Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
CNR Number:
ESP-ATK-ST-REP-0121 Rev A1
Atkins Number: 5087631-005-ER-01 Rev A1 Originator:
Ahmed Abdelaal / Philip Walker
Date:
April 2010
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
A Report Prepared by
Atkins Limited On Behalf of
CNR International (Cote D’Ivoire) S.A.R.L.
COMMERCIAL IN CONFIDENCE
Atkins Limited 6 Golden Square Aberdeen AB10 1RD
CNR International (CDI) S.A.R.L. St Magnus House Guild Street Aberdeen AB11 6NJ
Tel:
+44 (0)1224 620202
Tel:
+44 (0)1224 303600
Fax:
+44 (0)1224 647652
Fax:
+44 (0)1224 303888
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 1
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
DOCUMENT ISSUE CONTROL SHEET
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Document History Issue
Date
1
April 2010
Purpose For client comment
Rev
Prepared
Checked
Approved
A1
AA / PGW
STC / TAA
PGW
2
3
4
5
Notice This document has been specifically produced for the purposes of the East & West Espoir Strength & Fatigue Assessment and is only suitable for use in connection therewith. Any liability arising out of use of this document by CNR International (CDI) S.A.R.L. or a third party for purposes not wholly connected with the above project shall be the responsibility of CNR International (CDI) S.A.R.L., who shall indemnify Atkins Limited against all claims, costs, damages and losses arising from such use.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 2
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Contents Section
Page
1.
Introduction .............................................................................................................................. 8
1.1 1.1.1 1.2
Background ................................................................................................................................ 8 General....................................................................................................................................... 8 Scope of Work ............................................................................................................................ 8
2.
Technical Approach ................................................................................................................. 9
2.1 2.2 2.3 2.4 2.5 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.6.5 2.6.6 2.7 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 2.7.7 2.7.8 2.7.9
General....................................................................................................................................... 9 Computer Models ....................................................................................................................... 9 Software ...................................................................................................................................10 Units of Measurement ..............................................................................................................10 Environmental Data..................................................................................................................11 In-place Strength Analysis .......................................................................................................11 General.....................................................................................................................................11 Drill Rig .....................................................................................................................................11 Soil Modelling ...........................................................................................................................12 Dynamic Amplification ..............................................................................................................12 Design Load Case Combinations ............................................................................................13 Installation Conditions ..............................................................................................................16 Fatigue Analysis .......................................................................................................................16 General.....................................................................................................................................16 Transportation to Espoir Field ..................................................................................................17 Phases of Operation and Durations .........................................................................................17 Linearisation of Soil Springs ....................................................................................................18 Environmental Data..................................................................................................................18 Fatigue S-N Curves ..................................................................................................................19 Damping ...................................................................................................................................19 Member Segmentation .............................................................................................................19 Selection of Transfer Functions ...............................................................................................20
3.
In Place Strength Analysis Results ......................................................................................21
3.1 3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.3.2 3.3.3 3.4 3.4.1 3.4.2 3.4.3
General.....................................................................................................................................21 Code Checks ............................................................................................................................21 General.....................................................................................................................................21 Member Code Checks .............................................................................................................21 Joint Code Checks ...................................................................................................................22 Pile Code Checks.....................................................................................................................22 East & West Espoir ..................................................................................................................22 Member Code Check Results ..................................................................................................22 Joint Code Check Results ........................................................................................................22 Pile Code Check Results .........................................................................................................22 Review of East & West Espoir Code Check Results ...............................................................23 Summary ..................................................................................................................................23 Review of East Espoir Member Checks...................................................................................24 Review of East Espoir Joint Checks ........................................................................................27
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 3
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
3.4.4 3.4.5
Review of West Espoir Member Code Check Results .............................................................28 Review of West Espoir Joint Checks .......................................................................................31
4.
Natural Frequency Analysis Results ....................................................................................38
4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.5
General.....................................................................................................................................38 Modelling of Al Baraka Drill Rig ...............................................................................................38 Analysis Method .......................................................................................................................38 Structural Monitoring and Analysis Model Calibration ............................................................. 38 General.....................................................................................................................................38 East Espoir ...............................................................................................................................39 Natural Frequencies and Mode Shapes ..................................................................................39
5.
In Place Fatigue Analysis Results ........................................................................................44
5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.3 5.3.1 5.3.2 5.3.3 5.3.4 5.3.5 5.3.6 5.4 5.4.1 5.4.2 5.4.3
General.....................................................................................................................................44 East Espoir Fatigue Review .....................................................................................................45 Legs (Tubular Joints) ...............................................................................................................46 Joint at +15ft, -123ft and -225ft (Tubular Joints) ......................................................................46 Joint at -400ft (Tubular Joints) .................................................................................................46 New Joints at +15ft (Tubular Joints) ........................................................................................46 Legs B between -123ft and -345ft (Butt Welds) .......................................................................46 Internal Framing at -46ft (Butt Welds) ......................................................................................46 Vertical Diagonal Braces between -123ft and -225ft (Butt Welds) ..........................................47 West Espoir Fatigue Review ....................................................................................................47 Leg C between 15ft and -46ft (Tubular Joints) ........................................................................47 Plan Joints at 15ft (Tubular Joints) ..........................................................................................47 Plan Joints at -46ft (Tubular Joints) .........................................................................................47 Leg B between -225ft and – 335ft (Butt Weld) .........................................................................47 Leg Joints between -335ft and – 395ft (Butt Weld)..................................................................47 Leg B, Near Boat Bumper (Tubular Joint)................................................................................48 Tow Fatigue to Espoir Field .....................................................................................................48 East Espoir Tow Fatigue ..........................................................................................................48 West Espoir Transportation Fatigue ........................................................................................49 Conclusion ...............................................................................................................................49
6.
Installation & Inplace Local Design Analysis ......................................................................54
6.1 6.2 6.3 6.4 6.5
General.....................................................................................................................................54 Conductor Installation Local Strength Assessment ................................................................. 54 In-Place Local Strength Assessment .......................................................................................54 East Espoir Installation & In-Place Results ..............................................................................55 West Espoir Installation & In-Place Results .............................................................................55
7.
Conclusions & Recommendations .......................................................................................57
8.
References ..............................................................................................................................58
List of Tables Table 2.1 – Analysis Units Table 2.2 - Constants Table 2.3 – Drill Rig Data Table 2.4 – Load Case Combination Nomenclature Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
10 11 12 15 Page 4
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Table 3.1 – East & West Espoir Code Check Mitigation Summary Table 3.2 – East Espoir Maximum Member Utilisations > 1.00 Table 3.3 – East Espoir Maximum Joint Utilisations > 1.00 Table 3.4 – East Espoir Pile Capacity Factors of Safety Table 3.5 – West Espoir Maximum Member Utilisations > 1.00 Table 3.6 – West Espoir Maximum Joint Utilisations > 1.00 Table 3.7 – West Espoir Pile Capacity Factors of Safety Table 4.1 – East Espoir Natural Frequencies and Periods Table 4.2 – West Espoir Natural Frequencies and Periods Table 5.1 – Fatigue Life Factors of Safety Table 5.2 – East Espoir Fatigue Lives Less Than 200 Years Table 5.3 – West Espoir Fatigue Lives Less Than 200 Years Table 5.4 – East Espoir Fatigue Lives Less Than 200 Years (Including Tow Fatigue) Table 6.1 – Installation Local Design Cases (East & West Espoir) Table 6.2 – In-Place Design Cases (East & West Espoir)
23 33 33 33 35 35 36 40 41 45 50 51 53 56 56
List of Figures Figure 2.1 – East Espoir - Al Baraka Drill Rig Installed Figure 2.2 – East & West Espoir GeniE Model Isometric View Figure 2.3 – Espoir Drilling Slots Figure 2.4 – Environmental Loading Approach Directions Figure 2.5 – Platform Orientation Relative to True North Figure 2.6 – East Espoir Phases of Operation Figure 2.7 – West Espoir Phases of Operation Figure 2.8 – Wave Loading Profile (Member Segmentation) Figure 3.1 – East Espoir Location of Joint Code Checks with Utilisations > 1.00 Figure 3.2 – West Espoir Location of Joint Code Checks with Utilisations > 1.00 Figure 4.1 – East Espoir Mode Shapes Figure 4.2 – West Espoir Mode Shapes
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
9 10 12 13 14 18 18 20 34 37 42 43
Page 5
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Appendices Appendix A Environmental Loading for Strength Analysis ......................................................... A-1 Appendix B Drilling Rig Footing Load Data ................................................................................... B-5 Appendix C East Espoir Strength Results ................................................................................... C-27 Appendix D West Espoir Strength Results .................................................................................. D-35 Appendix E Local Design Installation & In-Place Results for East Espoir ............................... E-43 Appendix F Local Design Installation & In-Place Results for West Espoir ............................... F-44 List of Tables No table of figures entries found. List of Figures Figure A.1 – Wave & Current Loading for 1y Return (Operating) Figure A.2 – Wave & Current Loading for 10y Return Figure A.3 – Wave & Current Loading for 100y Return FigureB.1 - Al-Baraka Drill Rig Footing for Slot Position 1 (kN) FigureB.2 - Al-Baraka Drill Rig Footing for Slot Position 4 (kN) FigureB.3 - Al-Baraka Drill Rig Footing for Slot Position 9 (kN) FigureB.4 - Al-Baraka Drill Rig Footing for Slot Position 12 (kN) FigureB.5 - Al-Baraka Drill Rig Footing for Slot Position 13 (kN) FigureB.6 - Al-Baraka Drill Rig Footing for Slot Position 14 (kN) FigureB.7 - Searex Drill Rig Footing for Slot Position 1 (kN) FigureB.8 - Searex Drill Rig Footing for Slot Position 4 (kN) FigureB.9 - Searex Drill Rig Footing for Slot Position 9 (kN) FigureB.10 - Searex Drill Rig Footing for Slot Position 12 (kN) FigureB.11 - Searex Drill Rig Footing for Slot Position 13 (kN) FigureB.12 - Searex Drill Rig Footing for Slot Position 14 (kN) FigureB.13 - Charlie Graves Drill Rig Footing for Slot Position 1 (kN) FigureB.14 - Charlie Graves Drill Rig Footing for Slot Position 4 (kN) FigureB.16 - Charlie Graves Drill Rig Footing for Slot Position 12 (kN) FigureB.18 - Charlie Graves Drill Rig Footing for Slot Position 14 (kN) FigureB.20 - Barracuda Drill Rig Footing for Slot Position 4 (kN) FigureB.21 - Barracuda Drill Rig Footing for Slot Position 9 (kN) FigureB.22 - Barracuda Drill Rig Footing for Slot Position 12 (kN) FigureB.23 - Barracuda Drill Rig Footing for Slot Position 13 (kN) FigureB.24 - Barracuda Drill Rig Footing for Slot Position 14 (kN) FigureB.25 - T8 Drill Rig Footing for Slot Position 1 (kN) FigureB.26 - T8 Drill Rig Footing for Slot Position 4 (kN) FigureB.27 - T8 Drill Rig Footing for Slot Position 9 (kN) FigureB.28 - T8 Drill Rig Footing for Slot Position 12 (kN) FigureB.29 - T8 Drill Rig Footing for Slot Position 13 (kN) FigureB.30 - T8 Drill Rig Footing for Slot Position 14 (kN) FigureB.31 - SeaHawk Drill Rig Footing for Slot Position 1 (kN) FigureB.32 - SeaHawk Drill Rig Footing for Slot Position 4 (kN) FigureB.33 - SeaHawk Drill Rig Footing for Slot Position 9 (kN) Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
A-2 A-3 A-4 B-6 B-6 B-7 B-7 B-8 B-8 B-9 B-9 B-10 B-10 B-11 B-11 B-12 B-12 B-13 B-14 B-15 B-16 B-16 B-17 B-17 B-18 B-18 B-19 B-19 B-20 B-20 B-21 B-21 B-22 Page 6
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.34 - SeaHawk Drill Rig Footing for Slot Position 12 (kN) FigureB.35 - SeaHawk Drill Rig Footing for Slot Position 13 (kN) FigureB.36 - SeaHawk Drill Rig Footing for Slot Position 14 (kN) FigureB.37 - BassDrill Drill Rig Footing for Slot Position 1 (kN) FigureB.38 - BassDrill Drill Rig Footing for Slot Position 4 (kN) FigureB.39 - BassDrill Drill Rig Footing for Slot Position 9 (kN) FigureB.40 - BassDrill Drill Rig Footing for Slot Position 12 (kN) FigureB.41 - BassDrill Drill Rig Footing for Slot Position 13 (kN) FigureB.42 - BassDrill Drill Rig Footing for Slot Position 14 (kN) Figure C.1 - East Espoir Member Utilisations > 1.00 for Al Baraka Drill Rig Figure C.2 - East Espoir Member Utilisations > 1.00 for Barracuda Drill Rig Figure C.3 - East Espoir Member Utilisations > 1.00 for BassDrill Alpha Drill Rig Figure C.4 - East Espoir Member Utilisations > 1.00 for Charlie Graves Drill Rig Figure C.5 - East Espoir Member Utilisations > 1.00 for Sea Hawk Drill Rig Figure C.6 - East Espoir Member Utilisations > 1.00 for Sea Rex Drill Rig Figure C.7 - East Espoir Member Utilisations > 1.00 for T8 Drill Rig Figure D.1 - West Espoir Member Utilisations > 1.00 for Al Baraka Drill Rig Figure D.2 - West Espoir Member Utilisations > 1.00 for Barracuda Drill Rig Figure D.3 - West Espoir Member Utilisations > 1.00 for BassDrill Alpha Drill Rig Figure D.4 - West Espoir Member Utilisations > 1.00 for Charlie Graves Drill Rig Figure D.5 - West Espoir Member Utilisations > 1.00 for Sea Hawk Drill Rig Figure D.6 - West Espoir Member Utilisations > 1.00 for Sea Rex Drill Rig Figure D.7 - West Espoir Member Utilisations > 1.00 for T8 Drill Rig
B-22 B-23 B-23 B-24 B-24 B-25 B-25 B-26 B-26 C-28 C-29 C-30 C-31 C-32 C-33 C-34 D-36 D-37 D-38 D-39 D-40 D-41 D-42
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 7
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
1.
Introduction
1.1
Background
1.1.1
General
The Espoir Field, located in Block CI-26 offshore Cote d’Ivoire, lies some 25km offshore in a water depth of around 110-120m and some 60km to the SW of Abidjan. CNR International (Cote d’Ivoire) S.A.R.L. (CNR) operate two wellhead platforms in the field: East and West Espoir. Both platforms are of broadly similar design and are unmanned three legged jackets with 3 skirt piles, each with 12 conductor slots and 2 deck levels. Planning is currently underway for the installation of two 36” conductors which will be retrofitted to both the East & West Espoir platforms.
1.2
Scope of Work
This report presents the strength and fatigue analysis methodology and results for East and West Espoir which demonstrate the ability of the jacket and topside structures to sustain the additional loading, from the new retrofit conductors and conductor clamps. The analysis results presented herein have been used in Atkins detailed design calculations of the conductor guides and clamps [16] [17]. For drilling/workover campaigns the platforms are designed to have a drilling rig skidded on to them, with drilling being tender assisted. For the purposes of this assessment, the drilling rig with maximum footing loads will be analysed over the corner well slots for the existing 3 x 4 conductor array and also the 2 new conductor slots. No assessment of intermediate skidding locations has been considered within this assessment. A total of 7 drill rigs have been analysed: Al Baraka, Barracuda, BassDrill Alpha, Charlie Graves, Searex 10, Seahawk and T-8. The platforms have been assessed for strength and fatigue in accordance with the guidelines given in API RP2A WSD [10], AISC [12] and ISO 19902 [11]. The results of this assessment are presented within this report. The structural analysis has been performed in accordance with the Atkins Basis of Design document prepared for this project [19].
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 8
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
2.
Technical Approach
2.1
General
The structural design data and design methodology is given in the Basis of Design document [19] which is referred to throughout this report. The East and West platforms are broadly similar in design and layout. Unless stated otherwise, any discussion refers to both platforms.
2.2
Computer Models
Atkins is CNR’s nominated structural integrity consultant and maintains structural computer models of both East and West Espoir for analysis and integrity management purposes. Strength and fatigue analyses of both platforms were performed in order to demonstrate the ability the jacket and topside structures to sustain the additional loading from the new retrofit conductors. The platforms have been designed to accommodate a tender supported drill rig, with drilling programmes in excess of 1 year in duration. Previous studies have shown the drill rig loading to be significant for strength and fatigue. Structural analyses were therefore performed both with and without the drill rig installed.
Figure 2.1 – East Espoir - Al Baraka Drill Rig Installed The two structural computer models (strength and fatigue) are principally the same, the only noteworthy differences being the foundation modelling (non-linear spring for the strength model, and linearised springs for the fatigue model) and the inclusion of a dummy structure to represent the drilling rig mass at the correct vertical CoG for the fatigue case during drilling. The two new 36” conductors have been added to the computer models. Lateral supports for the new conductors have been simulated at the following elevations, based on the results from the conductor design [16] [17]:
Production Deck
+15ft Jacket Level
-123ft Jacket Level
-225ft Jacket Level
The results from the conductor analysis [18] demonstrate that it is possible to increase the conductor span lengths although this does have an adverse impact on fatigue performance (Section 5). Lateral Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 9
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
supports at -46ft, -345ft (-335ft for West Espoir) jacket levels and at mudline are not required for the new conductors.
2.3
Software
The SESAM [21] [22] [23] [24] suite of structural analysis software was used for the structural analyses. The SACS structural analysis software was used for the original design of both platforms [1] [14]. The computer models were converted from SACS to SESAM GeniE software format and fully verified by Atkins. This model conversion has been documented in previous studies [7] [8]. The GeniE computer models were used by Atkins to assess the feasibility of installing the new conductors in 2008/9 [6] [7] [9].
West Espoir GeniE Model
East Espoir GeniE Model
Figure 2.2 – East & West Espoir GeniE Model Isometric View
2.4
Units of Measurement
The units and physical properties used in the analysis are given in Table 2.1 and Table 2.2. Item
Unit
Symbol
Comments
Length
Metre
m
Mass
Tonne
Te
1Te = 1000kg
Time
Second
s
For structural dynamics
Frequency
Hertz
Hz
Force
Kilonewton
kN
Stress
kilopascal
kPa
-3
1kPa = 10 MPa
Table 2.1 – Analysis Units Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 10
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Item
Symbol
Value 2
Gravitational acceleration
g
9.807m/s
Steel density
s
7.85Te/m
Young’s modulus for steel
E
2.1 x 10 kN/m
Poisson’s ratio for steel
0.3
Seawater density
w
1.025Te/m
3
8
2
3
Table 2.2 - Constants The existing structural drawings for East Espoir use imperial units (ft and in). This report on occasion refers to items using imperial units. This is done, where appropriate, for clarity.
2.5
Environmental Data
Environmental data for the strength and fatigue analysis is given in the Basis of Design document for this project [19].
2.6
In-place Strength Analysis
2.6.1
General
The strength analysis was performed for the inplace conditions, with the new 36” conductors added to the existing computer models. The structure / pile interaction includes non-linear analysis to account for the foundation properties, which are simulated as non-linear springs. Both member and joint strength code checks were performed to API-RP2A-WSD [10] / AISC ASD [12].
2.6.2
Drill Rig
Given the significance of the drill rig loading and the uncertainty over drill rig selection at this stage of the field development project, it was necessary to consider a range of drill rigs. Following guidance from CNR, a total of seven drill rigs were selected which are understood to cover the likely range of loading during drilling operations. As a minimum, each Drill Rig was simulated over the existing 12 conductor slots (four corner slots 1, 4, 9 and 12) and also the two new conductor slots 13 and 14. Although well slots 1 to 12 have already been drilled, including these within the load cases allows for skidding the drill rig into position over the new well slots and also possible future sidetrack operations over the existing slots. This was agreed with CNR. The drill rig loads include maximum derrick, substructure, equipment, drill pipe setback, mud tanks and hook (taken as derrick capacity) loads. Where data regarding the drill rig components was available, this was used to estimate the rig reactions on the skid beams for the new slot positions (13 and 14). Otherwise, drill rig reactions for new slot positions were determined from the Drill Rig reactions for existing slot positions. Plots with drilling rig reactions and support locations are provided in Appendix B. The maximum Drill Rig loads are summarised in Table 2.4 below.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 11
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure 2.3 – Espoir Drilling Slots The maximum drill rig loads included in the inplace strength analysis are listed in Table 2.3. Drill Rig
Total Weight
Hook Load
Supp. Dis. N-S
(tonnes)
(tonnes)
(m)
Supp. Move with Slots
Al Baraka
1461.0
430.0
9.754
Yes
SeaRex
1528.0
453.1
9.114
Yes
Charlie Graves
1219.3
340.2
9.754
Yes
Barracuda
1546.0
428.2
12.192
No
SeaDrill T8
1576.3
454.0
9.754
Yes
SeaHawk
1395.3
340.0
9.754
Yes
BassDrill Alpha
1125.0
317.5
9.144
Yes
Table 2.3 – Drill Rig Data
2.6.3
Soil Modelling
The pile-soil interaction was created automatically by GeniE and contains non-linear representation of lateral (p-y), vertical (t-z) and pile end-bearing (q-z) soil springs. Foundation properties were assigned to the piles and conductors below mudline.
2.6.4
Dynamic Amplification
Dynamic amplification factors (DAFs) were calculated based on the natural frequency analysis results (Section 4) to apply directly to the wave load cases for the inplace strength analysis. The period of both the storm and operating waves is quite long, hence the DAFs are small. Having determined the natural frequencies for the two load conditions, DAFs could then be calculated. The following relationship was used to calculate these.
DAF 1 /
((1 2 ) 2 (2 ) 2 )
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 12
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
where
/ n
=structural damping taken as 3% for storm condition and 2% for the operating condition
The DAF for the storm condition was calculated as 1.02 and 1.05 for the operating case.
2.6.5
Design Load Case Combinations
The following design load combinations were included in the inplace strength analysis and code checks: Operating Dead + Live + 1y Wave + 1y Current + 1y Wind + Drill Rig Loads Storm 1) Dead + Live + 100y Wave + 10y Current + 10y Wind + Drill Rig Loads 2) Dead + Live + 10y Wave + 100y Current + 10y Wind + Drill Rig Loads 3) Dead + Live + 10y Wave + 10y Current + 100y Wind + Drill Rig Loads Three design load case combinations for storm conditions have been considered as recommended by the Metoc report for design purposes [20] based on joint probability of occurrence data, since the maximum wave height, current speed and wind speed do not occur simultaneously. This is consistent with previous Atkins reports [6] [7] [8] [9]. Environmental loading from twelve approach directions at 30° sectors was analysed, as shown in Figure 2.4. The Espoir jackets are triangular in plan and it is necessary to consider wave loading from at least twelve directions to capture the most onerous overturning moment and base shear conditions.
Figure 2.4 – Environmental Loading Approach Directions For both platforms, Platform North is towards Leg B (from the platform) and True North is 22.5° anticlockwise from Leg B (Figure 2.5).
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 13
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure 2.5 – Platform Orientation Relative to True North All environmental data for Espoir was provided in the Metocean reports for 8 sectors (N, NE, E, SE, S, SW, W, NW), relative to True North. An approximation was made to simplify assigning directional environmental data, described as follows:
True North is 22.5° anti-clockwise from Leg B (Figure 2.5) but this was assumed to be 30°, hence it aligns with the 300° approach direction shown in Figure 2.4. This is a small approximation given the uncertainties inherent with Metocean predictions.
Using the above to relate the Metocean data to the twelve wave approach directions, the approximation has been made that N = 300°, NW = 330°, W = 30°, SW = 60°, S = 120°, SE = 150°, E = 210°, NE = 240°.
Data for 0°, 90°, 180°, 270° approach directions is based on the most onerous conditions from adjacent sectors based on a comparison of base shear and overturning moment for combined wave and current loading. It was considered too conservative to adopt the worst wave and worst current from adjacent sectors.
A schematic representation of wave and current loading (1y, 10y and 100y return) by direction are given in Appendix A. A total number of 2016 load case combinations were considered during the current strength analysis (4 design load case combinations, 12 directions, 7 rigs and 6 well slots). Strength results are reported herein for each Drill Rig separately to facilitate comparison and Drill Rig selection. Results are presented with the corresponding governing load case combination. The load case combination names are abbreviated “X_R_W_direction” and the nomenclature adopted is “X” for the environmental loading, “R” for the Drill Rig “W” for the well slot number and “direction” refers to the environmental loading. An example is given in Table 2.4 below.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 14
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Load Combination Name
Description
X_R_W_0
X Storm - R Rig - Well W - 0 deg
X_R_W_30
X Storm - R Rig - Well W - 30 deg
X_R_W_60
X Storm - R Rig - Well W - 60 deg
X_R_W_90
X Storm - R Rig - Well W - 90 deg
X_R_W_120
X Storm - R Rig - Well W - 120 deg
X_R_W_150
X Storm - R Rig - Well W - 150 deg
X_R_W_180
X Storm - R Rig - Well W - 180 deg
X_R_W_210
X Storm - R Rig - Well W - 210 deg
X_R_W_240
X Storm - R Rig - Well W - 240 deg
X_R_W_270
X Storm - R Rig - Well W - 270 deg
X_R_W_300
X Storm - R Rig - Well W - 300 deg
X_R_W_330
X Storm - R Rig - Well W - 330 deg
Table 2.4 – Load Case Combination Nomenclature Notes1) “X” represents the environmental loading condition and varies as follows: - O - Operating Storm (1 yr wave + 1 yr current + 1 yr wind ) - S1 - Extreme Storm (100 yr wave + 10 yr current + 10 yr wind) - S2 - Extreme Storm (10 yr wave + 100 yr current + 10 yr wind) - S3 - Extreme Storm (10 yr wave + 10 yr current + 100 yr wind) 2) “R” represents the Drilling rig and varies as follows: - AB - Al Baraka - BR - Barracuda - BS - Bass Drill - CG - Charlie Graves - SH - Sea Hawk - SR - Sea Rex - T8 - Sea Drill T8 3) “W” represents the Well slot number and varies as follows - 1 - Well Slot 1 - 4 - Well Slot 4 - 9 - Well Slot 9 - 12 - Well Slot 12 - 13 - Well Slot 13 - 14 - Well Slot 14
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 15
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
2.6.6
Installation Conditions
Strength analyses have also been performed for installation conditions, with the conductors partially installed. The new clamps, guides and supporting framing have been assessed for impact loads representative of hang-up of the conductor during running (Section 6).
2.7
Fatigue Analysis
2.7.1
General
Previous studies have shown the platforms to be dynamically sensitive and small changes in natural period can result in large changes in the fatigue performance. The fatigue analysis was run as a dynamic spectral fatigue analysis as the resulting fatigue damage has been shown to be considerably more onerous than when analysed statically [3]. The rate of fatigue damage increases significantly when the drill rig is supported by the platform. There are distinct phases of operation:
Transportation of jacket from fabrication yard to Espoir field
First platform installation (no drill rig, no conductors)
First drilling programme (platform supporting drill rig)
Normal operation with 12 x 26” OD conductors installed (no drill rig)
Subsequent drilling programmes with 12 x 26” OD conductors installed (platform supporting drill rig)
Drilling programme to install two new 36” OD conductors (platform supporting drill rig)
Normal operation with 12 x 26” OD + 2 x 36” OD conductors installed (no drill rig)
Any future drilling programmes with 12 x 26” OD + 2 x 36” OD conductors installed
There is a different rate of fatigue damage associated with each phase of operation. The above has been simplified to transportation to the field and four in-place phases of operation for fatigue analysis purposes:
Transportation of jacket from fabrication yard to Espoir field
Drilling with 12 x 26” OD conductors already installed
Normal operation (no drill rig) with 12 x 26” OD conductors already installed
Drilling with 12 x 26” OD + 2 x 36” OD conductors already installed
Normal operation (no drill rig) with 12 x 26” OD + 2 x 36” OD conductors already installed
In reality the conductors were installed over a period of many years whereas the analysis assumes the conductors are installed rapidly which is conservative. At the time of writing, the drill rig to be used for forthcoming drilling programme is uncertain. A number of possible drill rigs have been considered for the strength analysis. There have been a total of three previous drilling programmes on the Espoir platforms and the Al Baraka drill rig has been used for all. As noted above, the Al Baraka drill rig may not be used for drilling the new 36” conductors. Previous analysis performed by Atkins [3] has shown that the dynamic effect between different drill rigs is small. It was therefore considered to be reasonable to perform the natural frequency analysis and subsequent fatigue analysis for a single drill rig, rather than for a range of drill rigs. Owing to the different phases of operation, each requiring separate analysis, considering more than one drill rig for fatigue would be unnecessarily complex.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 16
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
2.7.2
Transportation to Espoir Field
The East Espoir jacket was fabricated in Louisiana and towed by barge across the Atlantic to the Gulf of Guinea in December 2000. In 2004 Atkins performed a fatigue analysis of the jacket during the tow using environmental data supplied by Metoc [3]. The results showed that a group of welds experienced a large amount of damage during transportation (Section 5). The West Espoir jacket was fabricated in Sardinia and the tow was across the Mediterranean rather than the Atlantic. Fatigue damage to the West Espoir jacket during tow is covered in the original design documentation for West Espoir. This study has not been repeated as part of this current work scope One of the findings of the previous analyses for East Espoir was that, due to the differences in the transport and inplace configurations, the joints that were critical for the operational conditions were not critical for transport. However, for completeness, transportation fatigue has been considered in the fatigue discussion in this report (Section 5).
2.7.3
Phases of Operation and Durations
The planned phases and durations of operations are therefore important inputs when calculating fatigue lives. CNR provided the following information. Phase I East Espoir:
20/04/01 – 22/09/03
Phase II East Espoir: West Espoir:
16/01/05 – 11/04/06 12/04/06 – 03/02/08
Phase III Min Campaign East Espoir: 01/02/12 – 01/05/12 West Espoir: 01/07/11 – 01/02/12 Med Campaign East Espoir: 01/06/12 – 01/01/13 West Espoir: 01/07/11 – 01/06/12 Max Campaign East Espoir: 01/07/13 – 01/12/13 West Espoir: 01/07/11 – 01/07/13 CNR has advised that the projected EOFL for both platforms is 2036. It is noted that the original design life was 20 years [1] [14]. It is understood from CNR that there is a possible project delay of 6 months which could be added to the dates given above. It is conservative to assume this development project runs to schedule and given the uncertainties the above dates have been used unaltered. The Med campaign is the most onerous for East Espoir and the Max for West Espoir. The aforementioned campaigns have the longest drilling durations and as previously noted the platforms are subjected to accelerated fatigue damage when supporting the drill rig. The drilling durations adopted for both platforms are presented in Figure 2.6 and Figure 2.7 below.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 17
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure 2.6 – East Espoir Phases of Operation
Figure 2.7 – West Espoir Phases of Operation
2.7.4
Linearisation of Soil Springs
To allow linear soil springs to be developed for the fatigue model, the centre of damage wave for the scatter data provided was determined. An in-house developed spreadsheet was used for this purpose with the assumption that the fatigue waves for the Espoir site were highly inertial with respect to loading on the jacket. The centre of damage wave was found to have an Hs of 1.94m and Tz of 7.34s. Soil springs for this wave case were developed and used for the fatigue analysis.
2.7.5
Environmental Data
2.7.5.1
General
The sea state at the Espoir field, and generally in the West of Africa offshore region, can be characterised by two distinct seas. Firstly there is the local wind driven sea and secondly there is the swell waves generated by storms in the South Atlantic. It is not possible to represent this bi-modal seasate using a single JONSWAP spectrum as was attempted in fatigue analysis performed for the original design [1]. The original design fatigue analysis used a single JONSWAP wave spectrum with a gamma (peak enhancement factor) of 3.3. The scatter diagram that this was used indicated that only the swell waves were being included. This is an important issue because the local sea waves will have higher frequencies than the swell waves. These high frequency waves will be closer to the natural period of the platform than the swell waves and hence it is important that they are considered. An Ochi-Hubble spectrum was used for the fatigue analyses reported herein, consistent with previous fatigue analyses performed by Atkins for the Espoir platforms [3] [6] [8]. This spectrum is used to represent bi-modal seas. Ochi-Hubble data is provided in the Basis of Design document for this project and supplied by Metoc for Atkins’ 2004 reassessment of East Espoir. The Cd and Cm values were altered in accordance with API to reflect the inertia dominance of fatigue waves, as presented in the Basis of Design.
2.7.5.2
Wave Height Selection
A wave steepness of 1:18 has been adopted for the fatigue analysed consistent with previous fatigue studies [3] [6] [8].
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 18
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
2.7.6 2.3.4
Fatigue S-N Curves SN Curves
For tubular joints on the jacket, the T curve for joints in seawater with cathodic protection was used. For other joint types such as tubular butt joints, the P curve in seawater with cathodic protection was used together with the appropriate classification factor. 2.3.5
Stress Concentration Factors
For tubular joints on the jacket, Efthymiou parametric equations were used to calculate the SCF magnitudes at all joints. A 1.5 lower bound cut-off was applied. For other joint types, a default value of 5.0 was applied for all SCFs. This was then refined if it was found that joints fatigue lives fell below the required target life. In-house software was used to calculate SCFs taking geometric properties and misalignment effects into account. Two joints associated with the launch bracing on leg C2 are internally ring stiffened and have external grout filled pie sectors welded to them. No account was taken of these in the analysis with normal Efthymiou SCFs being applied at these joints. It was felt that the effect of the stiffening would result in a less onerous SCF.
2.7.7
Damping
A viscous damping ratio of ζ= 2% of critical damping has been used in accordance with the guidance presented in ISO 19902 [11]. The damping has been applied in the form of a structural damping parameter η in the direct frequency analysis method. The relationship between the structural damping parameter η used in the direct stiffness method and the viscous damping parameter ζ is η = 2 ζ. Thus, a structural damping of η = 0.04 has been used.
2.7.8
Member Segmentation
When wave loading is applied to a member, it is applied as a linearly varying distributed load. This is an approximation as in reality the wave loading will vary non-linearly. For low frequency (high period) waves the approximation is sufficient close, but for high frequency (low period) waves the approximation can be overly conservative. This is demonstrated in Figure 2.8. A high degree of segmentation was used in order to accurately model the wave loading.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 19
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
6.00 second w ave
0
0
-2
-2
-4
-4
depth below SWL
depth below SWL
2.74 second w ave
-6
-8
-6
-8
-10
-10
-12
-12
-14
-14 0
200
400
600
800
1000
1200
0
Wave load on a conductor (N/m )
200
400
600
800
1000
1200
Wave load on a conductor (N/m )
Figure 2.8 – Wave Loading Profile (Member Segmentation)
2.7.9
Selection of Transfer Functions
The transfer function frequency selection follows the method given in ISO 19902 [11]. The frequencies for the transfer functions were based on multiples of the leg and conductor spacing. In addition to this the natural frequencies of the structure were included along with some closely spaced frequencies either side so the true effect of any peaks in the response about the natural period were accurately modelled. A total number of 60 wave frequencies were selected for each fatigue analysis.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 20
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
3.
In Place Strength Analysis Results
3.1
General
The results from the feasibility studies performed by Atkins showed [6] [7] [9] that the East and West Espoir platforms are generally acceptable for strength, in accordance with the design codes and with appropriate safety factors, with the addition two new 36” conductors. The strength results showed the following:
Base shear increased by approximately 11% with the addition of the two new 36” diameter conductors.
The addition of the two new conductors has a small effect on the overall strength code checks.
Drill rig selection and position are much more significant.
Linear strength analysis code check results showed a small number of member and joint over utilisations. For East Espoir, overall system capacity was demonstrated through non-linear analysis to meet the requirements of API RP2A LRFD [25] for still water and 100y storm conditions with the most onerous drill rig configuration.
Some local topsides strengthening may be required, depending on Drill Rig selection, and should be addressed in detailed design.
A limited number of drill rigs, environmental loading directions and slot positions were considered in the original design of both platforms. Consequently, there are some areas which are over utilised without the addition of the new conductors.
It is noted that the strength analyses performed during the feasibility studies assumed conductor lateral support to be provided to the new conductors at the Production Deck and all jacket levels. As discussed in Section 2.2, the results from the conductor analysis demonstrate that it is possible to increase the conductor span lengths. Lateral supports at -46ft, -345ft (-335ft for West Espoir) jacket levels and at mudline are not required for the new conductors. The +15ft and -123ft jacket levels in particular will be subject to greater loads than previously considered. The strength analysis models have been modified with the planned conductor guide arrangement, environmental loading and other general model updates as detailed in Section 2.
3.2
Code Checks
3.2.1
General
All strength code check results are presented as utilisations. A utilisation less than or equal to 1.0 is acceptable, in accordance with the design codes and with appropriate safety factors. Where utilisations above 1.0 have been obtained, supplementary hand and / or spreadsheet calculations have been performed where appropriate to better understand the code check failures. Strengthening concepts have been proposed but have not been designed at this stage as the specific requirements and the extent of any strengthening is very dependent on drill rig selection.
3.2.2
Member Code Checks
Member strength code checks, including hydrostatic collapse were performed using the SESAM FRAMEWORK code checking software to API RP2A-WSD [10] for tubulars and AISC ASD [12] for non-tubular beams and columns. A 1/3 increase in allowable stresses is permitted in the design codes for extreme environmental conditions [10]. This increase has been included in the tubular code checks for extreme storm conditions (S1, S2, S3, ref Table 2.4). For the Espoir platforms, the drill rig is a very significant load Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 21
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
and governs the design of the topsides members. The basic allowable stresses have therefore been used in all topsides beam and column code checks, without any increase for storm conditions, as the topsides are not significantly affected by environmental loading.
3.2.3
Joint Code Checks
Tubular joint code checks were performed to API RP2A-WSD [10]. There are two utilisations are calculated for each joint, a load based utilisation and a geometry based utilisation. The results presented show only the largest utilisation. The geometry based utilisation is semi-empirical check performed in API to ensure that a joint has at least 50% of the strength of the member. This is a good design check more than anything else, and is based on geometry alone, not the applied loading. A geometric over-utilisation tends to suggest that the joint may be the weak point (rather than the member), but does not indicate failure. For reassessment of existing joints the geometry based utilisation can be ignored [10].
3.2.4
Pile Code Checks
Two utilisations were calculated for each pile and load case combinations. The first was a soil failure criteria, which measured the capacity of the pile (with a factor of safety of 2.0 as per API RP2A-WSD [10]) against the pile axial load. The second was a pile yield failure criteria where the yield stress of the pile (with a factor of safety of 1.67 as per API RP2A) against the maximum stress in the pile. The results reported are the maximum of the two values.
3.3
East & West Espoir
3.3.1
Member Code Check Results
3.3.1.1
General
Maximum code check results for members, including checks against hydrostatic collapse, are presented in Table 3.2 (East Espoir) and Table 3.5 (West Espoir). The locations of member over utilisations are illustrated for each drill rig in Appendix C (East Espoir) and Appendix D (West Espoir). The code check results show that there are some over utilisations, although the number of over utilisations varies considerably between drill rigs. The heaviest drill rigs with footing positions most eccentric to the centre of the platform give the most over utilisations, as expected.
3.3.2
Joint Code Check Results
Maximum joint code checks are shown in Table 3.3 (East Espoir) and Table 3.6 (West Espoir). All joints satisfy the geometric code check requirements. All joint over utilisations are from the load capacity code check. There are four jacket joints and four topsides joints which show over utilisations. The locations of these joints are shown in Figure 3.1 (East Espoir) and Figure 3.2 (West Espoir).
3.3.3
Pile Code Check Results
The pile yield failure criteria consider the yield stress of the pile (with a factor of safety of 1.67 as per API RP2A [11]) against the maximum stress in the pile. The pile yield failure utilisations are all reported to be less than 0.5, for all piles and all load cases. For the foundation capacity criteria, which measure the capacity of the pile against the pile axial load, the ultimate pile-soil capacity is presented as factors of safety given in Table 3.4 (East Espoir) and Table 3.7 (West Espoir). In all cases the factors of safety have exceeded minimum requirements (2.0 for operating and 1.5 for storm as per API RP2A WSD [10]) and are acceptable.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 22
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
3.4
Review of East & West Espoir Code Check Results
3.4.1
Summary
The element and joint code check for East and West Espoir have been reviewed to assess any overutilisations noted from the automatic code checks. Each over-utilisation is discussed in the section below, but can be broadly fitted into one of five categories.
Likely to be acceptable. These are occasions where there is a mitigation in place for the over utilisation (such as additional stiffening which is not modelled) and it is judged likely that this would reduce the utilisation to an acceptable level.
Possibly acceptable with further assessment. These are occasions where there are mitigations available, but it is not clear that the mitigations would be sufficient to reduce the utilisations to an acceptable level and as such further assessment is required.
No mitigation but low utilisation. These are occasions where no mitigation is available, but the utilisations are sufficient low that strengthening would be uneconomical, and as such the utilisations are considered acceptable.
Strengthening required. These are occasions where there is no mitigation available and the utilisations are high enough to make a case for strengthening.
Other mitigation. These are occasions where a non-standard mitigation is offered. Further assessment would be required.
The following table (Table 3.1) presents a summary of the code check mitigations for East and West Espoir. Checks East Member Code Checks Drilling Deck Skid Beams Members Framing Into Skid Beams Centre of Grid Line 1 Framing into Crane Pedestal Production Deck South Face Beam, Framing into Diagonal Supports Miscellaneous Beams Framing into Tubulars Production deck framing Topsides Columns Jacket Top of Leg B Bottom Plan Level East Joint Checks Deck Leg Joints Above Stab-In Cones Joint at Process Deck, Leg A Joints within Transport Bracing, Faces AB and BC West Member Code Checks Drilling Deck Skid Beams Members Framing Into Skid Beams Production Deck Members at South End of Girders A and C Members Framing into Girder C Member Mid-Span of Girder 1 Member South–East Corner of Deck Topsides Columns Topsides Braces Diagonal Braces to Leg, Row 2 Jacket Top of Leg B West Joint Checks
Likely
Possible
Low UF
Strengthening
Other
9 16 2 1 3 3 3
1 1 4
2
1 2 3 1 2
13 2 4 1 1 1 1
2 2 3
2
Table 3.1 – East & West Espoir Code Check Mitigation Summary Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 23
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
It can be seen from Table 3.1 that the majority of over-utilisations look likely to be easily resolved through simple mitigation measures. The remainder require some further assessment, but may well be resolved without recourse to strengthening. Only a few circumstances exist where strengthening may be required, but even then mitigation may be possible through an overall structural integrity approach as presented in ISO 19902 [11].
3.4.2
Review of East Espoir Member Checks
3.4.2.1
Drilling Deck
Skid Beams There are 9 members over utilised on the drilling deck skid beams. Not all nine occur for the same drilling rig, but the most onerous occur for the Al-Baraka. Given that any strengthening would only be designed for the selected rig, only one rig has been considered here, which is the Al-Baraka. Considering the Al-Baraka, there are 4 over utilised members, 3 are shear failures which occur near connections to the columns, and one is a bending failure nearer to mid-span. The highest utilised shear failure was UF=1.18, the bending failure has a utilisation of 1.16. This member is modelled as 1067mm deep beam. However that depth represents only the depth of the primary steel. In reality there is actually a skid beam located on top of the support structure that increases the total depth of the member to 1727mm. This increased depth is expected to be sufficient to reduce these utilisations to below 1.0 and acceptable.
Members Framing Into Skid Beams There are 16 over utilised members framing into the skid beams. All 16 are over utilised for the AlBaraka, with the other rigs having fewer over utilisations (Charlie Graves is the next most onerous with 7). From the drawings it is clear that these joints actually have a number of features that are not represented in the model, such as offsets to faces of tubular and web and flange plates at the joints. As an example, element 1008, with a utilisation of 1.87 at the end where it frames into the skid beam, is dominated by bending. Note that this beam also has a shear utilisation of 1.43. This is modelled as 1067x12x254x25mm, where as in reality there is actually a star plate at this connection. No drawings are available of the star plate, but from the available drawings, the star plate is at least 3 times as wide as the beam itself. This would likely be sufficient to reduce the utilisation of this beam to acceptable levels. Other beams would be able to utilisation similar non-modelled features.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 24
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Centre of Grid Line 1 There are two members (899 and 900) on the centre of Grid line 1 where the diagonals frame in (2 vertical and 2 horizontal). Both have minor over utilisations (1.01 and 1.03 in shear). Both of these are shear failures due to load transfer between the two incoming braces. The over utilisations are conservative as (a) there is stiffening in the joint not account for in the model and (b) the beam model representation of this joint gives a conservative view as it does not account properly for how the loads are actually transferred through the joint. Given conservatisms in the modelling and the low over utilisations, these elements are considered acceptable. Member Framing into Crane Pedestal Element 919 has a utilisation of 1.17 and frames into the crane pedestal (actually one element before). This is a shear failure due to an incoming diagonal from underneath. In reality the web is stiffened at the incoming brace. A more detailed check would we required to confirm that this joint is adequate, however, given that the over-utilisation is only for the Al-Baraka rig, and that the platform was designed for this rig, then it is assumed that the detailed checks would prove the joint to be adequate.
3.4.2.2
Production Deck
South Face Beam, Framing into Diagonal Supports These are beams that frame into a joint with a wide flange. The wide flange is not modelled, but a doubling of the available flange width is achievable from the given geometry. This would double the section modulus, and half the moments, which would have the effect of halving the utilisations for the elements failing in bending. The shear over-utilisation is very small (1.01), and while the geometry of the joint suggests no enhancements are possible, the low level of over-utilisation would suggest that stiffening the joint would be uneconomical.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 25
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Miscellaneous Beams Framing Into Tubulars
All of these elements are where a beam frames into a tubular. In all cases the following apply. i)
The beams are modelled to the centre of the tubular with no offset. Backing off the moments would reduce the code check.
ii)
There are flange plates on all the intersections which will reduce the bending stress.
Bearing these two points in mind, elements 647,787 and 806 all have low levels of over-utilisation and as such are deemed acceptable by inspection. Element 621 would require further investigation to ensure that the measures noted above were sufficient to reduce the utilisation to an acceptable level. Miscellaneous Three production deck members form part of the deck framing around the new conductors slots. These members should be adequately sized as part of the design process.
3.4.2.3
Topsides Columns and Vertical Braces
Note that these members have been checked using API-WSD with a 1/3 allowable increase. The 1/3 increase is not strictly appropriate for these members given that the loading is dominated by the drill rig. The members in question are all over-utilised in the operating case. It is possible the storm case will be slightly worse once the 1/3 increase is removed, but probably not significantly worse as the only difference between storm and operating is the environmental loads which should not greatly affect these members. The elements can be grouped into three actual members Diagonal Brace on Row 2
Second Diagonal Brace on Row 2
South Most Truss Colum A
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 26
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
There is little in the way of justification that can be offered for these members and strengthening may be required depending on the drill rig selected. However, the over utilisations are reasonable low (albeit the storm cases are incorrect with the 1/3 increase), and it is suggested that any strengthening assessment is left until after a rig has been selected and more accurate loading data obtained.
3.4.2.4
Jacket
Top of Leg B (at boat bumper) Element 403 is at the top of Leg B, near the boat bumper. It has a utilisation of 1.03 for the Al-Baraka rig (it is below 1.0 for all other rigs). In the model this element is modelled as a 1219mm x 25.4mm tube, where as the drawings show a 1219mm x 31.75mm. This is the corrosion allowance. If so, actual wall thickness could be measured and used. This may be enough to reduce this slight over-utilisation. If it cannot be reduced by increasing the wall thickness, then the over-utilisation is very small and stiffening of this member would be uneconomical. Since it is so low it could be judged acceptable by inspection. Bottom Plan Level
These very slight over-utilisations are a result of the combined effects of tension and hydrostatic pressure. The over-utilisations are small and any effort to strengthen them would be uneconomical. The lower level of plan bracing is relatively redundant and a failure would have little impact on structural stability. Therefore it is judged that these are OK by inspection.
3.4.3
Review of East Espoir Joint Checks
3.4.3.1
Deck Leg Joints above Stab-In Cones
These are the joints where the vertical diagonal braces from the deck meet the deck leg just above the stab-in cones.
Each of these joints is ring-stiffened and as such the punching shear checks are irrelevant. A check however should be performed on the adequacy of the stiffeners for the given load. It should also be noted that the chord for leg B is modelled as 1219mm x 41.275 mm where as the drawing gives the dimensions as 1219mm x 44.45mm. Correcting this will provide a small benefit.
3.4.3.2
Joint at Process Deck, Leg A
This joint is stiffened so as before the punching shear checks are irrelevant. Given that the overutilisation is small without stiffener, it is likely that is will be acceptable with stiffeners, so no further checks are required.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 27
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
3.4.3.3
Joints within Transport Bracing, Faces AB & BC
These are the same joint at two locations (opposite faces) at elevation -84.318m.
There is no mitigation available for these over-utilisations and the magnitude of the utilisation tends to preclude accepting them as-is. However the bracing in the area in question was mostly designed to support the jacket during transportation and a majority of the braces at this joint not required for the inplace condition. The critical brace is not integral to overall inplace integrity of the jacket. It could therefore be argued that any failure of this brace would not affect the overall integrity of the jacket. A bigger concern would be damage to the chord, which is part of the primary structure. The best solution would be to remove the brace completely rather than attempt any strengthening. Further analysis would be required to fully understand the impact of removing the problem brace.
3.4.4
Review of West Espoir Member Code Check Results
3.4.4.1
Drilling Deck
Skid Beams There are 14 over utilised elements on the drill deck skid beams. However only the support steel work is modelled (1070mm deep beam) and not the additional skid beam steel work (brings the total depth to 1730mm). Taking account of this additional steel work would reduce the bending stress by at least a factor of 2 and the applied shear stress by a factor of at least 1.5, both of which would be sufficient to reduce all the code checks to acceptable levels.
Members Framing Into Skid Beams There are two over utilised members framing into the Skid beams.
These two beams are dominated by bending at the end where they are connected to the skid beams. However there are no end offsets, so these code checks are artificially high. A check should be performed to determine whether backing off the moments will results in a sufficient reduction to make the members acceptable. Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 28
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
3.4.4.2
Production Deck
Members at South End of Girders A&C
These are beam members between an incoming vertical column (from above) and an incoming vertical diagonal brace (from below). The shear failures are as a result of the load transfer between these two members. The drawings indicate that the joints are comprehensively stiffened, and as such the load transfer mechanism will not be pure shear as indicated in the code checks. Further checks would be required to ensure that inclusion of the effect of the stiffening would reduce the utilisation of this member to an acceptable level, although it is judged that this would have a positive outcome. Member Framing Into Girder C
This is a member end which frames into girder C at the intersection with a vertical column. There is already an offset on this member, so there is no additional benefit to be gained there. There is however an un-modelled star plate at that location, which will provide sufficient additional benefit to reduce this utilisation to acceptable levels. Member Mid-Span of Girder 1
This element is situated approximately mid span of girder 1. It it’s the first element of regular beam after a stiffened section. Based on the drawings there is nothing simple that can be done to justify this utilisation. However, the deck framing which sits above the main deck steelwork is only tied at certain points to the main steel. Based on the assumption that the framing is continuously connected to the main steel, the frequency of the connections could be increased in this region, which would allow the main girder and framing to act as one in this region and potentially reduce the utilisations. However it is not certain that the framing will have enough spare capacity to reduce the utilisation sufficiently. Member, South East Corner of Deck
There is nothing that can be offered in the way of mitigation for this member, other than the fact that the over-utilisation is very small. The utilisations are very similar for all rigs, which tends to suggest that this is not a function of the chosen drill rig.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 29
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
3.4.4.3
Topside Columns
These are columns between the production and drilling decks at the southern face of the topsides. There are two columns and they are over utilisations on the lower and upper ends. The lower ends have been modelled incorrectly in that they have a 762ODx25WT section. In reality the section at the lower end is 762ODx35WT. The additional 10mm wall thickness should be enough to reduce the utilisations to acceptable levels. There is no such justification available for the upper sections, but since the over utilisation is small, strengthening them would seem uneconomical and they could be considered acceptable as-is.
3.4.4.4
Topsides Braces
Diagonal Braces To Leg, Row 2 These two elements are at the end of the brace where it frames into the leg below the deck.
There is no simple justification of these members. No offset has been modelled at the end of 520 where it connects with the leg. Accounting for the offset will reduce the moment a little, but since the next member along (1501) is also over utilised, this alone will not be sufficient. In reality this is a continuous member from the drill deck down to the top of jacket. However, the element has been modelled (as is necessary), with several members. The upper section (between the drill and production decks) and the lower section (between the production deck and the leg) are misaligned by approximately 10 degrees. It is likely that this misalignment is responsible for a proportion of the bending in this lower section. It is suggested that the model is modified to reflect the correct geometry. They may be sufficient to reduce the utilisation to acceptable levels.
3.4.4.5
Jacket
Top of Leg B
There is nothing easy that can be done to justify these members. These three members are in the splash zone and as such have a corrosion allowance of 6mm applied. As an alternative to strengthening the leg, it is recommended that the leg is inspected and the actual wall thickness measured. A reduction in the corrosion allowance for 6mm to 3mm would likely be sufficient to reduce the utilisations to acceptable levels. However, it should be noted that this leg has been subject to ship impact in the past and any mechanical damage to the leg could result in a lower axial capacity.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 30
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
3.4.5
Review of West Espoir Joint Checks
There are two over utilised joints on West Espoir. These are where the diagonal braces meet the deck legs on legs A and B. Since the joints are un-stiffened there is nothing that can be offered in the way of mitigation for these over-utilisations other than to note that they are low.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 31
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Bm403
Jacket Leg
All Rigs 1.033
0.997
Charlie Graves 0.929
Bm544
Topside Vl. Br.
1.012
0.726
0.403
0.840
1.012
0.994
0.73
0.778
Bm545
Topside Vl. Br.
1.148
0.84
0.356
1.148
1.065
0.911
0.773
0.822
Bm1295
Jacket Hz. Br.
1.041
1.041
0.968
1.016
1.023
0.987
1.010
1.028
Bm1297
Topside Vl. Br.
1.042
1.042
0.974
1.041
1.035
0.994
1.023
1.041
Bm1597
Topside Vl. Br.
1.103
0.798
0.342
1.103
1.01
0.872
0.746
0.794
Bm1610
Topside Vl. Br.
1.011
0.636
0.241
0.355
0.347
0.203
0.935
1.011
Bm1638
Topside Vl. Br.
1.041
0.863
0.414
0.866
1.041
0.942
0.784
0.848
Bm1640
Topside Vl. Br.
1.072
0.935
0.363
1.041
1.072
0.889
0.802
0.867
Bm566
Production Deck
1.173
0.997
1.009
1.151
1.147
1.173
1.047
1.049
Bm593
Production Deck
1.561
1.326
1.249
1.561
1.429
1.392
1.318
1.318
Bm595
Production Deck
1.157
1.154
1.148
1.139
1.157
1.156
1.149
1.147
Bm596
Production Deck
1.015
0.888
0.443
0.768
0.718
0.527
0.944
1.015
Bm621
Production Deck
1.114
0.781
0.57
1.100
1.058
1.114
0.796
0.796
Bm647
Production Deck
1.381
0.913
0.473
1.3801
1.038
0.914
0.797
0.804
Bm787
Production Deck
1.024
0.873
0.743
1.024
0.918
0.869
0.841
0.840
Bm806
Production Deck
1.035
0.751
0.286
1.035
0.808
0.697
0.614
0.622
Bm871
Drilling Deck
1.12
1.120
0.431
0.702
0.528
0.506
0.323
0.346
Bm883
Drilling Deck
1.027
0.606
0.207
1.027
0.697
0.664
0.483
0.486
Bm887
Drilling Deck
1.769
1.054
0.406
1.769
1.208
1.099
0.822
0.830
Bm889
Drilling Deck
1.100
0.661
0.221
1.100
0.748
0.682
0.518
0.520
Bm899
Drilling Deck
1.012
0.655
0.25
1.012
0.677
0.658
0.483
0.483
Bm900
Drilling Deck
1.030
0.689
0.271
1.03
0.701
0.63
0.51
0.513
Bm909
Drilling Deck
1.445
0.804
0.262
1.445
0.960
0.978
0.624
0.624
Bm911
Drilling Deck
1.567
0.878
0.281
1.567
1.045
1.049
0.682
0.681
Bm912
Drilling Deck
1.181
0.459
0.539
1.181
0.597
0.729
0.645
0.712
Bm919
Drilling Deck
1.168
0.676
0.223
1.168
0.780
0.793
0.52
0.521
Bm950
Drilling Deck
1.178
0.684
0.23
1.178
0.800
0.716
0.544
0.544
Bm952
Drilling Deck
1.154
0.670
0.234
1.154
0.777
0.725
0.529
0.528
Bm974
Drilling Deck
1.526
0.910
0.297
1.526
1.037
1.018
0.703
0.705
Bm976
Drilling Deck
1.512
0.891
0.306
1.512
1.019
1.036
0.687
0.688
Bm977
Drilling Deck
1.165
0.893
0.35
1.165
0.796
0.962
0.838
0.901
Bm985
Drilling Deck
1.071
1.071
0.275
0.738
0.951
0.778
0.952
1.025
Bm986
Drilling Deck
1.070
1.070
0.213
0.858
0.967
0.708
0.96
1.032
Bm987
Drilling Deck
1.000
0.834
0.236
0.939
0.881
1.000
0.687
0.761
Bm988
Drilling Deck
1.130
0.823
0.192
1.13
0.889
0.917
0.696
0.77
Bm989
Drilling Deck
1.060
0.805
0.329
0.972
1.06
0.965
0.815
0.894
Bm990
Drilling Deck
1.098
0.824
0.28
1.098
1.063
0.906
0.809
0.888
Bm995
Drilling Deck
1.671
1.053
0.485
1.671
1.268
1.337
0.917
0.939
Bm996
Drilling Deck
1.128
0.678
0.341
1.128
0.821
0.892
0.621
0.635
Bm1007
Drilling Deck
1.370
0.790
0.319
1.37
0.966
1.023
0.68
0.693
Bm1008
Drilling Deck
1.874
1.217
0.536
1.874
1.414
1.335
1.013
1.036
Bm1009
Drilling Deck
1.028
0.691
0.314
1.028
0.801
0.732
0.584
0.600
Bm1123
Drilling Deck
1.007
0.605
0.207
1.007
0.684
0.627
0.469
0.469
Bm1135
Drilling Deck
1.242
0.689
0.276
1.242
0.829
0.843
0.549
0.55
Bm1136
Drilling Deck
1.321
0.739
0.243
1.321
0.883
0.89
0.586
0.587
Bm1671
Drilling Deck
1.175
1.175
0.289
0.636
1.145
0.657
0.92
0.990
Bm1673
Drilling Deck
1.179
1.179
0.228
0.781
1.168
0.612
0.928
0.997
Bm1674
Drilling Deck
1.128
0.821
0.194
1.128
0.915
0.916
0.633
0.681
Bm99991
Drilling Deck
1.018
0.001
0.001
0.904
0.001
1.018
0.001
0.001
Bm99992
Drilling Deck
1.140
0.001
0.001
1.14
0.001
0.925
0.001
0.001
Bm2009
Production Deck
1.061
0.933
0.911
1.061
1.038
1.003
0.97
0.982
Bm2010
Production Deck
1.178
1.091
1.069
1.165
1.178
1.144
1.121
1.134
Member
Location*
Barracu da 0.793
Bass Drill 0.46
Al Baraka 1.033
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Sea Rex
Sea Hawk 0.797
0.863
T8
Page 32
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Member
Location*
Bm2030
Production Deck
All Rigs 1.014
Barracu da 0.929
Bass Drill 0.771
Al Baraka 1.014
Sea Rex 0.964
Charlie Graves 0.897
Sea Hawk 0.91
T8 0.913
Table 3.2 – East Espoir Maximum Member Utilisations > 1.00
Joint Jt112 Jt91 Jt167 Jt165 Jt166 Jt168 Jt234 Jt243
Location*
All Rigs
Barra cuda
Bass Drill
Al Baraka
Sea Rex
Charlie Graves
Jacket 1.55 1.54 1.25 1.55 1.51 1.42 Jacket 1.59 1.50 1.19 1.59 1.52 1.40 Topside 1.26 1.05 0.55 1.10 1.13 0.77 Topside 1.23 1.20 0.67 0.83 1.07 0.77 Topside 1.21 0.88 0.48 1.21 1.04 1.01 Topside 1.01 0.65 0.22 1.01 0.71 0.56 Jacket 1.71 1.51 1.40 1.71 1.63 1.56 Jacket 1.68 1.66 1.66 1.63 1.68 1.68 Table 3.3 – East Espoir Maximum Joint Utilisations > 1.00
Sea Hawk
T8
1.42 1.42 1.16 1.13 0.84 0.54 1.51 1.65
1.48 1.49 1.26 1.23 0.91 0.55 1.54 1.65
Pile Capacity Factors of Safety Drill Rig
FoS Comp. (Operation) C1
A1
B2
FoS Comp. (Storm) C1
A1
B2
FoS Tens. (Operation)
FoS Tens. (Storm)
C1
A1
B2
C1
A1
B2
Al Baraka
2.69 2.60 2.76 2.22 2.19 2.32
-
-
-
22.28
-
-
Barracuda
2.57 2.60 2.95 2.16 2.22 2.50
-
-
-
-
-
-
Bass Drill
3.16 3.18 3.49 2.61 2.63 2.89
7.97
4.58
6.25
15.40
12.72 65.22
Charlie Graves 2.97 2.95 2.99 2.45 2.47 2.52
-
-
-
38.65
-
-
Sea Hawk
2.78 2.69 3.03 2.35 2.29 2.55
-
-
-
-
-
-
Sea Rex
2.71 2.66 2.83 2.30 2.26 2.41
-
-
-
-
-
-
T8
2.68 2.58 2.89 2.26 2.21 2.45
-
-
-
-
-
-
Table 3.4 – East Espoir Pile Capacity Factors of Safety
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 33
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure 3.1 – East Espoir Location of Joint Code Checks with Utilisations > 1.00
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 34
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Location*
All Rigs
Barracu da
Bass Drill
Al Baraka
Sea Rex
Charlie Graves
Sea Hawk
T8
WTBm190
Jacket Leg
1.117
0.891
0.553
1.117
1.094
1.016
0.904
0.978
WTBm520
Topside Vl. Br.
1.261
0.943
0.441
1.261
1.121
0.967
0.911
0.972
WTBm543
Topside Column
1.203
1.203
0.463
0.574
0.525
0.369
1.027
1.111
WTBm571
Topside Column
1.128
0.993
0.369
0.66
0.543
0.373
1.045
1.128
WTBm997
Topside Hz. Brace
1.106
0.698
0.261
0.993
1.082
1.106
0.538
0.526
WTBm1316
Jacket Leg
1.119
0.893
0.555
1.119
1.096
1.018
0.906
0.98
WTBm1495
Topside Vl. Br.
1.025
0.863
0.46
0.715
0.72
0.51
0.956
1.025
WTBm1501
Topside Vl. Br.
1.174
0.881
0.411
1.174
1.049
0.907
0.853
0.911
WTBm1508
Topside Column
1.036
0.902
0.335
0.367
0.349
0.214
0.956
1.036
WTBm1514
Topside Column
1.039
0.732
0.269
0.419
0.365
0.218
0.961
1.039
WTBm1604
Jacket Leg
1.118
0.893
0.559
1.118
1.098
1.018
0.908
0.981
Bm2030
Drilling Deck
1.084
0.003
0.003
1.084
0.003
0.846
0.003
0.003
WTBm540
Production Deck
1.194
1.194
0.62
0.772
0.78
0.621
1.051
1.128
WTBm542
Production Deck
1.105
1.105
0.519
0.665
0.671
0.514
0.966
1.043
WTBm569
Production Deck
1.216
1.076
0.541
0.924
0.828
0.636
1.134
1.216
WTBm570
Production Deck
1.106
0.963
0.423
0.805
0.7
0.515
1.025
1.106
WTBm593
Production Deck
1.029
0.706
0.675
1.029
0.957
1.008
0.726
0.724
WTBm615
Production Deck
1.338
1.026
0.633
1.338
1.031
0.912
0.848
0.854
WTBm852
Drilling Deck
1.036
1.036
0.392
0.686
0.505
0.509
0.344
0.369
WTBm857
Drilling Deck
1.036
1.036
0.412
0.821
0.514
0.616
0.378
0.402
WTBm860
Drilling Deck
1.067
1.067
0.493
0.826
0.637
0.622
0.814
0.882
WTBm870
Drilling Deck
1.379
0.755
0.361
1.379
0.9
0.857
0.611
0.62
WTBm871
Drilling Deck
1.098
0.656
0.714
1.098
0.622
0.831
0.613
0.672
WTBm893
Drilling Deck
1.25
0.51
0.485
1.25
0.59
0.777
0.601
0.66
WTBm923
Drilling Deck
1.024
0.574
0.598
0.695
1.021
0.739
0.95
1.024
WTBm931
Drilling Deck
1.335
0.761
0.376
1.335
0.891
0.818
0.606
0.595
WTBm956
Drilling Deck
1.01
0.781
0.308
1.01
0.68
0.856
0.689
0.741
WTBm964
Drilling Deck
1.186
1.186
0.295
0.88
1.083
0.938
0.908
0.98
WTBm965
Drilling Deck
1.183
1.183
0.234
1.072
1.082
0.875
0.913
0.983
WTBm967
Drilling Deck
1.073
0.832
0.169
1.073
0.849
0.876
0.61
0.655
WTBm968
Drilling Deck
1.061
0.79
0.289
0.881
1.061
0.873
0.82
0.902
WTBm969
Drilling Deck
1.06
0.796
0.255
0.97
1.06
0.813
0.81
0.893
WTBm1161
Drilling Deck
1.048
0.559
0.459
0.847
1.048
0.692
0.969
1.043
WTBm1375
Production Deck
1.043
1.036
1.031
1.043
1.037
1.038
1.034
1.034
Member
Table 3.5 – West Espoir Maximum Member Utilisations > 1.00
Joint Jt702 Jt2000 Jt723
Location*
All Rigs
Barra cuda
Bass Drill
Al Baraka
Sea Rex
Charlie Graves
0.91 0.47 0.81 0.87 0.58 Topside 1.08 0.86 0.45 1.07 1.01 0.91 Topside 1.04 1.17 1.19 1.28 1.18 1.14 Jacket 1.28 Table 3.6 – West Espoir Maximum Joint Utilisations > 1.00
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Sea Hawk
T8
0.99 0.84 1.18
1.07 0.91 1.20
Page 35
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Rig
Pile FoS Comp. (Operation) C1
A1
B2
FoS Comp. (Storm) C1
A1
B2
FoS Tens. (Operation)
FoS Tens. (Storm)
C1
A1
B2
C1
A1
B2
Al Baraka
2.47 2.29 2.49 2.06 1.95 2.11
-
-
-
68.97
-
-
Barracuda
2.37 2.29 2.63 2.02 1.96 2.26
-
-
-
-
-
-
Bass Drill
2.86 2.72 3.10 2.39 2.29 2.59
12.46
44.84
-
5.88
10.26
61.63
Charlie Graves 2.70 2.56 2.67 2.26 2.17 2.27
-
-
-
-
-
-
Sea Hawk
2.56 2.37 2.70 2.17 2.29 2.32
-
-
-
-
-
-
Sea Rex
2.50 2.34 2.53 2.13 2.01 2.18
-
-
-
-
-
-
T8
2.46 2.28 2.59 2.10 1.96 2.22
-
-
-
-
-
-
Table 3.7 – West Espoir Pile Capacity Factors of Safety
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 36
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure 3.2 – West Espoir Location of Joint Code Checks with Utilisations > 1.00 Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 37
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
4.
Natural Frequency Analysis Results
4.1
General
Natural frequency analyses for both East and West Espoir were performed for the following phases of operation:
Drilling with 12 x 26” OD conductors already installed
Normal operation (no drill rig) with 12 x 26” OD conductors already installed
Drilling with 12 x 26” OD + 2 x 36” OD conductors already installed
Normal operation (no drill rig) with 12 x 26” OD + 2 x 36” OD conductors already installed
The Al Baraka drill rig was simulated for all drilling phases of operation. For the natural frequency analysis, separate mass computer models of the platform were created which were generated from the GeniE strength model. All loads were converted to masses and added masses due to the subsea part of the jacket were calculated. For the drilling case, a mass pyramid was added to represent the Al Baraka drill rig. The hook load applied to the derrick was removed as this could not be regarded as a mass for the purposes of natural frequency calculation. Having established mass models, calibrated linear foundation springs were created for each model and the two analyses were run. Linearisation of soil springs as described in Section 2.7.4.
4.2
Modelling of Al Baraka Drill Rig
The mass of the drilling rig was modelled in the correct CoG location and connected back to the topsides using a frame structure. This frame was modelled in such a way as to ensure that:
It did not act independently of the main structure.
It did not provide restraint to, and incorrectly transfer load to, the main structure.
The mass of the drilling rig included full set back mass, but did not include hook load as the hook load would not particularly affect the dynamic response. The drill rig mass was based on the data sourced by Atkins and CNR from the drilling contractor in 2004 and is considered to be the most accurate data available [3].
4.3
Analysis Method
The natural frequency analysis was performed using the subspace iteration method within SESTRA. The transfer functions were computed using a direct frequency domain solver and so the eigenmodes were not required. The natural frequencies were, however, used to help determine the frequencies required for the direct frequency analyses in order to produce transfer functions with good definition of the dynamic response peaks.
4.4
Structural Monitoring and Analysis Model Calibration
4.4.1
General
Structural Monitoring Systems (SMS) have been fitted to both Espoir platforms to measure the natural frequency of the platforms. The natural frequencies calculated from the structural analysis models were compared against the measured natural frequencies. Any differences between measured and calculated natural frequencies are due to two factors: mass and stiffness. The computer models have been fully checked against the Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 38
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
structural drawings, so there is a high degree of confidence that the stiffness of the platforms has been modelled as accurately as possible. The stiffness of the foundation is more difficult to represent accurately as there is a degree of uncertainty inherent with any soils modelling. Experience has shown that the design soil stiffness is often less stiff than the actual measured stiffness. The requirement to increase the foundation stiffness to match measured response can be attributed to the following:
The soil properties are normally taken as lower bound from the scatter in the bore hole data.
The mudline framing and mud mats generate some lateral resistance, not normally accounted for in the analysis models.
The soil stiffness is variable. This is evident in the design lateral soil springs for West Espoir being approximately 15 times softer than for East Espoir.
4.4.2
East Espoir
Natural frequency measurements were first taken on East Espoir in 2004 during and after the Al Baraka drilling programme to record the measured natural period of the structure with and without the drill rig installed. It was concluded that the measured natural frequencies were significantly different to those predicted by the design analysis computer models [1]. The natural periods were supplied to Atkins for the dynamic spectral fatigue analysis performed in 2004 [4]. The measured natural frequencies have been shown to be significantly different to those predicted by the analysis model which was used in the original design [1]. The foundation stiffness in the computer model was revised by Atkins to achieve the measured frequencies. In order to achieve the measure natural period it was necessary to increase the soils stiffness by a factor of 5. The method was described in detail in the 2004 fatigue analysis report by Atkins [3]. A SMS was permanently installed on East Espoir in mid-December 2005 for ongoing monitoring of natural frequency. The latest SMS report for East Espoir was prepared in 2008 [13].
4.4.2.1
West Espoir
A structural response measurement system is periodically installed to West Espoir to measure the lateral and dynamic structural response and platform natural frequencies. Data was last recorded th th from the period 5 January 2009 to 10 February 2009 [14]. For West Espoir it was necessary to fix the foundations at mudline to match the measured natural frequency.
4.5
Natural Frequencies and Mode Shapes
The natural frequencies and natural periods are given in Table 4.1 (East Espoir) and Table 4.2 (West Espoir). The mode shapes for the first three modes (2 x sway and torsion) are shown in Figure 4.1 (East Espoir) and Figure 4.2 (West Espoir). Following the modifications to the modelled foundation stiffness, the natural frequency results from the structural analysis models show reasonably good correlation with the measured SMS data.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 39
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Operating 12 x 26” OD Conductors Mode
Description
1
Sway in X direction (N/S)
2
Sway in Y direction (E/W)
3
Torsion Mode Drilling 12 x 26” OD Conductors
Structural Analysis
Structural Monitoring System
Frequency (Hz)
Period (s)
Frequency (Hz)
Period (s)
0.545
1.83
0.59 [4] 0.51 [26]
1.70 1.96
0.511
1.96
0.54 [4] 0.54 [26]
1.85 1.85
0.780
1.28
0.81 [26]
1.23
Structural Analysis
Structural Monitoring System
Mode
Description
Frequency (Hz)
Period (s)
Frequency (Hz)
Period (s)
1
Sway in X direction
0.383
2.61
0.36 [4]
2.74
2
Sway in Y direction
0.364
2.74
0.39 [4]
2.58
3
Torsion Mode
0.617
1.62
Operating 12 x 26” OD + 2 x 36” OD Conductors
Structural Analysis
Mode
Description
Frequency (Hz)
Period (s)
1
Sway in X direction
0.520
1.92
2
Sway in Y direction
0.484
2.07
3
Torsion Mode
0.776
1.29
Drilling 12 x 26” OD + 2 x 36” OD Conductors
Structural Analysis
Mode
Description
Frequency (Hz)
Period (s)
1
Sway in X direction
0.377
2.65
2
Sway in Y direction
0.358
2.79
3
Torsion Mode
0.615
1.63
Data not available Structural Monitoring System Frequency (Hz)
Period (s)
Data not available
Structural Monitoring System Frequency (Hz)
Period (s)
Data not available
Table 4.1 – East Espoir Natural Frequencies and Periods
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 40
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Operating 12 x 26” OD Conductors Mode
Structural Analysis
Structural Monitoring System [27]
Description
Frequency (Hz)
Period (s)
Frequency (Hz)
Period (s)
1
Sway in X direction (N/S)
0.511
1.96
Av. 0.53
1.90
2
Sway in X direction (E/W)
0.529
1.89
Av. 0.54
1.86
Torsion Mode
0.870
1.15
Av. 0.98
1.02
3
Drilling 12 x 26” OD Conductors
Structural Analysis
Mode
Description
Frequency (Hz)
Period (s)
1
Sway in X direction (N/S)
0.365
2.74
2
Sway in Y direction (E/W)
0.371
2.70
3
Torsion Mode
0.704
1.42
Operating 12 x 26” OD + 2 x 36” OD Conductors Mode
Structural Analysis
Description
Frequency (Hz)
Period (s)
1
Sway in X direction (N/S)
0.497
2.01
2
Sway in Y direction (E/W)
0.513
1.95
3
Torsion Mode
0.855
1.17
Drilling 12 x 26” OD + 2 x 36” OD Conductors
Structural Analysis
Mode
Description
Frequency (Hz)
Period (s)
1
Sway in X direction (N/S)
0.361
2.77
2
Sway in Y direction (E/W)
0.367
2.73
3
Torsion Mode
0.701
1.43
Structural Monitoring System Frequency (Hz)
Period (s)
Data not available
Structural Monitoring System Frequency (Hz)
Period (s)
Data not available
Structural Monitoring System Frequency (Hz)
Period (s)
Data not available
Table 4.2 – West Espoir Natural Frequencies and Periods
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 41
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Operating 12 x 26” OD conductors
Mode 1
Mode 2
Mode 3
Mode 2
Mode 3
Drilling 12 x 26” OD conductors (with drill rig)
Mode 1
Operating 12 x 26” OD + 2 x 36” OD Conductors
Mode 1
Mode 2
Mode 3
Drilling 12 x 26” OD + 2 x 36” OD Conductors (with drill rig)
Mode 1
Mode 2
Mode 3
Figure 4.1 – East Espoir Mode Shapes
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 42
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Operating 12 x 26” OD conductors
Mode 1
Mode 2
Mode 3
Mode 2
Mode 3
Drilling 12 x 26” OD conductors (with drill rig)
Mode 1
Operating 12 x 26” OD + 2 x 36” OD Conductors
Mode 1
Mode 2
Mode 3
Drilling 12 x 26” OD + 2 x 36” OD Conductors (with drill rig)
Mode 1
Mode 2
Mode 3
Figure 4.2 – West Espoir Mode Shapes Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 43
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
5.
In Place Fatigue Analysis Results
5.1
General
Fatigue analyses were performed for both the drilling (with drill rig deployed) and operational phases (drill rig removed) for 12 x 26” conductors and 12 x 26” + 2 x 36” conductors installed, as described in Section 2.7.3. Previous analysis has shown the drill rig loading to be significant for the fatigue assessment since the additional mass associated with the drill rig increases the natural period of the platform closer to that of fatigue waves, hence increases fatigue damage. The welds at tubular joints are the most fatigue sensitive areas for offshore platforms due to the high local stress concentrations. Fatigue life calculations were performed for all primary and secondary joints. Pile sleeve and zodiac landing joint were excluded from the analysis. The results of the analysis were then combined taking into account the assumed durations given in Section 2.7.3. Fatigue damages were calculated for a unit period (1 year) for each phase of drilling and normal operation and the fatigue damages combined as follows to calculate a fatigue life:
1 (d D12T d O12T d D14T ) Life DD12 DO12 DD14 d O14 A
Where: Drilling 12 x 26” conductors installed DD12
Duration
dD12A
Damage per year
dD12T
Total fatigue damage = DD12D × dD12A
Normal operating 12 x 26” conductors installed DO12
Duration
dO12A
Damage per year
dO12T
Total fatigue damage = DO12D × dO12A
Drilling 12 x 26” + 2 x 36” conductors installed DD14
Duration
dD14A
Damage per year
dD14T
Total fatigue damage = DD14D × dD14A
Normal operating 12 x 26” + 2 x 36” conductors installed DO14
Duration
dO14A
Damage per year
dO14T
Total fatigue damage = DO12D × dO12A
The above neglects fatigue damage accumulated from the transportation to the Espoir field during the tow phase. This tow fatigue is discussed in Section 5.4. The method used for adding the damages from each analysis was a direct addition. This method is conservative as it does not take into account the critical hotspot location for each analysis, although the magnitudes are unlikely to change significantly between phases as the loading patterns will be similar.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 44
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
It should be noted that the lives are quoted from platform installation date, rather than the date any particular item was installed. Therefore a member (added for the new retrofit conductors) with a quoted fatigue life of 15 years, would actually have a fatigue life of 3.5 years, allowing for the 11.5 years of previous life of the platform before the member was added. This approach offsets the life of newly installed items with the previous platform life. With this method both existing and newly installed items have the same start date for ease of comparison. The original design documentation for both East and West Espoir states a total service life of 20 years. CNR has advised that the project EOFL is now 2036. The service life has increased to 35 years for East Espoir and 31 years for West Espoir. Safety factors to apply to fatigue lives primarily depend on the failure consequence (i.e. the component’s criticality) and in-service inspectability. ISO 19902 recommends that in lieu of more detailed assessment a factor of safety of 2 is recommended for inspectable and non-failure critical locations. This factor of safety increases up to 10 for failure critical and / or non-inspectable locations [11]. The West Espoir fatigue assessment performed as part of the original design adopted the following factors of safety on fatigue life. Location
Fatigue Life Safety Factors
Joint Connections above Splash Zone (In service analysis)
3.0
Joint Connections above Splash Zone (In service analysis)
3.0
Jacket Tubular Connections (Transportation analysis)
2.0
Table 5.1 – Fatigue Life Factors of Safety The above factors of safety are reasonable for the Espoir platforms and give a target inplace fatigue life of 35 × 3 = 105y for East Espoir and 31 × 3 = 91y for West Espoir. For robustness, all joints with fatigue lives below 200 years have been reviewed. The calculated fatigue lives presented in the following discussion are based on mean minus two standard deviation S-N fatigue curves. No further factors of safety have been applied so the calculated fatigue lives should be compared with the target fatigue lives discussed above. The fatigue lives have been compared to the 12 x 26” conductor arrangement to understand the impact of the additional two new 36” conductors. The fatigue review for East and West Espoir broadly groups the joints into the following four categories. i)
Joints which are subject to additional damage purely due to the additional 36” conductors.
ii)
Joints which are subject to additional damage due to the two new 36” conductors, but are also adversely impacted by the particularly arrangement of conductor supports (i.e. supports omitted at certain levels).
iii)
Joints on new conductor support steelwork that should have their design revised to provide better fatigue performance.
iv)
Joint which had low lives (below 200 years) previously, but which have not changed significantly due to the introduction of the new 36” conductors.
The critical joints, and which category they fall into, are shown in the following tables and discussed further for each platform in turn in the following sections.
5.2
East Espoir Fatigue Review
Fatigue lives less than 200 years are presented in Table 5.2.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 45
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
5.2.1
Legs (Tubular Joints)
There are 6 legs joints (12 member ends) with fatigue lives below 200 years. These joints are the main nodes at plan levels +15ft, -46ft and -123ft. Fatigue lives for some of these joints were already low in the 12 x 26” conductor case, but a few has decreased significantly between the 12 and 14 conductor cases. There is no conductor bracing at the -46ft level, which means increased loading at the +15ft and -123ft, and, more importantly, increased load transfer from the +15 to the -123m levels. It is this increased load transfer that would seem to be the cause of the reduced fatigue lives. Joints at these plan levels that do not form part of the lateral bracing do not show significant decreased lives.
5.2.2
Joint at +15ft, -123ft and -225ft (Tubular Joints)
These joints are all on the horizontal members of the plan jacket face bracing, generally where the conductor guide support steelwork frames in. These three levels are where the new conductors are supported. The new conductors are not supported at every level, just these ones, unlike the original conductors which are supported at all elevations. The increased loading at these levels is undoubtedly the reason for the significant decreases in life at these joints.
5.2.3
Joint at -400ft (Tubular Joints)
This is the level closet to the seabed, and the joints in question are internal plan framing on or around the attachment of the existing conductors to the jacket. The new conductors are not connected at this level. Three of the four joints show significant decreases, with the remaining one being a small decrease in an already low life. Although soil springs are used, the soil effectively represents a boundary condition and the conductor will be subject to a differential displacement between the jacket and the soils which will be reacted in the lowest plan level. The two extra conductors will increase overall jacket displacements, which will increase the forces due to differential displacements, which will give a corresponding reduction in fatigue life. In this case, the soils are very stiff (to match the natural frequency), which will exacerbate the problem. It is possible that the top layer is actually softer than modelled and that a detailed review of the soils modelling could reduce the issues somewhat.
5.2.4
New Joints at +15ft (Tubular Joints)
These two joints (and three corresponding braces) at the +15ft level are part of the new support steelwork for the two new conductors. It is suggested that these joints are redesigned to provide a more acceptable fatigue life.
5.2.5
Legs B between -123ft and -345ft (Butt Welds)
There are 6 butt welds between these two elevations on leg B which have low fatigue lives. Four of the joints have significant reductions and two are small reductions on already low lives. The increased damage on these leg is probably not significantly affected by the reduce conductor supports arrangement and the reduced fatigue lives are purely as a results of adding two new conductors and the associated drilling campaign.
5.2.6
Internal Framing at -46ft (Butt Welds)
These two welds are on members which are part of the internal framing at -46ft. They are located near to an area where guide framing for the new conductors is clamped. The guides at -46ft will be carrying more load as a result of the reduced conductor framing and this is a factor in these reduced lives. Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 46
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
5.2.7
Vertical Diagonal Braces between -123ft and -225ft (Butt Welds)
There are 4 butt welds (3 on face AB and 1 on face AC) on the vertical diagonal bracing between elevations -123ft and -225ft which show significant reductions in fatigue life. The conductors are guided at both these level, so the reduced guide arrangement is unlikely to have significant impact on these joints and the reduced fatigue lives are purely as a results of adding two new conductors and the associated drilling campaign.
5.3
West Espoir Fatigue Review
Fatigue lives less than 200 years are presented in Table 5.3.
5.3.1
Leg C between 15ft and -46ft (Tubular Joints)
This is a single tubular joint where two appurtenance stubs join the leg. The fatigue life has not changed significantly between the 12 and 14 conductor cases. The life is around 180 years in either case, and is not considered further.
5.3.2
Plan Joints at 15ft (Tubular Joints)
There are 8 joints on the outer face on the plan level at 15ft. These are joints where the conductor framing connects to the outer face bracing. There are significant reductions in life at these joints. The new conductors are supported at the 15ft and -123ft elevations, but not the -46ft elevation. This reduced support arrangement is undoubtedly a factor in these reduced lives as the 15t elevation will be required to carry a larger load to compensate for the lack of support at -46ft.
5.3.3
Plan Joints at -46ft (Tubular Joints)
There are 4 joints at plan level -46ft, which have low fatigue lives. Three are where the conductor guide framing connections to the face bracing, and one is where the face bracing connections into the main legs (TJNT180). Whilst the fatigue lives here have reduced as a result of the new conductors, the reduction is moderate. It should be noted that the new conductors are not supported at this level, so they are not loading this level directly. Although increased overall displacement of the jacket (due to the additional conductors), which will to some degree be resisted by the conductors, will increase fatigue damage at these locations.
5.3.4
Leg B between -225ft and – 335ft (Butt Weld)
There is a single butt weld on this leg with a low fatigue life. This is just below a tubular joint where transport bracing frames into the leg. It is likely that the transport bracing is carrying some of the lateral loads (which are increase by the new conductors) into the leg. The life is just on the 200 year threshold, so no further action is required. If this location proves to be problematic, then a possible solution would be to remove the transport bracing, though this is not recommended at the moment.
5.3.5
Leg Joints between -335ft and – 395ft (Butt Weld)
There are 5 joints on leg B and one on each of legs A and C. Just below these welds is the top of the pile sleeves. At this elevation not all of lateral load is transferred though bracing, some going through the legs, and it is this effect that causes the increased loading from the conductors to effect the legs here.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 47
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
5.3.6
Leg B, Near Boat Bumper (Tubular Joint)
This joint, which is where a boat bumper support member frames into leg B, has a low life regardless of the number of conductors. The low life is more a function of the geometry of the connection rather than the loading.
5.4
Tow Fatigue to Espoir Field
Fatigue during transportation to the Espoir field was not included in the current analysis as previous work for East Espoir (believed to be most critical) had indicated there was little overlap between the set of welds that were critical during the tow phase and the set of welds that were critical during the operating and drilling phase. In order to confirm this assumption a study of the most critical joints (in both the tow and operating phases) was conducted on both the East and West platforms.
5.4.1
East Espoir Tow Fatigue
An initial study that was limited to the 10 worst joints for operating fatigue and the 10 worst for tow fatigue was inconclusive so a study was carried out that assessed the combined fatigue for the vast majority of the joints on the platform. The table below presents all fatigue lives below 200 years, including tow damage, for both the 12 x 26” and 14 conductor configurations. The joints are categorised into groups, these are: i)
Welds that fail during the tow,
ii)
Welds which are below 200 years but were above 200 years prior to the tow fatigue being added, but have small tow damages (i.e. welds that were only marginally above 200 years prior to the tow fatigue being added).
iii)
Joints which are below 200 years but were above 200 years prior to the tow fatigue being added and have significant tow damages (i.e. welds that were significantly above 200 years prior to tow being added).
iv)
Joints with no significant tow damage.
v)
New joints not present during the previous tow analysis.
Joints that are either category 4 or 5 are not discussed again as there is little change to these joints when tow fatigue is included so the statements in the fatigue review for East Espoir (Section 5.2) are remain valid and correct.
5.4.1.1
Category 1 on Legs
The category 1 joints on the legs are both on leg A. These joints did not fail during the tow as was predicted by the fatigue analysis. However they should be monitored closely as it is not known how much damage they did accumulate during the tow.
5.4.1.2
Category 2 on Legs
These joints are all main nodes at plan elevation of -46 ft. The inclusion of tow damage in the fatigue assessment brings the lives of these joints close to 200 years with the 12 conductor configuration. The extra conductors are not supported at this elevation but the small amount of addition damage the new conductors adds at these two joints enough to bring the fatigue lives below 200 years.
5.4.1.3
Category 3 on Legs
JT43 is close to the conductor frame at -123 ft elevation. The significant decrease in the fatigue life for this joint is due to the increased loading in the conductor framing after the installation of the 2 new conductors.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 48
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
JT42 is the main node on leg B at elevation -225 ft. This is the lowest elevation at which the new conductors are supported and this node provides one route for the load in the conductors to reach the piles at the mudline.
5.4.1.4
Category 3 on Plan at -225 ft
This joint shows a significant drop in fatigue life for the extra conductor configuration. This is due to the fact that this joint is very close to the conductor framing on an elevation at which the new conductors are connected.
5.4.2
West Espoir Transportation Fatigue
West Espoir was assessed previously for transportation fatigue by Saipem in the original design however only tubular joints were considered. Also, joints to secondary items such as boat bumpers were not assessed. Using the available information it was found that the joints with the lowest operating fatigue lives were not affected by the inclusion of the transportation fatigue. The joints with the ten worst transportation fatigue lives all have very long operating fatigue lives (>1500 years). Including the transportation fatigue significantly reduced the overall fatigue lives, however even with the addition all of the joints have overall fatigue lives longer than 280 years.
5.4.3
Conclusion
On West Espoir the inclusion of the transport damage on the most critical joints resulted in very little impact on the overall lowest fatigue lives. This is consistent with the available information which suggests that the West Espoir tow was in a fairly benign environment. It is possible from the sample of critical welds investigated to make this conclusion for the entire jacket structure. On East Espoir the tow fatigue damage is greater, which is again consistent with the available information which suggests the East Espoir jacket was subject to more onerous environmental loading during tow. It was necessary to investigate a large set of welds until sufficient confidence could be gained to draw conclusions about the entire structure. The results of the study indicated that while a small number of joints are impacted by both tow and operational fatigue, the majority of the welds have the majority of their damage from only one of the actions. A sufficient number of welds were investigated such that the revised list of fatigue lives (including tow) is complete for all welds below 200 years.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 49
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Area
Joint
JT43 JT46 JT46 JT46 JT56 JT56 LEGS JT66 JT66 JT67 JT72 JT72 JT72 JT47 JT48 Plan at -123ft JT49 JT50 JT73 Plan at +15ft JT75 JT79 Plan at -225ft JT37 JT119 JT122 Plan at -400ft JT401 JT8 STJT008 New Joints STJT009 at +15ft STJT009 WJT039 WJT040 WJT041 Leg B Butt Welds WJT045 WJT042 WJT044 WJT129 Framing at -46ft WJT130 WJT408 Face Bracing WJT429 Between -123ft and -225ft WJT631 WJT635
Brace
Chord
BM311 BM303 BM304 BM302 BM375 BM1513 BM1511 BM1526 BM1558 BM424 BM1556 BM1564 BM323 BM321 BM288 BM291 BM439 BM454 BM408 BM193 BM105 BM41 BM65 BM58 BM1909 BM1847 BM1980 BM1415 BM1413 BM1719 BM1826 BM1719 BM1826 BM309 BM1278 BM1520 BM1500 BM1731 BM1499
BM317 BM306 BM306 BM306 BM377 BM377 BM367 BM367 BM1568 BM1549 BM1549 BM1549 BM1484 BM1483 BM1493 BM290 BM1582 BM410 BM407 BM211 BM72 BM1318 BM1291 BM35 BM1986 BM1848 BM1848
Scenario Category 12 Only 12+14 187 84 2 82 22 2 141 48 2 159 72 2 62 75 2 137 129 2 49 36 2 62 45 2 61 51 2 30 19 2 69 53 2 98 88 2 65 16 2 74 17 2 31 14 2 27 14 2 165 72 2 77 13 2 80 13 2 117 66 2 59 36 1 111 60 1 89 46 1 14 13 4 N/A 76 3 N/A 19 3 N/A 20 3 120 59 1 40 23 1 42 24 1 141 68 1 10 10 4 16 13 4 189 19 2 164 18 2 159 78 1 86 44 1 192 91 1 79 42 1
Table 5.2 – East Espoir Fatigue Lives Less Than 200 Years
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 50
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Area
Joint
Leg C Between 15ft and -46ft
Plan at -46ft
Plan at 15ft
Brace
Chord
TJNT022
BM1734
BM1866
TJNT166 TJNT180 TJNT185 TJNT188 TJNT196 TJNT197 TJNT202 TJNT203 TJNT210 TJNT211 TJNT216 TJNT218
WTBM1269 WTBM4 WTBM1268 WTBM1272 WTBM34 WTBM36 WTBM271 WTBM272 WTBM276 WTBM154 WTBM158 WTBM292
WTBM1274 WTBM1455 WTBM1260 WTBM1263 WTBM11 WTBM57 WTBM30 WTBM31 WTBM152 WTBM12 WTBM54 WTBM57
Leg A Between WJNT043 WTBM1435 -335ft and -395ft Leg B Between WJNT032 WTBM1447 -225ft and -335ft WJNT039 WTBM1443 WJNT040 WTBM1443 Leg B Between -335ft and -395ft WJNT040 WTBM187 WJNT049 WTBM1445 Leg C Between -335ft and WJNT037 WTBM1474 395ft Leg B Near Boat Bumper
Scenario 12 Only 12+14
Category
182
182
4
143 226 209 127 228 233 1140 1290 1447 8196 6944 483
117 159 156 98 11 10 185 178 124 24 31 99
1 1 1 1 2 2 2 2 2 2 2 2
135
90
1
404
200
1
BM210 BM210 BM1732
306 97 367 350
151 48 180 173
1 1 1 1
BM1459
225
155
1
BM1735
WTJT600
WTBM403
WTBM1604
0.2
0.2
4
WTJT600 WTJT600
WTBM404 WTBM404
WTBM1604 WTBM1604
0.3 0.3
0.3 0.3
4 4
Table 5.3 – West Espoir Fatigue Lives Less Than 200 Years
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 51
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Area
LEGS
Plan at -123ft
Plan at +15ft
Plan at -225ft
Plan at -400ft
New Joints at +15ft
Leg B Butt Welds
Framing at -46ft
Joint
Brace
Chord
JT35 JT42 JT43 JT43 JT46 JT46 JT46 JT56 JT56 JT59 JT66 JT66 JT66 JT66 JT67 JT72 JT72 JT72 JT47 JT48 JT49 JT50 JT73 JT75 JT79 JT37 JT40 JT119 JT122 JT401 JT8 STJT008 STJT009 STJT009 WJT039 WJT040 WJT041 WJT045 WJT042 WJT044 WJT129 WJT130
BM232 BM238 BM311 BM312 BM303 BM304 BM302 BM375 BM1513 BM363 BM1253 BM1511 BM1526 BM199099 BM1558 BM424 BM1556 BM1564 BM323 BM321 BM288 BM291 BM439 BM454 BM408 BM193 BM221 BM105 BM41 BM65 BM58 BM1909 BM1847 BM1980 BM1415 BM1413 BM1719 BM1826 BM1719 BM1826 BM309 BM1278
BM1381 BM240 BM317 BM317 BM306 BM306 BM306 BM377 BM377 BM1509 BM367 BM367 BM367 BM367 BM1568 BM1549 BM1549 BM1549 BM1484 BM1483 BM1493 BM290 BM1582 BM410 BM407 BM211 BM1423 BM72 BM1318 BM1291 BM35 BM1986 BM1848 BM1848
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Scenario Category 12 Only 12+14 0.017 0.017 1 444 186 3 184 82 4 3121 110 3 0.02 0.02 1 68 28 4 152 69 4 62 75 4 136 127 4 227 184 2 264 168 2 48 35 4 61 44 4 254 169 2 61 51 4 30 19 4 69 53 4 98 88 4 48 15 4 57 16 4 28 14 4 25 14 4 165 72 4 77 13 4 80 13 4 96 55 4 195 48 3 59 36 4 111 60 4 88 45 4 14 13 4 N/A 76 5 N/A 19 5 N/A 20 5 120 59 4 40 23 4 42 24 4 141 68 4 10 10 4 16 13 4 173 19 4 141 17 4 Page 52
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
WJT408 Face Bracing WJT429 Between -123ft and -225ft WJT631 WJT635
BM1520 BM1500 BM1731 BM1499
155 79 187 72
76 41 88 39
4 4 4 4
Table 5.4 – East Espoir Fatigue Lives Less Than 200 Years (Including Tow Fatigue)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 53
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
6.
Installation & Inplace Local Design Analysis
6.1
General
The global structural analysis computer models of East and West Espoir were used to assess the local strength of the clamps, guides and supporting framing, and topsides modifications. Installation and in-place conditions were analysed. The results were used in the detailed design of the guides and topside modifications and presented in the design reports prepared for this project [16] [17]. Modifications to the existing decks of both platforms are necessary to facilitate the installation of the new conductors. This includes cutting existing steel members. Where necessary, steelwork has been introduced to aid in the redistribution of loads. The 8 5/8ø diagonal bracing members coincident with the proposed new conductors are proposed to be removed and the results of the analysis demonstrated that they did not need to be reinstated for the in-place conditions. A reassessment of the platform before decommissioning would be required to ensure that the platform can be lifted without these diagonal members. The structural analysis models were updated to include the proposed modifications to the decks and the jacket. Strength analyses were performed to assess the revised utilisations of the existing members. It is noted that the structural analysis models of both platforms used for the strength (Section 3), natural frequency ((Section 4) and fatigue (Section 5) analyses all include the proposed modifications. Conductor guide reactions (for the new 36” conductors, not the existing 26”) were supplied from the conductor analysis [18] for this project and incorporated as point loads at each guide level where appropriate. The conductor analysis [18] is a dynamic non-linear assessment, including intermittent conductor / guide contact, and therefore provides a more accurate prediction of the guide reactions than would be calculated directly from the global jacket analysis model. The guide reactions calculated from the jacket analysis model are sufficiently accurate for global design. However, the conductor reactions are more appropriate for the local design of the proposed modifications. Omni-directional conductor guide reactions were adopted which is conservative. In accordance with API RP 2A-WSD [25] recommendations, a 1/3 increase in allowable stress has been included in the design of the members under load combinations primarily consisting of extreme environmental loads. i.e. load cases including conductor guide reactions.
6.2
Conductor Installation Local Strength Assessment
A downward vertical load of 150kN (approx 15 tonnes) was calculated as a representative value to use for conductor impact load during installation [16] [17], based on the weight of two 40ft long conductor joints. It will be necessary to minimise the magnitude of the vertical impact load by ensuring controlled installation of the conductors. The installation cases consider one of the retrofit 36” conductors to be fully installed (slot 13) and one 36” conductor to be only partially installed (slot 14). No marine growth was modelled on the new conductors. The drill rig loads have been excluded from the installation strength assessment as it is understood from CNR that the drill rig will not be present during conductor installation. Four installation cases were analysed for both platforms, as described in Table 6.1.
6.3
In-Place Local Strength Assessment
Environmental loading from twelve approach directions at 30° sectors was analysed for the local design in-place strength assessment, adopting the load case combinations given in Section 2.6.5. Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 54
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Only one drill rig was analysed for the in-place local strength analysis. The T8 drill rig was selected since it is the heaviest and one of the most onerous drill rigs for the topsides and jacket. Four in-place load cases were analysed for both platforms, as described in Table 6.2.
6.4
East Espoir Installation & In-Place Results
Member utilisations for the East Espoir jacket structure for the installation and in-place strength assessment are presented in Appendix E. For the In-place condition, all utilisation are below 1.0 and acceptable except for member Bm319. This is the member that is being clamped to at EL(-)123ft, and it is proposed to grout fill this member as part of the conductor retrofit works. The revised member utilisation, with the grout taken into account, is presented in the Design Report [16], and is reported to be below 1.0 and acceptable. For the installation condition, all member utilisations are shown to be below 1.0, for the 15 tonne impact case. It will be necessary to minimise the magnitude of the vertical impact load, such that it does not exceed 15 tonnes, by ensuring controlled installation of the conductors.
6.5
West Espoir Installation & In-Place Results
Member utilisations for the West Espoir jacket structure for the installation and in-place strength assessment are presented in Appendix F. For the In-place condition, all utilisation are below 1.0 and acceptable. For the installation condition, all member utilisations are shown to be below 1.0, for the 15 tonne impact case. It will be necessary to minimise the magnitude of the vertical impact load, such that it does not exceed 15 tonnes, by ensuring controlled installation of the conductors.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 55
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Load Case
Wave
Current
Wind
Vertical Impact Force
Description
1
1 Year
1 Year
1 Year
Yes
2
1 Year
1 Year
1 Year
Yes
3
1 Year
1 Year
1 Year
Yes
4
1 Year
1 Year
1 Year
Yes
One new 36” conductor fully installed The other new 36” conductor partially installed to the Production Deck level. Vertical downward force (125kN) applied at the new conductor guide at Production Deck level. One new 36” conductor fully installed The other new 36” conductor partially installed to the +15ft jacket level. Vertical downward force (150kN) applied at the new conductor guide at the +15ft jacket level. One new 36” conductor fully installed The other new 36” conductor partially installed to the -123ft jacket level. Vertical downward force (150kN) applied at the new conductor guide at -123ft jacket level. One new conductor fully installed The other new 36” conductor partially installed to the -225ft jacket level. Vertical downward force (150kN) applied at the new conductor guide at -225ft jacket level.
Table 6.1 – Installation Local Design Cases (East & West Espoir) Load Case
Wave
Current
Wind
Drill Rig Loads
5
1 Year
1 Year
1 Year
Yes
6
100 Year
10 Year
10 Year
Yes
7
10 Year
100 Year
10 Year
Yes
8
10 Year
10 Year
100 Year
Yes
Description New 36” conductors both fully installed Drill rig simulated over slots 1, 4, 9, 12, 13 & 14 New 36” conductors both fully installed Drill rig simulated over slots 1, 4, 9, 12, 13 & 14 New 36” conductors both fully installed Drill rig simulated over slots 1, 4, 9, 12, 13 & 14 New 36” conductors both fully installed Drill rig simulated over slots 1, 4, 9, 12, 13 & 14.
Table 6.2 – In-Place Design Cases (East & West Espoir)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 56
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
7.
Conclusions & Recommendations
The results presented herein show that both the East and West Espoir platforms are generally acceptable for strength and fatigue with the proposed two 36” retrofit conductors.
Drill rig loads have been shown to be very significant for both overall strength and fatigue integrity. Espoir specific drill rig loads were unavailable for this assessment. The analysis has been based on the best available drill rig data which is generally considered to be conservative.
Some local topsides strengthening may be required although the requirement and extent of any strengthening is entirely dependent on drill rig selection.
Given the uncertainties, the design of strengthening has not been performed at this stage. A high level review of possible strengthening options has been performed for the most heavily utilised areas to ensure that strengthening is conceptually feasible.
It is recommended that the structural models be re-analysed for each platform once the drill rig has been chosen using drill rig loads from the nominated drilling contractor developed specifically for the Espoir platforms. The results from this analysis will highlight the precise locations where strengthening is required. Detailed design and drafting of any strengthening can then be performed.
The February 2010 ROV survey of the Espoir platforms has identified significantly greater marine growth coverage than considered in the original design or in this present study. It is understood the ROV survey footage will be analysed by a specialist marine growth consultant and revised marine growth profiles calculated. It is recommended that the re-analysis of the structural models include this revised marine growth profile.
The fatigue analysis has identified areas of the Espoir platforms which are most fatigue sensitive and have low fatigue lives. It is recommended that the structural inspection scheme for East and West Espoir (ENG-PRO-187 [28]), and the Risk Based Inspection spreadsheet, are updated with the calculated fatigue lives and the inspection plans revised accordingly.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 57
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
8.
References
[1]
Enercon, East Espoir Development Project, As Built Documentation, Structural Engineering Design Calculations for Saibos CML, Document No. 1895-RPT-20-0015, Rev A, May 2000.
[2]
Structural Modelling and Analysis East and West Espoir Platforms, Atkins, 5024450-ER-01, Issue 01, February 2004.
[3]
East Espoir Dynamic Spectral Fatigue Analysis, Atkins, 5027933-006-01, Issue 01, October 2004.
[4]
East Espoir Natural Frequency Analysis, Atkins, 5027933/006/002/02, March 2005.
[5]
East Espoir, South-East Corner Production Deck – Calculations for De-Sander Package Set Down Loads, Atkins, Technical Note 5045630-TN-01 v1, 15th March 2007.
[6]
East Espoir – Additional Conductor Feasibility Study, Atkins Limited, 5045630-006-ER-01 Rev2 (ESP-ATK-ST-REP-0089 B1), March 2009.
[7]
East Espoir Wellhead Tower: Additional Conductor Feasiblity Study (Phase 2), Atkins Limited,5080516-200-ER-01, Rev 01 (ESP-ATK-ST-REP-0104 A1), 12th August 2009.
[8]
West Espoir Wellhead Tower: Structural Modelling and Analysis, Atkins Limited, 5045630005-ER-01 Rev1, June 2009.
[9]
West Espoir Wellhead Tower: Additional Conductor Feasibility Study, Atkins Limited, 5080516-300-TN-01, Issue 01, 30/06/09.
[10]
American Petroleum Institute, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design, API RP2A-WSD, 21st ed., December 2000.
[11]
International Standard, Petroleum and natural gas industries – Fixed steel offshore structures, ISO 19902, 1st Ed. 2007.
[12]
AISC Steel Construction Manual, Thirteenth Edition.
[13]
East Espoir Well Head SMS – Analysis of Data: December 2006 – December 2008, Fugro Structural Monitoring, Ref No: C30313\R001\Issue 1, February 2009.
[14]
Saibos, West Espoir Field Development Structural Design Basis, WESP-SAI-ST-BOD-08040, Rev B1, 15/10/04.
[15]
Saibos, West Espoir Field Development Dynamic and Fatigue Analyses Report, WESP-SAIST-REP-08101, Rev B2, 26/07/05.
[16]
Detail Design of Retrofit Conductor Guide Frames for CNR Espoir East WHT, Atkins Limited, Atkins Report 5087631-007-ER-01, CNR Doc. No. ESP-ATK-ST-REP-0108, February 2010.
[17]
Detail Design of Retrofit Conductor Guide Frames for CNR Espoir West WHT, Atkins Limited, Atkins Report 5087631-007-ER-02, CNR Doc. No. ESP-ATK-ST-REP-0109, February 2010.
[18]
Detail Design of Retrofit Conductors on East & West Espoir Platforms: Conductor Strength & Fatigue Analysis Report for East & West Espoir, Atkins Limited, Atkins Report 5087631-004ER-01 CNR Doc. No. ESP-ATK-ST-REP-0122, March 2010.
[19]
Detailed Design of Retrofit Conductors on East and West Espoir Platforms: Basis of Design, Atkins Limited, Atkins Report 508763.003-ER-01, CNR Doc. No. ESP-ATK-ST-REP-0106, March 2010.
[20]
Espoir Field, Offshore Cote d’Ivoire Updated Metocean Criteria for Design and Operation, Metoc Report No. 930, July 1999.
[21]
SESAM GENIE, “Conceptual design and analysis of offshore structures - User Mannual”, DNV, October 2004
[22]
SESAM WAJAC, “Wave and Current Loads on Fixed Rigid Frame Structures – User Manual”,
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 58
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
DNV, October 2004. [23]
SESAM SESTRA, “Superelement structural analysis - User Manual”, DNV, December 2005.
[24]
SESAM FRAMEWORK, “Steel Frame Design – User Manual”, DNV, October 2004.
[25]
American Petroleum Institute, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Load and Resistance Factors Design, API RP2Ast LRFD, 21st ed., 1 Ed. 1993.
[26]
Fugro Structural Monitoring: Report to CNR International (Cote d’Ivoire) S.A.R.L., Structural Monitoring of East Espoir Well Head Annual Report December 2006, C30137/R004\Issue 1, January 2007.
[27]
Fugro Structural Monitoring: Report to CNR International (Cote d’Ivoire) S.A.R.L., West Espoir Structural Monitoring Data Analysis January 2009 – February 2009, C30310/R001 Issue 1, March 2009.
[28]
Espoir Structural Inspection Scheme (Topsides and Underwater, East and West WHTs), ENG-PRO-187.
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page 59
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Appendix A Environmental Loading for Strength Analysis
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page A-1
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure A.1 – Wave & Current Loading for 1y Return (Operating)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page A-2
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure A.2 – Wave & Current Loading for 10y Return
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page A-3
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure A.3 – Wave & Current Loading for 100y Return
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page A-4
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Appendix B Drilling Rig Footing Load Data
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-5
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.1 - Al-Baraka Drill Rig Footing for Slot Position 1 (kN)
FigureB.2 - Al-Baraka Drill Rig Footing for Slot Position 4 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-6
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.3 - Al-Baraka Drill Rig Footing for Slot Position 9 (kN)
FigureB.4 - Al-Baraka Drill Rig Footing for Slot Position 12 (kN)Figure
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-7
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.5 - Al-Baraka Drill Rig Footing for Slot Position 13 (kN)
FigureB.6 - Al-Baraka Drill Rig Footing for Slot Position 14 (kN)Figure
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-8
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.7 - Searex Drill Rig Footing for Slot Position 1 (kN)
FigureB.8 - Searex Drill Rig Footing for Slot Position 4 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-9
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.9 - Searex Drill Rig Footing for Slot Position 9 (kN)
FigureB.10 - Searex Drill Rig Footing for Slot Position 12 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-10
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.11 - Searex Drill Rig Footing for Slot Position 13 (kN)
FigureB.12 - Searex Drill Rig Footing for Slot Position 14 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-11
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.13 - Charlie Graves Drill Rig Footing for Slot Position 1 (kN)
FigureB.14 - Charlie Graves Drill Rig Footing for Slot Position 4 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-12
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.15 - Charlie Graves Drill Rig Footing for Slot Position 9 (kN)
FigureB.16 - Charlie Graves Drill Rig Footing for Slot Position 12 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-13
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.17 - Charlie Graves Drill Rig Footing for Slot Position 13 (kN)
FigureB.18 - Charlie Graves Drill Rig Footing for Slot Position 14 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-14
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.19 - Barracuda Drill Rig Footing for Slot Position 1 (kN)
FigureB.20 - Barracuda Drill Rig Footing for Slot Position 4 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-15
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.21 - Barracuda Drill Rig Footing for Slot Position 9 (kN)
FigureB.22 - Barracuda Drill Rig Footing for Slot Position 12 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-16
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.23 - Barracuda Drill Rig Footing for Slot Position 13 (kN)
FigureB.24 - Barracuda Drill Rig Footing for Slot Position 14 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-17
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.25 - T8 Drill Rig Footing for Slot Position 1 (kN)
FigureB.26 - T8 Drill Rig Footing for Slot Position 4 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-18
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.27 - T8 Drill Rig Footing for Slot Position 9 (kN)
FigureB.28 - T8 Drill Rig Footing for Slot Position 12 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-19
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.29 - T8 Drill Rig Footing for Slot Position 13 (kN)
FigureB.30 - T8 Drill Rig Footing for Slot Position 14 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-20
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.31 - SeaHawk Drill Rig Footing for Slot Position 1 (kN)
FigureB.32 - SeaHawk Drill Rig Footing for Slot Position 4 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-21
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.33 - SeaHawk Drill Rig Footing for Slot Position 9 (kN)
FigureB.34 - SeaHawk Drill Rig Footing for Slot Position 12 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-22
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.35 - SeaHawk Drill Rig Footing for Slot Position 13 (kN)
FigureB.36 - SeaHawk Drill Rig Footing for Slot Position 14 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-23
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.37 - BassDrill Drill Rig Footing for Slot Position 1 (kN)
FigureB.38 - BassDrill Drill Rig Footing for Slot Position 4 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-24
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.39 - BassDrill Drill Rig Footing for Slot Position 9 (kN)
FigureB.40 - BassDrill Drill Rig Footing for Slot Position 12 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-25
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
FigureB.41 - BassDrill Drill Rig Footing for Slot Position 13 (kN)
FigureB.42 - BassDrill Drill Rig Footing for Slot Position 14 (kN)
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page B-26
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Appendix C East Espoir Strength Results
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page C-27
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure C.1 - East Espoir Member Utilisations > 1.00 for Al Baraka Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page C-28
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure C.2 - East Espoir Member Utilisations > 1.00 for Barracuda Drill Rig Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page C-29
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure C.3 - East Espoir Member Utilisations > 1.00 for BassDrill Alpha Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page C-30
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure C.4 - East Espoir Member Utilisations > 1.00 for Charlie Graves Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page C-31
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure C.5 - East Espoir Member Utilisations > 1.00 for Sea Hawk Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page C-32
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure C.6 - East Espoir Member Utilisations > 1.00 for Sea Rex Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page C-33
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure C.7 - East Espoir Member Utilisations > 1.00 for T8 Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page C-34
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Appendix D West Espoir Strength Results
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page D-35
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure D.1 - West Espoir Member Utilisations > 1.00 for Al Baraka Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page D-36
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure D.2 - West Espoir Member Utilisations > 1.00 for Barracuda Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page D-37
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure D.3 - West Espoir Member Utilisations > 1.00 for BassDrill Alpha Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page D-38
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure D.4 - West Espoir Member Utilisations > 1.00 for Charlie Graves Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page D-39
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure D.5 - West Espoir Member Utilisations > 1.00 for Sea Hawk Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page D-40
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure D.6 - West Espoir Member Utilisations > 1.00 for Sea Rex Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page D-41
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Figure D.7 - West Espoir Member Utilisations > 1.00 for T8 Drill Rig
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page D-42
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Appendix E Local Design Installation & In-Place Results for East Espoir
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page E-43
All UFs are below 1.0 when impact load is reduced to 15 t
East Espoir
Jacket - Installation Results
EAST ESPOIR DESIGN MODEL - INSTALLATION CASES Maximum Member Utilisations (ufTot) CASE 1 - 25 t IMPACT Member Bm1490 Bm453 Bm199007 Bm1488 Bm199008 Bm319 Bm1278 Bm1982 Bm1738 Bm1758 Bm236 Bm309 Bm1992 Bm1985 Bm1252 Bm215 Bm409 Bm1532 Bm1737 Bm288 Bm454 Bm1489 Bm291 Bm304 Bm1498 Bm1990 Bm1514 Bm1736 Bm406 Bm1487 Bm1909 Bm1848 Bm1572 Bm318 Bm408 Bm424 Bm301 Bm313 Bm1989 Bm1485 Bm1582 Bm1491 Bm1570 Bm233 Bm245 Bm1427 Bm1429 Bm290 Bm1987 Bm1470 Bm1980 Bm1430 Bm1583 Bm289 Bm410 Bm434 Bm413 Bm1248 Bm321 Bm254 Bm212 Bm323 Bm1983 Bm252 Bm1247 Bm1279 Bm1497 Bm303 Bm445 Bm1492 Bm1573 Bm299 Bm407 Bm412 Bm1494 Bm1581 Bm447 Bm1576
UfTot 0.28 0.18 0.27 0.26 0.26 0.29 0.2 0.1 0.18 0.15 0.13 0.2 0.09 0.07 0.15 0.43 0.16 0.14 0.22 0.26 0.11 0.14 0.25 0.23 0.19 0.09 0.15 0.26 0.17 0.13 0.14 0.18 0.15 0.11 0.15 0.25 0.15 0.19 0.09 0.21 0.22 0.2 0.16 0.43 0 43 0.43 0.43 0.43 0.09 0.05 0.39 0 0.09 0.2 0.09 0.15 0.22 0.14 0.12 0.31 0.13 0.12 0.29 0.06 0.19 0.14 0.19 0.19 0.15 0.09 0.06 0.14 0.17 0.17 0.15 0.18 0.28 0.1 0.14
LoadCase OPR_30 OPR_30 OPR_90 OPR_120 OPR_90 OPR_180 OPR_90 OPR_30 OPR_90 OPR_90 OPR_120 OPR_90 OPR_120 OPR_180 OPR_90 OPR_120 OPR_0 OPR_90 OPR_0 OPR_90 OPR_30 OPR_30 OPR_90 OPR_120 OPR_90 OPR_120 OPR_90 OPR_180 OPR_150 OPR_120 OPR_30 OPR_30 OPR_0 OPR_90 OPR_30 OPR_0 OPR_90 OPR_60 OPR_120 OPR_60 OPR_0 OPR_90 OPR_150 OPR_120 OPR 120 OPR_120 OPR_120 OPR_120 OPR_30 OPR_120 OPR_120 OPR_30 OPR_120 OPR_210 OPR_120 OPR_0 OPR_210 OPR_0 OPR_0 OPR_60 OPR_120 OPR_0 OPR_90 OPR_120 OPR_120 OPR_150 OPR_90 OPR_90 OPR_0 OPR_270 OPR_0 OPR_0 OPR_90 OPR_210 OPR_210 OPR_90 OPR_0 OPR_0 OPR_0
Position 0 0.5 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.5 0 0 1 0 0 1 1 0 1
CASE 2 - 25 t IMPACT UfTot 0.28 1.78 0.27 0.26 0.26 0.29 0.21 0.12 0.19 0.16 0.13 0.21 0.09 0.08 0.15 0.43 0.62 0.15 0.61 0.28 0.6 0.14 0.26 0.23 0.19 0.09 0.16 0.54 0.53 0.13 0.52 0.51 0.5 0.11 0.49 0.49 0.16 0.19 0.09 0.22 0.47 0.21 0.44 0.43 0 43 0.43 0.43 0.43 0.09 0.05 0.39 0.38 0.09 0.37 0.09 0.36 0.36 0.35 0.35 0.32 0.13 0.12 0.3 0.06 0.19 0.31 0.19 0.19 0.15 0.29 0.06 0.29 0.17 0.28 0.28 0.18 0.28 0.26 0.26
LoadCase OPR_30 OPR_60 OPR_60 OPR_120 OPR_90 OPR_180 OPR_90 OPR_30 OPR_90 OPR_90 OPR_120 OPR_90 OPR_120 OPR_30 OPR_90 OPR_120 OPR_0 OPR_90 OPR_0 OPR_90 OPR_30 OPR_30 OPR_90 OPR_120 OPR_90 OPR_120 OPR_90 OPR_180 OPR_150 OPR_120 OPR_210 OPR_210 OPR_0 OPR_90 OPR_30 OPR_0 OPR_90 OPR_60 OPR_120 OPR_60 OPR_0 OPR_90 OPR_150 OPR_120 OPR 120 OPR_120 OPR_120 OPR_120 OPR_30 OPR_120 OPR_120 OPR_180 OPR_120 OPR_210 OPR_120 OPR_0 OPR_210 OPR_0 OPR_0 OPR_60 OPR_120 OPR_0 OPR_90 OPR_30 OPR_120 OPR_150 OPR_90 OPR_90 OPR_0 OPR_270 OPR_0 OPR_0 OPR_90 OPR_210 OPR_210 OPR_90 OPR_0 OPR_0 OPR_0
Position 0 0.5 1 0 1 0 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0.5 1 0 1 0 0 1 1 0 0
CASE 2 - MODIFIED FOR 15 t IMPACT UfTot
LoadCase
Position
0.67
OPR_60
0.5
CASE 3 - 25 t IMPACT UfTot 1.95 0.29 1.66 1.52 1.3 1.26 1.2 1 0.91 0.82 0.13 0.71 0.09 0.66 0.65 0.43 0.2 0.62 0.24 0.6 0.17 0.6 0.59 0.59 0.59 0.09 0.56 0.26 0.2 0.53 0.25 0.28 0.17 0.49 0.21 0.27 0.48 0.48 0.09 0.47 0.23 0.44 0.18 0.43 0 43 0.43 0.43 0.43 0.41 0.4 0.39 0.1 0.09 0.21 0.36 0.18 0.22 0.16 0.14 0.33 0.13 0.13 0.32 0.32 0.19 0.15 0.31 0.3 0.29 0.11 0.29 0.16 0.28 0.18 0.16 0.28 0.28 0.11 0.15
LoadCase OPR_30 OPR_0 OPR_30 OPR_90 OPR_90 OPR_180 OPR_90 OPR_180 OPR_90 OPR_90 OPR_120 OPR_90 OPR_120 OPR_180 OPR_0 OPR_120 OPR_30 OPR_0 OPR_0 OPR_90 OPR_30 OPR_30 OPR_90 OPR_90 OPR_210 OPR_120 OPR_210 OPR_180 OPR_150 OPR_90 OPR_0 OPR_0 OPR_30 OPR_0 OPR_30 OPR_0 OPR_210 OPR_90 OPR_120 OPR_90 OPR_0 OPR_90 OPR_150 OPR_120 OPR 120 OPR_120 OPR_120 OPR_120 OPR_30 OPR_180 OPR_120 OPR_30 OPR_120 OPR_210 OPR_90 OPR_0 OPR_210 OPR_0 OPR_30 OPR_60 OPR_120 OPR_0 OPR_90 OPR_150 OPR_120 OPR_150 OPR_90 OPR_90 OPR_0 OPR_30 OPR_0 OPR_0 OPR_90 OPR_210 OPR_210 OPR_90 OPR_0 OPR_0 OPR_0
Position 0 0.5 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0.5 1 0 1 0 0 1 1 0 1
CASE 3 - MODIFIED FOR 15 t IMPACT UfTot 0.81 0.00 0.71 0.66 0.61 0.73 0.57 0.78
LoadCase OPR_30 OPR_0 OPR_30 OPR_90 OPR_90 OPR_180 OPR_90 OPR_180
Summary UF
Position 0 0.5 0 0 0 1 1 1
CASE 4 - 25 t IMPACT UfTot 0.28 0.26 0.27 0.26 0.26 0.35 0.23 0.19 0.21 0.18 0.8 0.23 0.67 0.14 0.17 0.64 0.19 0.16 0.24 0.29 0.15 0.14 0.29 0.23 0.21 0.57 0.18 0.26 0.19 0.14 0.23 0.24 0.17 0.12 0.2 0.27 0.17 0.19 0.48 0.24 0.23 0.23 0.17 0.43 0 43 0.43 0.43 0.43 0.09 0.05 0.39 0.08 0.37 0.21 0.09 0.17 0.23 0.16 0.13 0.34 0.33 0.32 0.32 0.09 0.31 0.14 0.21 0.21 0.17 0.11 0.07 0.15 0.18 0.18 0.16 0.19 0.28 0.11 0.15
LoadCase OPR_30 OPR_0 OPR_30 OPR_150 OPR_120 OPR_180 OPR_90 OPR_0 OPR_90 OPR_90 OPR_210 OPR_90 OPR_120 OPR_0 OPR_90 OPR_120 OPR_30 OPR_90 OPR_0 OPR_60 OPR_30 OPR_30 OPR_90 OPR_150 OPR_90 OPR_90 OPR_90 OPR_180 OPR_150 OPR_150 OPR_0 OPR_0 OPR_30 OPR_90 OPR_30 OPR_0 OPR_90 OPR_60 OPR_90 OPR_60 OPR_0 OPR_90 OPR_150 OPR_120 OPR 120 OPR_120 OPR_120 OPR_120 OPR_30 OPR_90 OPR_120 OPR_30 OPR_210 OPR_210 OPR_150 OPR_0 OPR_210 OPR_0 OPR_30 OPR_60 OPR_0 OPR_0 OPR_90 OPR_0 OPR_210 OPR_150 OPR_90 OPR_90 OPR_0 OPR_210 OPR_0 OPR_0 OPR_90 OPR_210 OPR_210 OPR_90 OPR_0 OPR_0 OPR_0
Position 0 0.5 0 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0.5 0 0 1 0 0 1 1 0 1
SUMMARY - 25 t IMPACT UfTot 1.95 1.78 1.66 1.52 1.3 1.26 1.2 1 0.91 0.82 0.8 0.71 0.67 0.66 0.65 0.64 0.62 0.62 0.61 0.6 0.6 0.6 0.59 0.59 0.59 0.57 0.56 0.54 0.53 0.53 0.52 0.51 0.5 0.49 0.49 0.49 0.48 0.48 0.48 0.47 0.47 0.44 0.44 0.43 0 43 0.43 0.43 0.43 0.41 0.4 0.39 0.38 0.37 0.37 0.36 0.36 0.36 0.35 0.35 0.34 0.33 0.32 0.32 0.32 0.31 0.31 0.31 0.3 0.29 0.29 0.29 0.29 0.28 0.28 0.28 0.28 0.28 0.26 0.26
LoadCase OPR_30 OPR_60 OPR_30 OPR_90 OPR_90 OPR_180 OPR_90 OPR_180 OPR_90 OPR_90 OPR_210 OPR_90 OPR_120 OPR_180 OPR_0 OPR_120 OPR_0 OPR_0 OPR_0 OPR_90 OPR_30 OPR_30 OPR_90 OPR_90 OPR_210 OPR_90 OPR_210 OPR_180 OPR_150 OPR_90 OPR_210 OPR_210 OPR_0 OPR_0 OPR_30 OPR_0 OPR_210 OPR_90 OPR_90 OPR_90 OPR_0 OPR_90 OPR_150 OPR_120 OPR 120 OPR_120 OPR_120 OPR_120 OPR_30 OPR_180 OPR_120 OPR_180 OPR_210 OPR_210 OPR_90 OPR_0 OPR_210 OPR_0 OPR_0 OPR_60 OPR_0 OPR_0 OPR_90 OPR_150 OPR_210 OPR_150 OPR_90 OPR_90 OPR_0 OPR_270 OPR_0 OPR_0 OPR_90 OPR_210 OPR_210 OPR_90 OPR_0 OPR_0 OPR_0
Position 0 0.5 0 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0.5 1 0 1 0 0 1 1 0 0
SUMMARY - MODIFIED FOR 15 t IMPACT Worst Case CASE 3 CASE 2 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 4 CASE 3 CASE 4 CASE 3 CASE 3 CASE 4 CASE 2 CASE 3 CASE 2 CASE 3 CASE 2 CASE 3 CASE 3 CASE 3 CASE 3 CASE 4 CASE 3 CASE 2 CASE 2 CASE 3 CASE 2 CASE 2 CASE 2 CASE 3 CASE 2 CASE 2 CASE 3 CASE 3 CASE 4 CASE 3 CASE 2 CASE 3 CASE 2 CASE 1 CASE 1 CASE 1 CASE 1 CASE 3 CASE 3 CASE 1 CASE 2 CASE 4 CASE 2 CASE 3 CASE 2 CASE 2 CASE 2 CASE 2 CASE 4 CASE 4 CASE 4 CASE 3 CASE 3 CASE 4 CASE 2 CASE 3 CASE 3 CASE 3 CASE 2 CASE 3 CASE 2 CASE 3 CASE 2 CASE 2 CASE 3 CASE 1 CASE 2 CASE 2
UfTot 0.81 0.67 0.71 0.66 0.61 0.73 0.57 0.78
LoadCase OPR_30 OPR_60 OPR_30 OPR_90 OPR_90 OPR_180 OPR_90 OPR_180
Position 0 0.5 0 0 0 1 1 1
Worst Case CASE 3 CASE 2 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3
East Espoir
Jacket - Installation Results
EAST ESPOIR DESIGN MODEL - INSTALLATION CASES Maximum Member Utilisations (ufTot) CASE 1 - 25 t IMPACT Member Bm1586 Bm1832 Bm218 Bm253 Bm293 Bm1433 Bm1480 Bm1481 Bm226 Bm422 Bm1486 Bm1493 Bm1571 Bm1574 Bm312 Bm451 Bm1420 Bm1424 Bm1471 Bm1479 Bm1502 Bm1536 Bm1759 Bm229 Bm287 Bm292 Bm296 Bm1495 Bm1585 Bm199005 Bm241 Bm257 Bm441 Bm1472 Bm1474 Bm1829 Bm1984 Bm199006 Bm221 Bm251 Bm294 Bm1534 Bm1580 Bm1831 Bm432 Bm439 Bm442 Bm1522 Bm1575 Bm1578 Bm1890 Bm1986 Bm219 Bm222 Bm286 Bm414 Bm418 Bm443 Bm1469 Bm435 Bm449 Bm1432 Bm1436 Bm1458 Bm1503 Bm1535 Bm1577 Bm232 Bm427 Bm1421 Bm1496 Bm1533 Bm1830 Bm220 Bm244 Bm420 Bm1425 Bm1484
UfTot 0.14 0.1 0.25 0.25 0.16 0.13 0.25 0.19 0.17 0.18 0.07 0.18 0.16 0.15 0.1 0.14 0.22 0.22 0.09 0.18 0.09 0.12 0.13 0.21 0.12 0.16 0.19 0.19 0.16 0.12 0.2 0.2 0.1 0.2 0.2 0.1 0.05 0.11 0.1 0.12 0.17 0.12 0.18 0.08 0 17 0.17 0.18 0.16 0.07 0.18 0.15 0.05 0.09 0.08 0.17 0.09 0.14 0.16 0.12 0.13 0.16 0.07 0.13 0.13 0.13 0.15 0.07 0.16 0.1 0.14 0.11 0.13 0.07 0.08 0.06 0.09 0.13 0.1 0.14
LoadCase OPR_0 OPR_120 OPR_120 OPR_120 OPR_90 OPR_120 OPR_120 OPR_0 OPR_120 OPR_30 OPR_210 OPR_60 OPR_210 OPR_210 OPR_180 OPR_0 OPR_120 OPR_120 OPR_120 OPR_180 OPR_0 OPR_60 OPR_90 OPR_120 OPR_150 OPR_60 OPR_90 OPR_90 OPR_210 OPR_120 OPR_120 OPR_120 OPR_30 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_60 OPR_120 OPR_90 OPR_120 OPR_0 OPR_60 OPR 0 OPR_0 OPR_0 OPR_210 OPR_60 OPR_210 OPR_30 OPR_30 OPR_30 OPR_120 OPR_120 OPR_60 OPR_30 OPR_0 OPR_30 OPR_120 OPR_0 OPR_270 OPR_120 OPR_120 OPR_120 OPR_120 OPR_60 OPR_0 OPR_30 OPR_0 OPR_30 OPR_60 OPR_120 OPR_90 OPR_120 OPR_30 OPR_0 OPR_30 OPR_150
Position 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1
CASE 2 - 25 t IMPACT UfTot 0.26 0.1 0.25 0.25 0.16 0.13 0.25 0.19 0.17 0.18 0.07 0.19 0.23 0.23 0.1 0.22 0.22 0.22 0.09 0.18 0.09 0.12 0.13 0.21 0.12 0.16 0.2 0.2 0.21 0.12 0.2 0.2 0.2 0.2 0.2 0.1 0.05 0.11 0.1 0.12 0.18 0.12 0.18 0.08 0 18 0.18 0.18 0.18 0.07 0.17 0.14 0.18 0.18 0.08 0.17 0.09 0.13 0.17 0.17 0.13 0.16 0.16 0.13 0.13 0.13 0.15 0.07 0.16 0.1 0.15 0.11 0.14 0.08 0.08 0.06 0.09 0.13 0.1 0.14
LoadCase OPR_0 OPR_120 OPR_120 OPR_120 OPR_90 OPR_120 OPR_120 OPR_0 OPR_120 OPR_30 OPR_210 OPR_60 OPR_210 OPR_210 OPR_180 OPR_0 OPR_120 OPR_120 OPR_120 OPR_0 OPR_0 OPR_60 OPR_90 OPR_120 OPR_150 OPR_60 OPR_90 OPR_90 OPR_210 OPR_120 OPR_120 OPR_120 OPR_30 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_60 OPR_120 OPR_90 OPR_120 OPR_0 OPR_60 OPR 0 OPR_0 OPR_0 OPR_210 OPR_60 OPR_210 OPR_30 OPR_0 OPR_210 OPR_120 OPR_120 OPR_60 OPR_30 OPR_0 OPR_30 OPR_120 OPR_0 OPR_150 OPR_120 OPR_120 OPR_120 OPR_120 OPR_60 OPR_0 OPR_30 OPR_0 OPR_30 OPR_60 OPR_120 OPR_90 OPR_120 OPR_30 OPR_0 OPR_30 OPR_150
Position 1 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 1 1 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 0 1 0.25 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 0 0 1 1
CASE 2 - MODIFIED FOR 15 t IMPACT UfTot
LoadCase
Position
CASE 3 - 25 t IMPACT UfTot 0.15 0.1 0.25 0.25 0.25 0.13 0.25 0.24 0.17 0.23 0.23 0.23 0.17 0.15 0.22 0.14 0.22 0.22 0.09 0.22 0.22 0.22 0.22 0.21 0.21 0.21 0.2 0.2 0.17 0.12 0.2 0.2 0.12 0.2 0.2 0.1 0.2 0.11 0.1 0.12 0.18 0.19 0.19 0.08 0 18 0.18 0.18 0.16 0.18 0.18 0.18 0.08 0.13 0.08 0.17 0.17 0.17 0.17 0.17 0.13 0.16 0.08 0.13 0.13 0.13 0.16 0.16 0.16 0.1 0.14 0.11 0.14 0.15 0.09 0.06 0.1 0.14 0.1 0.14
LoadCase OPR_0 OPR_120 OPR_120 OPR_120 OPR_90 OPR_120 OPR_120 OPR_180 OPR_120 OPR_30 OPR_90 OPR_60 OPR_210 OPR_210 OPR_180 OPR_0 OPR_120 OPR_120 OPR_120 OPR_0 OPR_0 OPR_60 OPR_90 OPR_120 OPR_180 OPR_60 OPR_90 OPR_90 OPR_210 OPR_120 OPR_120 OPR_120 OPR_30 OPR_120 OPR_120 OPR_120 OPR_30 OPR_120 OPR_60 OPR_120 OPR_90 OPR_60 OPR_0 OPR_60 OPR 0 OPR_0 OPR_0 OPR_210 OPR_180 OPR_210 OPR_30 OPR_30 OPR_0 OPR_120 OPR_120 OPR_60 OPR_30 OPR_0 OPR_30 OPR_120 OPR_30 OPR_150 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_0 OPR_30 OPR_0 OPR_30 OPR_60 OPR_60 OPR_90 OPR_120 OPR_30 OPR_0 OPR_30 OPR_150
Position 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 0 0 1 0 1
CASE 3 - MODIFIED FOR 15 t IMPACT UfTot
LoadCase
Summary UF
Position
CASE 4 - 25 t IMPACT UfTot 0.15 0.26 0.25 0.25 0.16 0.25 0.25 0.21 0.23 0.22 0.08 0.19 0.17 0.15 0.11 0.14 0.22 0.22 0.22 0.2 0.1 0.12 0.15 0.21 0.13 0.17 0.21 0.21 0.17 0.21 0.2 0.2 0.12 0.2 0.2 0.2 0.05 0.2 0.19 0.19 0.19 0.12 0.19 0.19 0 18 0.18 0.18 0.16 0.06 0.18 0.17 0.07 0.11 0.17 0.17 0.1 0.16 0.17 0.16 0.17 0.16 0.08 0.16 0.16 0.16 0.15 0.07 0.16 0.15 0.15 0.15 0.15 0.07 0.15 0.14 0.14 0.14 0.14 0.14
LoadCase OPR_0 OPR_60 OPR_120 OPR_120 OPR_120 OPR_210 OPR_120 OPR_0 OPR_60 OPR_30 OPR_210 OPR_60 OPR_210 OPR_210 OPR_180 OPR_0 OPR_120 OPR_120 OPR_210 OPR_0 OPR_0 OPR_60 OPR_120 OPR_120 OPR_150 OPR_60 OPR_60 OPR_90 OPR_210 OPR_210 OPR_120 OPR_120 OPR_30 OPR_120 OPR_120 OPR_120 OPR_120 OPR_210 OPR_60 OPR_60 OPR_90 OPR_120 OPR_0 OPR_60 OPR 0 OPR_0 OPR_0 OPR_210 OPR_60 OPR_210 OPR_30 OPR_30 OPR_0 OPR_120 OPR_120 OPR_60 OPR_30 OPR_0 OPR_30 OPR_210 OPR_30 OPR_270 OPR_90 OPR_30 OPR_30 OPR_150 OPR_60 OPR_0 OPR_30 OPR_0 OPR_30 OPR_60 OPR_120 OPR_120 OPR_120 OPR_30 OPR_0 OPR_30 OPR_150
Position 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1
SUMMARY - 25 t IMPACT UfTot 0.26 0.26 0.25 0.25 0.25 0.25 0.25 0.24 0.23 0.23 0.23 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.19 0.19 0.19 0.19 0.19 0.19 0 18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14
LoadCase OPR_0 OPR_60 OPR_120 OPR_120 OPR_90 OPR_210 OPR_120 OPR_180 OPR_60 OPR_30 OPR_90 OPR_60 OPR_210 OPR_210 OPR_180 OPR_0 OPR_120 OPR_120 OPR_210 OPR_0 OPR_0 OPR_60 OPR_90 OPR_120 OPR_180 OPR_60 OPR_60 OPR_90 OPR_210 OPR_210 OPR_120 OPR_120 OPR_30 OPR_120 OPR_120 OPR_120 OPR_30 OPR_210 OPR_60 OPR_60 OPR_90 OPR_60 OPR_0 OPR_60 OPR 0 OPR_0 OPR_0 OPR_210 OPR_180 OPR_210 OPR_30 OPR_0 OPR_210 OPR_120 OPR_120 OPR_60 OPR_30 OPR_0 OPR_30 OPR_210 OPR_0 OPR_150 OPR_90 OPR_30 OPR_30 OPR_120 OPR_120 OPR_0 OPR_30 OPR_0 OPR_30 OPR_60 OPR_60 OPR_120 OPR_120 OPR_30 OPR_0 OPR_30 OPR_150
Position 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0.25 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 1 1 1 0 0 1 1 1
SUMMARY - MODIFIED FOR 15 t IMPACT Worst Case CASE 2 CASE 4 CASE 1 CASE 1 CASE 3 CASE 4 CASE 1 CASE 3 CASE 4 CASE 3 CASE 3 CASE 3 CASE 2 CASE 2 CASE 3 CASE 2 CASE 1 CASE 1 CASE 4 CASE 3 CASE 3 CASE 3 CASE 3 CASE 1 CASE 3 CASE 3 CASE 4 CASE 4 CASE 2 CASE 4 CASE 1 CASE 1 CASE 2 CASE 1 CASE 1 CASE 4 CASE 3 CASE 4 CASE 4 CASE 4 CASE 4 CASE 3 CASE 3 CASE 4 CASE 2 CASE 1 CASE 2 CASE 3 CASE 1 CASE 3 CASE 2 CASE 2 CASE 4 CASE 1 CASE 3 CASE 3 CASE 2 CASE 2 CASE 4 CASE 1 CASE 2 CASE 4 CASE 4 CASE 4 CASE 3 CASE 3 CASE 1 CASE 4 CASE 2 CASE 4 CASE 4 CASE 3 CASE 4 CASE 4 CASE 4 CASE 3 CASE 4 CASE 1
UfTot
LoadCase
Position
Worst Case
East Espoir
Jacket - Installation Results
EAST ESPOIR DESIGN MODEL - INSTALLATION CASES Maximum Member Utilisations (ufTot) CASE 1 - 25 t IMPACT Member Bm1504 Bm1579 Bm416 Bm1431 Bm1454 Bm1473 Bm1482 Bm1523 Bm285 Bm320 Bm322 Bm1847 Bm256 Bm258 Bm411 Bm1483 Bm208 Bm210 Bm217 Bm1524 Bm1418 Bm1422 Bm1428 Bm1437 Bm1459 Bm1988 Bm1991 Bm207 Bm209 Bm1419 Bm1423 Bm1426 Bm1438 Bm1460 Bm1584 Bm1981 Bm211 Bm214 Bm1439 Bm1461
UfTot 0.11 0.13 0.12 0.13 0.13 0.13 0.1 0.13 0.1 0.09 0.09 0.07 0.09 0.09 0.11 0.1 0.09 0.08 0.06 0.09 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.05
LoadCase OPR_150 OPR_30 OPR_0 OPR_120 OPR_120 OPR_120 OPR_0 OPR_60 OPR_0 OPR_120 OPR_60 OPR_270 OPR_120 OPR_120 OPR_210 OPR_60 OPR_30 OPR_30 OPR_120 OPR_60 OPR_120 OPR_120 OPR_120 OPR_30 OPR_30 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_330 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120
Position 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
CASE 2 - 25 t IMPACT UfTot 0.11 0.12 0.12 0.13 0.13 0.13 0.1 0.13 0.1 0.1 0.09 0.12 0.09 0.09 0.11 0.1 0.09 0.08 0.06 0.09 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.05 0.05 0.05 0.05
LoadCase OPR_150 OPR_30 OPR_0 OPR_120 OPR_120 OPR_120 OPR_0 OPR_60 OPR_0 OPR_120 OPR_60 OPR_270 OPR_120 OPR_120 OPR_210 OPR_60 OPR_30 OPR_30 OPR_120 OPR_60 OPR_120 OPR_120 OPR_120 OPR_30 OPR_30 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_330 OPR_90 OPR_120 OPR_120 OPR_120 OPR_120
Position 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
CASE 2 - MODIFIED FOR 15 t IMPACT UfTot
LoadCase
Position
CASE 3 - 25 t IMPACT UfTot 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.08 0.09 0.09 0.11 0.11 0.09 0.08 0.06 0.1 0.09 0.09 0.08 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.05
LoadCase OPR_120 OPR_30 OPR_30 OPR_120 OPR_120 OPR_120 OPR_180 OPR_60 OPR_0 OPR_90 OPR_60 OPR_90 OPR_120 OPR_120 OPR_210 OPR_60 OPR_30 OPR_30 OPR_120 OPR_60 OPR_120 OPR_120 OPR_120 OPR_30 OPR_30 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_330 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120
Position 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
CASE 3 - MODIFIED FOR 15 t IMPACT UfTot
LoadCase
Summary UF
Position
CASE 4 - 25 t IMPACT UfTot 0.11 0.14 0.13 0.13 0.13 0.13 0.11 0.13 0.11 0.09 0.09 0.07 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05 0.05
LoadCase OPR_150 OPR_30 OPR_30 OPR_120 OPR_120 OPR_120 OPR_0 OPR_60 OPR_0 OPR_90 OPR_60 OPR_90 OPR_90 OPR_60 OPR_210 OPR_60 OPR_30 OPR_30 OPR_90 OPR_60 OPR_120 OPR_120 OPR_120 OPR_30 OPR_30 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_330 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120
Position 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
SUMMARY - 25 t IMPACT UfTot 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.05 0.05 0.05 0.05
LoadCase OPR_120 OPR_30 OPR_30 OPR_120 OPR_120 OPR_120 OPR_180 OPR_60 OPR_0 OPR_90 OPR_60 OPR_270 OPR_90 OPR_60 OPR_210 OPR_60 OPR_30 OPR_30 OPR_90 OPR_60 OPR_120 OPR_120 OPR_120 OPR_30 OPR_30 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_330 OPR_90 OPR_120 OPR_120 OPR_120 OPR_120
Position 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
SUMMARY - MODIFIED FOR 15 t IMPACT Worst Case CASE 3 CASE 3 CASE 3 CASE 1 CASE 1 CASE 1 CASE 3 CASE 1 CASE 3 CASE 3 CASE 3 CASE 2 CASE 4 CASE 4 CASE 1 CASE 3 CASE 4 CASE 4 CASE 4 CASE 3 CASE 1 CASE 1 CASE 4 CASE 1 CASE 1 CASE 1 CASE 1 CASE 1 CASE 1 CASE 1 CASE 1 CASE 1 CASE 1 CASE 1 CASE 1 CASE 2 CASE 1 CASE 1 CASE 1 CASE 1
UfTot
LoadCase
Position
Worst Case
East Espoir
Jacket - Installation Results
Member Names and Location
East Espoir
Jacket - Installation Results
Member Names and Location
East Espoir
Jacket - Installation Results
Member Names and Location
East Espoir
Jacket In Service Results
EAST ESPOIR DESIGN MODEL - IN SERVICE CASES Maximum Member Utilisations (ufTot) CASE 5 Member Bm319 Bm1581 Bm453 Bm1848 Bm1982 Bm321 Bm1736 Bm1737 Bm1909 Bm323 Bm288 Bm291 Bm1488 Bm1582 Bm1490 Bm199008 Bm424 Bm199007 Bm435 Bm409 Bm408 Bm1985 Bm422 Bm1485 Bm304 Bm309 Bm1278 Bm1491 Bm1583 Bm406 Bm1479 Bm1481 Bm1572 Bm1580 Bm410 Bm434 Bm407 Bm1570 Bm1575 Bm215 Bm233 Bm245 Bm413 Bm418 Bm1427 Bm1429 Bm1480 Bm1498 Bm1738 Bm296 Bm412 Bm420 Bm432 Bm1573 Bm1248 Bm1279 Bm1571 Bm1577 Bm1585 Bm439 Bm442 Bm1470 Bm1493 Bm1495 Bm1497 Bm1574 Bm1586 Bm443 Bm451 Bm1247 Bm1494 Bm1576 Bm313 Bm454 Bm1514 Bm1758 Bm1578 Bm414 Bm292 Bm301 Bm293 Bm294 Bm299 Bm1252 Bm1532 Bm411 Bm416 Bm445 Bm1579 Bm1496 Bm1759 Bm1986 Bm303 Bm1487 Bm1503 Bm1584 Bm1983 Bm427
UfTot 0.44 0.63 0.45 0.44 0.3 0.41 0.56 0.53 0.41 0.38 0.35 0.35 0.45 0.42 0.45 0.45 0.4 0.44 0.44 0.42 0.35 0.22 0.33 0.29 0.36 0.28 0.29 0.28 0.37 0.42 0.27 0.26 0.39 0.35 0.37 0.35 0.36 0.39 0.35 0.43 0.43 0.43 0.33 0.32 0.43 0.43 0.25 0.25 0.25 0.26 0.32 0.32 0.27 0.37 0.35 0.26 0.37 0.32 0.34 0.28 0.34 0.39 0.28 0.25 0.25 0.32 0.33 0.25 0.32 0.36 0.27 0.3 0.3 0.29 0.22 0.22 0.28 0.27 0.25 0.2 0.24 0.22 0.22 0.2 0.19 0.25 0.25 0.2 0.25 0.19 0.19 0.2 0.19 0.24 0.23 0.26 0.14 0.19
CASE 6
CASE 7
CASE 8
Bm319 is to be grout filled and modified UF is recorded in Design Report 5087631-007-ER-01 Rev A1.pdf SUMMARY
LoadCase Position UfTot LoadCase Position UfTot LoadCase Position UfTot LoadCase Position UfTot LoadCase Position Worst Case OT8_1_180 0 1.03 S1T8_1_180 0 0.8 S2T8_1_180 0 0.58 S3T8_1_180 0 1.03 S1T8_1_180 0 CASE 6 OT8_4_0 1 0.83 S1T8_4_0 1 0.79 S2T8_4_0 1 0.74 S3T8_4_0 1 0.83 S1T8_4_0 1 CASE 6 OT8_14_30 0.5 0.67 S1T8_9_30 0.5 0.67 S2T8_9_30 0.5 0.59 S3T8_9_30 0.5 0.67 S1T8_9_30 0.5 CASE 6 OT8_9_0 1 0.67 S1T8_9_0 1 0.67 S2T8_9_0 1 0.59 S3T8_9_0 1 0.67 S1T8_9_0 1 CASE 6 OT8_9_180 1 0.66 S1T8_9_180 1 0.56 S2T8_9_180 1 0.41 S3T8_12_0 1 0.66 S1T8_9_180 1 CASE 6 OT8_13_60 0 0.64 S1T8_13_60 0 0.61 S2T8_13_60 0 0.52 S3T8_13_60 0 0.64 S1T8_13_60 0 CASE 6 OT8_9_150 1 0.62 S1T8_9_150 1 0.61 S2T8_9_150 1 0.61 S3T8_9_120 1 0.62 S1T8_9_150 1 CASE 6 OT8_12_30 1 0.62 S1T8_12_30 1 0.61 S2T8_12_30 1 0.57 S3T8_12_30 1 0.62 S1T8_12_30 1 CASE 6 OT8_9_0 0 0.62 S1T8_9_0 1 0.62 S2T8_9_0 0 0.55 S3T8_9_0 0 0.62 S1T8_9_0 1 CASE 6 OT8_14_120 0 0.61 S1T8_14_120 0 0.6 S2T8_14_120 0 0.48 S3T8_14_120 0 0.61 S1T8_14_120 0 CASE 6 OT8_13_60 0 0.6 S1T8_13_60 0 0.56 S2T8_13_60 0 0.47 S3T8_13_60 0 0.6 S1T8_13_60 0 CASE 6 OT8_9_90 0 0.58 S1T8_9_120 0 0.57 S2T8_9_120 0 0.46 S3T8_9_90 0 0.58 S1T8_9_120 0 CASE 6 OT8_12_150 0 0.58 S1T8_12_150 0 0.55 S2T8_12_150 0 0.51 S3T8_12_150 0 0.58 S1T8_12_150 0 CASE 6 OT8_12_0 1 0.57 S1T8_12_0 1 0.54 S2T8_12_0 1 0.48 S3T8_12_0 1 0.57 S1T8_12_0 1 CASE 6 OT8_9_30 0 0.56 S1T8_9_30 0 0.55 S2T8_9_30 0 0.51 S3T8_9_30 0 0.56 S1T8_9_30 0 CASE 6 OT8_12_150 1 0.56 S1T8_12_150 1 0.54 S2T8_12_150 1 0.5 S3T8_12_150 1 0.56 S1T8_12_150 1 CASE 6 OT8_12_0 0 0.55 S1T8_12_0 0 0.52 S2T8_12_0 0 0.47 S3T8_12_0 0 0.55 S1T8_12_0 0 CASE 6 OT8_9_30 1 0.54 S1T8_9_30 0 0.54 S2T8_9_30 0 0.5 S3T8_9_30 0 0.54 S1T8_9_30 0 CASE 6 OT8_4_300 0 0.49 S1T8_4_330 0 0.49 S2T8_4_300 0 0.53 S3T8_4_300 0 0.53 S3T8_4_300 0 CASE 8 OT8_12_30 0 0.51 S1T8_12_30 0 0.51 S2T8_12_30 0 0.47 S3T8_12_30 0 0.51 S1T8_12_30 0 CASE 6 OT8_14_30 0 0.5 S1T8_14_30 0 0.48 S2T8_14_30 0 0.43 S3T8_14_30 0 0.5 S1T8_14_30 0 CASE 6 OT8_9_180 1 0.5 S1T8_9_180 1 0.42 S2T8_9_180 1 0.3 S3T8_12_0 1 0.5 S1T8_9_180 1 CASE 6 OT8_14_30 0 0.49 S1T8_14_30 0 0.47 S2T8_14_30 0 0.41 S3T8_14_30 0 0.49 S1T8_14_30 0 CASE 6 OT8_13_60 0 0.49 S1T8_13_60 0 0.46 S2T8_13_60 0 0.38 S3T8_13_60 0 0.49 S1T8_13_60 0 CASE 6 OT8_9_150 0 0.48 S1T8_9_150 0 0.45 S2T8_9_150 0 0.41 S3T8_9_150 0 0.48 S1T8_9_150 0 CASE 6 OT8_14_90 1 0.48 S1T8_14_90 1 0.45 S2T8_14_90 1 0.37 S3T8_14_90 1 0.48 S1T8_14_90 1 CASE 6 OT8_1_90 1 0.48 S1T8_1_90 1 0.46 S2T8_1_90 1 0.37 S3T8_1_90 1 0.48 S1T8_1_90 1 CASE 6 OT8_9_90 0 0.48 S1T8_9_120 0 0.47 S2T8_9_120 0 0.37 S3T8_9_90 0 0.48 S1T8_9_120 0 CASE 6 OT8_9_210 0 0.48 S1T8_9_210 0 0.46 S2T8_9_210 0 0.42 S3T8_9_210 0 0.48 S1T8_9_210 0 CASE 6 OT8_9_150 0 0.47 S1T8_9_150 0 0.46 S2T8_9_150 0 0.46 S3T8_9_120 0 0.47 S1T8_9_150 0 CASE 6 OT8_4_180 0 0.47 S1T8_4_180 0 0.42 S2T8_4_180 0 0.35 S3T8_4_180 0 0.47 S1T8_4_180 0 CASE 6 OT8_1_180 1 0.47 S1T8_4_180 1 0.42 S2T8_4_180 1 0.35 S3T8_1_180 1 0.47 S1T8_4_180 1 CASE 6 OT8_12_30 0 0.47 S1T8_12_30 0 0.46 S2T8_12_30 0 0.43 S3T8_12_30 0 0.47 S1T8_12_30 0 CASE 6 OT8_4_0 1 0.47 S1T8_4_0 1 0.45 S2T8_4_0 1 0.42 S3T8_4_0 1 0.47 S1T8_4_0 1 CASE 6 OT8_12_0 0 0.45 S1T8_12_0 0 0.44 S2T8_12_0 0 0.4 S3T8_12_0 0 0.45 S1T8_12_0 0 CASE 6 OT8_4_210 0 0.45 S1T8_9_210 0 0.43 S2T8_9_210 0 0.4 S3T8_14_210 0 0.45 S1T8_9_210 0 CASE 6 OT8_9_210 0 0.44 S1T8_9_210 0 0.43 S2T8_9_210 0 0.39 S3T8_9_30 0 0.44 S1T8_9_210 0 CASE 6 OT8_9_150 0 0.44 S1T8_9_150 0 0.43 S2T8_9_150 0 0.43 S3T8_9_120 0 0.44 S1T8_9_150 0 CASE 6 OT8_9_210 1 0.44 S1T8_9_210 1 0.42 S2T8_9_210 1 0.38 S3T8_9_210 1 0.44 S1T8_9_210 1 CASE 6 OT8_12_120 0 0.43 S1T8_12_120 0 0.43 S2T8_12_120 0 0.43 S3T8_12_120 0 0.43 OT8_12_120 0 CASE 5 OT8_12_120 0 0.43 S1T8_12_120 0 0.43 S2T8_12_120 0 0.43 S3T8_12_120 0 0.43 OT8_12_120 0 CASE 5 OT8_12_120 0 0.43 S1T8_12_120 0 0.43 S2T8_12_120 0 0.43 S3T8_12_120 0 0.43 OT8_12_120 0 CASE 5 OT8_12_0 0 0.43 S1T8_12_0 0 0.42 S2T8_12_0 0 0.37 S3T8_12_0 0 0.43 S1T8_12_0 0 CASE 6 OT8_4_0 0 0.43 S1T8_4_0 0 0.41 S2T8_4_0 0 0.38 S3T8_4_0 0 0.43 S1T8_4_0 0 CASE 6 OT8_12_120 0 0.43 S1T8_12_120 0 0.43 S2T8_12_120 0 0.43 S3T8_12_120 0 0.43 OT8_12_120 0 CASE 5 OT8_12_120 0 0.43 S1T8_12_120 0 0.43 S2T8_12_120 0 0.43 S3T8_12_120 0 0.43 OT8_12_120 0 CASE 5 OT8_12_120 0 0.43 S1T8_4_180 1 0.39 S2T8_4_180 1 0.33 S3T8_1_180 1 0.43 S1T8_4_180 1 CASE 6 OT8_14_90 1 0.43 S1T8_14_90 1 0.41 S2T8_14_90 1 0.33 S3T8_14_90 1 0.43 S1T8_14_90 1 CASE 6 OT8_14_90 1 0.43 S1T8_14_90 1 0.4 S2T8_14_90 1 0.33 S3T8_14_90 1 0.43 S1T8_14_90 1 CASE 6 OT8_13_60 1 0.42 S1T8_13_60 1 0.4 S2T8_13_60 1 0.33 S3T8_13_60 1 0.42 S1T8_13_60 1 CASE 6 OT8_9_210 0 0.42 S1T8_9_210 0 0.4 S2T8_9_210 0 0.36 S3T8_9_210 0 0.42 S1T8_9_210 0 CASE 6 OT8_4_0 1 0.42 S1T8_4_0 1 0.4 S2T8_4_0 1 0.37 S3T8_4_0 1 0.42 S1T8_4_0 1 CASE 6 OT8_4_0 1 0.42 S1T8_4_0 1 0.39 S2T8_4_0 1 0.35 S3T8_4_0 1 0.42 S1T8_4_0 1 CASE 6 OT8_12_90 1 0.42 S1T8_12_0 0 0.41 S2T8_12_0 0 0.41 S3T8_12_90 1 0.42 S1T8_12_0 0 CASE 6 OT8_12_30 0 0.41 S1T8_12_30 0 0.4 S2T8_12_30 0 0.38 S3T8_12_30 0 0.41 S1T8_12_30 0 CASE 6 OT8_1_90 1 0.41 S1T8_1_90 1 0.41 S2T8_1_120 1 0.32 S3T8_1_90 1 0.41 S1T8_1_90 1 CASE 6 OT8_9_90 1 0.41 S1T8_9_210 0 0.4 S2T8_9_210 0 0.41 S3T8_9_90 1 0.41 S1T8_9_210 0 CASE 6 OT8_12_0 1 0.41 S1T8_12_0 1 0.39 S2T8_12_0 1 0.35 S3T8_12_0 1 0.41 S1T8_12_0 1 CASE 6 OT8_9_210 1 0.41 S1T8_9_210 1 0.4 S2T8_9_210 1 0.36 S3T8_9_210 1 0.41 S1T8_9_210 1 CASE 6 OT8_4_0 1 0.4 S1T8_4_0 1 0.38 S2T8_4_0 1 0.34 S3T8_4_0 1 0.4 S1T8_4_0 1 CASE 6 OT8_9_210 1 0.4 S1T8_9_210 1 0.39 S2T8_9_210 1 0.35 S3T8_9_210 1 0.4 S1T8_9_210 1 CASE 6 OT8_12_120 0 0.4 S1T8_12_120 0 0.39 S2T8_12_120 0 0.39 S3T8_12_120 0 0.4 S1T8_12_120 0 CASE 6 OT8_13_60 1 0.4 S1T8_13_60 1 0.38 S2T8_13_60 1 0.33 S3T8_13_60 1 0.4 S1T8_13_60 1 CASE 6 OT8_13_90 1 0.4 S1T8_13_90 1 0.38 S2T8_13_90 1 0.32 S3T8_13_90 1 0.4 S1T8_13_90 1 CASE 6 OT8_14_90 1 0.4 S1T8_14_90 1 0.38 S2T8_14_90 1 0.32 S3T8_14_90 1 0.4 S1T8_14_90 1 CASE 6 OT8_9_210 1 0.4 S1T8_9_210 1 0.38 S2T8_9_210 1 0.35 S3T8_9_210 1 0.4 S1T8_9_210 1 CASE 6 OT8_12_0 1 0.4 S1T8_12_0 1 0.39 S2T8_12_0 1 0.35 S3T8_12_0 1 0.4 S1T8_12_0 1 CASE 6 OT8_14_30 1 0.39 S1T8_14_30 1 0.38 S2T8_14_30 1 0.33 S3T8_14_30 1 0.39 S1T8_14_30 1 CASE 6 OT8_12_0 1 0.39 S1T8_12_0 1 0.37 S2T8_12_0 1 0.34 S3T8_12_0 1 0.39 S1T8_12_0 1 CASE 6 OT8_9_120 0 0.39 S1T8_9_150 0 0.39 S2T8_9_150 0 0.39 S3T8_9_120 0 0.39 S1T8_9_150 0 CASE 6 OT8_9_120 1 0.39 S1T8_9_120 1 0.38 S2T8_9_120 1 0.32 S3T8_9_90 1 0.39 S1T8_9_120 1 CASE 6 OT8_12_0 0 0.39 S1T8_12_0 0 0.38 S2T8_12_0 0 0.33 S3T8_12_0 0 0.39 S1T8_12_0 0 CASE 6 OT8_13_60 0 0.38 S1T8_13_60 0 0.37 S2T8_13_60 0 0.34 S3T8_13_60 0 0.38 S1T8_13_60 0 CASE 6 OT8_13_150 1 0.38 S1T8_1_0 0 0.37 S2T8_1_0 0 0.35 S3T8_13_150 1 0.38 S1T8_1_0 0 CASE 6 OT8_14_90 1 0.38 S1T8_14_90 1 0.36 S2T8_14_90 1 0.29 S3T8_14_90 1 0.38 S1T8_14_90 1 CASE 6 OT8_1_90 1 0.38 S1T8_1_90 1 0.36 S2T8_1_90 1 0.29 S3T8_1_90 1 0.38 S1T8_1_90 1 CASE 6 OT8_4_30 1 0.37 S1T8_4_30 1 0.36 S2T8_4_30 1 0.33 S3T8_4_30 1 0.37 S1T8_4_30 1 CASE 6 OT8_4_30 0 0.36 S1T8_9_30 0 0.34 S2T8_9_30 0 0.32 S3T8_9_30 0 0.36 S1T8_9_30 0 CASE 6 OT8_13_60 1 0.35 S1T8_13_60 1 0.33 S2T8_13_60 1 0.3 S3T8_13_60 1 0.35 S1T8_13_60 1 CASE 6 OT8_14_90 1 0.35 S1T8_14_90 1 0.33 S2T8_14_90 1 0.27 S3T8_14_90 1 0.35 S1T8_14_90 1 CASE 6 OT8_9_120 1 0.34 S1T8_9_120 1 0.33 S2T8_9_120 1 0.29 S3T8_9_90 1 0.34 S1T8_9_120 1 CASE 6 OT8_13_90 1 0.34 S1T8_13_90 1 0.33 S2T8_13_90 1 0.28 S3T8_13_90 1 0.34 S1T8_13_90 1 CASE 6 OT8_14_90 1 0.34 S1T8_14_90 1 0.32 S2T8_14_90 1 0.27 S3T8_14_90 1 0.34 S1T8_14_90 1 CASE 6 OT8_14_90 1 0.34 S1T8_14_90 1 0.32 S2T8_14_90 1 0.27 S3T8_14_90 1 0.34 S1T8_14_90 1 CASE 6 OT8_14_90 1 0.33 S1T8_14_90 1 0.31 S2T8_14_90 1 0.25 S3T8_14_90 1 0.33 S1T8_14_90 1 CASE 6 OT8_4_210 0 0.32 S1T8_4_210 0 0.31 S2T8_4_210 0 0.29 S3T8_4_210 0 0.32 S1T8_4_210 0 CASE 6 OT8_4_0 0 0.32 S1T8_4_0 0 0.3 S2T8_4_0 0 0.29 S3T8_4_0 0 0.32 S1T8_4_0 0 CASE 6 OT8_14_30 0.5 0.31 S1T8_14_30 0.5 0.32 S2T8_14_30 0.5 0.27 S3T8_14_30 0.5 0.32 S2T8_14_30 0.5 CASE 7 OT8_4_30 1 0.32 S1T8_4_30 1 0.3 S2T8_4_30 1 0.28 S3T8_4_30 1 0.32 S1T8_4_30 1 CASE 6 OT8_4_60 1 0.31 S1T8_13_60 1 0.3 S2T8_13_60 1 0.24 S3T8_13_60 1 0.31 S1T8_13_60 1 CASE 6 OT8_1_120 1 0.31 S1T8_1_120 1 0.31 S2T8_1_120 1 0.23 S3T8_1_120 1 0.31 S1T8_1_120 1 CASE 6 OT8_9_0 0 0.3 S1T8_9_0 0 0.31 S2T8_9_0 0 0.27 S3T8_9_0 0 0.31 S2T8_9_0 0 CASE 7 OT8_12_0 0 0.29 S1T8_12_0 0 0.3 S2T8_12_0 0 0.25 S3T8_12_0 0 0.3 S2T8_12_0 0 CASE 7 OT8_12_150 0 0.3 S1T8_12_150 0 0.29 S2T8_12_150 0 0.27 S3T8_12_150 0 0.3 S1T8_12_150 0 CASE 6 OT8_9_120 1 0.3 S1T8_9_150 1 0.28 S2T8_9_150 1 0.26 S3T8_9_150 1 0.3 S1T8_9_150 1 CASE 6 OT8_4_300 0 0.29 S1T8_4_330 0 0.29 S2T8_4_330 0 0.3 S3T8_4_300 0 0.3 S3T8_4_300 0 CASE 8 OT8_12_0 0 0.3 S1T8_9_180 0 0.25 S2T8_9_180 0 0.19 S3T8_12_0 0 0.3 S1T8_9_180 0 CASE 6 OT8_9_0 1 0.29 S1T8_9_0 1 0.26 S2T8_9_0 1 0.24 S3T8_9_0 1 0.29 S1T8_9_0 1 CASE 6
Summary UF
East Espoir
Jacket In Service Results
EAST ESPOIR DESIGN MODEL - IN SERVICE CASES Maximum Member Utilisations (ufTot) CASE 5 Member Bm441 Bm447 Bm1489 Bm1484 Bm1523 Bm212 Bm218 Bm253 Bm285 Bm312 Bm1482 Bm318 Bm287 Bm1504 Bm1980 Bm1420 Bm1424 Bm229 Bm241 Bm257 Bm289 Bm449 Bm1472 Bm1474 Bm1890 Bm252 Bm290 Bm1458 Bm1483 Bm1534 Bm1536 Bm1421 Bm1436 Bm1502 Bm1524 Bm1847 Bm222 Bm226 Bm1486 Bm236 Bm244 Bm286 Bm320 Bm1984 Bm221 Bm232 Bm322 Bm1425 Bm1459 Bm1492 Bm1522 Bm208 Bm1432 Bm1454 Bm1473 Bm210 Bm254 Bm1431 Bm1433 Bm1437 Bm1469 Bm1829 Bm1832 Bm1981 Bm1987 Bm251 Bm1533 Bm1535 Bm1830 Bm1831 Bm199005 Bm219 Bm1428 Bm199006 Bm1418 Bm1422 Bm1988 Bm1989 Bm256 Bm258 Bm1430 Bm1471 Bm1990 Bm1991 Bm1992 Bm220 Bm1426 Bm1438 Bm1460 Bm207 Bm209 Bm1419 Bm1423 Bm214 Bm217 Bm211 Bm1439 Bm1461
UfTot 0.19 0.19 0.23 0.17 0.21 0.18 0.25 0.25 0.14 0.17 0.14 0.14 0.15 0.17 0.16 0.22 0.22 0.21 0.2 0.2 0.16 0.15 0.2 0.2 0.13 0.19 0.15 0.13 0.12 0.13 0.13 0.11 0.13 0.12 0.14 0.14 0.17 0.17 0.1 0.13 0.12 0.12 0.11 0.07 0.11 0.1 0.1 0.12 0.09 0.09 0.1 0.09 0.13 0.13 0.13 0.1 0.13 0.13 0.13 0.09 0.13 0.1 0.1 0.08 0.08 0.12 0.08 0.08 0.08 0.09 0.12 0.08 0.09 0.11 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.06 0.05 0.05 0.05
CASE 6
CASE 7
CASE 8
SUMMARY
LoadCase Position UfTot LoadCase Position UfTot LoadCase Position UfTot LoadCase Position UfTot LoadCase Position Worst Case OT8_14_30 0 0.29 S1T8_14_30 0 0.27 S2T8_14_30 0 0.24 S3T8_14_30 0 0.29 S1T8_14_30 0 CASE 6 OT8_13_150 0 0.29 S1T8_1_0 0 0.27 S2T8_1_0 0 0.25 S3T8_13_150 0 0.29 S1T8_1_0 0 CASE 6 OT8_9_30 0 0.29 S1T8_9_30 0 0.29 S2T8_9_30 0 0.27 S3T8_9_30 0 0.29 S1T8_9_30 0 CASE 6 OT8_1_150 1 0.26 S1T8_1_150 1 0.24 S2T8_1_150 1 0.21 S3T8_1_150 1 0.26 S1T8_1_150 1 CASE 6 OT8_13_60 1 0.26 S1T8_13_60 1 0.25 S2T8_13_60 1 0.24 S3T8_13_60 1 0.26 S1T8_13_60 1 CASE 6 OT8_12_0 0 0.25 S1T8_12_0 0 0.25 S2T8_12_0 0 0.22 S3T8_12_0 0 0.25 S1T8_12_0 0 CASE 6 OT8_12_120 0 0.25 S1T8_12_120 0 0.25 S2T8_12_120 0 0.25 S3T8_12_120 0 0.25 OT8_12_120 0 CASE 5 OT8_12_120 0 0.25 S1T8_12_120 0 0.25 S2T8_12_120 0 0.25 S3T8_12_120 0 0.25 OT8_12_120 0 CASE 5 OT8_4_180 0 0.25 S1T8_4_180 0 0.22 S2T8_4_180 0 0.19 S3T8_4_180 0 0.25 S1T8_4_180 0 CASE 6 OT8_13_180 0 0.25 S1T8_13_180 0 0.23 S2T8_13_180 0 0.2 S3T8_13_180 0 0.25 S1T8_13_180 0 CASE 6 OT8_1_180 1 0.25 S1T8_4_180 1 0.22 S2T8_1_180 1 0.19 S3T8_1_180 1 0.25 S1T8_4_180 1 CASE 6 OT8_14_90 1 0.24 S1T8_14_90 1 0.23 S2T8_14_90 1 0.19 S3T8_14_90 1 0.24 S1T8_14_90 1 CASE 6 OT8_1_150 1 0.23 S1T8_1_150 1 0.21 S2T8_1_150 1 0.19 S3T8_1_150 1 0.23 S1T8_1_150 1 CASE 6 OT8_9_150 1 0.23 S1T8_9_150 1 0.21 S2T8_9_150 1 0.2 S3T8_9_150 1 0.23 S1T8_9_150 1 CASE 6 OT8_14_30 0 0.23 S1T8_14_30 0 0.23 S2T8_14_30 0 0.2 S3T8_14_30 0 0.23 S1T8_14_30 0 CASE 6 OT8_12_120 0 0.22 S1T8_12_120 0 0.22 S2T8_12_120 0 0.22 S3T8_12_120 0 0.22 OT8_12_120 0 CASE 5 OT8_12_120 0 0.22 S1T8_12_120 0 0.22 S2T8_12_120 0 0.22 S3T8_12_120 0 0.22 OT8_12_120 0 CASE 5 OT8_12_120 0 0.21 S1T8_12_120 0 0.21 S2T8_12_120 0 0.21 S3T8_12_120 0 0.21 OT8_12_120 0 CASE 5 OT8_12_120 0 0.2 S1T8_12_120 0 0.2 S2T8_12_120 0 0.2 S3T8_12_120 0 0.2 OT8_12_120 0 CASE 5 OT8_12_120 0 0.2 S1T8_12_120 0 0.2 S2T8_12_120 0 0.2 S3T8_12_120 0 0.2 OT8_12_120 0 CASE 5 OT8_12_150 0 0.2 S1T8_12_150 0 0.19 S2T8_12_150 0 0.17 S3T8_12_150 0 0.2 S1T8_12_150 0 CASE 6 OT8_13_150 1 0.2 S1T8_13_150 1 0.19 S2T8_13_150 1 0.19 S3T8_13_150 1 0.2 S1T8_13_150 1 CASE 6 OT8_12_120 0 0.2 S1T8_12_120 0 0.2 S2T8_12_120 0 0.2 S3T8_12_120 0 0.2 OT8_12_120 0 CASE 5 OT8_12_120 0 0.2 S1T8_12_120 0 0.2 S2T8_12_120 0 0.2 S3T8_12_120 0 0.2 OT8_12_120 0 CASE 5 OT8_9_30 0 0.19 S1T8_9_30 0 0.2 S2T8_9_30 0 0.17 S3T8_9_30 0 0.2 S2T8_9_30 0 CASE 7 OT8_12_120 0 0.19 S1T8_12_120 0 0.19 S2T8_12_120 0 0.19 S3T8_12_120 0 0.19 OT8_12_120 0 CASE 5 OT8_9_30 0 0.19 S1T8_9_30 0 0.19 S2T8_9_30 0 0.18 S3T8_9_30 0 0.19 S1T8_9_30 0 CASE 6 OT8_12_120 0 0.19 S1T8_12_30 0 0.19 S2T8_12_30 0 0.15 S3T8_12_30 0 0.19 S1T8_12_30 0 CASE 6 OT8_14_60 1 0.19 S1T8_14_60 1 0.18 S2T8_14_60 1 0.16 S3T8_14_60 1 0.19 S1T8_14_60 1 CASE 6 OT8_13_120 1 0.19 S1T8_14_120 1 0.18 S2T8_14_120 1 0.16 S3T8_14_120 1 0.19 S1T8_14_120 1 CASE 6 OT8_14_60 1 0.19 S1T8_14_60 1 0.18 S2T8_14_60 1 0.16 S3T8_14_60 1 0.19 S1T8_14_60 1 CASE 6 OT8_1_210 1 0.18 S1T8_12_30 1 0.17 S2T8_12_30 1 0.14 S3T8_12_30 1 0.18 S1T8_12_30 1 CASE 6 OT8_12_120 0 0.18 S1T8_12_30 0 0.18 S2T8_12_30 0 0.14 S3T8_12_30 0 0.18 S1T8_12_30 0 CASE 6 OT8_14_0 1 0.17 S1T8_14_0 1 0.18 S2T8_14_0 1 0.16 S3T8_14_0 1 0.18 S2T8_14_0 1 CASE 7 OT8_13_60 1 0.18 S1T8_13_60 1 0.18 S2T8_13_60 1 0.17 S3T8_13_60 1 0.18 S1T8_13_60 1 CASE 6 OT8_13_90 1 0.18 S1T8_13_90 1 0.17 S2T8_13_90 1 0.17 S3T8_13_90 1 0.18 S1T8_13_90 1 CASE 6 OT8_12_120 0 0.17 S1T8_12_120 0 0.17 S2T8_12_120 0 0.17 S3T8_12_120 0 0.17 OT8_12_120 0 CASE 5 OT8_12_120 0 0.17 S1T8_12_120 0 0.17 S2T8_12_120 0 0.17 S3T8_12_120 0 0.17 OT8_12_120 0 CASE 5 OT8_9_210 0 0.17 S1T8_9_180 0 0.15 S2T8_9_180 0 0.12 S3T8_9_210 0 0.17 S1T8_9_180 0 CASE 6 OT8_9_60 1 0.15 S1T8_9_60 1 0.14 S2T8_9_60 1 0.16 S3T8_9_60 1 0.16 S3T8_9_60 1 CASE 8 OT8_1_180 0 0.16 S1T8_12_30 0 0.16 S2T8_12_30 0 0.14 S3T8_1_180 0 0.16 S1T8_12_30 0 CASE 6 OT8_13_60 0 0.16 S1T8_14_60 1 0.15 S2T8_14_60 1 0.14 S3T8_13_60 0 0.16 S1T8_14_60 1 CASE 6 OT8_4_90 0 0.16 S1T8_4_90 0 0.15 S2T8_4_90 0 0.13 S3T8_4_90 0 0.16 S1T8_4_90 0 CASE 6 OT8_9_180 0 0.16 S1T8_9_180 0 0.14 S2T8_9_180 0 0.1 S3T8_12_0 0 0.16 S1T8_9_180 0 CASE 6 OT8_4_90 0 0.15 S1T8_4_90 0 0.14 S2T8_4_90 0 0.14 S3T8_4_90 0 0.15 S1T8_4_90 0 CASE 6 OT8_1_210 0 0.15 S1T8_12_30 0 0.15 S2T8_12_30 0 0.12 S3T8_12_30 0 0.15 S1T8_12_30 0 CASE 6 OT8_9_60 0 0.15 S1T8_9_90 0 0.15 S2T8_9_90 0 0.13 S3T8_9_60 0 0.15 S1T8_9_90 0 CASE 6 OT8_1_180 1 0.15 S1T8_12_30 0 0.15 S2T8_12_30 0 0.14 S3T8_1_210 1 0.15 S1T8_12_30 0 CASE 6 OT8_1_210 1 0.15 S1T8_12_30 1 0.14 S2T8_12_30 1 0.12 S3T8_12_30 1 0.15 S1T8_12_30 1 CASE 6 OT8_13_0 1 0.15 S1T8_1_150 0 0.13 S2T8_12_0 0 0.11 S3T8_12_0 0 0.15 S1T8_1_150 0 CASE 6 OT8_12_150 1 0.15 S1T8_12_150 1 0.14 S2T8_12_150 1 0.12 S3T8_12_150 1 0.15 S1T8_12_150 1 CASE 6 OT8_1_210 0 0.14 S1T8_12_30 0 0.14 S2T8_12_30 0 0.11 S3T8_12_30 0 0.14 S1T8_12_30 0 CASE 6 OT8_12_120 0 0.14 S1T8_1_90 1 0.13 S2T8_1_90 1 0.13 S3T8_12_120 0 0.14 S1T8_1_90 1 CASE 6 OT8_12_120 0 0.14 S1T8_12_120 0 0.13 S2T8_12_120 0 0.13 S3T8_12_120 0 0.14 S1T8_12_120 0 CASE 6 OT8_12_120 0 0.14 S1T8_12_120 0 0.13 S2T8_12_120 0 0.13 S3T8_12_120 0 0.14 S1T8_12_120 0 CASE 6 OT8_1_180 0 0.13 S1T8_1_180 0 0.12 S2T8_1_210 0 0.11 S3T8_1_180 0 0.13 S1T8_1_180 0 CASE 6 OT8_12_120 0 0.13 S1T8_12_120 0 0.13 S2T8_12_120 0 0.13 S3T8_12_120 0 0.13 OT8_12_120 0 CASE 5 OT8_12_120 0 0.13 S1T8_12_120 0 0.13 S2T8_12_120 0 0.13 S3T8_12_120 0 0.13 OT8_12_120 0 CASE 5 OT8_12_120 0 0.13 S1T8_12_120 0 0.13 S2T8_12_120 0 0.13 S3T8_12_120 0 0.13 OT8_12_120 0 CASE 5 OT8_1_180 1 0.13 S1T8_12_30 1 0.13 S2T8_12_30 1 0.11 S3T8_1_210 1 0.13 S1T8_12_30 1 CASE 6 OT8_12_120 0 0.13 S1T8_12_120 0 0.13 S2T8_12_120 0 0.13 S3T8_12_120 0 0.13 OT8_12_120 0 CASE 5 OT8_12_120 0 0.13 S1T8_12_120 1 0.12 S2T8_12_120 1 0.11 S3T8_12_120 1 0.13 S1T8_12_120 1 CASE 6 OT8_1_60 0 0.13 S1T8_1_60 0 0.12 S2T8_1_60 0 0.12 S3T8_1_60 0 0.13 S1T8_1_60 0 CASE 6 OT8_4_90 1 0.13 S1T8_4_90 1 0.13 S2T8_4_90 1 0.1 S3T8_4_90 1 0.13 S1T8_4_90 1 CASE 6 OT8_4_90 0 0.13 S1T8_4_90 0 0.13 S2T8_4_120 0 0.1 S3T8_4_90 0 0.13 S1T8_4_90 0 CASE 6 OT8_12_120 0 0.12 S1T8_12_120 0 0.12 S2T8_12_120 0 0.12 S3T8_12_120 0 0.12 OT8_12_120 0 CASE 5 OT8_4_90 0 0.12 S1T8_4_90 0 0.12 S2T8_4_90 0 0.1 S3T8_4_90 0 0.12 S1T8_4_90 0 CASE 6 OT8_9_90 0 0.12 S1T8_9_90 0 0.11 S2T8_9_90 0 0.1 S3T8_9_90 0 0.12 S1T8_9_90 0 CASE 6 OT8_4_90 1 0.12 S1T8_4_120 1 0.11 S2T8_4_90 1 0.1 S3T8_4_90 1 0.12 S1T8_4_120 1 CASE 6 OT8_4_60 0 0.12 S1T8_1_60 0 0.11 S2T8_1_60 0 0.11 S3T8_1_60 0 0.12 S1T8_1_60 0 CASE 6 OT8_12_120 0 0.12 S1T8_12_120 0 0.12 S2T8_12_120 0 0.12 S3T8_12_120 0 0.12 OT8_12_120 0 CASE 5 OT8_1_120 0 0.11 S1T8_1_120 0 0.1 S2T8_1_120 0 0.1 S3T8_1_120 0 0.11 S1T8_1_120 0 CASE 6 OT8_1_120 0 0.11 S1T8_1_120 0 0.1 S2T8_1_120 0 0.1 S3T8_1_120 0 0.11 S1T8_1_120 0 CASE 6 OT8_12_120 0 0.11 S1T8_12_120 0 0.11 S2T8_12_120 0 0.11 S3T8_12_120 0 0.11 OT8_12_120 0 CASE 5 OT8_12_120 0 0.1 S1T8_12_120 0 0.09 S2T8_12_120 0 0.09 S3T8_12_120 0 0.1 S1T8_12_120 0 CASE 6 OT8_12_120 0 0.1 S1T8_12_120 0 0.09 S2T8_12_120 0 0.09 S3T8_12_120 0 0.1 S1T8_12_120 0 CASE 6 OT8_12_120 0 0.1 S1T8_12_120 0 0.1 S2T8_12_120 0 0.1 S3T8_12_120 0 0.1 S1T8_12_120 0 CASE 6 OT8_12_120 0 0.1 S1T8_12_120 0 0.1 S2T8_12_120 0 0.1 S3T8_12_120 0 0.1 S1T8_12_120 0 CASE 6 OT8_12_120 0 0.09 S1T8_1_90 0 0.09 S2T8_12_120 0 0.09 S3T8_12_120 0 0.09 OT8_12_120 0 CASE 5 OT8_12_120 0 0.09 S1T8_4_90 0 0.09 S2T8_12_120 0 0.09 S3T8_12_120 0 0.09 OT8_12_120 0 CASE 5 OT8_12_120 0 0.09 S1T8_12_120 0 0.09 S2T8_12_120 0 0.09 S3T8_12_120 0 0.09 OT8_12_120 0 CASE 5 OT8_12_120 0 0.09 S1T8_12_120 0 0.09 S2T8_12_120 0 0.09 S3T8_12_120 0 0.09 OT8_12_120 0 CASE 5 OT8_12_120 0 0.09 S1T8_12_120 0 0.09 S2T8_12_120 0 0.09 S3T8_12_120 0 0.09 OT8_12_120 0 CASE 5 OT8_12_120 0 0.09 S1T8_12_120 0 0.09 S2T8_12_120 0 0.09 S3T8_12_120 0 0.09 OT8_12_120 0 CASE 5 OT8_12_120 1 0.09 S1T8_12_120 1 0.09 S2T8_12_120 1 0.09 S3T8_12_120 1 0.09 OT8_12_120 1 CASE 5 OT8_12_90 1 0.08 S1T8_12_90 1 0.08 S2T8_12_90 1 0.08 S3T8_12_90 1 0.08 S1T8_12_90 1 CASE 6 OT8_12_120 0 0.08 S1T8_4_60 0 0.07 S2T8_12_120 0 0.07 S3T8_12_120 0 0.08 S1T8_4_60 0 CASE 6 OT8_12_120 0 0.08 S1T8_1_90 1 0.08 S2T8_1_90 1 0.08 S3T8_1_90 1 0.08 S1T8_1_90 1 CASE 6 OT8_12_120 0 0.08 S1T8_4_90 1 0.07 S2T8_4_90 1 0.07 S3T8_12_120 0 0.08 S1T8_4_90 1 CASE 6 OT8_12_120 0 0.07 S1T8_12_120 0 0.07 S2T8_12_120 0 0.07 S3T8_12_120 0 0.07 OT8_12_120 0 CASE 5 OT8_12_120 0 0.07 S1T8_12_120 0 0.07 S2T8_12_120 0 0.07 S3T8_12_120 0 0.07 OT8_12_120 0 CASE 5 OT8_12_120 0 0.07 S1T8_12_120 0 0.07 S2T8_12_120 0 0.07 S3T8_12_120 0 0.07 OT8_12_120 0 CASE 5 OT8_12_120 0 0.07 S1T8_12_120 0 0.07 S2T8_12_120 0 0.07 S3T8_12_120 0 0.07 OT8_12_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.06 S1T8_1_120 0 CASE 6 OT8_12_120 0 0.06 S1T8_12_120 0 0.06 S2T8_12_120 0 0.06 S3T8_12_120 0 0.06 OT8_12_120 0 CASE 5 OT8_12_120 0 0.05 S1T8_12_120 0 0.05 S2T8_12_120 0 0.05 S3T8_12_120 0 0.05 OT8_12_120 0 CASE 5 OT8_12_120 0 0.05 S1T8_12_120 0 0.05 S2T8_12_120 0 0.05 S3T8_12_120 0 0.05 OT8_12_120 0 CASE 5 OT8_12_120 0 0.05 S1T8_12_120 0 0.05 S2T8_12_120 0 0.05 S3T8_12_120 0 0.05 OT8_12_120 0 CASE 5
Summary UF
East Espoir
Jacket In Service Results
Member Names and Location
East Espoir
Jacket In Service Results
Member Names and Location
East Espoir
Jacket In Service Results
Member Names and Location
Detailed Design of Retrofit Conductors on East & West Espoir Platforms East & West Espoir Strength & Fatigue Analysis Report
Appendix F Local Design Installation & In-Place Results for West Espoir
Report No: ESP-ATK-ST-REP-0121 Rev A1/5087631-005-ER-01 Rev A1 Issue Date: April 2010
Page F-44
All UFs are below 1.0 when impact load is reduced to 15 t
West Espoir
Jacket - Installation Results
WEST ESPOIR DESIGN MODEL - INSTALLATION CASES Maximum Member Utilisations (ufTot) CASE 1 - 25 t IMPACT Member WTBm1219 WTBm35 Bm1802 WTBm37 WTBm1594 WTBm1220 Bm1806 WTBm1416 WTBm46 Bm1610 WTBm60 WTBm52 Bm1792 Bm1801 WTBm1389 WTBm48 Bm1798 WTBm61 Bm1805 Bm1611 WTBm6 WTBm14 WTBm1419 WTBm1218 WTBm36 WTBm15 WTBm2 WTBm49 WTBm34 Bm1603 Bm1804 WTBm1393 WTBm1405 WTBm55 Bm1800 WTBm39 WTBm1595 WTBm51 Bm1790 WTBm3 WTBm1414 WTBm38 WTBm1415 Bm1604 WTBm57 WTBm10 WTBm1236 WTBm1388 WTBm54 WTBm5 WTBm1387 WTBm19 WTBm172 WTBm20 WTBm11 WTBm1412 WTBm1409 WTBm9 WTBm58 WTBm1411 WTBm171 WTBm1385 Bm1796 WTBm21 WTBm1235 WTBm12 WTBm22 WTBm1222 WTBm1224 WTBm1292 WTBm44 WTBm1384 WTBm1223 WTBm1417 WTBm1407 Bm1794 WTBm1252 WTBm156 WTBm157 WTBm26 WTBm1213 WTBm53 WTBm1406 WTBm1217
UfTot 0.08 0.12 0.1 0.1 0.12 0.08 0.09 0.15 0.1 0.23 0.22 0.13 0.14 0.1 0.14 0.23 0.1 0.27 0.1 0.23 0.12 0.21 0.17 0.08 0.11 0.27 0.23 0.21 0.1 0.18 0.09 0.16 0.07 0.14 0.05 0.1 0.07 0.27 0 0.21 0.22 0.1 0.21 0.16 0 19 0.19 0.12 0.07 0.19 0.2 0.24 0.21 0.23 0.1 0.23 0.2 0.13 0.07 0.19 0.19 0.12 0.1 0.12 0.04 0.16 0.08 0.19 0.15 0.07 0.07 0.05 0.07 0.11 0.11 0.12 0.06 0.07 0.07 0.07 0.09 0.1 0.09 0.09 0.06 0.07
LoadCase OPR_210 OPR_30 OPR_30 OPR_120 OPR_210 OPR_210 OPR_120 OPR_30 OPR_120 OPR_120 OPR_30 OPR_30 OPR_30 OPR_30 OPR_150 OPR_120 OPR_30 OPR_30 OPR_120 OPR_120 OPR_150 OPR_180 OPR_30 OPR_210 OPR_150 OPR_180 OPR_120 OPR_30 OPR_30 OPR_30 OPR_120 OPR_150 OPR_270 OPR_30 OPR_120 OPR_0 OPR_0 OPR_0 OPR_0 OPR_150 OPR_0 OPR_210 OPR_0 OPR_150 OPR 30 OPR_30 OPR_150 OPR_0 OPR_210 OPR_0 OPR_210 OPR_210 OPR_120 OPR_120 OPR_120 OPR_210 OPR_30 OPR_210 OPR_210 OPR_330 OPR_30 OPR_120 OPR_150 OPR_30 OPR_210 OPR_210 OPR_210 OPR_270 OPR_60 OPR_120 OPR_120 OPR_210 OPR_150 OPR_120 OPR_30 OPR_0 OPR_30 OPR_150 OPR_0 OPR_0 OPR_270 OPR_120 OPR_30 OPR_210 OPR_120
Position 0.5 0.5 1 0 0.5 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0.5 0 0 1 0
CASE 2 - 25 t IMPACT UfTot 0.08 1.15 0.11 0.1 0.11 0.08 0.09 0.15 0.1 0.23 0.6 0.13 0.58 0.11 0.14 0.23 0.55 0.55 0.1 0.23 0.12 0.5 0.17 0.08 0.47 0.47 0.23 0.21 0.43 0.18 0.09 0.16 0.07 0.14 0.05 0.1 0.07 0.39 0.38 0.21 0.37 0.1 0.36 0.16 0 35 0.35 0.13 0.07 0.31 0.31 0.31 0.31 0.23 0.1 0.23 0.28 0.13 0.07 0.27 0.27 0.12 0.1 0.12 0.23 0.16 0.08 0.22 0.15 0.07 0.07 0.05 0.07 0.11 0.11 0.12 0.06 0.19 0.07 0.18 0.18 0.1 0.09 0.09 0.06 0.07
LoadCase OPR_210 OPR_90 OPR_30 OPR_120 OPR_210 OPR_210 OPR_120 OPR_30 OPR_120 OPR_120 OPR_30 OPR_30 OPR_210 OPR_30 OPR_150 OPR_120 OPR_210 OPR_30 OPR_120 OPR_120 OPR_150 OPR_180 OPR_30 OPR_210 OPR_30 OPR_180 OPR_120 OPR_30 OPR_90 OPR_30 OPR_120 OPR_150 OPR_270 OPR_30 OPR_120 OPR_0 OPR_0 OPR_0 OPR_180 OPR_150 OPR_0 OPR_210 OPR_30 OPR_150 OPR 30 OPR_30 OPR_150 OPR_0 OPR_180 OPR_0 OPR_210 OPR_210 OPR_120 OPR_120 OPR_120 OPR_210 OPR_30 OPR_210 OPR_210 OPR_330 OPR_30 OPR_120 OPR_150 OPR_30 OPR_210 OPR_210 OPR_210 OPR_270 OPR_60 OPR_120 OPR_120 OPR_210 OPR_150 OPR_120 OPR_30 OPR_0 OPR_210 OPR_150 OPR_270 OPR_0 OPR_270 OPR_120 OPR_30 OPR_210 OPR_120
Position 0.5 0.5 1 0 0.5 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0.5 0 0.5 0 0 1 0
CASE 2 - MODIFIED FOR 15 t IMPACT UfTot
LoadCase
Position
0.526874033
OPR_90
0.5
CASE 3 - 25 t IMPACT UfTot 0.08 0.19 0.79 0.1 0.77 0.08 0.09 0.15 0.1 0.23 0.24 0.13 0.23 0.58 0.14 0.23 0.2 0.28 0.1 0.23 0.12 0.22 0.5 0.08 0.14 0.27 0.23 0.45 0.14 0.43 0.09 0.42 0.07 0.41 0.4 0.4 0.4 0.27 0.1 0.38 0.23 0.37 0.21 0.36 02 0.2 0.35 0.35 0.2 0.2 0.24 0.22 0.23 0.1 0.23 0.2 0.28 0.07 0.2 0.19 0.12 0.1 0.24 0.06 0.23 0.23 0.19 0.22 0.07 0.07 0.22 0.21 0.11 0.11 0.2 0.2 0.11 0.19 0.08 0.09 0.1 0.09 0.18 0.18 0.07
LoadCase OPR_210 OPR_0 OPR_30 OPR_120 OPR_0 OPR_210 OPR_120 OPR_30 OPR_120 OPR_120 OPR_30 OPR_30 OPR_0 OPR_180 OPR_150 OPR_120 OPR_0 OPR_30 OPR_120 OPR_120 OPR_150 OPR_180 OPR_30 OPR_210 OPR_150 OPR_180 OPR_120 OPR_30 OPR_30 OPR_30 OPR_120 OPR_150 OPR_270 OPR_30 OPR_180 OPR_0 OPR_0 OPR_0 OPR_30 OPR_150 OPR_0 OPR_180 OPR_0 OPR_150 OPR 0 OPR_0 OPR_150 OPR_0 OPR_210 OPR_0 OPR_210 OPR_210 OPR_120 OPR_120 OPR_120 OPR_210 OPR_30 OPR_210 OPR_210 OPR_330 OPR_30 OPR_120 OPR_150 OPR_30 OPR_270 OPR_90 OPR_210 OPR_270 OPR_60 OPR_90 OPR_0 OPR_180 OPR_150 OPR_120 OPR_30 OPR_90 OPR_0 OPR_0 OPR_30 OPR_0 OPR_270 OPR_120 OPR_30 OPR_90 OPR_120
Position 0.5 0.5 1 0 0.5 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0.5 0 0 0 0
CASE 4 - 25 t IMPACT UfTot 1.73 0.17 0.18 0.78 0.14 0.77 0.73 0.71 0.68 0.66 0.23 0.6 0.19 0.16 0.58 0.56 0.16 0.28 0.55 0.52 0.51 0.21 0.18 0.49 0.13 0.27 0.46 0.21 0.12 0.18 0.42 0.16 0.42 0.14 0.06 0.1 0.09 0.27 0.07 0.21 0.23 0.1 0.21 0.16 0 19 0.19 0.13 0.08 0.2 0.21 0.24 0.22 0.31 0.31 0.29 0.2 0.13 0.28 0.2 0.19 0.27 0.26 0.12 0.05 0.16 0.09 0.19 0.15 0.22 0.22 0.05 0.08 0.21 0.2 0.12 0.06 0.09 0.07 0.09 0.1 0.18 0.18 0.09 0.06 0.18
LoadCase OPR_60 OPR_0 OPR_0 OPR_90 OPR_0 OPR_90 OPR_60 OPR_30 OPR_180 OPR_30 OPR_30 OPR_30 OPR_0 OPR_0 OPR_150 OPR_30 OPR_0 OPR_30 OPR_30 OPR_150 OPR_150 OPR_180 OPR_30 OPR_210 OPR_150 OPR_180 OPR_150 OPR_30 OPR_30 OPR_30 OPR_0 OPR_150 OPR_270 OPR_30 OPR_90 OPR_0 OPR_0 OPR_0 OPR_30 OPR_150 OPR_0 OPR_210 OPR_0 OPR_150 OPR 0 OPR_0 OPR_150 OPR_0 OPR_210 OPR_0 OPR_210 OPR_210 OPR_270 OPR_120 OPR_270 OPR_210 OPR_30 OPR_210 OPR_210 OPR_330 OPR_30 OPR_60 OPR_150 OPR_30 OPR_210 OPR_180 OPR_210 OPR_270 OPR_60 OPR_120 OPR_0 OPR_180 OPR_150 OPR_120 OPR_30 OPR_0 OPR_0 OPR_150 OPR_270 OPR_0 OPR_270 OPR_210 OPR_30 OPR_210 OPR_180
Summary UF
Position 0.5 0.5 1 0 0.5 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0.5 0 0.83 0 0 1 1
CASE 4 - MODIFIED FOR 15 t IMPACT UfTot 0.64
LoadCase OPR_60
Position 0.5
SUMMARY - 25 t IMPACT UfTot 1.73 1.15 0.79 0.78 0.77 0.77 0.73 0.71 0.68 0.66 0.6 0.6 0.58 0.58 0.58 0.56 0.55 0.55 0.55 0.52 0.51 0.5 0.5 0.49 0.47 0.47 0.46 0.45 0.43 0.43 0.42 0.42 0.42 0.41 0.4 0.4 0.4 0.39 0.38 0.38 0.37 0.37 0.36 0.36 0 35 0.35 0.35 0.35 0.31 0.31 0.31 0.31 0.31 0.31 0.29 0.28 0.28 0.28 0.27 0.27 0.27 0.26 0.24 0.23 0.23 0.23 0.22 0.22 0.22 0.22 0.22 0.21 0.21 0.2 0.2 0.2 0.19 0.19 0.18 0.18 0.18 0.18 0.18 0.18 0.18
LoadCase OPR_60 OPR_90 OPR_30 OPR_90 OPR_0 OPR_90 OPR_60 OPR_30 OPR_180 OPR_30 OPR_30 OPR_30 OPR_210 OPR_180 OPR_150 OPR_30 OPR_210 OPR_30 OPR_30 OPR_150 OPR_150 OPR_180 OPR_30 OPR_210 OPR_30 OPR_180 OPR_150 OPR_30 OPR_90 OPR_30 OPR_0 OPR_150 OPR_270 OPR_30 OPR_180 OPR_0 OPR_0 OPR_0 OPR_180 OPR_150 OPR_0 OPR_180 OPR_30 OPR_150 OPR 30 OPR_30 OPR_150 OPR_0 OPR_180 OPR_0 OPR_210 OPR_210 OPR_270 OPR_120 OPR_270 OPR_210 OPR_30 OPR_210 OPR_210 OPR_330 OPR_30 OPR_60 OPR_150 OPR_30 OPR_270 OPR_90 OPR_210 OPR_270 OPR_60 OPR_120 OPR_0 OPR_180 OPR_150 OPR_120 OPR_30 OPR_90 OPR_210 OPR_0 OPR_270 OPR_0 OPR_270 OPR_210 OPR_30 OPR_90 OPR_180
Position 0.5 0.5 1 0 0.5 0 1 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 0.5 0 0.83 0 0 0 1
SUMMARY - MODIFIED FOR 15 t IMPACT Worst Case CASE 4 CASE 2 CASE 3 CASE 4 CASE 3 CASE 4 CASE 4 CASE 4 CASE 4 CASE 4 CASE 2 CASE 4 CASE 2 CASE 3 CASE 4 CASE 4 CASE 2 CASE 2 CASE 4 CASE 4 CASE 4 CASE 2 CASE 3 CASE 4 CASE 2 CASE 2 CASE 4 CASE 3 CASE 2 CASE 3 CASE 4 CASE 3 CASE 4 CASE 3 CASE 3 CASE 3 CASE 3 CASE 2 CASE 2 CASE 3 CASE 2 CASE 3 CASE 2 CASE 3 CASE 2 CASE 3 CASE 3 CASE 2 CASE 2 CASE 2 CASE 2 CASE 4 CASE 4 CASE 4 CASE 2 CASE 3 CASE 4 CASE 2 CASE 2 CASE 4 CASE 4 CASE 3 CASE 2 CASE 3 CASE 3 CASE 2 CASE 3 CASE 4 CASE 4 CASE 3 CASE 3 CASE 4 CASE 4 CASE 3 CASE 3 CASE 2 CASE 3 CASE 2 CASE 2 CASE 4 CASE 4 CASE 3 CASE 3 CASE 4
UfTot 0.64 0.53
LoadCase OPR_60 OPR_90
Position 0.5 0.5
Worst Case CASE 4 CASE 2
West Espoir
Jacket - Installation Results
WEST ESPOIR DESIGN MODEL - INSTALLATION CASES Maximum Member Utilisations (ufTot) CASE 1 - 25 t IMPACT Member WTBm1291 WTBm1225 WTBm1210 WTBm1215 WTBm1216 WTBm1209 WTBm1212 WTBm1214 WTBm1231 WTBm33 WTBm153 WTBm1221 WTBm154 WTBm1390 WTBm1397 WTBm1211 WTBm1418 WTBm155 WTBm1226 WTBm1248 WTBm158 WTBm1253 WTBm1596 WTBm152 WTBm1208 WTBm1232 WTBm1290 WTBm7 WTBm1259 WTBm1593 WTBm150 WTBm31 WTBm506 WTBm1256 WTBm1398 WTBm1228 WTBm1227 WTBm1230 WTBm1249 WTBm1229 WTBm1241 WTBm1289 WTBm1258 WTBm1391 WTBm1597 Bm1788 WTBm29 WTBm24 WTBm1251 WTBm151 WTBm1247 WTBm1399 WTBm1400 WTBm1598 WTBm1250 WTBm1246 WTBm1254 WTBm1592 WTBm30 WTBm1233 WTBm1403 WTBm1234 WTBm1237 WTBm507 WTBm508 WTBm1244 Bm1803 WTBm149 WTBm1245 WTBm1238 WTBm1239 WTBm1240 WTBm1242 WTBm1243 WTBm1255 WTBm173 WTBm174 WTBm198 Bm1799 WTBm199 WTBm1425 WTBm27 WTBm1257 WTBm1424
UfTot 0.05 0.13 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.16 0.15 0.11 0.06 0.11 0.1 0.08 0.1 0.09 0.13 0.08 0.07 0.05 0.07 0.13 0.09 0.08 0.06 0.07 0.07 0.05 0.1 0.13 0.09 0.09 0.1 0.08 0.07 0.07 0.05 0.08 0.06 0.06 0.07 0.09 0 06 0.06 0.07 0.09 0.11 0.05 0.1 0.07 0.08 0.08 0.08 0.05 0.06 0.05 0.05 0.09 0.08 0.08 0.07 0.06 0.06 0.07 0.04 0.09 0.09 0.07 0.05 0.05 0.04 0.05 0.05 0.06 0.08 0.08 0.08 0.06 0.07 0.03 0.05 0.05 0.03
LoadCase OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_210 OPR_0 OPR_120 OPR_30 OPR_150 OPR_270 OPR_120 OPR_30 OPR_30 OPR_120 OPR_180 OPR_270 OPR_120 OPR_90 OPR_0 OPR_120 OPR_120 OPR_120 OPR_150 OPR_120 OPR_120 OPR_30 OPR_0 OPR_120 OPR_120 OPR_270 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_180 OPR_60 OPR_120 OPR_150 OPR 270 OPR_270 OPR_90 OPR_30 OPR_0 OPR_150 OPR_0 OPR_120 OPR_210 OPR_270 OPR_210 OPR_180 OPR_90 OPR_120 OPR_60 OPR_30 OPR_120 OPR_0 OPR_120 OPR_180 OPR_0 OPR_180 OPR_180 OPR_120 OPR_210 OPR_60 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_60 OPR_120 OPR_120 OPR_90 OPR_90 OPR_60 OPR_120 OPR_0 OPR_210 OPR_120
Position 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0
CASE 2 - 25 t IMPACT UfTot 0.05 0.13 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.15 0.16 0.11 0.16 0.11 0.1 0.08 0.1 0.15 0.13 0.07 0.15 0.05 0.08 0.14 0.09 0.08 0.06 0.07 0.07 0.05 0.11 0.13 0.09 0.09 0.1 0.08 0.07 0.07 0.05 0.08 0.07 0.07 0.07 0.09 0 06 0.06 0.11 0.08 0.11 0.05 0.11 0.07 0.08 0.08 0.08 0.05 0.06 0.05 0.05 0.09 0.08 0.08 0.07 0.06 0.06 0.07 0.04 0.09 0.09 0.07 0.05 0.05 0.04 0.05 0.05 0.06 0.08 0.08 0.08 0.07 0.07 0.03 0.05 0.05 0.03
LoadCase OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_210 OPR_0 OPR_120 OPR_30 OPR_150 OPR_270 OPR_120 OPR_30 OPR_150 OPR_120 OPR_180 OPR_0 OPR_120 OPR_90 OPR_0 OPR_120 OPR_120 OPR_120 OPR_150 OPR_120 OPR_120 OPR_30 OPR_0 OPR_120 OPR_120 OPR_270 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_180 OPR_60 OPR_120 OPR_150 OPR 270 OPR_270 OPR_270 OPR_30 OPR_0 OPR_150 OPR_0 OPR_120 OPR_210 OPR_270 OPR_210 OPR_120 OPR_90 OPR_120 OPR_60 OPR_30 OPR_120 OPR_0 OPR_120 OPR_180 OPR_0 OPR_180 OPR_60 OPR_120 OPR_210 OPR_60 OPR_120 OPR_120 OPR_150 OPR_120 OPR_120 OPR_60 OPR_120 OPR_120 OPR_90 OPR_90 OPR_60 OPR_120 OPR_0 OPR_210 OPR_120
Position 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0
CASE 2 - MODIFIED FOR 15 t IMPACT UfTot
LoadCase
Position
CASE 3 - 25 t IMPACT UfTot 0.18 0.13 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.15 0.15 0.11 0.07 0.16 0.1 0.08 0.16 0.12 0.13 0.15 0.07 0.15 0.15 0.13 0.09 0.08 0.14 0.14 0.14 0.05 0.13 0.13 0.13 0.13 0.1 0.08 0.07 0.07 0.13 0.08 0.12 0.12 0.12 0.12 0 12 0.12 0.08 0.11 0.11 0.11 0.1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.06 0.1 0.08 0.1 0.07 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.07 0.05 0.07 0.07 0.05 0.05 0.05
LoadCase OPR_180 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_180 OPR_0 OPR_120 OPR_30 OPR_150 OPR_270 OPR_120 OPR_30 OPR_30 OPR_120 OPR_180 OPR_270 OPR_0 OPR_270 OPR_0 OPR_120 OPR_120 OPR_90 OPR_150 OPR_0 OPR_120 OPR_30 OPR_0 OPR_210 OPR_0 OPR_270 OPR_120 OPR_120 OPR_120 OPR_210 OPR_120 OPR_180 OPR_60 OPR_210 OPR_150 OPR 270 OPR_270 OPR_90 OPR_30 OPR_0 OPR_120 OPR_0 OPR_120 OPR_270 OPR_270 OPR_210 OPR_150 OPR_270 OPR_30 OPR_60 OPR_30 OPR_120 OPR_0 OPR_120 OPR_180 OPR_0 OPR_180 OPR_60 OPR_120 OPR_210 OPR_60 OPR_60 OPR_90 OPR_150 OPR_120 OPR_60 OPR_60 OPR_120 OPR_120 OPR_90 OPR_120 OPR_60 OPR_60 OPR_0 OPR_210 OPR_180
Position 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1
CASE 4 - 25 t IMPACT UfTot 0.05 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.15 0.16 0.07 0.11 0.16 0.16 0.1 0.1 0.15 0.08 0.08 0.05 0.08 0.14 0.14 0.14 0.07 0.08 0.07 0.14 0.12 0.13 0.09 0.09 0.13 0.13 0.13 0.13 0.05 0.12 0.07 0.07 0.07 0.09 0 06 0.06 0.07 0.11 0.11 0.06 0.1 0.08 0.08 0.08 0.08 0.05 0.06 0.05 0.11 0.1 0.1 0.08 0.1 0.06 0.06 0.07 0.04 0.09 0.09 0.08 0.05 0.05 0.04 0.05 0.05 0.07 0.08 0.08 0.08 0.06 0.07 0.03 0.04 0.05 0.03
LoadCase OPR_180 OPR_180 OPR_60 OPR_120 OPR_210 OPR_180 OPR_120 OPR_120 OPR_270 OPR_210 OPR_0 OPR_60 OPR_30 OPR_150 OPR_270 OPR_120 OPR_30 OPR_30 OPR_0 OPR_180 OPR_270 OPR_120 OPR_90 OPR_0 OPR_210 OPR_240 OPR_120 OPR_150 OPR_120 OPR_120 OPR_30 OPR_0 OPR_120 OPR_120 OPR_270 OPR_60 OPR_180 OPR_120 OPR_120 OPR_120 OPR_180 OPR_60 OPR_120 OPR_150 OPR 90 OPR_90 OPR_270 OPR_30 OPR_0 OPR_120 OPR_0 OPR_90 OPR_210 OPR_270 OPR_210 OPR_90 OPR_90 OPR_90 OPR_60 OPR_30 OPR_60 OPR_0 OPR_180 OPR_180 OPR_0 OPR_180 OPR_60 OPR_120 OPR_210 OPR_60 OPR_120 OPR_120 OPR_120 OPR_120 OPR_120 OPR_60 OPR_120 OPR_120 OPR_90 OPR_90 OPR_60 OPR_120 OPR_0 OPR_210 OPR_120
Summary UF
Position 1 0 1 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 0 0 1 0 0.25 0 1 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 0 1 0 0 1 0 0 1 1 1 0 0 0 0
CASE 4 - MODIFIED FOR 15 t IMPACT UfTot
LoadCase
Position
SUMMARY - 25 t IMPACT UfTot 0.18 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.15 0.15 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.12 0 12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.05 0.05 0.05
LoadCase OPR_180 OPR_180 OPR_60 OPR_120 OPR_210 OPR_180 OPR_120 OPR_120 OPR_270 OPR_210 OPR_0 OPR_60 OPR_30 OPR_150 OPR_270 OPR_120 OPR_30 OPR_150 OPR_0 OPR_180 OPR_0 OPR_0 OPR_270 OPR_0 OPR_210 OPR_240 OPR_90 OPR_150 OPR_0 OPR_120 OPR_30 OPR_0 OPR_210 OPR_0 OPR_270 OPR_60 OPR_180 OPR_120 OPR_210 OPR_120 OPR_180 OPR_60 OPR_210 OPR_150 OPR 270 OPR_270 OPR_270 OPR_30 OPR_0 OPR_120 OPR_0 OPR_120 OPR_270 OPR_270 OPR_210 OPR_150 OPR_270 OPR_30 OPR_60 OPR_30 OPR_60 OPR_0 OPR_180 OPR_180 OPR_0 OPR_180 OPR_60 OPR_120 OPR_210 OPR_60 OPR_60 OPR_90 OPR_150 OPR_120 OPR_60 OPR_60 OPR_120 OPR_120 OPR_90 OPR_90 OPR_60 OPR_60 OPR_0 OPR_210 OPR_180
Position 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 1 1 1 0 0 1
SUMMARY - MODIFIED FOR 15 t IMPACT Worst Case CASE 3 CASE 4 CASE 4 CASE 4 CASE 4 CASE 4 CASE 4 CASE 4 CASE 4 CASE 1 CASE 2 CASE 4 CASE 2 CASE 3 CASE 4 CASE 4 CASE 3 CASE 2 CASE 4 CASE 3 CASE 2 CASE 3 CASE 3 CASE 2 CASE 4 CASE 4 CASE 3 CASE 3 CASE 3 CASE 4 CASE 3 CASE 1 CASE 3 CASE 3 CASE 4 CASE 4 CASE 4 CASE 4 CASE 3 CASE 4 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 2 CASE 3 CASE 1 CASE 3 CASE 2 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 4 CASE 3 CASE 4 CASE 3 CASE 4 CASE 3 CASE 3 CASE 3 CASE 3 CASE 1 CASE 1 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 3 CASE 1 CASE 1 CASE 1 CASE 2 CASE 1 CASE 3 CASE 1 CASE 1 CASE 3
UfTot
LoadCase
Position
Worst Case
West Espoir
Jacket Installation Case Results
Member Names and Location
West Espoir
Jacket Installation Case Results
Member Names and Location
West Espoir
Jacket Installation Case Results
Member Names and Location
West Espoir
Jacket In Service Results
WEST ESPOIR DESIGN MODEL - IN SERVICE CASES Maximum Member Utilisations (ufTot) CASE 5 Member Bm1792 Bm1802 Bm1798 WTBm61 WTBm35 Bm1801 WTBm15 WTBm60 WTBm33 WTBm1415 WTBm14 WTBm54 WTBm150 WTBm3 WTBm49 WTBm31 WTBm57 WTBm9 WTBm11 WTBm58 WTBm1419 Bm1603 WTBm152 WTBm19 WTBm20 WTBm1414 WTBm51 WTBm5 WTBm12 WTBm21 WTBm34 WTBm1388 WTBm1594 WTBm1387 Bm1604 WTBm1393 WTBm29 WTBm22 Bm1794 WTBm1416 WTBm155 Bm1610 WTBm48 WTBm24 WTBm153 WTBm36 WTBm30 Bm1611 WTBm2 WTBm1389 WTBm55 WTBm52 WTBm1417 WTBm1411 WTBm10 WTBm1412 WTBm6 WTBm149 WTBm151 WTBm157 WTBm1385 WTBm1384 Bm1790 WTBm1390 WTBm506 WTBm154 WTBm1256 WTBm1397 WTBm1598 WTBm26 WTBm1398 WTBm1418 WTBm156 WTBm38 WTBm1399 WTBm1403 WTBm39 WTBm53 WTBm1400 WTBm1391 Bm1788 Bm1796 WTBm1235 WTBm1252 WTBm1245 WTBm1247 WTBm158 WTBm1596 WTBm7 WTBm1225 WTBm1226 WTBm1248 WTBm1595 WTBm44 WTBm1289 WTBm1290 WTBm198 Bm1800
UfTot 0.44 0.25 0.38 0.43 0.33 0.23 0.38 0.37 0.36 0.35 0.33 0.32 0.28 0.32 0.32 0.31 0.31 0.29 0.29 0.29 0.29 0.29 0.27 0.29 0.29 0.28 0.28 0.28 0.28 0.28 0.25 0.27 0.21 0.27 0.27 0.26 0.25 0.26 0.21 0.25 0.2 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.22 0.21 0.21 0.21 0.2 0.2 0.2 0.2 0.18 0.17 0.19 0.19 0.17 0.18 0.18 0.14 0.17 0.17 0.17 0.17 0.17 0.17 0.14 0.16 0.16 0.16 0.15 0.15 0.15 0.15 0.14 0.12 0.12 0.08 0.12 0.12 0.12 0.13 0.13 0.13 0.13 0.09 0.12 0.11 0.12 0.12 0.12 0.08
CASE 6
CASE 7
CASE 8
SUMMARY
LoadCase Position UfTot LoadCase Position UfTot LoadCase Position UfTot LoadCase Position UfTot OT8_9_0 1 0.51 S1T8_9_0 1 0.52 S2T8_9_0 1 0.44 S3T8_9_0 1 0.52 OT8_9_180 1 0.45 S1T8_9_180 1 0.38 S2T8_9_180 1 0.27 S3T8_12_0 1 0.45 OT8_9_0 0 0.44 S1T8_9_0 1 0.44 S2T8_9_0 0 0.38 S3T8_9_0 0 0.44 OT8_1_90 1 0.36 S1T8_1_90 1 0.36 S2T8_1_90 1 0.35 S3T8_1_90 1 0.43 OT8_1_0 0.5 0.38 S1T8_14_30 0.5 0.37 S2T8_1_0 0.5 0.32 S3T8_1_0 0.5 0.38 OT8_12_0 1 0.38 S1T8_9_180 1 0.33 S2T8_9_180 1 0.24 S3T8_12_0 1 0.38 OT8_14_150 1 0.3 S1T8_9_150 1 0.3 S2T8_9_150 1 0.29 S3T8_9_150 1 0.38 OT8_1_90 0 0.32 S1T8_1_90 0 0.31 S2T8_1_90 0 0.3 S3T8_1_90 0 0.37 OT8_4_0 0 0.34 S1T8_4_0 0 0.33 S2T8_4_0 0 0.3 S3T8_4_0 0 0.36 OT8_1_0 1 0.3 S1T8_1_0 1 0.29 S2T8_1_0 1 0.29 S3T8_1_0 1 0.35 OT8_14_150 0 0.27 S1T8_14_150 0 0.27 S2T8_14_150 0 0.26 S3T8_9_150 0 0.33 OT8_1_0 1 0.25 S1T8_1_0 1 0.25 S2T8_1_0 1 0.26 S3T8_1_0 1 0.32 OT8_14_30 0 0.32 S1T8_14_30 0 0.3 S2T8_14_30 0 0.26 S3T8_14_30 0 0.32 OT8_12_150 0 0.27 S1T8_12_150 0 0.27 S2T8_12_150 0 0.26 S3T8_12_150 0 0.32 OT8_9_30 0 0.27 S1T8_9_30 0 0.27 S2T8_9_30 0 0.26 S3T8_9_30 0 0.32 OT8_4_0 1 0.32 S1T8_4_0 1 0.3 S2T8_4_0 1 0.27 S3T8_4_0 1 0.32 OT8_12_150 1 0.28 S1T8_12_150 1 0.27 S2T8_12_150 1 0.26 S3T8_12_150 1 0.31 OT8_9_210 1 0.27 S1T8_9_210 1 0.26 S2T8_9_210 1 0.24 S3T8_9_210 1 0.29 OT8_9_210 0 0.26 S1T8_9_210 0 0.26 S2T8_9_210 0 0.23 S3T8_9_210 0 0.29 OT8_1_0 1 0.24 S1T8_1_150 1 0.23 S2T8_1_150 1 0.22 S3T8_1_0 1 0.29 OT8_9_30 0 0.24 S1T8_9_30 0 0.24 S2T8_9_30 0 0.23 S3T8_9_30 0 0.29 OT8_9_30 1 0.25 S1T8_9_30 1 0.25 S2T8_9_30 1 0.24 S3T8_9_30 1 0.29 OT8_1_0 1 0.29 S1T8_1_0 1 0.27 S2T8_1_0 1 0.25 S3T8_1_0 1 0.29 OT8_4_270 0 0.23 S1T8_4_270 0 0.23 S2T8_4_270 0 0.22 S3T8_4_270 0 0.29 OT8_1_270 0 0.23 S1T8_1_270 0 0.23 S2T8_1_270 0 0.23 S3T8_1_270 0 0.29 OT8_1_0 0 0.24 S1T8_1_0 0 0.23 S2T8_1_0 0 0.23 S3T8_1_0 0 0.28 OT8_1_0 0 0.25 S1T8_1_0 0 0.24 S2T8_1_0 0 0.23 S3T8_1_0 0 0.28 OT8_14_210 0 0.27 S1T8_14_210 0 0.26 S2T8_14_210 0 0.25 S3T8_14_210 0 0.28 OT8_9_210 1 0.25 S1T8_9_210 1 0.24 S2T8_9_210 1 0.22 S3T8_9_210 1 0.28 OT8_4_210 0 0.23 S1T8_4_210 0 0.23 S2T8_4_210 0 0.22 S3T8_4_210 0 0.28 OT8_14_30 0 0.27 S1T8_14_30 0 0.26 S2T8_14_30 0 0.23 S3T8_14_30 0 0.27 OT8_9_210 1 0.27 S1T8_14_210 0 0.26 S2T8_14_210 0 0.23 S3T8_14_210 0 0.27 OT8_9_210 0.5 0.27 S1T8_9_180 0.5 0.24 S2T8_9_180 0.5 0.19 S3T8_9_210 0.5 0.27 OT8_14_210 0 0.26 S1T8_14_210 0 0.25 S2T8_14_210 0 0.23 S3T8_14_210 0 0.27 OT8_12_150 1 0.23 S1T8_12_150 1 0.22 S2T8_12_150 1 0.21 S3T8_12_150 1 0.27 OT8_12_150 0 0.23 S1T8_12_150 0 0.22 S2T8_12_150 0 0.21 S3T8_12_150 0 0.26 OT8_12_30 1 0.26 S1T8_4_30 1 0.24 S2T8_4_30 1 0.22 S3T8_4_30 1 0.26 OT8_1_270 0 0.21 S1T8_1_270 0 0.21 S2T8_1_270 0 0.21 S3T8_1_270 0 0.26 OT8_9_0 0 0.25 S1T8_9_0 0 0.25 S2T8_9_0 0 0.21 S3T8_9_0 0 0.25 OT8_9_30 0 0.22 S1T8_9_30 0 0.21 S2T8_9_30 0 0.2 S3T8_9_30 0 0.25 OT8_13_30 1 0.24 S1T8_13_30 1 0.23 S2T8_13_30 1 0.19 S3T8_13_30 1 0.24 OT8_9_30 0 0.21 S1T8_9_30 0 0.21 S2T8_9_30 0 0.2 S3T8_9_30 0 0.24 OT8_9_30 0 0.22 S1T8_9_30 0 0.21 S2T8_9_30 0 0.2 S3T8_9_30 0 0.24 OT8_12_30 0 0.21 S1T8_12_30 0 0.2 S2T8_12_30 0 0.19 S3T8_12_30 0 0.24 OT8_4_0 1 0.24 S1T8_4_0 1 0.23 S2T8_4_0 1 0.21 S3T8_4_0 1 0.24 OT8_13_150 1 0.22 S1T8_1_0 0 0.21 S2T8_1_0 0 0.2 S3T8_13_150 1 0.23 OT8_4_0 0 0.22 S1T8_4_30 1 0.2 S2T8_4_0 0 0.19 S3T8_4_0 0 0.23 OT8_1_120 0 0.19 S1T8_12_150 0 0.19 S2T8_12_150 0 0.18 S3T8_12_150 0 0.23 OT8_12_150 0 0.2 S1T8_12_150 0 0.19 S2T8_12_150 0 0.19 S3T8_12_150 0 0.23 OT8_12_150 0 0.2 S1T8_12_150 0 0.19 S2T8_12_150 0 0.19 S3T8_12_150 0 0.23 OT8_9_30 0 0.19 S1T8_9_30 0 0.19 S2T8_9_30 0 0.18 S3T8_9_30 0 0.22 OT8_9_30 0 0.18 S1T8_9_30 0 0.18 S2T8_9_30 0 0.17 S3T8_9_30 0 0.21 OT8_9_30 1 0.18 S1T8_9_30 1 0.17 S2T8_9_30 1 0.17 S3T8_9_30 1 0.21 OT8_9_30 1 0.18 S1T8_9_30 1 0.18 S2T8_9_30 1 0.17 S3T8_9_30 1 0.21 OT8_12_150 0 0.18 S1T8_12_150 0 0.17 S2T8_12_150 0 0.16 S3T8_12_150 0 0.2 OT8_9_30 0 0.17 S1T8_9_30 0 0.17 S2T8_9_30 0 0.16 S3T8_9_30 0 0.2 OT8_12_150 0 0.17 S1T8_12_150 0 0.16 S2T8_12_150 0 0.16 S3T8_12_150 0 0.2 OT8_4_210 0 0.19 S1T8_4_210 0 0.18 S2T8_4_210 0 0.17 S3T8_4_210 0 0.2 OT8_4_0 1 0.2 S1T8_4_0 1 0.18 S2T8_4_0 1 0.16 S3T8_4_0 1 0.2 OT8_1_0 0 0.19 S1T8_1_0 0 0.18 S2T8_1_0 0 0.16 S3T8_1_0 0 0.19 OT8_13_150 0 0.16 S1T8_13_150 0 0.16 S2T8_13_150 0 0.15 S3T8_13_150 0 0.19 OT8_12_150 1 0.16 S1T8_12_150 1 0.16 S2T8_12_150 1 0.16 S3T8_12_150 1 0.19 OT8_14_30 0 0.18 S1T8_14_30 0 0.18 S2T8_14_30 0 0.16 S3T8_14_30 0 0.18 OT8_13_150 1 0.15 S1T8_13_150 1 0.15 S2T8_13_150 1 0.15 S3T8_13_150 1 0.18 OT8_4_210 1 0.15 S1T8_4_210 1 0.15 S2T8_4_210 1 0.14 S3T8_4_210 1 0.18 OT8_14_30 0 0.17 S1T8_14_30 0 0.16 S2T8_14_30 0 0.14 S3T8_14_30 0 0.17 OT8_4_270 1 0.14 S1T8_4_270 1 0.14 S2T8_4_270 1 0.13 S3T8_4_270 1 0.17 OT8_1_270 1 0.14 S1T8_1_270 1 0.14 S2T8_1_270 1 0.14 S3T8_1_270 1 0.17 OT8_4_210 1 0.14 S1T8_4_210 1 0.14 S2T8_4_210 1 0.14 S3T8_4_210 1 0.17 OT8_1_270 0.5 0.14 S1T8_1_270 0.5 0.14 S2T8_1_270 0.5 0.14 S3T8_1_270 0.5 0.17 OT8_4_270 1 0.14 S1T8_4_270 1 0.14 S2T8_4_270 1 0.14 S3T8_4_270 1 0.17 OT8_9_30 1 0.14 S1T8_9_30 1 0.14 S2T8_9_30 1 0.13 S3T8_9_30 1 0.17 OT8_14_30 0.5 0.16 S1T8_14_30 0.5 0.16 S2T8_14_30 0.5 0.14 S3T8_14_30 0.5 0.16 OT8_1_210 0 0.14 S1T8_1_180 0 0.14 S2T8_1_210 0 0.13 S3T8_1_210 0 0.16 OT8_1_210 1 0.13 S1T8_1_210 1 0.13 S2T8_1_210 1 0.12 S3T8_1_210 1 0.16 OT8_4_270 1 0.13 S1T8_4_270 1 0.13 S2T8_4_270 1 0.13 S3T8_4_270 1 0.16 OT8_4_0 0 0.13 S1T8_4_0 0 0.13 S2T8_4_0 0 0.13 S3T8_4_0 0 0.15 OT8_9_30 0 0.13 S1T8_9_30 0 0.13 S2T8_9_30 0 0.12 S3T8_9_30 0 0.15 OT8_1_270 0 0.12 S1T8_1_270 0 0.12 S2T8_1_270 0 0.12 S3T8_1_270 0 0.15 OT8_13_150 1 0.12 S1T8_13_150 1 0.12 S2T8_13_150 1 0.12 S3T8_13_150 1 0.15 OT8_13_90 1 0.13 S1T8_13_90 1 0.12 S2T8_13_30 1 0.13 S3T8_13_90 1 0.14 OT8_9_30 0 0.14 S1T8_9_30 0 0.14 S2T8_9_30 0 0.12 S3T8_9_30 0 0.14 OT8_4_180 1 0.14 S1T8_4_180 1 0.12 S2T8_4_180 1 0.1 S3T8_4_180 1 0.14 OT8_1_150 0 0.13 S1T8_1_150 0 0.11 S2T8_1_150 0 0.09 S3T8_1_150 0 0.13 OT8_4_60 0 0.13 S1T8_4_60 0 0.12 S2T8_4_60 0 0.11 S3T8_4_60 0 0.13 OT8_4_120 0 0.13 S1T8_4_120 0 0.13 S2T8_4_120 0 0.1 S3T8_4_120 0 0.13 OT8_4_270 1 0.13 S1T8_1_0 1 0.12 S2T8_1_0 1 0.11 S3T8_4_270 1 0.13 OT8_1_270 1 0.11 S1T8_4_90 0.33 0.11 S2T8_4_90 0.33 0.1 S3T8_1_270 1 0.13 OT8_13_150 0 0.11 S1T8_13_150 0 0.11 S2T8_13_150 0 0.11 S3T8_13_150 0 0.13 OT8_1_120 0 0.1 S1T8_1_120 0 0.1 S2T8_1_120 0 0.1 S3T8_1_120 0 0.13 OT8_1_120 0 0.1 S1T8_1_120 0 0.1 S2T8_1_120 0 0.1 S3T8_1_120 0 0.13 OT8_1_180 0 0.12 S1T8_1_180 0 0.11 S2T8_1_210 0 0.09 S3T8_1_180 0 0.12 OT8_1_0 0 0.12 S1T8_1_0 0 0.12 S2T8_1_0 0 0.1 S3T8_1_0 0 0.12 OT8_4_180 1 0.12 S1T8_4_180 1 0.11 S2T8_4_180 1 0.09 S3T8_4_180 1 0.12 OT8_4_60 1 0.11 S1T8_4_60 1 0.11 S2T8_4_60 1 0.1 S3T8_4_60 1 0.12 OT8_4_120 1 0.11 S1T8_4_120 1 0.12 S2T8_4_120 1 0.1 S3T8_4_120 1 0.12 OT8_1_90 1 0.11 S1T8_1_90 1 0.11 S2T8_1_90 1 0.1 S3T8_1_90 1 0.12 OT8_4_90 0 0.11 S1T8_4_90 0 0.11 S2T8_4_120 0 0.08 S3T8_4_90 0 0.11
Summary UF
LoadCase Position Worst Case S2T8_9_0 1 CASE 7 S1T8_9_180 1 CASE 6 S1T8_9_0 1 CASE 6 OT8_1_90 1 CASE 5 S1T8_14_30 0.5 CASE 6 S1T8_9_180 1 CASE 6 OT8_14_150 1 CASE 5 OT8_1_90 0 CASE 5 OT8_4_0 0 CASE 5 OT8_1_0 1 CASE 5 OT8_14_150 0 CASE 5 OT8_1_0 1 CASE 5 S1T8_14_30 0 CASE 6 OT8_12_150 0 CASE 5 OT8_9_30 0 CASE 5 S1T8_4_0 1 CASE 6 OT8_12_150 1 CASE 5 OT8_9_210 1 CASE 5 OT8_9_210 0 CASE 5 OT8_1_0 1 CASE 5 OT8_9_30 0 CASE 5 OT8_9_30 1 CASE 5 S1T8_1_0 1 CASE 6 OT8_4_270 0 CASE 5 OT8_1_270 0 CASE 5 OT8_1_0 0 CASE 5 OT8_1_0 0 CASE 5 OT8_14_210 0 CASE 5 OT8_9_210 1 CASE 5 OT8_4_210 0 CASE 5 S1T8_14_30 0 CASE 6 OT8_9_210 1 CASE 5 S1T8_9_180 0.5 CASE 6 OT8_14_210 0 CASE 5 OT8_12_150 1 CASE 5 OT8_12_150 0 CASE 5 S1T8_4_30 1 CASE 6 OT8_1_270 0 CASE 5 S1T8_9_0 0 CASE 6 OT8_9_30 0 CASE 5 S1T8_13_30 1 CASE 6 OT8_9_30 0 CASE 5 OT8_9_30 0 CASE 5 OT8_12_30 0 CASE 5 OT8_4_0 1 CASE 5 OT8_13_150 1 CASE 5 OT8_4_0 0 CASE 5 OT8_1_120 0 CASE 5 OT8_12_150 0 CASE 5 OT8_12_150 0 CASE 5 OT8_9_30 0 CASE 5 OT8_9_30 0 CASE 5 OT8_9_30 1 CASE 5 OT8_9_30 1 CASE 5 OT8_12_150 0 CASE 5 OT8_9_30 0 CASE 5 OT8_12_150 0 CASE 5 OT8_4_210 0 CASE 5 S1T8_4_0 1 CASE 6 S1T8_1_0 0 CASE 6 OT8_13_150 0 CASE 5 OT8_12_150 1 CASE 5 S1T8_14_30 0 CASE 6 OT8_13_150 1 CASE 5 OT8_4_210 1 CASE 5 S1T8_14_30 0 CASE 6 OT8_4_270 1 CASE 5 OT8_1_270 1 CASE 5 OT8_4_210 1 CASE 5 OT8_1_270 0.5 CASE 5 OT8_4_270 1 CASE 5 OT8_9_30 1 CASE 5 S1T8_14_30 0.5 CASE 6 OT8_1_210 0 CASE 5 OT8_1_210 1 CASE 5 OT8_4_270 1 CASE 5 OT8_4_0 0 CASE 5 OT8_9_30 0 CASE 5 OT8_1_270 0 CASE 5 OT8_13_150 1 CASE 5 OT8_13_90 1 CASE 5 S1T8_9_30 0 CASE 6 S1T8_4_180 1 CASE 6 S1T8_1_150 0 CASE 6 S1T8_4_60 0 CASE 6 S1T8_4_120 0 CASE 6 S1T8_1_0 1 CASE 6 OT8_1_270 1 CASE 5 OT8_13_150 0 CASE 5 OT8_1_120 0 CASE 5 OT8_1_120 0 CASE 5 S1T8_1_180 0 CASE 6 OT8_1_0 0 CASE 5 S1T8_4_180 1 CASE 6 OT8_4_60 1 CASE 5 OT8_4_120 1 CASE 5 OT8_1_90 1 CASE 5 S1T8_4_90 0 CASE 6
West Espoir
Jacket In Service Results
WEST ESPOIR DESIGN MODEL - IN SERVICE CASES Maximum Member Utilisations (ufTot) CASE 5 Member Bm1799 WTBm1236 WTBm1221 WTBm1223 WTBm199 WTBm1257 Bm1805 WTBm1255 WTBm37 WTBm46 WTBm1241 WTBm1246 WTBm1407 WTBm1597 WTBm171 WTBm172 WTBm27 Bm1806 WTBm1219 WTBm1251 Bm1803 Bm1804 WTBm1258 WTBm1259 WTBm507 WTBm1220 WTBm1237 WTBm1406 WTBm508 WTBm1208 WTBm1213 WTBm1250 WTBm1254 WTBm1222 WTBm1224 WTBm1218 WTBm1291 WTBm1292 WTBm1229 WTBm1233 WTBm173 WTBm174 WTBm1210 WTBm1211 WTBm1215 WTBm1216 WTBm1228 WTBm1232 WTBm1249 WTBm1234 WTBm1230 WTBm1209 WTBm1227 WTBm1214 WTBm1231 WTBm1212 WTBm1217 WTBm1405 WTBm1409 WTBm1592 WTBm1593 WTBm1253 WTBm1244 WTBm1238 WTBm1242 WTBm1424 WTBm1425 WTBm1240 WTBm1239 WTBm1243
UfTot 0.08 0.11 0.11 0.11 0.11 0.11 0.1 0.08 0.1 0.1 0.07 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.09 0.07 0.09 0.09 0.08 0.08 0.09 0.09 0.07 0.09 0.09 0.09 0.09 0.07 0.06 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.05 0.05 0.04 0.05 0.05 0.06 0.06 0.04 0.05 0.05
CASE 6
CASE 7
CASE 8
SUMMARY
LoadCase Position UfTot LoadCase Position UfTot LoadCase Position UfTot LoadCase Position UfTot LoadCase Position Worst Case OT8_1_90 1 0.11 S1T8_1_90 1 0.11 S2T8_1_90 1 0.08 S3T8_1_90 1 0.11 S1T8_1_90 1 CASE 6 OT8_1_0 0 0.1 S1T8_1_0 0 0.1 S2T8_1_0 0 0.09 S3T8_1_0 0 0.11 OT8_1_0 0 CASE 5 OT8_1_120 0 0.09 S1T8_1_120 0 0.08 S2T8_1_120 0 0.08 S3T8_1_120 0 0.11 OT8_1_120 0 CASE 5 OT8_1_120 0 0.09 S1T8_1_120 0 0.08 S2T8_1_120 0 0.08 S3T8_1_120 0 0.11 OT8_1_120 0 CASE 5 OT8_4_60 1 0.1 S1T8_4_60 1 0.1 S2T8_4_60 1 0.09 S3T8_4_60 1 0.11 OT8_4_60 1 CASE 5 OT8_1_210 0 0.09 S1T8_1_210 0 0.09 S2T8_1_210 0 0.08 S3T8_1_210 0 0.11 OT8_1_210 0 CASE 5 OT8_1_120 0 0.08 S1T8_1_120 0 0.08 S2T8_1_120 0 0.08 S3T8_1_120 0 0.1 OT8_1_120 0 CASE 5 OT8_1_60 1 0.1 S1T8_1_60 1 0.09 S2T8_1_60 1 0.08 S3T8_1_60 1 0.1 S1T8_1_60 1 CASE 6 OT8_1_120 0 0.08 S1T8_1_120 0 0.08 S2T8_1_120 0 0.08 S3T8_1_120 0 0.1 OT8_1_120 0 CASE 5 OT8_1_120 0 0.08 S1T8_1_120 0 0.08 S2T8_1_120 0 0.08 S3T8_1_120 0 0.1 OT8_1_120 0 CASE 5 OT8_9_150 0 0.1 S1T8_9_150 0 0.09 S2T8_9_150 0 0.07 S3T8_9_150 0 0.1 S1T8_9_150 0 CASE 6 OT8_4_210 0 0.08 S1T8_1_90 0.75 0.08 S2T8_4_210 0 0.08 S3T8_4_210 0 0.1 OT8_4_210 0 CASE 5 OT8_1_0 1 0.08 S1T8_1_0 1 0.08 S2T8_1_0 1 0.08 S3T8_1_0 1 0.1 OT8_1_0 1 CASE 5 OT8_1_270 1 0.08 S1T8_1_330 1 0.08 S2T8_1_270 1 0.08 S3T8_1_270 1 0.1 OT8_1_270 1 CASE 5 OT8_1_120 0 0.08 S1T8_1_120 0 0.08 S2T8_1_120 0 0.08 S3T8_1_120 0 0.1 OT8_1_120 0 CASE 5 OT8_1_120 0 0.08 S1T8_1_120 0 0.08 S2T8_1_120 0 0.08 S3T8_1_120 0 0.1 OT8_1_120 0 CASE 5 OT8_4_270 0 0.08 S1T8_4_270 0 0.08 S2T8_4_270 0 0.08 S3T8_4_270 0 0.1 OT8_4_270 0 CASE 5 OT8_1_120 1 0.07 S1T8_1_120 1 0.07 S2T8_1_120 1 0.07 S3T8_1_120 1 0.09 OT8_1_120 1 CASE 5 OT8_12_0 0.5 0.08 S1T8_1_210 0.5 0.09 S2T8_4_300 0.5 0.07 S3T8_12_0 0.5 0.09 OT8_12_0 0.5 CASE 5 OT8_4_120 1 0.09 S1T8_4_120 1 0.09 S2T8_4_120 1 0.07 S3T8_4_120 1 0.09 S1T8_4_120 1 CASE 6 OT8_1_120 0 0.07 S1T8_1_120 0 0.07 S2T8_1_120 0 0.07 S3T8_1_120 0 0.09 OT8_1_120 0 CASE 5 OT8_1_120 0 0.07 S1T8_1_120 0 0.07 S2T8_1_120 0 0.07 S3T8_1_120 0 0.09 OT8_1_120 0 CASE 5 OT8_1_60 1 0.09 S1T8_1_60 1 0.09 S2T8_1_60 1 0.07 S3T8_1_60 1 0.09 S1T8_1_60 1 CASE 6 OT8_4_120 1 0.09 S1T8_4_120 1 0.09 S2T8_4_120 1 0.07 S3T8_4_120 1 0.09 S1T8_4_120 1 CASE 6 OT8_4_210 0 0.09 S1T8_4_210 0 0.09 S2T8_4_210 0 0.08 S3T8_4_210 0 0.09 OT8_4_210 0 CASE 5 OT8_14_210 0 0.07 S1T8_14_270 0 0.07 S2T8_14_300 0 0.07 S3T8_14_210 0 0.09 OT8_14_210 0 CASE 5 OT8_1_180 0 0.09 S1T8_1_180 0 0.08 S2T8_1_180 0 0.07 S3T8_1_180 0 0.09 S1T8_1_180 0 CASE 6 OT8_4_210 1 0.09 S1T8_4_180 1 0.08 S2T8_4_210 1 0.08 S3T8_4_210 1 0.09 OT8_4_210 1 CASE 5 OT8_1_180 0 0.08 S1T8_1_180 0 0.08 S2T8_1_210 0 0.08 S3T8_1_180 0 0.09 OT8_1_180 0 CASE 5 OT8_1_120 0 0.07 S1T8_1_120 0 0.07 S2T8_1_120 0 0.07 S3T8_1_120 0 0.09 OT8_1_120 0 CASE 5 OT8_1_120 0 0.07 S1T8_1_120 0 0.07 S2T8_1_120 0 0.07 S3T8_1_120 0 0.09 OT8_1_120 0 CASE 5 OT8_9_210 1 0.08 S1T8_4_60 1 0.08 S2T8_9_210 1 0.06 S3T8_9_210 1 0.08 S1T8_4_60 1 CASE 6 OT8_1_90 1 0.08 S1T8_1_90 1 0.08 S2T8_1_120 1 0.06 S3T8_1_90 1 0.08 S1T8_1_90 1 CASE 6 OT8_1_60 1 0.07 S1T8_1_60 1 0.06 S2T8_1_60 1 0.06 S3T8_1_60 1 0.08 OT8_1_60 1 CASE 5 OT8_1_120 0 0.07 S1T8_1_120 0 0.06 S2T8_1_90 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_12_0 1 0.07 S1T8_13_210 1 0.07 S2T8_13_210 1 0.07 S3T8_12_0 1 0.08 OT8_12_0 1 CASE 5 OT8_4_180 1 0.08 S1T8_4_180 1 0.07 S2T8_4_180 1 0.07 S3T8_4_180 1 0.08 OT8_4_180 1 CASE 5 OT8_1_0 1 0.07 S1T8_1_0 1 0.07 S2T8_1_0 1 0.07 S3T8_1_0 1 0.08 OT8_1_0 1 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_1_180 0 0.07 S1T8_1_180 0 0.06 S2T8_1_180 0 0.06 S3T8_1_180 0 0.08 OT8_1_180 0 CASE 5 OT8_1_120 0 0.06 S1T8_4_0 0 0.06 S2T8_4_0 0 0.06 S3T8_4_0 0 0.08 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_120 0 0.06 S2T8_1_120 0 0.06 S3T8_1_120 0 0.08 OT8_1_120 0 CASE 5 OT8_12_180 1 0.07 S1T8_12_180 1 0.06 S2T8_12_210 1 0.05 S3T8_12_180 1 0.07 S1T8_12_180 1 CASE 6 OT8_1_120 0 0.05 S1T8_1_120 0 0.05 S2T8_1_120 0 0.05 S3T8_1_120 0 0.07 OT8_1_120 0 CASE 5 OT8_1_120 0 0.05 S1T8_1_120 0 0.05 S2T8_1_120 0 0.05 S3T8_1_120 0 0.07 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_1_210 0 0.06 S2T8_1_210 0 0.05 S3T8_1_180 0 0.07 OT8_1_120 0 CASE 5 OT8_1_120 0 0.05 S1T8_1_180 0 0.05 S2T8_1_180 0 0.05 S3T8_1_180 0 0.07 OT8_1_120 0 CASE 5 OT8_1_120 0 0.05 S1T8_1_120 0 0.05 S2T8_4_300 0 0.05 S3T8_1_120 0 0.07 OT8_1_120 0 CASE 5 OT8_1_120 0 0.05 S1T8_1_120 0 0.05 S2T8_1_120 0 0.05 S3T8_1_120 0 0.07 OT8_1_120 0 CASE 5 OT8_1_120 0 0.05 S1T8_1_120 0 0.05 S2T8_1_120 0 0.05 S3T8_1_120 0 0.07 OT8_1_120 0 CASE 5 OT8_1_120 0 0.06 S1T8_4_180 1 0.05 S2T8_4_180 1 0.05 S3T8_4_180 1 0.07 OT8_1_120 0 CASE 5 OT8_14_270 1 0.06 S1T8_14_270 1 0.06 S2T8_14_300 1 0.06 S3T8_14_270 1 0.07 OT8_14_270 1 CASE 5 OT8_13_210 1 0.06 S1T8_13_210 1 0.06 S2T8_13_210 1 0.06 S3T8_13_180 1 0.07 OT8_13_210 1 CASE 5 OT8_12_60 1 0.05 S1T8_12_60 1 0.05 S2T8_12_60 1 0.05 S3T8_12_60 1 0.06 OT8_12_60 1 CASE 5 OT8_9_120 1 0.06 S1T8_9_120 1 0.05 S2T8_9_120 1 0.05 S3T8_9_120 1 0.06 S1T8_9_120 1 CASE 6 OT8_9_0 1 0.06 S1T8_1_90 0 0.06 S2T8_1_120 0 0.05 S3T8_9_0 1 0.06 S1T8_1_90 0 CASE 6 OT8_9_60 1 0.06 S1T8_9_60 1 0.05 S2T8_9_60 1 0.04 S3T8_9_60 1 0.06 S1T8_9_60 1 CASE 6 OT8_12_60 0 0.06 S1T8_12_60 0 0.06 S2T8_12_60 0 0.05 S3T8_12_60 0 0.06 S1T8_12_60 0 CASE 6 OT8_9_90 0 0.06 S1T8_9_120 0 0.06 S2T8_9_120 0 0.05 S3T8_9_90 0 0.06 S1T8_9_120 0 CASE 6 OT8_4_180 1 0.05 S1T8_4_180 1 0.05 S2T8_4_210 1 0.05 S3T8_4_210 1 0.06 OT8_4_180 1 CASE 5 OT8_1_0 1 0.05 S1T8_1_0 1 0.05 S2T8_1_0 1 0.04 S3T8_1_0 1 0.06 OT8_1_0 1 CASE 5 OT8_9_210 0 0.05 S1T8_12_90 1 0.05 S2T8_12_90 1 0.04 S3T8_12_120 1 0.05 S1T8_12_90 1 CASE 6 OT8_1_120 0 0.05 S1T8_12_60 1 0.05 S2T8_12_60 1 0.04 S3T8_12_90 1 0.05 OT8_1_120 0 CASE 5 OT8_1_120 0 0.05 S1T8_9_90 1 0.05 S2T8_9_120 1 0.04 S3T8_9_90 1 0.05 OT8_1_120 0 CASE 5
Summary UF
West Espoir
Jacket In Service Results
Member Names and location
West Espoir
Jacket In Service Results
Member Names and location
West Espoir
Jacket In Service Results
Member Names and location
6 Golden Square Aberdeen AB10 1RD Telephone: +44 (0)1224 620202 Fax: +44 (0)1224 647652 email:
[email protected] www.atkinsglobal.com
© Atkins Ltd except where stated otherwise The Atkins logo, the 'open A' device, 'Carbon Critical Design' and the strapline 'Plan Design Enable' are trademarks of Atkins Limited, a WS Atkins plc company