StiffnessCoefficients.pdf

April 26, 2018 | Author: Thanit Thanadirek | Category: Stiffness, Mechanics, Mechanical Engineering, Classical Mechanics, Applied And Interdisciplinary Physics
Share Embed Donate


Short Description

dynamics of structure...

Description

September 18, 2002

Ahmed Elgamal

Stiffness Coefficients for a Flexural Element Ahmed Elgamal

1

September 18, 2002

Ahmed Elgamal

Stiffness coefficients for a flexural element (neglecting axial deformations), Appendix 1, Ch. 1 Dynamics of  Structures by Chopra. u2

u4

u3

u1

Positive directions k 21

4 degrees of freedom

k 41

k 11 k 31

2

September 18, 2002

Ahmed Elgamal

Stiffness coefficients for a flexural element (neglecting axial deformations), Appendix 1, Ch. 1 Dynamics of  Structures by Chopra. u2

u4

u3

u1

Positive directions k 21

4 degrees of freedom

k 41

k 11 k 31

2

September 18, 2002

Ahmed Elgamal

To obtain k coefficients in 1 st column of stiffness matrix, move u1 = 1, u2 = u3 = u4 = 0, and find forces and moments needed to maintain this shape.

u1 1.0 L

3

12EI

September 18, 2002

Ahmed Elgamal

3

L

These are (see structures textbook) 6EI 6EI

L2

2

L

12EI

 Note that that Σ Forces = 0 Σ Moments = 0

L3

ΣM= i.e. remember 

12EI 3

L

, and you

can find other forces & moments

12EI 3

L

-

12EI 3

L

= 0

Positive directions k 21 k 41

k 11 k 31 4

September 18, 2002

⎡ k 11 ⎢k  21 k = ⎢ ⎢k 31 ⎢ ⎣k 41

Ahmed Elgamal

k 12

k 13

k 22

k 23

k 32

k 33

k 42

k 43

⎡ 12 ⎢ EI ⎢ − 12 k = 3 L ⎢− 6L ⎢ ⎣− 6L

k 14 ⎤

⎥ ⎥ k 34 ⎥ ⎥ k 44 ⎦ k 24

k ij = k , where i is row number  and j is column number 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 5

September 18, 2002

Ahmed Elgamal

u2 = 1, u1 = u3 = u4 = 0

1.0

u2

L

6

September 18, 2002

Ahmed Elgamal

12EI L3

6EI L2 6EI

u2 = 1

L2 12EI

Σ M = 0, Σ F = 0 ⎡ ⎢ EI ⎢ k = 3 L ⎢ ⎢ ⎣

- 12 12 6L 6L

⎤ ⎥ ⎥ ⎥ ⎥ ⎦

L3

Positive directions k 22 k 42

k 12 k 32 7

September 18, 2002

Ahmed Elgamal

u3 = 1, u1 = u2 = u4 = 0

1.0

u3 = 1

L

8

September 18, 2002

⎡ ⎢ ⎢ ⎢ k = ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

Ahmed Elgamal

2EI

4EI

L

L

6EI

6EI

L2

L2

- 6EI L2 6EI 2

L 4EI L 2EI L

Σ M = 0, Σ F = 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

Positive directions k 23 k 43

k 13 k 33 9

September 18, 2002

Ahmed Elgamal

u4 = 1, u1 = u2 = u3 = 0

u4 = 1

1.0

L

10

September 18, 2002

Ahmed Elgamal

4EI

2EI

L

⎡ ⎢ ⎢ ⎢ k = ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

L

6EI

6EI

L2

L2

Σ M = 0, Σ F = 0 - 6EI ⎤ L2 ⎥ 6EI ⎥ 2

L 2EI L 4EI L

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

Positive directions k 24 k 44

k 14 k 34 11

September 18, 2002

Ahmed Elgamal

Example: Water Tank 

u1

m

m is lumped at a point & does not contribute in rotation

u2 L

ug u2 above was u3 in the earlier section of these notes

12

September 18, 2002

Ahmed Elgamal

Example: Water Tank (continued) u1

k11

m

u2

k12

k21

k22

L

ug

⎡ 12EI ⎡m ⎤ ⎡ &u&1 ⎤ ⎢ L3 ⎢ ⎥ ⎢&u& ⎥ + ⎢ − 6EI 0 ⎣ ⎦⎣ 2 ⎦ ⎢ ⎣ L2

− 6EI ⎤ L2 ⎥ ⎡ u1 ⎤ = − ⎡m⎤ &u& ⎢0⎥ g 4EI ⎥ ⎢⎣u 2 ⎥⎦ ⎣ ⎦ ⎥ L ⎦

“Note Symmetry”

Rotational (used to be u 3) 13

September 18, 2002

Ahmed Elgamal

Example: Water Tank (continued) Static Condensation: Way to solve a smaller system of equations by eliminating degrees of freedom with zero mass. e.g., in the above, the 2nd equation gives

− 6EI 2

L

u1 +

4EI L

u2 = 0

or  u2 =

6EI L 2

L 4EI

u1 =

6 4L

u1 =

3 2L

u1

----- *

14

September 18, 2002

Ahmed Elgamal

Example: Water Tank (continued) Substitute * into Equation 1

⎛ 12EI 6EI 3  ⎞ m&u&1 + ⎜ 3 − 2 ⎟u 1 = − m&u& g L 2L ⎠ ⎝  L or, ⎛ 24EI − 18EI ⎞ ⎟u 1 = − m&u& g 3 2L ⎝   ⎠

m&u&1 + ⎜

or,

⎛ 3EI ⎞ u = −m&u& g 3 ⎟ 1 ⎝  L  ⎠

m&u&1 + ⎜

 Now, solve for u1 and u2 can be evaluated from Equation * above. Static condensation can be applied to large MDOF systems of  equations, the same way as shown above.

15

September 18, 2002

Ahmed Elgamal

Example: Water Tank (continued)

⎛ 3EI ⎞ u = −m&u& g 3 ⎟ 1 ⎝  L  ⎠

m&u&1 + ⎜

k of water tank as we were given earlier. or of column

if EI b = 0 I b

16

September 18, 2002

Ahmed Elgamal

Mandatory Reading Example 9.4 page 362-364

 bending  beam

Example 9.8 page 368-369 Sample Exercises: 9.5, 9.8, & 9.9

17

September 18, 2002

Ahmed Elgamal

Example (a)

(b)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

18

September 18, 2002

Ahmed Elgamal

(c)

(d)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

19

September 18, 2002

Ahmed Elgamal

(e)

(f)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

20

September 18, 2002

Ahmed Elgamal

(g)

(h)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

21

September 18, 2002

Ahmed Elgamal

(i)

(j)

Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

22

September 18, 2002

Ahmed Elgamal

therefore,

⎡ 12 − 12 − 6L − 6L⎤ ⎢ ⎥ 6L 0 EI ⎢ − 12 24 ⎥ k = 3 2 2 4L 2L ⎥ L ⎢− 6L 6L ⎢ 2 2 ⎥ 6L 0 2L 8L − ⎣ ⎦

,

⎡ m1 ⎢ M=⎢ ⎢ ⎢ ⎣

m2

⎤ ⎥ ⎥ ⎥ 0 ⎥ 0⎦

Sample Exercise: For the above cantilever system, write equation of  motion and perform static condensation to obtain a 2 DOF system. Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2

23

September 18, 2002

Ahmed Elgamal

Column Stiffness (lateral vibration) m  bending  beam

L

k =

3EI 3

L

,

ω

=

k  m

 beam with EI beam = 0



⎛ 3EI ⎞ 3 ⎟ ⎝  L  ⎠

k = 2⎜

24

September 18, 2002

Ahmed Elgamal

Case of  EI b = (rigid roof)



u

L

k  =

⎛ 12EI ⎞ 3 ⎟ L ⎝   ⎠

12EI

k = 2⎜

L3

k  =

h1

h2

12E1 I1 h

3 1

+

12E 2 I 2 h 32

25

September 18, 2002

Ahmed Elgamal

(See example 1.1 in Dynamics of Structures  by Chopra)

h

L = 2h

k =

96EI c 7h

3

if  EI b = EI c  beam

24EIc 12ρ + 1 , k = h 3 12ρ + 4

ρ

=

column

I b 4I c

& E c = E b = E 26

September 18, 2002

Ahmed Elgamal

Obtained by “static condensation” of 3x3 system u1

θ2

force

θ1

f s

call it u2 call it u3 ⎡ ⎢ ⎢ ⎢⎣

⎤ ⎡ u 1 ⎤ ⎡f S ⎤ ⎥ ⎢u ⎥ = ⎢ 0 ⎥ ⎥⎢ 2 ⎥ ⎢ ⎥ ⎥⎦ ⎢⎣ u 3 ⎥⎦ ⎢⎣ 0 ⎥⎦

and get f s = ku1

Use to represent u2 and u3 in terms of  u1 & plug back into Technique can also be used for large systems of equations

(See example 1.1 in Dynamics of Structures by Chopra)

27

September 18, 2002

Ahmed Elgamal

Draft Example  Neglect axial deformation u3

u2 u1

I b Ic

Ic

28

September 18, 2002

Ahmed Elgamal

u1 = 1 u2 = u3 = 0 6EI c

6EI c

L2

L2

(2)⎛ ⎜

12EI c  ⎞



3 ⎝  L  ⎠

L

L

29

September 18, 2002

Ahmed Elgamal

u2 = 1 u1 = u3 = 0 2EI b

4EI b

4EI c

L

L

L 6EI c L2

30

September 18, 2002

Ahmed Elgamal

u3 = 1 u1 = u2 = 0 4EI b

2EI b

L

L

6EI c L2

4EI c L

6I c L ⎡ 24I c E ⎢ k = 3 6I c L 4(I b + I c )L2 L ⎢ ⎢⎣6I c L 2I b L2

⎤ ⎥ 2I b L2 ⎥ 2 4(I b + I c )L ⎥⎦ 6I c L

31

September 18, 2002

Ahmed Elgamal

If frame is subjected to lateral force f s Then (for simplicity, let Ic = I b = I)

⎡ 24 6L EI ⎢ 2 6L 8L L3 ⎢ ⎢⎣6L 2L2

6L ⎤ ⎡ u 1 ⎤

⎡f s ⎤ ⎥⎢ ⎥ ⎢ ⎥ 2L2 u 2 = 0 ⎥⎢ ⎥ ⎢ ⎥ 2 8L ⎥⎦ ⎢⎣ u 3 ⎥⎦ ⎢⎣ 0 ⎥⎦

32

September 18, 2002

Ahmed Elgamal

Static condensation: From 2nd and 3rd equations, ⎡8L = − ⎢ 2 ⎢u ⎥ ⎣ 3⎦ ⎣2L ⎡u 2 ⎤

2

−1

2L ⎤ ⎡6L⎤ 2

⎥ ⎢

 Note matrix inverse:

⎥ u1

8L2 ⎦ ⎣6L⎦

−1 = 64L4 − 4L4

⎡ 8L ⎢ 2 ⎣- 2L 2

−1

- 2L ⎤ ⎡6L⎤ 2

⎡a  b ⎤ ⎢c d⎥ ⎣ ⎦

−1

⎡ d − b ⎤ = ⎢ ⎥ ad − cb ⎣− c a ⎦ 1

⎥ ⎢ ⎥ u1 8L ⎦ ⎣6L⎦ 2

− 6 ⎡1⎤ = ⎢ ⎥ u1 10L ⎣1⎦

33

September 18, 2002

Ahmed Elgamal

Substitute into 1st equation EI ⎡

36

36 ⎤

168EI

− ⎥ u 1 = f s = 24 − u1 3 ⎢ 10 10 ⎦ L ⎣ 10L 3

or  k =

168EI 3

10L

(check this result)

34

September 18, 2002

Ahmed Elgamal

Draft Example 2

u3

u2 u1

L

2L

35

September 18, 2002

Ahmed Elgamal

u1 = 1 u2 = u3 = 0 6EI c

6EI c

L2

L2

(2 )⎛ ⎜

12EI c  ⎞

⎟ 3 ⎝  L  ⎠

36

September 18, 2002

Ahmed Elgamal

u2 = 1 u1 = u3 = 0 2EI b

4EI b

4EI c

2L

2L

L 6EI c L2

37

September 18, 2002

Ahmed Elgamal

u3 = 1 u1 = u2 = 0

6EI c L2

4EI b

2EI b

2L

2L 4EI c L

38

September 18, 2002

Ahmed Elgamal

⎡ ⎢ 24I 6I c L ⎢ c E ⎛ I  ⎞ k = 3 ⎢6I c L 4⎜  b + I c ⎟L2 L ⎢ ⎝  2  ⎠ ⎢ ⎢6I c L I b L2 ⎢⎣

⎤ ⎥ 6I c L ⎥ ⎥ I b L2 ⎥ ⎥ ⎛ I b  ⎞ 2 ⎥ 4⎜ + I c ⎟L ⎝  2  ⎠ ⎥⎦

For simplicity, let I b = Ic ⎡ 24 6L EI ⎢ 6L 6L2 3 ⎢ L ⎢⎣6L L2

6L ⎤ ⎡ u 1 ⎤

⎡f s ⎤ ⎥⎢ ⎥ ⎢ ⎥ L2 u 2 = 0 ⎥⎢ ⎥ ⎢ ⎥ 2 6L ⎥⎦ ⎢⎣ u 3 ⎥⎦ ⎢⎣ 0 ⎥⎦

39

September 18, 2002

Ahmed Elgamal

Static condensation:

⎡6L2 ⎢u ⎥ = −⎢ 2 ⎣ 3⎦ ⎣L ⎡u 2 ⎤

=

−1

L ⎤ ⎡6L⎤ u1 ⎥ 2⎥ ⎢ 6L ⎦ ⎣6L⎦

−1 36L4 − L4

2

⎡6L ⎢ 2 ⎣- L

2

−1

- L ⎤ ⎡6L⎤ 2

⎥ ⎢ ⎥ u1 6L ⎦ ⎣6L⎦ 2

− 30 ⎡1⎤ − 6 ⎡1⎤ u1 = u1 = ⎢ ⎥ ⎢ ⎥ 35L ⎣1⎦ 7L ⎣1⎦

40

September 18, 2002

Ahmed Elgamal

Substitute in 1st Equation EI ⎡

36

36 ⎤

24 − − ⎥ u 1 = f s ⎢ 7 7⎦ L ⎣ 3

or,

f s =

96 EI

or,

k =

96EI

3

7 L

3

7L

u1

Same as in Example 1.1, Dynamics of Structures by Chopra

41

September 18, 2002

Ahmed Elgamal

Sample Exercise 1) 1.1 Derive stiffness matrix k  for  EI b h1

EIc1 EIc2

h2

L 1.2 For the special case of Ic1 = Ic2 = I b, h1 = h2 = h and L = 2h, find lateral stiffness k of the frame. 42

September 18, 2002

Ahmed Elgamal

Sample Exercise 2) Derive equation of motion for: m 2

EI b Flexural rigidity of beams and columns

h

EIc

m

EIc

E = 29,000 ksi,

EI b use 600 lb/ft

h

EIc

EIc 2h

Columns W8x24 sections with Ic = 82.4 in4 h = 12 ft I b = ½ Ic

43

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF