Structural Calculations for Timber Canopy with Gable Roof

September 3, 2017 | Author: Conrad Harrison | Category: Column, Screw, Beam (Structure), Lumber, Bending
Share Embed Donate


Short Description

Sample structural calculations for timber framed canopy to AS1170.2 and AS1720. Workbook found at ExcelCalcs....

Description

1/18

????

REF.:

????

Tel : ???? PAGE:

????

Fax :???? DATE:

????

email: ???? DESIGN:

nnnn 31-Jan-2012

SCH

GABLE CANOPY: TIMBER ???,????:SUBURB Wind Class N2 Vu = 40 Vp = 33 1.01: Dimension & Geometry Canopy Width = L = 6.000 Canopy Pitch 22.5 Rafter Length = L1 = 3.247 Load Width = Rafter Spacing = Collar-Tie Length =

m/s m/s

qz= qz=

m degrees m 1.200 m 4.000 m

0.96 kPa 0.65 kPa Rise 1/3 Rise d = 2/3 Rise Gable End Area

0.393 radians

1.2426 0.4142 0.8284 3.7279

m m m m²

1.02: Estimate Moments to Rafters for Collar-Tied Roof Trusses (Dead Loading)

0.9

W1 = wL/2 = W2 = wL/2 = W = 2 *W1 = Reaction A = Reaction B = Maximum = R1 =

LY

LF

1.2 0.10 kN/m 0.299 0.299 0.599 0.299 0.299 0.299

kN kN kN kN kN kN

O N

kPa kN/m LF SWT 0.03 DL (cladding) 0.04 DL(battens) 0.02 DL+SWT 0.09 0.11 along projected length = Fy = DL cos (alpha) =

PL E

Span Moment M1=w.L^2/8 = 0.449 kNm Collar-Tie Force F =(Ra.L/2 - W1.L/4)/d = 0.542 kN Rafter Moment - udl M1=w.L1^2/8 = 0.132 kNm Rafter Moment from Collar-Tie M2=(2/9)Fsin(α).L1 = 0.150 kNm Resultant Rafter Moment (Est.) M1+M2 = 0.281 kNm Ridge Reactions Bx = -F = -0.542 kN By = W1-Ra = 1.03: Live Load LL = 0.37 kPa adopt 0.25 kPa and also check directly for point load of 1.8kN factored kPa kN/m LF kN/m 1 LL 0.25 0.30 1.5 0.45

0.000 kN

SA M

1.04: Moments to Rafters for Collar-Tied Roof Trusses (Live Loading) Considering Uniformly Distributed Loading(UDL) W1 = wL/2 = 0.900 kN W2 = wL/2 = 0.900 kN W = 2 *W1 = 1.800 kN Reaction A = 0.900 kN Reaction B = 0.900 kN Maximum = R1 = 0.900 kN Span Moment - UDL M1=w.L^2/8 = Collar-Tie Force F =(Ra.L/2 - W1.L/4)/d = Rafter Moment - udl M1=w.L1^2/8 = Rafter Moment from Collar-Tie M2=(2/9)Fsin(α).L1 = Resultant Rafter Moment (Est.) M1+M2 = Ridge Reactions Bx = -F = Considering Point Load at Ridge Point Load P1 = 1.80 kN Reaction A = Reaction B =

1.35 1.63 0.395 0.450 0.845 -1.630

Span Moment - Point Load Collar-Tie Force - Point Load Rafter Moment - Point Load

2.700 3.259 0.900 0.900 -3.259

Ridge Reactions

(C)Roy Harrison Associates

M=P1.L/4 = F = Ra.L/(2.d) = M2=(2/9)Fsin(α).L1 = Max: Bx = -F =

kNm kN kNm kNm kNm kN

... By = W1-Ra =

0.000 kN

0.900 kN 0.900 kN kNm kN kNm kNm kN

span moment - point load at apex max < WindLoad By = P1-Ra =

schGableCanopyTimber.xls

0.900 kN

Calcs

2/18

????

REF.:

nnnn

????

Tel : ???? PAGE:

????

Fax :???? DATE:

????

email: ???? DESIGN:

31-Jan-2012

SCH

GABLE CANOPY: TIMBER ???,????:SUBURB Wind Class N2 Vu = Vp =

40 m/s 33 m/s

qz= qz=

0.96 kPa 0.65 kPa

1.05: Wind Class Pressures (theta=0) /1

w1 w2

w1 w2

Cpn1= Cpn2 =

(-ve, uplift) -0.3 -0.6

wx 0.13 0.26

wy 0.32 kN/m 0.64 kN/m

W 1.122 2.244 sum

Wx -0.43 -0.86 -1.29

p1 = p2 =

-0.29 kPa -0.58 kPa

w1= w2=

0.346 kN/m 0.691 kN/m

wx,wy are components of w1,w2 distributed along length of rafter vertical and horizontal loads distributed across projected lengths equal w1,w2

Wy -1.04 kN/m -2.07 kN/m -3.11 kN/m

Directions -1 -1

-1 -1

1.06: Reactions Rb -0.73 -0.61 -1.34

checksum -1.04 -2.07 -3.11

-0.30 kN -1.47 kN -1.77 kN

O N

Ra Load 1 Load 2 Resultant -0.43 kN

{+ve, vertical down, horizontal push to right}

LY

Windward Slope Leeward Slope

PL E

(-ve, tiedown) Nett Horizontal Reaction
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF