Structural Design and Analysis

May 3, 2017 | Author: Marafu Nawen Pongtan | Category: N/A
Share Embed Donate


Short Description

Download Structural Design and Analysis...

Description

Appendices

54

B. STRUCTURAL DESIGN AND ANALYSIS DESIGN PARAMETER 1] Design Codes: ACI 318-95

Building Code Requirement for Reinforce Concrete

UBC 1997

Uniform Building Code

NSCP 6TH EDITION

National Structural Code of the Philippines 2010

ASTM C33

Standard Specifications for Concrete Aggregates

PNS 16

Philippine

National Standard for C.H.B

AISC-LRFD 99 2] Design Material Strength fc’ 25 mpa

For all concrete sections without honeycomb and conformed to 40% by wt. water cement ratio (Footing,Column,Slab and Beam)

fy 415

mpa

For deformed reinforcing bars(for beam B1 450 x 680 ONLY, note use fy 275 mpa for stirrup)

fy 275

mpa

For all deformed reinforcing bars (Footing,Column,Slab and Beam Rebars)

Note 1:

Material strength provided above shall be maintained in the construction. Compression testing for concrete and tensile for steel shall be conducted to maintained structural stability of the design.

Note 2:

Frame analysis and design results are purely based on code and material strength mention above.

Appendices

3] Design Loads 3.1 Dead Loads a. concrete

23.56 kN/m3

b. structural steel

78.60 kN/m3

c. floor finishing

1.53

kPa

d. ceiling

0.38

kPa

e. construction loads

0.20

kPa

f. CHB 5”

2.75

kPa

g. soil

16.00 kN/m3

i. water

9.81

kN/m3

3.2 Live Loads a. roof

0.75 kPa

b. pedestrian walkways

4.80 kPa

3.3 Wind Loads

Where:

Velocity pressure @ height z for windward wall at height z above the ground Velocity pressure @ height z = h For leeward wall, side walls and roof at mean roof height Product of external pressure coefficient and gust effect factor Product of internal pressure coefficient and gust effect factor

55

Appendices

Velocity Pressure

Velocity pressure exposure coefficient but Shall not be less than 1.0 Basic wind speed Importance factor

3.4 Earthquake Load Base shear

Where:

Effective weight at a given mode Gravitational acceleration Spectral acceleration at a given mode

Where:

Natural period of vibration Spectral velocity taken from response spectrum

Where:

Seismic deal load at level i Mode shape at level i

Lateral force at level i [

]

56

Appendices

SEISMIC ANALYSIS

ETABS v9.6.0 File:OVERPASS Units: KN-m April 20, 2013 20:38 PROJECT INFORMATION PROPOSED OVERPASS ETABS v9.6.0 File:OVERPASS Units:KN-m S T O R Y

D A T A

STORY

SIMILAR TO

STORY2 STORY1 BASE

None STORY2 None

ETABS v9.6.0

File:OVERPASS

S T A T I C

L O A D

HEIGHT

ELEVATION

3.000 5.100

8.100 5.100 0.000

Units:KN-m

CASE TYPE

AUTO LAT LOAD

DEAD LIVE EQY EQX

DEAD LIVE QUAKE QUAKE

N/A N/A UBC97 UBC97

File:OVERPASS

A U T O S E I S M I C Case: EQX

April 20, 2013 20:38

C A S E S

STATIC CASE

ETABS v9.6.0

April 20, 2013 20:38

SELF WT MULTIPLIER

NOTIONAL FACTOR

1.0000 0.0000 0.0000 0.0000 Units:KN-m

U B C 9 7

May 20, 2013 20:38

NOTIONAL DIRECTION

57

Appendices

AUTO SEISMIC INPUT DATA Direction: X Typical Eccentricity = 5% Eccentricity Overrides: No Period Calculation: Program Calculated Ct = 0.035 (in feet units) Top Story: STORY2 Bottom Story: BASE R = 8.5 I = 1 hn = 8.100 (Building Height) Soil Profile Type = SC Z = 0.4 Ca = 0.4400 Cv = 0.7467 Seismic Source Type = B Distance to Source = 4 km Na = 1.1000 Nv = 1.3333 AUTO SEISMIC CALCULATION FORMULAS Ta = Ct (hn^(3/4)) If Z >= 0.35 (Zone 4) then: If Tetabs 0> 0> 0> 0> 0> 0> 0> 0> 0> 0>

Units:KN-m

RX-ROTN %MASS

RY-ROTN %MASS

RZ-ROTN %MASS

96.74 0.00 0.00 0.00 3.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 96.33 0.00 0.00 0.00 3.67 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 99.73 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

< 97> < 97> < 97> < 97>

TYPE

NAME

STATIC

DYNAMIC

Load Load Load Load Accel Accel Accel Accel Accel Accel

DEAD LIVE EQY EQX UX UY UZ RX RY RZ

0.0031 0.0000 100.0000 100.0000 100.0000 100.0000 0.0000 100.0000 100.0000 100.0000

0.0000 0.0000 100.0000 100.0000 100.0000 100.0000 0.0000 100.0000 100.0000 100.0000

File:OVERPASS

Units:KN-m

< 0> < 96> < 96> < 96> < 96>

< 0> < 0>

May 20, 2013 20:38

M O D A L L O A D P A R T I C I P A T I O N (STATIC AND DYNAMIC RATIOS ARE IN PERCENT)

ETABS v9.6.0

178.06135 225.86518 250.51760

May 20, 2013 20:38 M A S S



61

R A T I O S

May 20, 2013 20:38

TOTAL REACTIVE FORCES (RECOVERED LOADS) AT ORIGIN LOAD

FX

FY

FZ

MX

MY

MZ

DEAD LIVE EQY EQX

-1.185E-14 0.000E+00 3.684E-11 -3.387E+02

1.713E-14 0.000E+00 -3.387E+02 3.471E-11

2.725E+03 0.000E+00 -6.321E-14 -1.620E-12

5.450E+03 0.000E+00 2.091E+03 -2.709E-10

-4.905E+04 0.000E+00 2.811E-10 -2.091E+03

4.624E-13 0.000E+00 -6.097E+03 6.775E+02

ETABS v9.6.0

File:OVERPASS

S T O R Y

F O R C E S

STORY

LOAD

STORY2 STORY1 STORY2 STORY1

EQY EQY EQX EQX

Units:KN-m

May 20, 2013 20:38

PAGE 12

P

VX

VY

T

MX

MY

-1.877E-13 -6.321E-14 -8.147E-13 -1.620E-12

2.988E-11 3.684E-11 -1.211E+02 -3.387E+02

-1.211E+02 -3.387E+02 3.075E-11 3.471E-11

-2.179E+03 -6.097E+03 2.421E+02 6.775E+02

3.632E+02 2.091E+03 -9.343E-11 -2.709E-10

9.500E-11 2.811E-10 -3.632E+02 -2.091E+03

Appendices

ETABS v9.6.0

File:OVERPASS

Units:KN-m

May 20, 2013 20:38

STORY DRIFTS STORY

DIRECTION

LOAD

STORY2 STORY1 STORY2 STORY1

Y Y X X

EQY EQY EQX EQX

MAX DRIFT 1/616 1/122 1/902 1/124

Staad.pro analysis-frame analysis

Reactions Node 2

5

8

L/C 1:DEAD 2:LIVE 3:E1 4:E2 1:DEAD 2:LIVE 3:E1 4:E2 1:DEAD 2:LIVE 3:E1 4:E2

Horizontal FX (kN) 42.744 18.929 -77.419 77.011 0.000 0.000 -89.270 89.270 -42.744 -18.929 -77.011 77.419

Vertical FY (kN) 533.863 213.878 -35.205 33.836 908.443 388.083 1.369 1.369 533.863 213.878 33.836 -35.205

Horizontal FZ (kN) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MX (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Moment MY (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MZ (kNm) -67.427 -29.889 197.513 -196.187 -0.000 -0.000 215.877 -215.877 67.427 29.889 196.187 -197.513

Beam Maximum Moments Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 10 3.000 1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

d (m) 0.000 0.000 0.000 0.000 0.000 0.000

Max My (kNm) 0.000 0.000 0.000 0.000 0.000 0.000

d (m) 3.000

Max Mz (kNm) 228.863

3.000

112.725

2.750 0.000

0.000 -0.000

62

Appendices

4:E2 2

11

5.000

1:DEAD 2:LIVE 3:E1 4:E2

3

12

5.000

1:DEAD 2:LIVE 3:E1 4:E2

4

13

5.000

1:DEAD 2:LIVE 3:E1 4:E2

5

14

5.000

1:DEAD 2:LIVE 3:E1 4:E2

6

15

5.000

1:DEAD 2:LIVE 3:E1 4:E2

7

16

5.000

1:DEAD 2:LIVE 3:E1 4:E2

8

17

3.000

1:DEAD 2:LIVE 3:E1 4:E2

9

19

3.000

1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3.000 2.750 0.000 5.000 0.000 5.000

-0.000 -0.000 389.779 -628.756 188.109 -275.724

0.000 0.000

-201.858 197.638

0.833

-620.664

1.250 5.000 0.000 0.000 5.000 5.000 0.000 5.000 0.000 5.000 0.000 0.000 5.000 0.000 5.000 0.000 5.000 5.000 0.000 0.000 5.000

-279.480 28.227 -105.283 100.386 -28.081 1.2E 3 -404.145 538.976 -169.189 127.005 -13.388 11.997 -122.568 1.2E 3 -404.145 538.976 -169.189 11.997 -122.568 127.005 -13.388

4.167

-620.664

3.750 5.000 0.000 0.000 5.000 5.000 0.000 5.000 0.000 5.000

-279.480 100.386 -28.081 28.227 -105.283 389.779 -628.756 188.109 -275.724 197.638

5.000 0.000 3.000 0.000 3.000 0.000 3.000 2.750 3.000 3.000 0.000 3.000 0.000 3.000 0.000

-201.858 228.863 -0.000 112.725 -0.000 0.000 -0.000 0.000 -0.000 97.928 -0.000 9.510 -0.000 -0.000 -0.000

63

Appendices

4:E2 10

20

5.000

1:DEAD 2:LIVE 3:E1 4:E2

11

21

5.000

1:DEAD 2:LIVE 3:E1 4:E2

12

22

5.000

1:DEAD 2:LIVE 3:E1 4:E2

13

23

5.000

1:DEAD 2:LIVE 3:E1 4:E2

14

24

5.000

1:DEAD 2:LIVE 3:E1 4:E2

15

25

5.000

1:DEAD 2:LIVE 3:E1 4:E2

16

26

3.000

1:DEAD 2:LIVE 3:E1 4:E2

18

2

4.800

1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3.000 2.750 0.000 4.583 0.000 5.000 5.000 0.000 0.000 5.000 5.000 2.083

0.000 -0.000 104.406 -31.015 20.986 -17.848 14.979 -24.854 21.881 -13.262 22.498 -31.317

0.417 5.000 0.000 0.000 5.000 5.000 1.250 5.000 0.000 5.000 0.000 0.000 5.000 0.000 3.750 0.000 5.000 5.000 0.000 0.000 5.000 0.000 2.917

-9.538 20.572 -21.943 20.960 -19.755 72.049 -13.477 23.214 -11.953 17.923 -17.710 17.120 -17.497 72.049 -13.477 23.214 -11.953 17.120 -17.497 17.923 -17.710 22.498 -31.317

4.583 5.000 0.000 0.000 5.000 5.000 0.417 5.000 0.000 5.000 0.000 0.000 5.000 0.000

-9.538 20.960 -19.755 20.572 -21.943 104.406 -31.015 20.986 -17.848 21.881 -13.262 14.979 -24.854 97.928

0.000 3.000 0.000 3.000

9.510 -0.000 0.000 -0.000

0.000 4.800 0.000 4.800 0.000 0.000 4.800

-0.000 137.742 -67.427 60.971 -29.889 197.513 -174.096

64

Appendices

4:E2 21

5

4.800

1:DEAD 2:LIVE 3:E1 4:E2

24

8

4.800

1:DEAD 2:LIVE 3:E1 4:E2

27

11

3.000

1:DEAD 2:LIVE 3:E1 4:E2

28

12

3.000

1:DEAD 2:LIVE 3:E1 4:E2

29

13

3.000

1:DEAD 2:LIVE 3:E1 4:E2

30

14

3.000

1:DEAD 2:LIVE 3:E1 4:E2

31

15

3.000

1:DEAD 2:LIVE 3:E1 4:E2

32

16

3.000

1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4.800 0.000 4.800 0.000 4.800 0.000 0.000 4.800 4.800 0.000 0.000 4.800 0.000 4.800 0.000 4.800 4.800 0.000 3.000 0.000 3.000 0.000 0.000 3.000 3.000 0.000 3.000 0.000 3.000 0.000 0.000 3.000 3.000 0.000 0.000 3.000 0.000 3.000 0.000 3.000 3.000 0.000 3.000 0.000 0.000 3.000 0.000 3.000 3.000 0.000 3.000 0.000 3.000 0.000 0.000 3.000 3.000 0.000 0.000 3.000 0.000 3.000 0.000 3.000

173.468 -196.187 0.000 -0.000 0.000 -0.000 215.877 -212.620 212.620 -215.877 67.427 -137.742 29.889 -60.971 196.187 -173.468 174.096 -197.513 6.479 -23.174 11.476 -14.413 27.762 -24.854 21.881 -24.170 23.020 -22.211 8.385 -8.945 39.617 -36.923 34.222 -36.788 30.161 -27.395 13.325 -11.908 41.615 -38.282 36.874 -40.078 0.000 -0.000 0.000 -0.000 36.954 -35.420 35.420 -36.954 27.395 -30.161 11.908 -13.325 40.078 -36.874 38.282 -41.615 22.211 -23.020 8.945 -8.385 36.788 -34.222

65

Appendices

4:E2 33

17

3.000

1:DEAD 2:LIVE 3:E1 4:E2

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

d (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max Fz (kN) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

3.000 0.000 0.000 3.000 0.000 3.000 0.000 3.000 3.000 0.000

36.923 -39.617 23.174 -6.479 14.413 -11.476 24.170 -21.881 24.854 -27.762

d (m)

Max Fy (kN)

Beam Maximum Shear Forces Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 10 3.000 1:DEAD 2:LIVE 3:E1 4:E2 2

11

5.000

1:DEAD 2:LIVE 3:E1 4:E2

3

12

5.000

1:DEAD 2:LIVE 3:E1 4:E2

4

13

5.000

1:DEAD 2:LIVE 3:E1 4:E2

5

14

5.000

1:DEAD 2:LIVE 3:E1 4:E2

6

15

5.000

1:DEAD 2:LIVE 3:E1

3.000

-121.975

3.000

-63.450

0.000 0.000

-0.000 0.000

0.000

279.853

0.000

135.892

0.000 0.000

-27.238 26.808

0.000 5.000 0.000 5.000

29.634 -122.658 20.942 -65.308

0.000 0.000

-26.702 25.693

5.000

-396.738

5.000

-184.758

0.000 0.000

-28.079 26.913

0.000

396.738

0.000

184.758

0.000 0.000

-26.913 28.079

0.000 5.000 0.000 5.000

122.658 -29.634 65.308 -20.942

0.000

-25.693

66

Appendices

4:E2 7

16

5.000

1:DEAD 2:LIVE 3:E1 4:E2

8

17

3.000

1:DEAD 2:LIVE 3:E1 4:E2

9

19

3.000

1:DEAD 2:LIVE 3:E1 4:E2

10

20

5.000

1:DEAD 2:LIVE 3:E1 4:E2

11

21

5.000

1:DEAD 2:LIVE 3:E1 4:E2

12

22

5.000

1:DEAD 2:LIVE 3:E1 4:E2

13

23

5.000

1:DEAD 2:LIVE 3:E1 4:E2

14

24

5.000

1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

67

0.000

26.702

5.000

-279.853

5.000

-135.892

0.000 0.000

-26.808 27.238

0.000

121.975

0.000

63.450

0.000 0.000

0.000 0.000

0.000

-0.000

3.000

-50.445

3.000 0.000 0.000 0.000

-4.520 0.000 0.000 0.000

0.000 5.000 0.000

56.745 -2.597 10.017

0.000 0.000

-7.967 7.028

0.000 5.000 0.000 5.000

23.583 -35.759 0.366 -4.134

0.000 0.000

-8.503 8.143

0.000 5.000

14.282 -45.060

5.000

-9.283

0.000 0.000

-7.127 6.923

0.000 5.000 0.000

45.060 -14.282 9.283

0.000 0.000

-6.923 7.127

0.000 5.000 0.000 5.000

35.759 -23.583 4.134 -0.366

0.000

-8.143

Appendices

4:E2 15

25

5.000

1:DEAD 2:LIVE 3:E1 4:E2

16

26

3.000

1:DEAD 2:LIVE 3:E1 4:E2

18

2

4.800

1:DEAD 2:LIVE 3:E1 4:E2

21

5

4.800

1:DEAD 2:LIVE 3:E1 4:E2

24

8

4.800

1:DEAD 2:LIVE 3:E1 4:E2

27

11

3.000

1:DEAD 2:LIVE 3:E1 4:E2

28

12

3.000

1:DEAD 2:LIVE 3:E1 4:E2

29

13

3.000

1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

68

0.000

8.503

0.000 5.000

2.597 -56.745

5.000

-10.017

0.000 0.000

-7.028 7.967

0.000

50.445

0.000

4.520

0.000

0.000

0.000

-0.000

0.000

-42.744

0.000 0.000

-18.929 77.419

0.000

-77.011

0.000

-0.000

0.000 0.000

-0.000 89.270

0.000 0.000

-89.270 42.744

0.000

18.929

0.000

77.011

0.000

-77.419

0.000

-9.884

0.000 0.000

-8.630 17.539

0.000

-15.350

0.000

-15.077

0.000 0.000

-5.777 25.513

0.000 0.000

-23.670 19.185

0.000

8.411

0.000

26.632

Appendices

4:E2 30

14

3.000

1:DEAD 2:LIVE 3:E1 4:E2

31

15

3.000

1:DEAD 2:LIVE 3:E1 4:E2

32

16

3.000

1:DEAD 2:LIVE 3:E1 4:E2

33

17

3.000

1:DEAD 2:LIVE 3:E1 4:E2

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000

-25.651

0.000 0.000

-0.000 0.000

0.000

24.125

0.000

-24.125

0.000

-19.185

0.000 0.000

-8.411 25.651

0.000 0.000

-26.632 15.077

0.000

5.777

0.000

23.670

0.000 0.000

-25.513 9.884

0.000

8.630

0.000

15.350

0.000

-17.539

Beam Maximum Axial Forces Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 10 3.000 1:DEAD 2:LIVE 3:E1 4:E2 2

11

5.000

1:DEAD 2:LIVE 3:E1 4:E2

3

12

5.000

1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

69

d (m) 0.000 0.000 0.000 0.000

Max Fx (kN) 0.000 0.000 0.000 0.000

0.000 0.000

-0.000 0.000

0.000

32.859

0.000

10.299

0.000

25.340

0.000

61.661

0.000

17.783

0.000

4.523

0.000

50.854

Appendices

4:E2 4

13

5.000

1:DEAD 2:LIVE 3:E1 4:E2

5

14

5.000

1:DEAD 2:LIVE 3:E1 4:E2

6

15

5.000

1:DEAD 2:LIVE 3:E1 4:E2

7

16

5.000

1:DEAD 2:LIVE 3:E1 4:E2

8

17

3.000

1:DEAD 2:LIVE 3:E1 4:E2

9

19

3.000

1:DEAD 2:LIVE 3:E1 4:E2

10

20

5.000

1:DEAD 2:LIVE 3:E1 4:E2

11

21

5.000

1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000

37.991

0.000

36.968

0.000

12.934

0.000

77.486

0.000

12.341

0.000

36.968

0.000

12.934

0.000

12.341

0.000

77.486

0.000

17.783

0.000

4.523

0.000

37.991

0.000

50.854

0.000

32.859

0.000

10.299

0.000

61.661

0.000

25.340

0.000 0.000 0.000

-0.000 0.000 0.000

0.000

-0.000

0.000 0.000

-0.000 0.000

0.000 0.000

-0.000 0.000

0.000 0.000 0.000

0.000 0.000 9.884

0.000

8.630

0.000

140.941

0.000

15.350

0.000

24.961

0.000

14.406

0.000

115.428

70

Appendices

4:E2 12

22

5.000

1:DEAD 2:LIVE 3:E1 4:E2

13

23

5.000

1:DEAD 2:LIVE 3:E1 4:E2

14

24

5.000

1:DEAD 2:LIVE 3:E1 4:E2

15

25

5.000

1:DEAD 2:LIVE 3:E1 4:E2

16

26

3.000

1:DEAD 2:LIVE 3:E1 4:E2

18

2

4.800

1:DEAD 2:LIVE 3:E1 4:E2

21

5

4.800

1:DEAD 2:LIVE 3:E1 4:E2

24

8

4.800

1:DEAD 2:LIVE 3:E1

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000

39.020

0.000

5.776

0.000

5.996

0.000

88.796

0.000

64.671

0.000

5.776

0.000

5.996

0.000

64.671

0.000

88.796

0.000

24.961

0.000

14.406

0.000

39.020

0.000

115.428

0.000

9.884

0.000

8.630

0.000

15.350

0.000

140.941

0.000

0.000

0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

0.000

533.863

0.000

213.878

0.000 0.000

-35.205 33.836

0.000

908.443

0.000

388.083

0.000

1.369

0.000

1.369

0.000

533.863

0.000

213.878

0.000

33.836

71

Appendices

4:E2 27

11

3.000

1:DEAD 2:LIVE 3:E1 4:E2

28

12

3.000

1:DEAD 2:LIVE 3:E1 4:E2

29

13

3.000

1:DEAD 2:LIVE 3:E1 4:E2

30

14

3.000

1:DEAD 2:LIVE 3:E1 4:E2

31

15

3.000

1:DEAD 2:LIVE 3:E1 4:E2

32

16

3.000

1:DEAD 2:LIVE 3:E1 4:E2

33

17

3.000

1:DEAD 2:LIVE 3:E1 4:E2

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000

-35.205 111.608

0.000

14.537

0.000 0.000

-7.967 7.028

0.000

30.598

0.000

-5.151

0.000 0.000

-0.536 1.114

0.000

54.459

0.000 0.000

-0.650 1.377

0.000 0.000

-1.220 94.538

0.000

18.567

0.000

0.203

0.000

0.203

0.000

54.459

0.000

-0.650

0.000 0.000

-1.220 1.377

0.000

30.598

0.000 0.000

-5.151 1.114

0.000 0.000

-0.536 111.608

0.000

14.537

0.000

7.028

0.000

-7.967

72

Appendices

Staad.pro analysis-frame analysis

Reactions Node 1

2

L/C 1:DEAD 2:LIVE 3:EQ1 4:EQ2 1:DEAD 2:LIVE 3:EQ1 4:EQ2

Horizontal FX (kN) 5.524 3.747 -46.450 46.380 -5.524 -3.747 -46.380 46.450

Vertical FY (kN) 90.605 29.600 -76.204 76.204 90.605 29.600 76.204 -76.204

Horizontal FZ (kN) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MX (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Moment MY (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MZ (kNm) -8.744 -5.919 161.084 -160.794 8.744 5.919 160.794 -161.084

d (m) 0.000 2.000 0.000 2.000 4.000 0.000 0.000 4.000

Max Mz (kNm) 25.222 -17.504 14.844 -10.756 104.074 -104.163 104.074 -104.163

Beam Maximum Moments Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 3 4.000 1:DEAD 2:LIVE 3:EQ1 4:EQ2

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

d (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max My (kNm) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

73

Appendices

2

5

4.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

3

1

4.800

1:DEAD 2:LIVE 3:EQ1 4:EQ2

4

2

4.800

1:DEAD 2:LIVE 3:EQ1 4:EQ2

5

3

3.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

6

4

3.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 2.000 0.000 2.000 4.000 0.000 0.000 4.000 4.800 0.000 4.800 0.000 0.000 4.800 4.800 0.000 0.000 4.800 0.000 4.800 0.000 4.800 4.800 0.000 3.000 0.000 3.000 0.000 0.000 3.000 3.000 0.000 0.000 3.000 0.000 3.000 0.000 3.000 3.000 0.000

74

9.919 -13.115 2.064 -1.936 48.263 -48.316 48.263 -48.316 17.769 -8.744 12.068 -5.919 161.084 -61.874 61.832 -160.794 8.744 -17.769 5.919 -12.068 160.794 -61.832 61.874 -161.084 9.919 -7.452 2.064 -2.776 42.289 -48.316 48.263 -42.242 7.452 -9.919 2.776 -2.064 42.242 -48.263 48.316 -42.289

Beam Maximum Shear Forces Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 3 4.000 1:DEAD 2:LIVE 3:EQ1 4:EQ2 2

5

4.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve

d (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max Fz (kN) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

d (m) 0.000 4.000 0.000 4.000

Max Fy (kN) 42.725 -42.725 25.600 -25.600

0.000 0.000

-52.059 52.059

0.000 4.000 0.000 4.000

23.034 -23.034 4.000 -4.000

0.000 0.000

-24.145 24.145

Appendices

3

1

4.800

1:DEAD 2:LIVE 3:EQ1 4:EQ2

4

2

4.800

1:DEAD 2:LIVE 3:EQ1 4:EQ2

5

3

3.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

6

4

3.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000

-5.524

0.000 0.000

-3.747 46.450

0.000 0.000

-46.380 5.524

0.000

3.747

0.000

46.380

0.000

-46.450

0.000

-5.790

0.000 0.000

-1.613 30.202

0.000 0.000

-30.168 5.790

0.000

1.613

0.000

30.168

0.000

-30.202

Beam Maximum Axial Forces Distances to maxima are given from beam end A. Length Beam Node A L/C (m) 1 3 4.000 1:DEAD 2:LIVE 3:EQ1 4:EQ2 2

5

4.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

3

1

4.800

1:DEAD 2:LIVE 3:EQ1 4:EQ2

4

2

4.800

1:DEAD

d (m) Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve

75

Max Fx (kN)

0.000 0.000

-0.267 2.134

0.000

16.212

0.000

16.212

0.000

5.790

0.000

1.613

0.000

30.168

0.000

30.168

0.000

90.605

0.000

29.600

0.000 0.000

-76.204 76.204

0.000

90.605

Appendices

2:LIVE 3:EQ1 4:EQ2 5

3

3.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

6

4

3.000

1:DEAD 2:LIVE 3:EQ1 4:EQ2

Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve Max -ve Max +ve

0.000

29.600

0.000

76.204

0.000 0.000

-76.204 27.452

0.000

4.000

0.000 0.000

-24.145 24.145

0.000

27.452

0.000

4.000

0.000

24.145

0.000

-24.145

76

Appendices

77

DESIGN OF TWO-WAY SLAB Thursday, April 11, 2013 Data: Material Strength: fc'

=

Slab Loads: Service Live Load: SLL =

6:00:21 PM

25

MPa

4.8

KPa

fy

=

Service Dead Load: DLL =

Slab Details: Clear Short Span: Clear Long Span: 3.50 La = m Lb = Select Case by pressing the BUTTON at the right Solution: 1. Effective Height h = =

275

MPa

5.3

KPa

4.75

Case : Panel Perimeter 180 0.092 m

2. Ultimate Load Consider a meter strip: Wslab = 23.56 * b *h 2.356 = Wdl = SDL * 1.0 m 5.3 = Wll = SLL * 1.0 m 4.8 = Wudl = 1.4*(Wslab + 10.718 = Wull = 1.7 * Wll 8.16 = Wu = Wull + Wudl 18.878 =

= say

2*3.5+2*4.75 180 0.100 m

=

23.56 * 1.0 * 0.1

=

5.3 * 1.0 m

=

4.8 * 1.0 m

=

1.4(2.356+5.3)

=

1.7 * 4.8

=

4.8 + 10.718

KN / m KN / m KN / m Wdl) KN / m KN / m KN / m

3. Calculate Moments Using Coefficients m = La / Lb 0.74 = 53 m Ca.neg Ca.dl Ca.ll

= 3.5 / 4.75 54 Cb.neg Cb.dl Cb.ll #### 0.7400 0.0000 0.0412 0.0522 # 0.0176 0.0184 Values are interpolated from the moment coefficient table. See Table from the corresponding sheets.

m

3

Appendices

Short Span: I. Middle Strip a. Continuous Edge Ma.neg = =

=

0 * 18.878 * 3.5 ^2

b.1 Midspan (Due to Dead Load) Ma.posdl = Ca * Wudl * La^2 5.409 = KN-m

=

0.0412 * 10.718 * 3.5 ^2

b.2 Midspan(Due to Live Load) Ma.posll = Ca * Wull * La^2 5.218 = KN-m

=

0.0522 * 8.16 * 3.5 ^2

Ma.pos

Ma.posdl + Ma.posll 10.627 KN-m

=

5.409 + 5.218

Ca * Wu * Lb^2 23.341 KN-m

=

0.0548 * 18.878 * 4.75 ^2

b.1 Midspan (Due to Dead Load) Mb.posdl = Ca * Wudl * Lb^2 4.256 = KN-m

=

0.0176 * 10.718 * 4.75 ^2

b.2 Midspan(Due to Live Load) Mb.posll = Ca * Wull * Lb^2 3.388 = KN-m

=

0.0184 * 8.16 * 4.75 ^2

Mb.pos

=

4.256 + 3.388

=

0.75*0.85*25*0.85*600 275 (600 + 275)

=

0.002 * 1000 * 0.1

=

2 * 100

=

100 - 20 - 16 / 2

=

100 - 20 - 16 - 16 / 2

= = II. Column Strip Long Span: I. Middle Strip a. Continuous Edge Mb.neg = =

Ca * Wu * La^2 0 KN-m

78

= Ma.posdl + Ma.posll 7.644 = KN-m 4. Design of Reinforcements Diameter of Bars: 16 db = mm

Pmax

Asmin Smax ds dl

= = = = = = = = =

0.75*0.85*fc'*B1*60 0 fy (600 + fy) 0.03378 0.002*bh 200.00 sqm 2 * h or 450 mm 200.00 mm h - cc - db / 2 72 mm h - cc - db - db /

Appendices

79

2 = Short Span: I. Middle Strip a. Continuous Edge Ma.neg =

56

mm

0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

0e6 P P

= = =

0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

As

= =

P* b * h 144

S

= = =

250 * PI * db^2 / As 1396.26 mm 200 mm

b. Midspan Ma.pos

=

0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

10.627e6 P P

= = =

0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

As

= =

P* b * h 632.376

= = =

250 * PI * db^2 / As 317.947 mm 200 mm

Sreqd

Sreqd S

II. Column Strip a. Continuous Edge Asreqd = = Sreqd S b. Midspan Asreqd

0 0.002

0.00878 0.00878

OK = P < Pmin. Use Pmin

sqm

2 / 3 (Asms) 133.333 sqm

= = =

3 / 2 (Sms) 2094.39 200

= =

2 / 3 (Asms) 421.584 sqm

mm mm

(use)

= 0.002 * 1000 * 72 Use Asmin 200

sqm

= 250*3.14159*16^2/200 Sreqd > Smax. Use Smax (suggested spacing)

OK = OK! P > Pmin

sqm

0

0.00878

(use)

= 0.008783 * 1000 * 72 OK! As > Asmin 632.376 sqm

= 250*3.14159*^2/632.376 Sreqd > Smax. Use Smax (suggested spacing)

= =

2 / 3 (200) (use)

200

sqm

= 3 / 2 (1396.263) Sreqd > Smax. Use Smax (suggested spacing)

= =

2 / 3 (632.376) (use) 421.584

sqm

Appendices

Sreqd S

= = =

Long Span: I. Middle Strip a. Continuous Edge Mb.neg =

3 / 2 (Sms) 476.921 200

mm mm

= 3 / 2 (317.947) Sreqd > Smax. Use Smax (suggested spacing)

0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

23.341e6 P P

= = =

0.04096 0.03378

As

= =

P* b * h 1891.68

S

= = =

250 * PI * db^2 / As 106.287 mm 100 mm

b. Midspan Mb.pos

=

0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

7.644e6 P P

= = =

0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

As

= =

P* b * h 592.144

Sreqd

= = =

250 * PI * db^2 / As 339.549 mm 200 mm

Sreqd

S

II. Column Strip a. Continuous Edge Asreqd = = Sreqd S b. Midspan

= = =

80

0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

0.01057 0.01057

NOT OK = OK! P > Pmin

sqm

2 / 3 (Asms) 1261.12 sqm 3 / 2 (Sms) 159.431 150

mm mm

(use)

= 0.03378 * 1000 * 56 OK! As > Asmin 1891.68

sqm

= 250*3.14159*16^2/1891.68 Sreqd < Smax. OK! (suggested spacing)

OK = OK! P > Pmin sqm sqm

0.03378

0.01057

(use)

= 0.010574 * 1000 * 56 OK! As > Asmin 592.144 sqm

= 250*3.14159*^2/592.144 Sreqd > Smax. Use Smax (suggested spacing)

= =

2 / 3 (1891.68) (use) 1261.12

= 3 / 2 (106.287) Sreqd < Smax. OK! (suggested spacing)

sqm

Appendices

Asreqd

Sreqd S

= =

2 / 3 (Asms) 394.763 sqm

= = =

3 / 2 (Sms) 509.324 200

mm mm

= =

2 / 3 (592.144) (use) 394.763

81

sqm

= 3 / 2 (339.549) Sreqd > Smax. Use Smax (suggested spacing)

Summary: I. Moment Coefficients Ca.neg

Ca.dl

Ca.ll

Cb.neg

Cb.dl

Cb.ll

0

0.0412

0.0522

0.0548

0.0176

0.0184

II. Computed Moments Short Direction Ma.posd Ma.neg l Ma.posll 0

5.409

5.218

Ma.pos

Mb.neg

10.627

23.341

Long Direction Mb.posd Mb.posl l l 4.256

3.388

Mb.po s 7.644

III. Reinforcement and Spacing Short Direction Middle Strip Asreqd

Continuous Edge As Sreqd

144.00

200.00

Asreqd

As

133.33

200.00

1396.26

C. Edge Sreqd 2094.39

S,mm

Asreqd

200.00 632.38 Column Strip S,mm

Asreqd

200.00

421.58

Midspan As Sreqd 632.38

317.95

Midspan As Sreqd 421.58

476.92

S,mm 200.0 0

S,mm 200.0 0

Long Direction Middle Strip Asreqd 1891.68

Asreqd 1261.12

Continuous Edge As Sreqd 1891.68

106.29

C. Edge As Sreqd 1261.12

159.43

S,mm

Asreqd

100.00 592.14 Column Strip S,mm

Asreqd

150.00

394.76

Midspan As Sreqd 592.14

339.55

Midspan As Sreqd 394.76

509.32

S,mm 200.0 0

S,mm 200.0 0

Appendices

82

DESIGN OF TWO-WAY SLAB Thursday, April 11, 2013 Data: Material Strength: fc'

=

Slab Loads: Service Live Load: SLL =

6:03:23 PM

25

MPa

4.8

KPa

fy

=

Service Dead Load: DLL =

Slab Details: Clear Short Span: Clear Long Span: 2.75 La = m Lb = Select Case by pressing the BUTTON at the right Solution: 1. Effective Height h = =

275

MPa

5.3

KPa

3.50

Case : Panel Perimeter 180 0.069 m

2. Ultimate Load Consider a meter strip: Wslab = 23.56 * b *h 2.356 = Wdl = SDL * 1.0 m 5.3 = Wll = SLL * 1.0 m 4.8 = Wudl = 1.4*(Wslab + 10.718 = Wull = 1.7 * Wll 8.16 = Wu = Wull + Wudl 18.878 =

= say

2*2.75+2*3.5 180 0.100 m

=

23.56 * 1.0 * 0.1

=

5.3 * 1.0 m

=

4.8 * 1.0 m

=

1.4(2.356+5.3)

=

1.7 * 4.8

=

4.8 + 10.718

KN / m KN / m KN / m Wdl) KN / m KN / m KN / m

3. Calculate Moments Using Coefficients m = La / Lb 0.79 = 43 m Ca.neg Ca.dl Ca.ll

= 44 Cb.neg

2.75 / 3.5 Cb.dl

Cb.ll

0.7900 0.0408 0.0462 0.0520 #### 0.0216 0.0224 Values are interpolated from the moment coefficient table. See Table from the corresponding sheets.

m

7

Appendices

Short Span: I. Middle Strip a. Continuous Edge =

0.0408 * 18.878 * 2.75 ^2

=

0.0462 * 10.718 * 2.75 ^2

b.2 Midspan(Due to Live Load) Ma.posll = Ca * Wull * La^2 3.209 = KN-m

=

0.052 * 8.16 * 2.75 ^2

Ma.pos

Ma.posdl + Ma.posll 6.954 KN-m

=

3.745 + 3.209

Ca * Wu * Lb^2 2.035 KN-m

=

0.0088 * 18.878 * 3.5 ^2

b.1 Midspan (Due to Dead Load) Mb.posdl = Ca * Wudl * Lb^2 2.836 = KN-m

=

0.0216 * 10.718 * 3.5 ^2

b.2 Midspan(Due to Live Load) Mb.posll = Ca * Wull * Lb^2 2.239 = KN-m

=

0.0224 * 8.16 * 3.5 ^2

Mb.pos

=

2.836 + 2.239

=

0.75*0.85*25*0.85*600 275 (600 + 275)

=

0.002 * 1000 * 0.1

=

2 * 100

=

100 - 20 - 16 / 2

Ma.neg

b.1

= =

Ca * Wu * La^2 5.825 KN-m

Midspan (Due to Dead Load)

Ma.posdl

= =

= = II. Column Strip Long Span: I. Middle Strip a. Continuous Edge Mb.neg = =

Ca * Wudl * La^2 3.745 KN-m

= Ma.posdl + Ma.posll 5.075 = KN-m 4. Design of Reinforcements Diameter of Bars: 16 db = mm

Pmax

Asmin Smax ds

= = = = = = =

0.75*0.85*fc'*B1*60 0 fy (600 + fy) 0.03378 0.002*bh 200.00 sqm 2 * h or 450 mm 200.00 mm h - cc - db / 2

83

Appendices

= dl

= =

Short Span: I. Middle Strip a. Continuous Edge Ma.neg =

72 mm h - cc - db - db / 2 56 mm

=

84

100 - 20 - 16 - 16 / 2

0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

5.825e6 P P

= = =

0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

As

= =

P* b * h 337.104

sqm

= 0.004682 * 1000 * 72 OK! As > Asmin 337.104 sqm

S

= = =

250 * PI * db^2 / As 596.439 mm 200 mm

= 250*3.14159*16^2/337.104 Sreqd > Smax. Use Smax (suggested spacing)

b. Midspan Ma.pos

=

0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

6.954e6 P P

= = =

0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

As

= =

P* b * h 405

= = =

250 * PI * db^2 / As 496.449 mm 200 mm

Sreqd

Sreqd S

II. Column Strip a. Continuous Edge Asreqd = = Sreqd

0.00468 0.00468

0.00563 0.00563

OK = OK! P > Pmin

OK = OK! P > Pmin

sqm

2 / 3 (Asms) 224.736 sqm

S

= = =

3 / 2 (Sms) 894.659 200

b. Midspan Asreqd

=

2 / 3 (Asms)

mm mm

0.00468

0.00563

(use)

(use)

= 0.005625 * 1000 * 72 OK! As > Asmin 405 sqm

= 250*3.14159*^2/405 Sreqd > Smax. Use Smax (suggested spacing)

= =

2 / 3 (337.104) (use) 224.736

= 3 / 2 (596.439) Sreqd > Smax. Use Smax (suggested spacing)

=

2 / 3 (405)

sqm

Appendices

= Sreqd S

= = =

Long Span: I. Middle Strip a. Continuous Edge Mb.neg =

270 3 / 2 (Sms) 744.674 200

sqm

mm mm

=

(use)

270

0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

= = =

0.00267 0.00267

As

= =

P* b * h 149.408

S

= = =

250 * PI * db^2 / As 1345.72 mm 200 mm

b. Midspan Mb.pos

=

0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

5.075e6 P P

= = =

0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

As

= =

P* b * h 383.152

Sreqd

= = =

250 * PI * db^2 / As 524.758 mm 200 mm

S

II. Column Strip a. Continuous Edge Asreqd = = Sreqd S

= = =

sqm

= 3 / 2 (496.449) Sreqd > Smax. Use Smax (suggested spacing)

2.035e6 P P

Sreqd

85

0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

0.00684 0.00684

OK = OK! P > Pmin

sqm

2 / 3 (Asms) 133.333 sqm 3 / 2 (Sms) 2018.59 200

mm mm

(use)

= 0.002668 * 1000 * 56 Use Asmin 200 sqm

= 250*3.14159*16^2/200 Sreqd > Smax. Use Smax (suggested spacing)

OK = OK! P > Pmin sqm sqm

0.00267

0.00684

(use)

= 0.006842 * 1000 * 56 OK! As > Asmin 383.152 sqm

= 250*3.14159*^2/383.152 Sreqd > Smax. Use Smax (suggested spacing)

= =

2 / 3 (200) (use)

200

= 3 / 2 (1345.724) Sreqd > Smax. Use Smax (suggested spacing)

sqm

Appendices

b. Midspan Asreqd

Sreqd S

= =

2 / 3 (Asms) 255.435 sqm

= = =

3 / 2 (Sms) 787.137 200

mm mm

= =

2 / 3 (383.152) (use) 255.435

86

sqm

= 3 / 2 (524.758) Sreqd > Smax. Use Smax (suggested spacing)

Summary: I. Moment Coefficients Ca.neg

Ca.dl

Ca.ll

Cb.neg

Cb.dl

Cb.ll

0.0408

0.0462

0.052

0.0088

0.0216

0.0224

II. Computed Moments Short Direction Ma.posd Ma.neg l Ma.posll 5.825

3.745

3.209

Ma.pos

Mb.neg

6.954

2.035

Long Direction Mb.posd Mb.posl l l 2.836

2.239

Mb.po s 5.075

III. Reinforcement and Spacing Short Direction Middle Strip Asreqd 337.10

Asreqd 224.74

Continuous Edge As Sreqd 337.10

596.44

C. Edge As Sreqd 224.74

894.66

S,mm

Asreqd

200.00 405.00 Column Strip S,mm

Asreqd

200.00

270.00

Midspan As Sreqd 405.00

496.45

Midspan As Sreqd 270.00

744.67

S,mm 200.0 0

S,mm 200.0 0

Long Direction Middle Strip Asreqd

Continuous Edge As Sreqd

149.41

200.00

Asreqd

As

133.33

200.00

1345.72

C. Edge Sreqd 2018.59

S,mm

Asreqd

200.00 383.15 Column Strip S,mm

Asreqd

200.00

255.43

Midspan As Sreqd 383.15

524.76

Midspan As Sreqd 255.43

787.14

S,mm 200.0 0

S,mm 200.0 0

Appendices

87

RC Column Section Design Design Criteria Design Code = ACI-318-95, Design Method = USD Concrete Stress Block = ACI-Whitney Rectangular Design Procedure The program performs the calculations in accordance with the ACI-318-95 Code for Structural Concrete Procedure for Cross-section Design 1. Compute the resultant applied moment as Muxy = Sqr(Mux^2 + Muy^2). 2. Select a trial reinforcement ratio, starting with minimum ratio of 1%, and distributing rebar’s along the perimeter. 3. Compute the maximum axial capacity in compression, Pno and tension Pnt, and check against applied loads. 4. Locate the neutral axis angle and its depth to satisfy applied load Pu and the resultant moment Muxy. This is done by trial and error procedure. The internal stress resultants for each angle and depth of neutral axis angle are computed (see procedure below) and then compared with applied loads. This process is repeated until close agreement is found. 5. If capacity in step 3 or 4 is found to be not enough, then reinforcement is increased until maximum allowable ratio (8%) is reached. 6. Cross-section is declared as inadequate if it requires more than maximum allowable steel ratio Procedure for Computing Stress-Resultants 1. The stress resultants principles approach.

are

computed

by

using

the

first

2. Strain in concrete and steel is determined depending upon the direction and depth of neutral axis.

Appendices

88

3. Concrete force is computed by integrating the stress field (rectangular or parabolic stress curve) over the cross-section using the Green's Theorem. 4. Steel stress is computed by summation of force in each bar, corresponding to stress at that location. 5. The computed stress resultants are reduced by appropriate capacity reduction factors for the Ultimate Strength Design (or Working Strength Design) method. RC Column Section Column C-1: 425 x 425 columns

Column Cross-section Material Rebar fy = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 75 mm Calculations Computing Moment Capacity: Applied Axial Load, Pu = 1,598.0 kN Applied Moment, Mux = 352.0 kN-m Applied Moment, Muy = 181.0 kN-m

Appendices

Resultant Moment, Muxy = 395.8 kN-m Resultant Moment Angle = 27 Deg. Detailed Capacity Calculations: Neutral axis angle = 32 Deg. Neutral axis depth = 285 mm Capacity reduction factor = 0.73 Stress in Rebar’s: Bar No, Size, Cord-X , Cord-Y, Area , Stress 1, d 32, -175, -175, 813, -275.0 2, d 32, 175, 175, 813, 253.8 3, d 32, 175, -175, 813, -130.8 4, d 32, -175, 175, 813, 75.5 5, d 32, -175, -87, 813, -273.3 6, d 32, -175, 0, 813, -213.5 7, d 32, -175, 87, 813, -58.4 8, d 32, -87, 175, 813, 173.7 9, d 32, 0, 175, 813, 231.8 10, d 32, 87, 175, 813, 253.8 11, d 32, 175, 87, 813, 246.9 12, d 32, 175, 0, 813, 158.2 13, d 32, 175, -87, 813, 18.4 14, d 32, 87, -175, 813, -229.0 15, d 32, 0, -175, 813, -269.6

89

Appendices

16, d 32, -87, -175, 813, -275.0 Result Summary: Axial Compression, ØPno = 3,997.9 kN Axial Tension, ØPnt = -3,219.5 kN Moment Capacity, ØMnx = 413.2 kN-m Moment Capacity, ØMny = 123.7 kN-m Resultant Capacity, ØMnxy = 431.4 kN-m Resultant Angle = 16 Deg. Concrete volume = 0.18 m^3 Main Steel weight = 100.96 Kg/m Steel weight/ volume = 558.95 Kgm^3 Transverse Bars: Ties, d 10 @ 288 mm RC Column Section Column C-2: 250 x 250 columns

Column Cross-section Material Rebar fy = 275.0 N/mm^2

90

Appendices

Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Computing Moment Capacity: Applied Axial Load, Pu = 225.0 kN Applied Moment, Mux = 100.0 kN-m Applied Moment, Muy = 20.0 kN-m Resultant Moment, Muxy = 102.0 kN-m Resultant Moment Angle = 11 Deg. Detailed Capacity Calculations: Neutral axis angle = 15 Deg. Neutral axis depth = 123 mm Capacity reduction factor = 0.78 Stress in Rebar’s: Bar No, Size, Cord-X , Cord-Y, Area , Stress 1, d 32, -87, -87, 813, -275.0 2, d 32, -87, 87, 813, 126.0 3, d 32, 87, 87, 813, 253.8 4, d 32, 87, -87, 813, -275.0 5, d 32, -87, 0, 813, -243.7 6, d 32, 0, 87, 813, 219.9 7, d 32, 87, 0, 813, -34.7 8, d 32, 0, -87, 813, -275.0

91

Appendices

92

Result Summary: Axial Compression, ØPno = 1,668.0 kN Axial Tension, ØPnt = -1,609.7 kN Moment Capacity, ØMnx = 112.2 kN-m Moment Capacity, ØMny = 15.7 kN-m Resultant Capacity, ØMnxy = 113.3 kN-m Resultant Angle = 7 Deg. Concrete volume = 0.06 m^3 Main Steel weight = 50.48 Kg/m Steel weight/ volume = 807.68 Kgm^3 Transverse Bars: Ties, d 10 @ 250 mm RC Beam Section Design Design Criteria Design Code = ACI-318-95, Design Method = USD Concrete Stress Block = ACI-Whitney Rectangular Design Procedure The program performs the calculations in accordance with the ACI-318-95 Building Code for Structural Concrete Procedure for Computing Stress-Resultants 1. The stress resultants principles approach.

are

computed

by

using

the

first

2. Strain in concrete and steel is determined depending upon the direction and depth of neutral axis.

Appendices

93

3. Concrete force is computed by integrating the stress field (rectangular or parabolic stress curve) over the cross-section using the Green's Theorem. 4. Steel stress is computed by summation of force in each bar, corresponding to stress at that location. 5. The computed stress resultants are reduced by appropriate capacity reduction factors for the Ultimate Strength Design (or Working Strength Design) method. RC Beam Section Beam B-1: 450 x 680 beams

Beam Cross-section Material Rebar fy = 415.0 N/mm^2 Rebar fys = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Flexural Capacity: Usable capacity, ØMnx = 2,190.5 kN-m At neutral axis depth = 301 mm

Appendices

Shear Capacity: Effective web width, bw = 450 mm Concrete shear capacity, ØVc = 208.0 kN (Eq 11-3) Shear stirrup steel, Av/S = 4 Shear provided by stirrups, Vs = 600.1 kN Total usable shear capacity, ØVn = 808.1 kN Torsional Capacity: Area of concrete section, Acp = 306,000 mm^2 Perimeter of concrete section, Pcp = 2,260 mm Allowable Torsion for concrete, ØTc = 14.3 kN-m Torsion stirrup steel, Av/S = 0 Total torsion capacity, ØTn= 14.3 kN-m Required longitudinal steel for torsion, Al = 0 mm^2 Final Results Top Bars = 8-d 32 Bottom Bars = 16-d 32 Skin Bars = Stirrup Bars for Shear = 4L d 10@80 mm Stirrup Bars for Torsion = Longitudinal Bars for Torsion = Stirrup Bars for Shear + Torsion = 4L d 10@80 mm

94

Appendices

RC Beam Section Beam B-2: 250 x 340 beams

Beam Cross-section Material Rebar fy = 275.0 N/mm^2 Rebar fys = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Flexural Capacity: Usable capacity, ØMnx = 157.1 kN-m At neutral axis depth = 173 mm Shear Capacity: Effective web width, bw = 250 mm Concrete shear capacity, ØVc = 54.4 kN (Eq 11-3) Shear stirrup steel, Av/S = 1.3 Shear provided by stirrups, Vs = 91.8 kN

95

Appendices

Total usable shear capacity, ØVn = 146.2 kN Torsional Capacity: Area of concrete section, Acp = 85,000 mm^2 Perimeter of concrete section, Pcp = 1,180 mm Allowable Torsion for concrete, ØTc = 2.1 kN-m Torsion stirrup steel, Av/S = 0 Total torsion capacity, ØTn= 2.1 kN-m Required longitudinal steel for torsion, Al = 0 mm^2 Final Results Top Bars = Bottom Bars = 5-d 32 Skin Bars = Stirrup Bars for Shear = 2L d 10@123 mm Stirrup Bars for Torsion = Longitudinal Bars for Torsion = Stirrup Bars for Shear + Torsion = 2L d 10@123 mm

96

Appendices

RC Beam Section Beam B-3: 250 x 360 beams

Beam Cross-section Material Rebar fy = 275.0 N/mm^2 Rebar fys = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Flexural Capacity: Usable capacity, ØMnx = 177.1 kN-m At neutral axis depth = 181 mm Shear Capacity: Effective web width, bw = 250 mm Concrete shear capacity, ØVc = 58.0 kN (Eq 11-3) Shear stirrup steel, Av/S = 0.47 Shear provided by stirrups, Vs = 35.4 kN

97

Appendices

Total usable shear capacity, ØVn = 93.3 kN Torsional Capacity: Area of concrete section, Acp = 90,000 mm^2 Perimeter of concrete section, Pcp = 1,220 mm Allowable Torsion for concrete, ØTc = 2.3 kN-m Torsion stirrup steel, Av/S = 0 Total torsion capacity, ØTn= 2.3 kN-m Required longitudinal steel for torsion, Al = 0 mm^2 Final Results Top Bars = Bottom Bars = 5-d 32 Skin Bars = Stirrup Bars for Shear = 2L d 10@120 mm Stirrup Bars for Torsion = Longitudinal Bars for Torsion = Stirrup Bars for Shear + Torsion = 2L d 10@120 mm

98

Appendices

RC Beam Section Beam B-4: 250 x 300 beams

Beam Cross-section Material Rebar fy = 275.0 N/mm^2 Rebar fys = 275.0 N/mm^2 Concrete fc' = 25.0 N/mm^2 Clear Cover = 38 mm Calculations Flexural Design: Design Moment, Mu = 68.0 kN-m Balanced Moment capacity, ØMb = 188.1 kN-m Concrete section capacity, ØMrc = 141.1 kN-m Mu < ØMrc, Singly reinforced beam required Computed steel, Ast = 1,361 mm^2 at Neutral axis depth = 50 mm Minimum tension steel, Ast min = 300 mm^2 Required tension steel, Ast = 1,361 mm^2

99

Appendices

Required compression steel, Asc = 0 mm^2 Skin Reinforcement Not Required Design for Shear + Torsion: Design shear force, Vu = 59.0 kN Design torsional moment, Tu = 0.0 kN-m Effective web width, bw = 250 mm Concrete shear capacity, ØVc = 47.2 kN (Eq 11-3) Area of concrete section, Acp = 75,000 mm^2 Perimeter of concrete section, Pcp = 1,100 mm Allowable Torsion for concrete, ØTc = 1.8 kN-m Vs = 13.8 kN (Shear Stirrups Required) Computed steel for Shear, Av/S = 0.315 Maximum stirrup spacing for shear only = 132 mm Required stirrups for shear only = 2L d 10@131 mm Torsion = 0, No torsion design required Final Results Top Bars = Bottom Bars = 2-d 32 Skin Bars = Stirrup Bars for Shear = 2L d 10@131 mm Stirrup Bars for Torsion = Longitudinal Bars for Torsion = Stirrup Bars for Shear + Torsion = 2L d 10@131 mm

100

Appendices

DESIGN OF FOUNDATION

b c to c % of Load y x Unit wt. soil qa Dl Ll

0.45 4 0.08 1.5 0.5 16 100 999.05 417.68

m m

surcharge Total W. L B

24 1530.1 5.45 3.7

Kpa KN m m

qu'

m m KN/m^3 Kpa KN KN

185.19 Kpa Along Long Direction

quL 685.2 KN/m Xv 1.77 x 1.78 determine "d" from Beam shear fc' fy

28 275

101

Appendices

Φ Vu = v =

0.85 (x-d)*(V3)/x Vu/ΦBd

Calculate "d" in Beam shear v 0.8996 d 0.765 Check "d" against punching vpall. vpall. Vp vp

0.33*(fc')^(1/2) 1.7462 1593.8 0.5

since vp < vpall OK Flexure x Mu ρmin ρmin

0.35 1186.4 1.4/fy 0.0051

Mu = ΦMn ΦMn = Φfc'b(d^2)w(1-0.59w) w 0.0215 ρ

0.0022 ρ < ρmin

Use ρmin

As = ρbd As = 14407 mm^2 db 32 N 18 Spacing C.cover 75

a b

-3.2E+10 5.46E+10

16 20 22 25 28 32

102

Appendices

S

170 ADOPT

18 -32

mmΦ

Spaced

170 On center

170 ADOPT 18 -32 mmΦ Along short Direction

Spaced

170 On center

for cantilever As

14407 mm^2

db N S

b

32 18

Consider 1 column 1.215

qu x Mu

504.63 1.625 666.27 KN-m Mu = ΦMn ΦMn = Φρbd^2fy(1-0.59(fy/fc')

ρ

0.0029

ρ < ρmin As

Use ρmin

a b

1.4E+12 2.4E+11

c

6.7E+08

4731 mm^2

db N

32 6

S

170 ADOPT

6 -32

mmΦ

Spaced

170

On center

103

Appendices

DESIGN OF STAIRS

DESIGN DATA: fc' fy service live load stair thickness,S concrete cover unit weigth of concrete,δc rise,R run,T number of stair,n bar diameter to be used,db

25 275 4.8 100 20

MPa MPa KPa mm mm

23.56 KN/m^3 200 mm 250 mm 13 12 mm

DESIGN COMPUTATIONS weigth of stair,Wstair

= RTn(δc)/2 Wstair

7.657 KN/m

weigth of slab,Wslab = S √(R^2+T^2 ) (δc) Wslab 0.754 KN/m total weigth,Wt = Wstair + Wslab Wt

13.211 KN/m

Mu = (1/12)(Wt)(L^2) Mu

19.071 KN-m

SET Mu = ØMn Mu=ΦMn=0.9 ρbd^2 fy (1-0.59ρfy/fc') 0.00870 ρ1 ρ2

0.0094 0.1134

ρmin = 1.4/fy ρmin

0.0041 ok

104

Appendices

As = ρbd As

791.995 mm^2

Asmin = 0.002bh Asmin

200 mm^2 As > Asmin

OK!

number of bars,n = 4As/∏.db^2 n 8

spacing S

= 250∏(db^2)/As 140 mm o.c.

TEMPERATURE BARS number of bars,n = 4Asmin/∏.db^2 n 2

spacing S

= 250∏(db^2)/Asmin 560 mm o.c.

105

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF