 36.874 -40.078 0.000 -0.000 0.000 -0.000 36.954 -35.420 35.420 -36.954 27.395 -30.161 11.908 -13.325 40.078 -36.874 38.282 -41.615 22.211 -23.020 8.945 -8.385 36.788 -34.222
65
Appendices
4:E2 33
17
3.000
1:DEAD 2:LIVE 3:E1 4:E2
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
d (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max Fz (kN) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.000 0.000 0.000 3.000 0.000 3.000 0.000 3.000 3.000 0.000
36.923 -39.617 23.174 -6.479 14.413 -11.476 24.170 -21.881 24.854 -27.762
d (m)
Max Fy (kN)
Beam Maximum Shear Forces Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 10 3.000 1:DEAD 2:LIVE 3:E1 4:E2 2
11
5.000
1:DEAD 2:LIVE 3:E1 4:E2
3
12
5.000
1:DEAD 2:LIVE 3:E1 4:E2
4
13
5.000
1:DEAD 2:LIVE 3:E1 4:E2
5
14
5.000
1:DEAD 2:LIVE 3:E1 4:E2
6
15
5.000
1:DEAD 2:LIVE 3:E1
3.000
-121.975
3.000
-63.450
0.000 0.000
-0.000 0.000
0.000
279.853
0.000
135.892
0.000 0.000
-27.238 26.808
0.000 5.000 0.000 5.000
29.634 -122.658 20.942 -65.308
0.000 0.000
-26.702 25.693
5.000
-396.738
5.000
-184.758
0.000 0.000
-28.079 26.913
0.000
396.738
0.000
184.758
0.000 0.000
-26.913 28.079
0.000 5.000 0.000 5.000
122.658 -29.634 65.308 -20.942
0.000
-25.693
66
Appendices
4:E2 7
16
5.000
1:DEAD 2:LIVE 3:E1 4:E2
8
17
3.000
1:DEAD 2:LIVE 3:E1 4:E2
9
19
3.000
1:DEAD 2:LIVE 3:E1 4:E2
10
20
5.000
1:DEAD 2:LIVE 3:E1 4:E2
11
21
5.000
1:DEAD 2:LIVE 3:E1 4:E2
12
22
5.000
1:DEAD 2:LIVE 3:E1 4:E2
13
23
5.000
1:DEAD 2:LIVE 3:E1 4:E2
14
24
5.000
1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
67
0.000
26.702
5.000
-279.853
5.000
-135.892
0.000 0.000
-26.808 27.238
0.000
121.975
0.000
63.450
0.000 0.000
0.000 0.000
0.000
-0.000
3.000
-50.445
3.000 0.000 0.000 0.000
-4.520 0.000 0.000 0.000
0.000 5.000 0.000
56.745 -2.597 10.017
0.000 0.000
-7.967 7.028
0.000 5.000 0.000 5.000
23.583 -35.759 0.366 -4.134
0.000 0.000
-8.503 8.143
0.000 5.000
14.282 -45.060
5.000
-9.283
0.000 0.000
-7.127 6.923
0.000 5.000 0.000
45.060 -14.282 9.283
0.000 0.000
-6.923 7.127
0.000 5.000 0.000 5.000
35.759 -23.583 4.134 -0.366
0.000
-8.143
Appendices
4:E2 15
25
5.000
1:DEAD 2:LIVE 3:E1 4:E2
16
26
3.000
1:DEAD 2:LIVE 3:E1 4:E2
18
2
4.800
1:DEAD 2:LIVE 3:E1 4:E2
21
5
4.800
1:DEAD 2:LIVE 3:E1 4:E2
24
8
4.800
1:DEAD 2:LIVE 3:E1 4:E2
27
11
3.000
1:DEAD 2:LIVE 3:E1 4:E2
28
12
3.000
1:DEAD 2:LIVE 3:E1 4:E2
29
13
3.000
1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
68
0.000
8.503
0.000 5.000
2.597 -56.745
5.000
-10.017
0.000 0.000
-7.028 7.967
0.000
50.445
0.000
4.520
0.000
0.000
0.000
-0.000
0.000
-42.744
0.000 0.000
-18.929 77.419
0.000
-77.011
0.000
-0.000
0.000 0.000
-0.000 89.270
0.000 0.000
-89.270 42.744
0.000
18.929
0.000
77.011
0.000
-77.419
0.000
-9.884
0.000 0.000
-8.630 17.539
0.000
-15.350
0.000
-15.077
0.000 0.000
-5.777 25.513
0.000 0.000
-23.670 19.185
0.000
8.411
0.000
26.632
Appendices
4:E2 30
14
3.000
1:DEAD 2:LIVE 3:E1 4:E2
31
15
3.000
1:DEAD 2:LIVE 3:E1 4:E2
32
16
3.000
1:DEAD 2:LIVE 3:E1 4:E2
33
17
3.000
1:DEAD 2:LIVE 3:E1 4:E2
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000
-25.651
0.000 0.000
-0.000 0.000
0.000
24.125
0.000
-24.125
0.000
-19.185
0.000 0.000
-8.411 25.651
0.000 0.000
-26.632 15.077
0.000
5.777
0.000
23.670
0.000 0.000
-25.513 9.884
0.000
8.630
0.000
15.350
0.000
-17.539
Beam Maximum Axial Forces Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 10 3.000 1:DEAD 2:LIVE 3:E1 4:E2 2
11
5.000
1:DEAD 2:LIVE 3:E1 4:E2
3
12
5.000
1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
69
d (m) 0.000 0.000 0.000 0.000
Max Fx (kN) 0.000 0.000 0.000 0.000
0.000 0.000
-0.000 0.000
0.000
32.859
0.000
10.299
0.000
25.340
0.000
61.661
0.000
17.783
0.000
4.523
0.000
50.854
Appendices
4:E2 4
13
5.000
1:DEAD 2:LIVE 3:E1 4:E2
5
14
5.000
1:DEAD 2:LIVE 3:E1 4:E2
6
15
5.000
1:DEAD 2:LIVE 3:E1 4:E2
7
16
5.000
1:DEAD 2:LIVE 3:E1 4:E2
8
17
3.000
1:DEAD 2:LIVE 3:E1 4:E2
9
19
3.000
1:DEAD 2:LIVE 3:E1 4:E2
10
20
5.000
1:DEAD 2:LIVE 3:E1 4:E2
11
21
5.000
1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000
37.991
0.000
36.968
0.000
12.934
0.000
77.486
0.000
12.341
0.000
36.968
0.000
12.934
0.000
12.341
0.000
77.486
0.000
17.783
0.000
4.523
0.000
37.991
0.000
50.854
0.000
32.859
0.000
10.299
0.000
61.661
0.000
25.340
0.000 0.000 0.000
-0.000 0.000 0.000
0.000
-0.000
0.000 0.000
-0.000 0.000
0.000 0.000
-0.000 0.000
0.000 0.000 0.000
0.000 0.000 9.884
0.000
8.630
0.000
140.941
0.000
15.350
0.000
24.961
0.000
14.406
0.000
115.428
70
Appendices
4:E2 12
22
5.000
1:DEAD 2:LIVE 3:E1 4:E2
13
23
5.000
1:DEAD 2:LIVE 3:E1 4:E2
14
24
5.000
1:DEAD 2:LIVE 3:E1 4:E2
15
25
5.000
1:DEAD 2:LIVE 3:E1 4:E2
16
26
3.000
1:DEAD 2:LIVE 3:E1 4:E2
18
2
4.800
1:DEAD 2:LIVE 3:E1 4:E2
21
5
4.800
1:DEAD 2:LIVE 3:E1 4:E2
24
8
4.800
1:DEAD 2:LIVE 3:E1
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000
39.020
0.000
5.776
0.000
5.996
0.000
88.796
0.000
64.671
0.000
5.776
0.000
5.996
0.000
64.671
0.000
88.796
0.000
24.961
0.000
14.406
0.000
39.020
0.000
115.428
0.000
9.884
0.000
8.630
0.000
15.350
0.000
140.941
0.000
0.000
0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000
0.000
533.863
0.000
213.878
0.000 0.000
-35.205 33.836
0.000
908.443
0.000
388.083
0.000
1.369
0.000
1.369
0.000
533.863
0.000
213.878
0.000
33.836
71
Appendices
4:E2 27
11
3.000
1:DEAD 2:LIVE 3:E1 4:E2
28
12
3.000
1:DEAD 2:LIVE 3:E1 4:E2
29
13
3.000
1:DEAD 2:LIVE 3:E1 4:E2
30
14
3.000
1:DEAD 2:LIVE 3:E1 4:E2
31
15
3.000
1:DEAD 2:LIVE 3:E1 4:E2
32
16
3.000
1:DEAD 2:LIVE 3:E1 4:E2
33
17
3.000
1:DEAD 2:LIVE 3:E1 4:E2
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000
-35.205 111.608
0.000
14.537
0.000 0.000
-7.967 7.028
0.000
30.598
0.000
-5.151
0.000 0.000
-0.536 1.114
0.000
54.459
0.000 0.000
-0.650 1.377
0.000 0.000
-1.220 94.538
0.000
18.567
0.000
0.203
0.000
0.203
0.000
54.459
0.000
-0.650
0.000 0.000
-1.220 1.377
0.000
30.598
0.000 0.000
-5.151 1.114
0.000 0.000
-0.536 111.608
0.000
14.537
0.000
7.028
0.000
-7.967
72
Appendices
Staad.pro analysis-frame analysis
Reactions Node 1
2
L/C 1:DEAD 2:LIVE 3:EQ1 4:EQ2 1:DEAD 2:LIVE 3:EQ1 4:EQ2
Horizontal FX (kN) 5.524 3.747 -46.450 46.380 -5.524 -3.747 -46.380 46.450
Vertical FY (kN) 90.605 29.600 -76.204 76.204 90.605 29.600 76.204 -76.204
Horizontal FZ (kN) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MX (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Moment MY (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MZ (kNm) -8.744 -5.919 161.084 -160.794 8.744 5.919 160.794 -161.084
d (m) 0.000 2.000 0.000 2.000 4.000 0.000 0.000 4.000
Max Mz (kNm) 25.222 -17.504 14.844 -10.756 104.074 -104.163 104.074 -104.163
Beam Maximum Moments Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 3 4.000 1:DEAD 2:LIVE 3:EQ1 4:EQ2
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
d (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max My (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
73
Appendices
2
5
4.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
3
1
4.800
1:DEAD 2:LIVE 3:EQ1 4:EQ2
4
2
4.800
1:DEAD 2:LIVE 3:EQ1 4:EQ2
5
3
3.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
6
4
3.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 2.000 0.000 2.000 4.000 0.000 0.000 4.000 4.800 0.000 4.800 0.000 0.000 4.800 4.800 0.000 0.000 4.800 0.000 4.800 0.000 4.800 4.800 0.000 3.000 0.000 3.000 0.000 0.000 3.000 3.000 0.000 0.000 3.000 0.000 3.000 0.000 3.000 3.000 0.000
74
9.919 -13.115 2.064 -1.936 48.263 -48.316 48.263 -48.316 17.769 -8.744 12.068 -5.919 161.084 -61.874 61.832 -160.794 8.744 -17.769 5.919 -12.068 160.794 -61.832 61.874 -161.084 9.919 -7.452 2.064 -2.776 42.289 -48.316 48.263 -42.242 7.452 -9.919 2.776 -2.064 42.242 -48.263 48.316 -42.289
Beam Maximum Shear Forces Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 3 4.000 1:DEAD 2:LIVE 3:EQ1 4:EQ2 2
5
4.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve
d (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Max Fz (kN) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
d (m) 0.000 4.000 0.000 4.000
Max Fy (kN) 42.725 -42.725 25.600 -25.600
0.000 0.000
-52.059 52.059
0.000 4.000 0.000 4.000
23.034 -23.034 4.000 -4.000
0.000 0.000
-24.145 24.145
Appendices
3
1
4.800
1:DEAD 2:LIVE 3:EQ1 4:EQ2
4
2
4.800
1:DEAD 2:LIVE 3:EQ1 4:EQ2
5
3
3.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
6
4
3.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000
-5.524
0.000 0.000
-3.747 46.450
0.000 0.000
-46.380 5.524
0.000
3.747
0.000
46.380
0.000
-46.450
0.000
-5.790
0.000 0.000
-1.613 30.202
0.000 0.000
-30.168 5.790
0.000
1.613
0.000
30.168
0.000
-30.202
Beam Maximum Axial Forces Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 3 4.000 1:DEAD 2:LIVE 3:EQ1 4:EQ2 2
5
4.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
3
1
4.800
1:DEAD 2:LIVE 3:EQ1 4:EQ2
4
2
4.800
1:DEAD
d (m) Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve
75
Max Fx (kN)
0.000 0.000
-0.267 2.134
0.000
16.212
0.000
16.212
0.000
5.790
0.000
1.613
0.000
30.168
0.000
30.168
0.000
90.605
0.000
29.600
0.000 0.000
-76.204 76.204
0.000
90.605
Appendices
2:LIVE 3:EQ1 4:EQ2 5
3
3.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
6
4
3.000
1:DEAD 2:LIVE 3:EQ1 4:EQ2
Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve
0.000
29.600
0.000
76.204
0.000 0.000
-76.204 27.452
0.000
4.000
0.000 0.000
-24.145 24.145
0.000
27.452
0.000
4.000
0.000
24.145
0.000
-24.145
76
Appendices
77
DESIGN OF TWO-WAY SLAB Thursday, April 11, 2013 Data: Material Strength: fc'
=
Slab Loads: Service Live Load: SLL =
6:00:21 PM
25
MPa
4.8
KPa
fy
=
Service Dead Load: DLL =
Slab Details: Clear Short Span: Clear Long Span: 3.50 La = m Lb = Select Case by pressing the BUTTON at the right Solution: 1. Effective Height h = =
275
MPa
5.3
KPa
4.75
Case : Panel Perimeter 180 0.092 m
2. Ultimate Load Consider a meter strip: Wslab = 23.56 * b *h 2.356 = Wdl = SDL * 1.0 m 5.3 = Wll = SLL * 1.0 m 4.8 = Wudl = 1.4*(Wslab + 10.718 = Wull = 1.7 * Wll 8.16 = Wu = Wull + Wudl 18.878 =
= say
2*3.5+2*4.75 180 0.100 m
=
23.56 * 1.0 * 0.1
=
5.3 * 1.0 m
=
4.8 * 1.0 m
=
1.4(2.356+5.3)
=
1.7 * 4.8
=
4.8 + 10.718
KN / m KN / m KN / m Wdl) KN / m KN / m KN / m
3. Calculate Moments Using Coefficients m = La / Lb 0.74 = 53 m Ca.neg Ca.dl Ca.ll
= 3.5 / 4.75 54 Cb.neg Cb.dl Cb.ll #### 0.7400 0.0000 0.0412 0.0522 # 0.0176 0.0184 Values are interpolated from the moment coefficient table. See Table from the corresponding sheets.
m
3
Appendices
Short Span: I. Middle Strip a. Continuous Edge Ma.neg = =
=
0 * 18.878 * 3.5 ^2
b.1 Midspan (Due to Dead Load) Ma.posdl = Ca * Wudl * La^2 5.409 = KN-m
=
0.0412 * 10.718 * 3.5 ^2
b.2 Midspan(Due to Live Load) Ma.posll = Ca * Wull * La^2 5.218 = KN-m
=
0.0522 * 8.16 * 3.5 ^2
Ma.pos
Ma.posdl + Ma.posll 10.627 KN-m
=
5.409 + 5.218
Ca * Wu * Lb^2 23.341 KN-m
=
0.0548 * 18.878 * 4.75 ^2
b.1 Midspan (Due to Dead Load) Mb.posdl = Ca * Wudl * Lb^2 4.256 = KN-m
=
0.0176 * 10.718 * 4.75 ^2
b.2 Midspan(Due to Live Load) Mb.posll = Ca * Wull * Lb^2 3.388 = KN-m
=
0.0184 * 8.16 * 4.75 ^2
Mb.pos
=
4.256 + 3.388
=
0.75*0.85*25*0.85*600 275 (600 + 275)
=
0.002 * 1000 * 0.1
=
2 * 100
=
100 - 20 - 16 / 2
=
100 - 20 - 16 - 16 / 2
= = II. Column Strip Long Span: I. Middle Strip a. Continuous Edge Mb.neg = =
Ca * Wu * La^2 0 KN-m
78
= Ma.posdl + Ma.posll 7.644 = KN-m 4. Design of Reinforcements Diameter of Bars: 16 db = mm
Pmax
Asmin Smax ds dl
= = = = = = = = =
0.75*0.85*fc'*B1*60 0 fy (600 + fy) 0.03378 0.002*bh 200.00 sqm 2 * h or 450 mm 200.00 mm h - cc - db / 2 72 mm h - cc - db - db /
Appendices
79
2 = Short Span: I. Middle Strip a. Continuous Edge Ma.neg =
56
mm
0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')
0e6 P P
= = =
0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)
As
= =
P* b * h 144
S
= = =
250 * PI * db^2 / As 1396.26 mm 200 mm
b. Midspan Ma.pos
=
0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')
10.627e6 P P
= = =
0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)
As
= =
P* b * h 632.376
= = =
250 * PI * db^2 / As 317.947 mm 200 mm
Sreqd
Sreqd S
II. Column Strip a. Continuous Edge Asreqd = = Sreqd S b. Midspan Asreqd
0 0.002
0.00878 0.00878
OK = P < Pmin. Use Pmin
sqm
2 / 3 (Asms) 133.333 sqm
= = =
3 / 2 (Sms) 2094.39 200
= =
2 / 3 (Asms) 421.584 sqm
mm mm
(use)
= 0.002 * 1000 * 72 Use Asmin 200
sqm
= 250*3.14159*16^2/200 Sreqd > Smax. Use Smax (suggested spacing)
OK = OK! P > Pmin
sqm
0
0.00878
(use)
= 0.008783 * 1000 * 72 OK! As > Asmin 632.376 sqm
= 250*3.14159*^2/632.376 Sreqd > Smax. Use Smax (suggested spacing)
= =
2 / 3 (200) (use)
200
sqm
= 3 / 2 (1396.263) Sreqd > Smax. Use Smax (suggested spacing)
= =
2 / 3 (632.376) (use) 421.584
sqm
Appendices
Sreqd S
= = =
Long Span: I. Middle Strip a. Continuous Edge Mb.neg =
3 / 2 (Sms) 476.921 200
mm mm
= 3 / 2 (317.947) Sreqd > Smax. Use Smax (suggested spacing)
0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')
23.341e6 P P
= = =
0.04096 0.03378
As
= =
P* b * h 1891.68
S
= = =
250 * PI * db^2 / As 106.287 mm 100 mm
b. Midspan Mb.pos
=
0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')
7.644e6 P P
= = =
0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)
As
= =
P* b * h 592.144
Sreqd
= = =
250 * PI * db^2 / As 339.549 mm 200 mm
Sreqd
S
II. Column Strip a. Continuous Edge Asreqd = = Sreqd S b. Midspan
= = =
80
0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)
0.01057 0.01057
NOT OK = OK! P > Pmin
sqm
2 / 3 (Asms) 1261.12 sqm 3 / 2 (Sms) 159.431 150
mm mm
(use)
= 0.03378 * 1000 * 56 OK! As > Asmin 1891.68
sqm
= 250*3.14159*16^2/1891.68 Sreqd < Smax. OK! (suggested spacing)
OK = OK! P > Pmin sqm sqm
0.03378
0.01057
(use)
= 0.010574 * 1000 * 56 OK! As > Asmin 592.144 sqm
= 250*3.14159*^2/592.144 Sreqd > Smax. Use Smax (suggested spacing)
= =
2 / 3 (1891.68) (use) 1261.12
= 3 / 2 (106.287) Sreqd < Smax. OK! (suggested spacing)
sqm
Appendices
Asreqd
Sreqd S
= =
2 / 3 (Asms) 394.763 sqm
= = =
3 / 2 (Sms) 509.324 200
mm mm
= =
2 / 3 (592.144) (use) 394.763
81
sqm
= 3 / 2 (339.549) Sreqd > Smax. Use Smax (suggested spacing)
Summary: I. Moment Coefficients Ca.neg
Ca.dl
Ca.ll
Cb.neg
Cb.dl
Cb.ll
0
0.0412
0.0522
0.0548
0.0176
0.0184
II. Computed Moments Short Direction Ma.posd Ma.neg l Ma.posll 0
5.409
5.218
Ma.pos
Mb.neg
10.627
23.341
Long Direction Mb.posd Mb.posl l l 4.256
3.388
Mb.po s 7.644
III. Reinforcement and Spacing Short Direction Middle Strip Asreqd
Continuous Edge As Sreqd
144.00
200.00
Asreqd
As
133.33
200.00
1396.26
C. Edge Sreqd 2094.39
S,mm
Asreqd
200.00 632.38 Column Strip S,mm
Asreqd
200.00
421.58
Midspan As Sreqd 632.38
317.95
Midspan As Sreqd 421.58
476.92
S,mm 200.0 0
S,mm 200.0 0
Long Direction Middle Strip Asreqd 1891.68
Asreqd 1261.12
Continuous Edge As Sreqd 1891.68
106.29
C. Edge As Sreqd 1261.12
159.43
S,mm
Asreqd
100.00 592.14 Column Strip S,mm
Asreqd
150.00
394.76
Midspan As Sreqd 592.14
339.55
Midspan As Sreqd 394.76
509.32
S,mm 200.0 0
S,mm 200.0 0
Appendices
82
DESIGN OF TWO-WAY SLAB Thursday, April 11, 2013 Data: Material Strength: fc'
=
Slab Loads: Service Live Load: SLL =
6:03:23 PM
25
MPa
4.8
KPa
fy
=
Service Dead Load: DLL =
Slab Details: Clear Short Span: Clear Long Span: 2.75 La = m Lb = Select Case by pressing the BUTTON at the right Solution: 1. Effective Height h = =
275
MPa
5.3
KPa
3.50
Case : Panel Perimeter 180 0.069 m
2. Ultimate Load Consider a meter strip: Wslab = 23.56 * b *h 2.356 = Wdl = SDL * 1.0 m 5.3 = Wll = SLL * 1.0 m 4.8 = Wudl = 1.4*(Wslab + 10.718 = Wull = 1.7 * Wll 8.16 = Wu = Wull + Wudl 18.878 =
= say
2*2.75+2*3.5 180 0.100 m
=
23.56 * 1.0 * 0.1
=
5.3 * 1.0 m
=
4.8 * 1.0 m
=
1.4(2.356+5.3)
=
1.7 * 4.8
=
4.8 + 10.718
KN / m KN / m KN / m Wdl) KN / m KN / m KN / m
3. Calculate Moments Using Coefficients m = La / Lb 0.79 = 43 m Ca.neg Ca.dl Ca.ll
= 44 Cb.neg
2.75 / 3.5 Cb.dl
Cb.ll
0.7900 0.0408 0.0462 0.0520 #### 0.0216 0.0224 Values are interpolated from the moment coefficient table. See Table from the corresponding sheets.
m
7
Appendices
Short Span: I. Middle Strip a. Continuous Edge =
0.0408 * 18.878 * 2.75 ^2
=
0.0462 * 10.718 * 2.75 ^2
b.2 Midspan(Due to Live Load) Ma.posll = Ca * Wull * La^2 3.209 = KN-m
=
0.052 * 8.16 * 2.75 ^2
Ma.pos
Ma.posdl + Ma.posll 6.954 KN-m
=
3.745 + 3.209
Ca * Wu * Lb^2 2.035 KN-m
=
0.0088 * 18.878 * 3.5 ^2
b.1 Midspan (Due to Dead Load) Mb.posdl = Ca * Wudl * Lb^2 2.836 = KN-m
=
0.0216 * 10.718 * 3.5 ^2
b.2 Midspan(Due to Live Load) Mb.posll = Ca * Wull * Lb^2 2.239 = KN-m
=
0.0224 * 8.16 * 3.5 ^2
Mb.pos
=
2.836 + 2.239
=
0.75*0.85*25*0.85*600 275 (600 + 275)
=
0.002 * 1000 * 0.1
=
2 * 100
=
100 - 20 - 16 / 2
Ma.neg
b.1
= =
Ca * Wu * La^2 5.825 KN-m
Midspan (Due to Dead Load)
Ma.posdl
= =
= = II. Column Strip Long Span: I. Middle Strip a. Continuous Edge Mb.neg = =
Ca * Wudl * La^2 3.745 KN-m
= Ma.posdl + Ma.posll 5.075 = KN-m 4. Design of Reinforcements Diameter of Bars: 16 db = mm
Pmax
Asmin Smax ds
= = = = = = =
0.75*0.85*fc'*B1*60 0 fy (600 + fy) 0.03378 0.002*bh 200.00 sqm 2 * h or 450 mm 200.00 mm h - cc - db / 2
83
Appendices
= dl
= =
Short Span: I. Middle Strip a. Continuous Edge Ma.neg =
72 mm h - cc - db - db / 2 56 mm
=
84
100 - 20 - 16 - 16 / 2
0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')
5.825e6 P P
= = =
0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)
As
= =
P* b * h 337.104
sqm
= 0.004682 * 1000 * 72 OK! As > Asmin 337.104 sqm
S
= = =
250 * PI * db^2 / As 596.439 mm 200 mm
= 250*3.14159*16^2/337.104 Sreqd > Smax. Use Smax (suggested spacing)
b. Midspan Ma.pos
=
0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')
6.954e6 P P
= = =
0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)
As
= =
P* b * h 405
= = =
250 * PI * db^2 / As 496.449 mm 200 mm
Sreqd
Sreqd S
II. Column Strip a. Continuous Edge Asreqd = = Sreqd
0.00468 0.00468
0.00563 0.00563
OK = OK! P > Pmin
OK = OK! P > Pmin
sqm
2 / 3 (Asms) 224.736 sqm
S
= = =
3 / 2 (Sms) 894.659 200
b. Midspan Asreqd
=
2 / 3 (Asms)
mm mm
0.00468
0.00563
(use)
(use)
= 0.005625 * 1000 * 72 OK! As > Asmin 405 sqm
= 250*3.14159*^2/405 Sreqd > Smax. Use Smax (suggested spacing)
= =
2 / 3 (337.104) (use) 224.736
= 3 / 2 (596.439) Sreqd > Smax. Use Smax (suggested spacing)
=
2 / 3 (405)
sqm
Appendices
= Sreqd S
= = =
Long Span: I. Middle Strip a. Continuous Edge Mb.neg =
270 3 / 2 (Sms) 744.674 200
sqm
mm mm
=
(use)
270
0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')
= = =
0.00267 0.00267
As
= =
P* b * h 149.408
S
= = =
250 * PI * db^2 / As 1345.72 mm 200 mm
b. Midspan Mb.pos
=
0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')
5.075e6 P P
= = =
0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)
As
= =
P* b * h 383.152
Sreqd
= = =
250 * PI * db^2 / As 524.758 mm 200 mm
S
II. Column Strip a. Continuous Edge Asreqd = = Sreqd S
= = =
sqm
= 3 / 2 (496.449) Sreqd > Smax. Use Smax (suggested spacing)
2.035e6 P P
Sreqd
85
0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)
0.00684 0.00684
OK = OK! P > Pmin
sqm
2 / 3 (Asms) 133.333 sqm 3 / 2 (Sms) 2018.59 200
mm mm
(use)
= 0.002668 * 1000 * 56 Use Asmin 200 sqm
= 250*3.14159*16^2/200 Sreqd > Smax. Use Smax (suggested spacing)
OK = OK! P > Pmin sqm sqm
0.00267
0.00684
(use)
= 0.006842 * 1000 * 56 OK! As > Asmin 383.152 sqm
= 250*3.14159*^2/383.152 Sreqd > Smax. Use Smax (suggested spacing)
= =
2 / 3 (200) (use)
200
= 3 / 2 (1345.724) Sreqd > Smax. Use Smax (suggested spacing)
sqm
Appendices
b. Midspan Asreqd
Sreqd S
= =
2 / 3 (Asms) 255.435 sqm
= = =
3 / 2 (Sms) 787.137 200
mm mm
= =
2 / 3 (383.152) (use) 255.435
86
sqm
= 3 / 2 (524.758) Sreqd > Smax. Use Smax (suggested spacing)
Summary: I. Moment Coefficients Ca.neg
Ca.dl
Ca.ll
Cb.neg
Cb.dl
Cb.ll
0.0408
0.0462
0.052
0.0088
0.0216
0.0224
II. Computed Moments Short Direction Ma.posd Ma.neg l Ma.posll 5.825
3.745
3.209
Ma.pos
Mb.neg
6.954
2.035
Long Direction Mb.posd Mb.posl l l 2.836
2.239
Mb.po s 5.075
III. Reinforcement and Spacing Short Direction Middle Strip Asreqd 337.10
Asreqd 224.74
Continuous Edge As Sreqd 337.10
596.44
C. Edge As Sreqd 224.74
894.66
S,mm
Asreqd
200.00 405.00 Column Strip S,mm
Asreqd
200.00
270.00
Midspan As Sreqd 405.00
496.45
Midspan As Sreqd 270.00
744.67
S,mm 200.0 0
S,mm 200.0 0
Long Direction Middle Strip Asreqd
Continuous Edge As Sreqd
149.41
200.00
Asreqd
As
133.33
200.00
1345.72
C. Edge Sreqd 2018.59
S,mm
Asreqd
200.00 383.15 Column Strip S,mm
Asreqd
200.00
255.43
Midspan As Sreqd 383.15
524.76
Midspan As Sreqd 255.43
787.14
S,mm 200.0 0
S,mm 200.0 0
Appendices
87
RC Column Section Design Design Criteria Design Code = ACI-318-95, Design Method = USD Concrete Stress Block = ACI-Whitney Rectangular Design Procedure The program performs the calculations in accordance with the ACI-318-95 Code for Structural Concrete Procedure for Cross-section Design 1. Compute the resultant applied moment as Muxy = Sqr(Mux^2 + Muy^2). 2. Select a trial reinforcement ratio, starting with minimum ratio of 1%, and distributing rebar’s along the perimeter. 3. Compute the maximum axial capacity in compression, Pno and tension Pnt, and check against applied loads. 4. Locate the neutral axis angle and its depth to satisfy applied load Pu and the resultant moment Muxy. This is done by trial and error procedure. The internal stress resultants for each angle and depth of neutral axis angle are computed (see procedure below) and then compared with applied loads. This process is repeated until close agreement is found. 5. If capacity in step 3 or 4 is found to be not enough, then reinforcement is increased until maximum allowable ratio (8%) is reached. 6. Cross-section is declared as inadequate if it requires more than maximum allowable steel ratio Procedure for Computing Stress-Resultants 1. The stress resultants principles approach.
are
computed
by
using
the
first
2. Strain in concrete and steel is determined depending upon the direction and depth of neutral axis.
Appendices
88
3. Concrete force is computed by integrating the stress field (rectangular or parabolic stress curve) over the cross-section using the Green's Theorem. 4. Steel stress is computed by summation of force in each bar, corresponding to stress at that location. 5. The computed stress resultants are reduced by appropriate capacity reduction factors for the Ultimate Strength Design (or Working Strength Design) method. RC Column Section Column C-1: 425 x 425 columns
Column Cross-section Material Rebar fy = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 75 mm Calculations Computing Moment Capacity: Applied Axial Load, Pu = 1,598.0 kN Applied Moment, Mux = 352.0 kN-m Applied Moment, Muy = 181.0 kN-m
Appendices
Resultant Moment, Muxy = 395.8 kN-m Resultant Moment Angle = 27 Deg. Detailed Capacity Calculations: Neutral axis angle = 32 Deg. Neutral axis depth = 285 mm Capacity reduction factor = 0.73 Stress in Rebar’s: Bar No, Size, Cord-X , Cord-Y, Area , Stress 1, d 32, -175, -175, 813, -275.0 2, d 32, 175, 175, 813, 253.8 3, d 32, 175, -175, 813, -130.8 4, d 32, -175, 175, 813, 75.5 5, d 32, -175, -87, 813, -273.3 6, d 32, -175, 0, 813, -213.5 7, d 32, -175, 87, 813, -58.4 8, d 32, -87, 175, 813, 173.7 9, d 32, 0, 175, 813, 231.8 10, d 32, 87, 175, 813, 253.8 11, d 32, 175, 87, 813, 246.9 12, d 32, 175, 0, 813, 158.2 13, d 32, 175, -87, 813, 18.4 14, d 32, 87, -175, 813, -229.0 15, d 32, 0, -175, 813, -269.6
89
Appendices
16, d 32, -87, -175, 813, -275.0 Result Summary: Axial Compression, ØPno = 3,997.9 kN Axial Tension, ØPnt = -3,219.5 kN Moment Capacity, ØMnx = 413.2 kN-m Moment Capacity, ØMny = 123.7 kN-m Resultant Capacity, ØMnxy = 431.4 kN-m Resultant Angle = 16 Deg. Concrete volume = 0.18 m^3 Main Steel weight = 100.96 Kg/m Steel weight/ volume = 558.95 Kgm^3 Transverse Bars: Ties, d 10 @ 288 mm RC Column Section Column C-2: 250 x 250 columns
Column Cross-section Material Rebar fy = 275.0 N/mm^2
90
Appendices
Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Computing Moment Capacity: Applied Axial Load, Pu = 225.0 kN Applied Moment, Mux = 100.0 kN-m Applied Moment, Muy = 20.0 kN-m Resultant Moment, Muxy = 102.0 kN-m Resultant Moment Angle = 11 Deg. Detailed Capacity Calculations: Neutral axis angle = 15 Deg. Neutral axis depth = 123 mm Capacity reduction factor = 0.78 Stress in Rebar’s: Bar No, Size, Cord-X , Cord-Y, Area , Stress 1, d 32, -87, -87, 813, -275.0 2, d 32, -87, 87, 813, 126.0 3, d 32, 87, 87, 813, 253.8 4, d 32, 87, -87, 813, -275.0 5, d 32, -87, 0, 813, -243.7 6, d 32, 0, 87, 813, 219.9 7, d 32, 87, 0, 813, -34.7 8, d 32, 0, -87, 813, -275.0
91
Appendices
92
Result Summary: Axial Compression, ØPno = 1,668.0 kN Axial Tension, ØPnt = -1,609.7 kN Moment Capacity, ØMnx = 112.2 kN-m Moment Capacity, ØMny = 15.7 kN-m Resultant Capacity, ØMnxy = 113.3 kN-m Resultant Angle = 7 Deg. Concrete volume = 0.06 m^3 Main Steel weight = 50.48 Kg/m Steel weight/ volume = 807.68 Kgm^3 Transverse Bars: Ties, d 10 @ 250 mm RC Beam Section Design Design Criteria Design Code = ACI-318-95, Design Method = USD Concrete Stress Block = ACI-Whitney Rectangular Design Procedure The program performs the calculations in accordance with the ACI-318-95 Building Code for Structural Concrete Procedure for Computing Stress-Resultants 1. The stress resultants principles approach.
are
computed
by
using
the
first
2. Strain in concrete and steel is determined depending upon the direction and depth of neutral axis.
Appendices
93
3. Concrete force is computed by integrating the stress field (rectangular or parabolic stress curve) over the cross-section using the Green's Theorem. 4. Steel stress is computed by summation of force in each bar, corresponding to stress at that location. 5. The computed stress resultants are reduced by appropriate capacity reduction factors for the Ultimate Strength Design (or Working Strength Design) method. RC Beam Section Beam B-1: 450 x 680 beams
Beam Cross-section Material Rebar fy = 415.0 N/mm^2 Rebar fys = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Flexural Capacity: Usable capacity, ØMnx = 2,190.5 kN-m At neutral axis depth = 301 mm
Appendices
Shear Capacity: Effective web width, bw = 450 mm Concrete shear capacity, ØVc = 208.0 kN (Eq 11-3) Shear stirrup steel, Av/S = 4 Shear provided by stirrups, Vs = 600.1 kN Total usable shear capacity, ØVn = 808.1 kN Torsional Capacity: Area of concrete section, Acp = 306,000 mm^2 Perimeter of concrete section, Pcp = 2,260 mm Allowable Torsion for concrete, ØTc = 14.3 kN-m Torsion stirrup steel, Av/S = 0 Total torsion capacity, ØTn= 14.3 kN-m Required longitudinal steel for torsion, Al = 0 mm^2 Final Results Top Bars = 8-d 32 Bottom Bars = 16-d 32 Skin Bars = Stirrup Bars for Shear = 4L d 10@80 mm Stirrup Bars for Torsion = Longitudinal Bars for Torsion = Stirrup Bars for Shear + Torsion = 4L d 10@80 mm
94
Appendices
RC Beam Section Beam B-2: 250 x 340 beams
Beam Cross-section Material Rebar fy = 275.0 N/mm^2 Rebar fys = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Flexural Capacity: Usable capacity, ØMnx = 157.1 kN-m At neutral axis depth = 173 mm Shear Capacity: Effective web width, bw = 250 mm Concrete shear capacity, ØVc = 54.4 kN (Eq 11-3) Shear stirrup steel, Av/S = 1.3 Shear provided by stirrups, Vs = 91.8 kN
95
Appendices
Total usable shear capacity, ØVn = 146.2 kN Torsional Capacity: Area of concrete section, Acp = 85,000 mm^2 Perimeter of concrete section, Pcp = 1,180 mm Allowable Torsion for concrete, ØTc = 2.1 kN-m Torsion stirrup steel, Av/S = 0 Total torsion capacity, ØTn= 2.1 kN-m Required longitudinal steel for torsion, Al = 0 mm^2 Final Results Top Bars = Bottom Bars = 5-d 32 Skin Bars = Stirrup Bars for Shear = 2L d 10@123 mm Stirrup Bars for Torsion = Longitudinal Bars for Torsion = Stirrup Bars for Shear + Torsion = 2L d 10@123 mm
96
Appendices
RC Beam Section Beam B-3: 250 x 360 beams
Beam Cross-section Material Rebar fy = 275.0 N/mm^2 Rebar fys = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Flexural Capacity: Usable capacity, ØMnx = 177.1 kN-m At neutral axis depth = 181 mm Shear Capacity: Effective web width, bw = 250 mm Concrete shear capacity, ØVc = 58.0 kN (Eq 11-3) Shear stirrup steel, Av/S = 0.47 Shear provided by stirrups, Vs = 35.4 kN
97
Appendices
Total usable shear capacity, ØVn = 93.3 kN Torsional Capacity: Area of concrete section, Acp = 90,000 mm^2 Perimeter of concrete section, Pcp = 1,220 mm Allowable Torsion for concrete, ØTc = 2.3 kN-m Torsion stirrup steel, Av/S = 0 Total torsion capacity, ØTn= 2.3 kN-m Required longitudinal steel for torsion, Al = 0 mm^2 Final Results Top Bars = Bottom Bars = 5-d 32 Skin Bars = Stirrup Bars for Shear = 2L d 10@120 mm Stirrup Bars for Torsion = Longitudinal Bars for Torsion = Stirrup Bars for Shear + Torsion = 2L d 10@120 mm
98
Appendices
RC Beam Section Beam B-4: 250 x 300 beams
Beam Cross-section Material Rebar fy = 275.0 N/mm^2 Rebar fys = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Flexural Design: Design Moment, Mu = 68.0 kN-m Balanced Moment capacity, ØMb = 188.1 kN-m Concrete section capacity, ØMrc = 141.1 kN-m Mu < ØMrc, Singly reinforced beam required Computed steel, Ast = 1,361 mm^2 at Neutral axis depth = 50 mm Minimum tension steel, Ast min = 300 mm^2 Required tension steel, Ast = 1,361 mm^2
99
Appendices
Required compression steel, Asc = 0 mm^2 Skin Reinforcement Not Required Design for Shear + Torsion: Design shear force, Vu = 59.0 kN Design torsional moment, Tu = 0.0 kN-m Effective web width, bw = 250 mm Concrete shear capacity, ØVc = 47.2 kN (Eq 11-3) Area of concrete section, Acp = 75,000 mm^2 Perimeter of concrete section, Pcp = 1,100 mm Allowable Torsion for concrete, ØTc = 1.8 kN-m Vs = 13.8 kN (Shear Stirrups Required) Computed steel for Shear, Av/S = 0.315 Maximum stirrup spacing for shear only = 132 mm Required stirrups for shear only = 2L d 10@131 mm Torsion = 0, No torsion design required Final Results Top Bars = Bottom Bars = 2-d 32 Skin Bars = Stirrup Bars for Shear = 2L d 10@131 mm Stirrup Bars for Torsion = Longitudinal Bars for Torsion = Stirrup Bars for Shear + Torsion = 2L d 10@131 mm
100
Appendices
DESIGN OF FOUNDATION
b c to c % of Load y x Unit wt. soil qa Dl Ll
0.45 4 0.08 1.5 0.5 16 100 999.05 417.68
m m
surcharge Total W. L B
24 1530.1 5.45 3.7
Kpa KN m m
qu'
m m KN/m^3 Kpa KN KN
185.19 Kpa Along Long Direction
quL 685.2 KN/m Xv 1.77 x 1.78 determine "d" from Beam shear fc' fy
28 275
101
Appendices
Φ Vu = v =
0.85 (x-d)*(V3)/x Vu/ΦBd
Calculate "d" in Beam shear v 0.8996 d 0.765 Check "d" against punching vpall. vpall. Vp vp
0.33*(fc')^(1/2) 1.7462 1593.8 0.5
since vp < vpall OK Flexure x Mu ρmin ρmin
0.35 1186.4 1.4/fy 0.0051
Mu = ΦMn ΦMn = Φfc'b(d^2)w(1-0.59w) w 0.0215 ρ
0.0022 ρ < ρmin
Use ρmin
As = ρbd As = 14407 mm^2 db 32 N 18 Spacing C.cover 75
a b
-3.2E+10 5.46E+10
16 20 22 25 28 32
102
Appendices
S
170 ADOPT
18 -32
mmΦ
Spaced
170 On center
170 ADOPT 18 -32 mmΦ Along short Direction
Spaced
170 On center
for cantilever As
14407 mm^2
db N S
b
32 18
Consider 1 column 1.215
qu x Mu
504.63 1.625 666.27 KN-m Mu = ΦMn ΦMn = Φρbd^2fy(1-0.59(fy/fc')
ρ
0.0029
ρ < ρmin As
Use ρmin
a b
1.4E+12 2.4E+11
c
6.7E+08
4731 mm^2
db N
32 6
S
170 ADOPT
6 -32
mmΦ
Spaced
170
On center
103
Appendices
DESIGN OF STAIRS
DESIGN DATA: fc' fy service live load stair thickness,S concrete cover unit weigth of concrete,δc rise,R run,T number of stair,n bar diameter to be used,db
25 275 4.8 100 20
MPa MPa KPa mm mm
23.56 KN/m^3 200 mm 250 mm 13 12 mm
DESIGN COMPUTATIONS weigth of stair,Wstair
= RTn(δc)/2 Wstair
7.657 KN/m
weigth of slab,Wslab = S √(R^2+T^2 ) (δc) Wslab 0.754 KN/m total weigth,Wt = Wstair + Wslab Wt
13.211 KN/m
Mu = (1/12)(Wt)(L^2) Mu
19.071 KN-m
SET Mu = ØMn Mu=ΦMn=0.9 ρbd^2 fy (1-0.59ρfy/fc') 0.00870 ρ1 ρ2
0.0094 0.1134
ρmin = 1.4/fy ρmin
0.0041 ok
104
Appendices
As = ρbd As
791.995 mm^2
Asmin = 0.002bh Asmin
200 mm^2 As > Asmin
OK!
number of bars,n = 4As/∏.db^2 n 8
spacing S
= 250∏(db^2)/As 140 mm o.c.
TEMPERATURE BARS number of bars,n = 4Asmin/∏.db^2 n 2
spacing S
= 250∏(db^2)/Asmin 560 mm o.c.
105
View more...
Comments