STPM 2014 Maths T Paper 1 Trial Sem 1 SSIJB
Short Description
STPM 2014 Maths T Paper 1 Trial Sem 1 SSIJB...
Description
SEK KEB MEN SULTAN ISMAIL, JOHOR BAHRU 954/3 MATHEMATICS T Pre-U 1 TERM 1 TRIAL EXAMINATION 2013 Section A [45, Marks] Answer all questions in this section.
1
A functions f is defined as f : x a x 2 + 2, x ∈ [ −5, −1] (a) Find f −1 . (b) Sketch f and f −1 on the same axes.
[4 marks] [3 marks]
2 The second and the fifth terms of a geometric series are 24 and −3 respectively. Find the smallest value of n for which the difference between the sum of the first n terms and the sum to infinity is less than 0.005. [5 marks] 1 2 2 −5 a 4 ÷ ÷ 3 Given that P = 1 1 3 ÷, Q = 8 −5 c ÷ and PQ = kI , where k is a constant and I is 3 b 1÷ c 4 c÷ a , b the 3 × 3 identity matrix. Find the values of and c . [4 marks] −1 Deduce Q and hence, solve the following system of linear equations. −5 x + ay + 4 z = 11 8 x − 5 y + cz = −5 cx + 4 y + cz = 4 [6 marks]
2π . 3
4
The complex number z is such that zz* = 64 and arg( z ) =
(a) (b)
Find z in polar form and deduce z 5 in polar form. [3 marks] 3 w Find the complex numbers such that w = −4 + 4 3i in the form of a + bi . [5 marks]
x2 y 2 5 The equation of an ellipse is given by + =1. 9 25 (a) Find the centre, vertices and the foci of the ellipse and sketch the curve. [6 marks] 2 (b) If the distances of a point on the ellipse from the foci are d1 and d 2 , show that (d1 + d 2 ) is constant. [4 marks]
6
0 2 4 −1 ÷ ÷ ÷ ÷ Find the acute angle between the lines r = 1 ÷+ m 3 ÷ and r = 7 ÷+ t 2 ÷. −1÷ ÷ 7 ÷ −2 ÷ 4
[5 marks]
Section B [15 marks] Answer any one question in this section 7.
(c)
x3 + 2 x 2 + 2 x + 3 in partial fractions. x2 + 2x − 3 If a = b + c , show that (a − b − c ) 2 = 4bc . 2 Solve the equation log 3 x + log 3 x = log 27 9 .
(d)
Solve the inequality cos( x −17°13') < −0.5, −180° ≤ x ≤ 180° .
(a) (b)
Express
[4 marks] [3 marks] [3 marks] [5 marks]
8. (a) The position vectors of the points A , B and C are i + 3 j + 5k , 4i − 9 j − k and pi − j + 3k respectively. (i) find the unit vector parallel to AB . [3 marks] (ii) find the value of p if A, B and C are collinear. [3 marks] (iii) if p = 2 , find the position vectors of the points D such that DABC is a parallelogram. [3 marks] (b) Solve the following system of linear equations using Gaussian elimination.
4x + 2 y − 3z = 5 x + y − 2z = 2 2 x − y + 3z = 1
[6 marks]
MATHEMATICAL FORMULAE sin 2 A = 2sin A cos B Trigonometrical identities sin( A ± B) = sin A cos B ± cos A sin B ; cos 2 A = cos 2 A − sin 2 A = 2cos 2 A − 1 = 1 − 2sin 2 A cos( A ± B) = cos A cos B mcos A cos B 2 tan A tan 2 A = tan A ± tan B 1 − tan 2 A tan( A ± B) = 1 mtan A tan B Sum of series: 1 1 For an arithmetic series: Sn = n(a + l ) = n[2a + ( n − 1) d ] 2 2 a (r n − 1) For a geometric series: S n = , r ≠1 r −1 Binomial expressions n n n (a + b) n = a n + ÷a n −1b + ÷a n − 2b 2 + L + ÷a n −r b r + L + b n , n ∈ ¢ + 1 2 r n( n − 1) 2 n(n − 1)K (n − r + 1) r (1 + x) n = 1 + nx + x +L + x +L , n∈¤, x log(0.5) n > 12.64 the smallest value of n = 13
B1
M1 A1 M1 A1
5
1 2 2 −5 a 4 ÷ ÷ 3 Given that P = 1 1 3 ÷, Q = 8 −5 c ÷ and PQ = kI , where k is a constant and I is 3 b 1÷ c 4 c÷ the 3 × 3 identity matrix. Find the values of a, b and c . [4 marks] −1 Deduce Q and hence, solve the following system of linear equations. −5 x + ay + 4 z = 11 8 x − 5 y + cz = −5 cx + 4 y + cz = 4 [6 marks]
3
a12 : a32 : a31 : a11 :
PQ = k I 1 2 2 −5 a 4 1 0 0 ÷ ÷ ÷ 1 1 3 ÷ 8 −5 c ÷ = k 0 1 0 ÷ 3 b 1÷ c 4 c ÷ 0 0 1÷ a − 10 + 8 = 0 - - - -(1) 3a − 5b + 4 = 0 - - - -(2) a =2, b=2 −15 + 8b + c = 0 c = −1 k = −5 + 16 − 2 = 9 1 2 2 1 ÷ Q = 1 1 3÷ 9 ÷ 3 b 1 1/ 9 2 / 9 2 / 9 ÷ = 1/ 9 1/ 9 1/ 3 ÷ 1/ 3 2 / 9 1/ 9 ÷ −5 a 4 x 11 ÷ ÷ ÷ 8 −5 c ÷ y ÷ = −5 ÷, c ÷ ÷ 4 c ÷ z 4 x 1 ÷ ÷ y ÷= 2 ÷ z ÷ 3÷ x = 1, y = 2, z = 3
B1
M1 A1 A1
4
B1
−1
M1
A1
x 1 2 2 11 ÷ 1 ÷ ÷ ⇒ y ÷ = 1 1 3 ÷ −5 ÷ 9 z÷ 3 b 1÷ 4 ÷
M1
A1 A1
2π . 3
6
4
The complex number z is such that zz = 64 and arg( z ) =
(a) (b)
Find z in polar form and deduce z 5 in polar form. [3 marks] 3 Find the complex numbers w such that w = −4 + 4 3i in the form of a + bi . [5 marks] 2
4(a) zz = z = 64 z =8
2π 2π z = 8 cos + i sin ÷ 3 3
B1
10π z 5 = 85 cis ÷ 3 2π = 32768cis − ÷ 3 2π 2π = 32768 cos − i sin ÷ 3 3
M1
A1
3
4(b) −4 + 4 3i = 42 + (4 3) 2 = 8 4 3 2π arg(−4 + 4 3i ) = π − tan −1 ÷ ÷= 4 3 2π w3 = 8cis ÷ 3 2π / 3 + 2kπ w = 2cis ÷, k = 0,1, 2 3 2π 8π 14π w1 = 2cis ÷ , w2 = 2cis ÷, w3 = 2cis ÷ 9 9 9 2π 8π 4π w1 = 2cis ÷ , w2 = 2cis ÷, w3 = 2cis − ÷ 9 9 9 w = 1.5321 + 1.2856i, −1.8794 + 0.6840i, 0.3473 − 1.9696i
M1
A1 M1 M1
A1
5
x2 y 2 5 The equation of an ellipse is given by + =1. 9 25 (a) Find the centre, vertices and the foci of the ellipse and sketch the curve. [6 marks] 2 (b) If the distances of a point on the ellipse from the foci are d1 and d 2 , show that (d1 + d 2 ) is constant. [4 marks] 5(a) Centre = (0, 0) Vertices = (0, −5), (0,5) c 2 = 25 − 9, ⇒ c = ±4 Foci = (0, −4), (0, 4) y 4 3 2 1
(b)
B1 B1 M1 A1
x
−5 −4 −3 −2 −1 −1 1 2 3 4 5 6 −2 −3 −4 −5 Let (a, b) be a point on the ellipse a 2 b2 25 + = 1, ⇒ b 2 = 25 − a 2 - - - (1) 9 25 9
D1 D1
B1
(d1 + d 2 ) 2 = ( a 2 + (b + 4) 2 + a 2 + (b − 4) 2 ) 2 = a 2 + (b + 4) 2 + a 2 + (b − 4) 2 + 2 a 2 + (b − 4) 2 a 2 + (b − 4) 2 = 2a + 2b + 32 + 2 (a + b + 16) − (8b) - - - - (2) Substitute (1) into (2), … … … 50 16 = 2a 2 + 50 − a 2 + 32 + 2 (9 + a 2 ) 2 9 9 50 32 = 2a 2 + 50 − a 2 + 32 + 18 + a 2 9 9 = 100 2 ∴ (d1 + d 2 ) is constant. 2
2
2
2
2
M1
2
M1 A1
6
0 2 4 −1 ÷ ÷ ÷ ÷ Find the acute angle between the lines r = 1 ÷+ m 3 ÷ and r = 7 ÷+ t 2 ÷. −1÷ ÷ 7 ÷ −2 ÷ 4
6
2 −1 ÷ ÷ 2 2 2 2 2 2 3 ÷g 2 ÷ = 2 + 3 + 4 1 + 2 + 2 cos θ 4 ÷ −2 ÷ −2 + 6 − 8 = 3 29 cos θ 4 cos θ = − 29 87 θ = 104.34° The acute angle is θ = 75.66°
[5 marks]
B1M1 M1
A1 A1
Section B [15 marks] ( MARK ONLY ONE question in this section – the FIRST ONE AFTER QUESTION 6 ) 7.
(a) (b) (c) (d)
x3 + 2 x 2 + 2 x + 3 in partial fractions. x2 + 2x − 3 If a = b + c , show that (a − b − c ) 2 = 4bc . 2 Solve the equation log 3 x + log 3 x = log 27 9 . Solve the inequality cos( x −17°13') < −0.5, −180° ≤ x ≤ 180° . Express
x3 + 2 x 2 + 2 x + 3 x 3 + 2 x 2 − 3x + 5 x + 3 ≡ x2 + 2x − 3 x2 + 2 x − 3 5x + 3 ≡ x+ 2 x + 2x − 3 5x + 3 5x + 3 A B ≡ ≡ + 2 x + 2 x − 3 ( x − 1)( x + 3) x − 1 x + 3 5 x + 3 ≡ A( x + 3) + B ( x − 1) x = 1, 8 = 4 A ⇒ A=2 x = −3, − 12 = −4 B ⇒ B=3
[4 marks] [3 marks] [3 marks] [5 marks]
7(a)
B1 (or long division)
M1 A1
x3 + 2 x 2 + 2 x + 3 2 3 ≡ x+ + 2 x + 2x − 3 x −1 x + 3 7(b) a = b+ c ( a )2 = ( b + c )2 a =b+c+2 b c a −b −c = 2 b c
7(c)
4
B1 M1
(a − b − c ) 2 = (2 b c ) 2 = 4bc 2 log 3 x + log 3 x = log 27 9 log 3 9 log 3 x 3 = log 3 27 1 2 3log 3 x = log 3 9 or 3log 3 x = 3 3 1 2 log3 x = log 3 9 or log 3 x = 9 9 1 9
7(d)
A1
2
x = 9 = 1.277 or x = 39 = 1.277 cos( x − 17°13') < −0.5 . y
A1
3
B1
M1 A1
3
2 1 x −3
−2
−1
−1
1
2
M1
3
−2 −3 cos( x −17°13') = −0.5 = − cos 60° x − 17°13' = −120°,120° x = −102°47 ',137°13' Solution set = {x : −180° ≤ x < −102°47 ',137°13' < x ≤ 180°}
M1 A1 A1A1
8. (a) The position vectors of the points A , B and C are i + 3 j + 5k , 4i − 9 j − k and pi − j + 3k respectively. (i) find the unit vector parallel to AB . [3 marks] p A , B (ii) find the value of if and C are collinear. [3 marks] (iii) if p = 2 , find the position vectors of the points D such that DABC is a parallelogram. [3 marks] (b) Solve the following system of linear equations using Gaussian elimination.
4x + 2 y − 3z = 5 x + y − 2z = 2 2 x − y + 3z = 1
8(a) (i)
AB = 4i − 9 j − k − (i + 3j + 5k ) = 3i − 12 j − 6k
[6 marks] B1
The unit vector =
=
32 + 122 + 62 21 4 21 2 21 i− j− k 21 21 21
AC = kAB p 1 3 ÷ ÷ ÷ −1÷− 3 ÷ = k −12 ÷ 3 ÷ 5 ÷ −6 ÷ −4 = −12k or −2 = −6k 1 k= 3 1 p − 1 = (3) 3 p=2
(ii)
(iii)
(b)
3i − 12 j − 6k
M1 A1
3
M1
M1
A1
3
DABC is a parallelogram,
AD = BC 1 2 4 ÷ ÷ ÷ OD − 3 ÷ = −1÷− −9 ÷ 5 ÷ 3 ÷ −1÷ −1 ÷ OD = 11÷ = −i + 11j + 9k 9÷
4 2 −3 1 1 −2 2 −1 3
5 ÷ 2÷ 1÷
4 2 −3 4 R2 − R1 → R2 → 0 2 −5 2 R3 − R1 → R3 0 −4 9 4 2 −3 → 0 2 −5 0 0 −1 −z = 3 2 y − 5z = 3 4 x + 2 y − 3z = 5 x = 2, y = −6, z = −3 R3 + 2 R2 → R3
B1
M1
A1
3
B1
5 ÷ 3÷ −3 ÷ 5 ÷ 3÷ 3÷
M1 M1
A1
M1 A1
6
View more...
Comments