StiffnessCoefficients.pdf
Short Description
dynamics of structure...
Description
September 18, 2002
Ahmed Elgamal
Stiffness Coefficients for a Flexural Element Ahmed Elgamal
1
September 18, 2002
Ahmed Elgamal
Stiffness coefficients for a flexural element (neglecting axial deformations), Appendix 1, Ch. 1 Dynamics of Structures by Chopra. u2
u4
u3
u1
Positive directions k 21
4 degrees of freedom
k 41
k 11 k 31
2
September 18, 2002
Ahmed Elgamal
Stiffness coefficients for a flexural element (neglecting axial deformations), Appendix 1, Ch. 1 Dynamics of Structures by Chopra. u2
u4
u3
u1
Positive directions k 21
4 degrees of freedom
k 41
k 11 k 31
2
September 18, 2002
Ahmed Elgamal
To obtain k coefficients in 1 st column of stiffness matrix, move u1 = 1, u2 = u3 = u4 = 0, and find forces and moments needed to maintain this shape.
u1 1.0 L
3
12EI
September 18, 2002
Ahmed Elgamal
3
L
These are (see structures textbook) 6EI 6EI
L2
2
L
12EI
Note that that Σ Forces = 0 Σ Moments = 0
L3
ΣM= i.e. remember
12EI 3
L
, and you
can find other forces & moments
12EI 3
L
-
12EI 3
L
= 0
Positive directions k 21 k 41
k 11 k 31 4
September 18, 2002
⎡ k 11 ⎢k 21 k = ⎢ ⎢k 31 ⎢ ⎣k 41
Ahmed Elgamal
k 12
k 13
k 22
k 23
k 32
k 33
k 42
k 43
⎡ 12 ⎢ EI ⎢ − 12 k = 3 L ⎢− 6L ⎢ ⎣− 6L
k 14 ⎤
⎥ ⎥ k 34 ⎥ ⎥ k 44 ⎦ k 24
k ij = k , where i is row number and j is column number
⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 5
September 18, 2002
Ahmed Elgamal
u2 = 1, u1 = u3 = u4 = 0
1.0
u2
L
6
September 18, 2002
Ahmed Elgamal
12EI L3
6EI L2 6EI
u2 = 1
L2 12EI
Σ M = 0, Σ F = 0 ⎡ ⎢ EI ⎢ k = 3 L ⎢ ⎢ ⎣
- 12 12 6L 6L
⎤ ⎥ ⎥ ⎥ ⎥ ⎦
L3
Positive directions k 22 k 42
k 12 k 32 7
September 18, 2002
Ahmed Elgamal
u3 = 1, u1 = u2 = u4 = 0
1.0
u3 = 1
L
8
September 18, 2002
⎡ ⎢ ⎢ ⎢ k = ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
Ahmed Elgamal
2EI
4EI
L
L
6EI
6EI
L2
L2
- 6EI L2 6EI 2
L 4EI L 2EI L
Σ M = 0, Σ F = 0 ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
Positive directions k 23 k 43
k 13 k 33 9
September 18, 2002
Ahmed Elgamal
u4 = 1, u1 = u2 = u3 = 0
u4 = 1
1.0
L
10
September 18, 2002
Ahmed Elgamal
4EI
2EI
L
⎡ ⎢ ⎢ ⎢ k = ⎢ ⎢ ⎢ ⎢ ⎢ ⎣
L
6EI
6EI
L2
L2
Σ M = 0, Σ F = 0 - 6EI ⎤ L2 ⎥ 6EI ⎥ 2
L 2EI L 4EI L
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
Positive directions k 24 k 44
k 14 k 34 11
September 18, 2002
Ahmed Elgamal
Example: Water Tank
u1
m
m is lumped at a point & does not contribute in rotation
u2 L
ug u2 above was u3 in the earlier section of these notes
12
September 18, 2002
Ahmed Elgamal
Example: Water Tank (continued) u1
k11
m
u2
k12
k21
k22
L
ug
⎡ 12EI ⎡m ⎤ ⎡ &u&1 ⎤ ⎢ L3 ⎢ ⎥ ⎢&u& ⎥ + ⎢ − 6EI 0 ⎣ ⎦⎣ 2 ⎦ ⎢ ⎣ L2
− 6EI ⎤ L2 ⎥ ⎡ u1 ⎤ = − ⎡m⎤ &u& ⎢0⎥ g 4EI ⎥ ⎢⎣u 2 ⎥⎦ ⎣ ⎦ ⎥ L ⎦
“Note Symmetry”
Rotational (used to be u 3) 13
September 18, 2002
Ahmed Elgamal
Example: Water Tank (continued) Static Condensation: Way to solve a smaller system of equations by eliminating degrees of freedom with zero mass. e.g., in the above, the 2nd equation gives
− 6EI 2
L
u1 +
4EI L
u2 = 0
or u2 =
6EI L 2
L 4EI
u1 =
6 4L
u1 =
3 2L
u1
----- *
14
September 18, 2002
Ahmed Elgamal
Example: Water Tank (continued) Substitute * into Equation 1
⎛ 12EI 6EI 3 ⎞ m&u&1 + ⎜ 3 − 2 ⎟u 1 = − m&u& g L 2L ⎠ ⎝ L or, ⎛ 24EI − 18EI ⎞ ⎟u 1 = − m&u& g 3 2L ⎝ ⎠
m&u&1 + ⎜
or,
⎛ 3EI ⎞ u = −m&u& g 3 ⎟ 1 ⎝ L ⎠
m&u&1 + ⎜
Now, solve for u1 and u2 can be evaluated from Equation * above. Static condensation can be applied to large MDOF systems of equations, the same way as shown above.
15
September 18, 2002
Ahmed Elgamal
Example: Water Tank (continued)
⎛ 3EI ⎞ u = −m&u& g 3 ⎟ 1 ⎝ L ⎠
m&u&1 + ⎜
k of water tank as we were given earlier. or of column
if EI b = 0 I b
16
September 18, 2002
Ahmed Elgamal
Mandatory Reading Example 9.4 page 362-364
bending beam
Example 9.8 page 368-369 Sample Exercises: 9.5, 9.8, & 9.9
17
September 18, 2002
Ahmed Elgamal
Example (a)
(b)
Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2
18
September 18, 2002
Ahmed Elgamal
(c)
(d)
Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2
19
September 18, 2002
Ahmed Elgamal
(e)
(f)
Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2
20
September 18, 2002
Ahmed Elgamal
(g)
(h)
Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2
21
September 18, 2002
Ahmed Elgamal
(i)
(j)
Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2
22
September 18, 2002
Ahmed Elgamal
therefore,
⎡ 12 − 12 − 6L − 6L⎤ ⎢ ⎥ 6L 0 EI ⎢ − 12 24 ⎥ k = 3 2 2 4L 2L ⎥ L ⎢− 6L 6L ⎢ 2 2 ⎥ 6L 0 2L 8L − ⎣ ⎦
,
⎡ m1 ⎢ M=⎢ ⎢ ⎢ ⎣
m2
⎤ ⎥ ⎥ ⎥ 0 ⎥ 0⎦
Sample Exercise: For the above cantilever system, write equation of motion and perform static condensation to obtain a 2 DOF system. Reference: Dynamics of Structures, Anil K. Chopra, Prentice Hall, New Jersey, ISBN 0-13-086973-2
23
September 18, 2002
Ahmed Elgamal
Column Stiffness (lateral vibration) m bending beam
L
k =
3EI 3
L
,
ω
=
k m
beam with EI beam = 0
⇒
⎛ 3EI ⎞ 3 ⎟ ⎝ L ⎠
k = 2⎜
24
September 18, 2002
Ahmed Elgamal
Case of EI b = (rigid roof)
∞
u
L
k =
⎛ 12EI ⎞ 3 ⎟ L ⎝ ⎠
12EI
k = 2⎜
L3
k =
h1
h2
12E1 I1 h
3 1
+
12E 2 I 2 h 32
25
September 18, 2002
Ahmed Elgamal
(See example 1.1 in Dynamics of Structures by Chopra)
h
L = 2h
k =
96EI c 7h
3
if EI b = EI c beam
24EIc 12ρ + 1 , k = h 3 12ρ + 4
ρ
=
column
I b 4I c
& E c = E b = E 26
September 18, 2002
Ahmed Elgamal
Obtained by “static condensation” of 3x3 system u1
θ2
force
θ1
f s
call it u2 call it u3 ⎡ ⎢ ⎢ ⎢⎣
⎤ ⎡ u 1 ⎤ ⎡f S ⎤ ⎥ ⎢u ⎥ = ⎢ 0 ⎥ ⎥⎢ 2 ⎥ ⎢ ⎥ ⎥⎦ ⎢⎣ u 3 ⎥⎦ ⎢⎣ 0 ⎥⎦
and get f s = ku1
Use to represent u2 and u3 in terms of u1 & plug back into Technique can also be used for large systems of equations
(See example 1.1 in Dynamics of Structures by Chopra)
27
September 18, 2002
Ahmed Elgamal
Draft Example Neglect axial deformation u3
u2 u1
I b Ic
Ic
28
September 18, 2002
Ahmed Elgamal
u1 = 1 u2 = u3 = 0 6EI c
6EI c
L2
L2
(2)⎛ ⎜
12EI c ⎞
⎟
3 ⎝ L ⎠
L
L
29
September 18, 2002
Ahmed Elgamal
u2 = 1 u1 = u3 = 0 2EI b
4EI b
4EI c
L
L
L 6EI c L2
30
September 18, 2002
Ahmed Elgamal
u3 = 1 u1 = u2 = 0 4EI b
2EI b
L
L
6EI c L2
4EI c L
6I c L ⎡ 24I c E ⎢ k = 3 6I c L 4(I b + I c )L2 L ⎢ ⎢⎣6I c L 2I b L2
⎤ ⎥ 2I b L2 ⎥ 2 4(I b + I c )L ⎥⎦ 6I c L
31
September 18, 2002
Ahmed Elgamal
If frame is subjected to lateral force f s Then (for simplicity, let Ic = I b = I)
⎡ 24 6L EI ⎢ 2 6L 8L L3 ⎢ ⎢⎣6L 2L2
6L ⎤ ⎡ u 1 ⎤
⎡f s ⎤ ⎥⎢ ⎥ ⎢ ⎥ 2L2 u 2 = 0 ⎥⎢ ⎥ ⎢ ⎥ 2 8L ⎥⎦ ⎢⎣ u 3 ⎥⎦ ⎢⎣ 0 ⎥⎦
32
September 18, 2002
Ahmed Elgamal
Static condensation: From 2nd and 3rd equations, ⎡8L = − ⎢ 2 ⎢u ⎥ ⎣ 3⎦ ⎣2L ⎡u 2 ⎤
2
−1
2L ⎤ ⎡6L⎤ 2
⎥ ⎢
Note matrix inverse:
⎥ u1
8L2 ⎦ ⎣6L⎦
−1 = 64L4 − 4L4
⎡ 8L ⎢ 2 ⎣- 2L 2
−1
- 2L ⎤ ⎡6L⎤ 2
⎡a b ⎤ ⎢c d⎥ ⎣ ⎦
−1
⎡ d − b ⎤ = ⎢ ⎥ ad − cb ⎣− c a ⎦ 1
⎥ ⎢ ⎥ u1 8L ⎦ ⎣6L⎦ 2
− 6 ⎡1⎤ = ⎢ ⎥ u1 10L ⎣1⎦
33
September 18, 2002
Ahmed Elgamal
Substitute into 1st equation EI ⎡
36
36 ⎤
168EI
− ⎥ u 1 = f s = 24 − u1 3 ⎢ 10 10 ⎦ L ⎣ 10L 3
or k =
168EI 3
10L
(check this result)
34
September 18, 2002
Ahmed Elgamal
Draft Example 2
u3
u2 u1
L
2L
35
September 18, 2002
Ahmed Elgamal
u1 = 1 u2 = u3 = 0 6EI c
6EI c
L2
L2
(2 )⎛ ⎜
12EI c ⎞
⎟ 3 ⎝ L ⎠
36
September 18, 2002
Ahmed Elgamal
u2 = 1 u1 = u3 = 0 2EI b
4EI b
4EI c
2L
2L
L 6EI c L2
37
September 18, 2002
Ahmed Elgamal
u3 = 1 u1 = u2 = 0
6EI c L2
4EI b
2EI b
2L
2L 4EI c L
38
September 18, 2002
Ahmed Elgamal
⎡ ⎢ 24I 6I c L ⎢ c E ⎛ I ⎞ k = 3 ⎢6I c L 4⎜ b + I c ⎟L2 L ⎢ ⎝ 2 ⎠ ⎢ ⎢6I c L I b L2 ⎢⎣
⎤ ⎥ 6I c L ⎥ ⎥ I b L2 ⎥ ⎥ ⎛ I b ⎞ 2 ⎥ 4⎜ + I c ⎟L ⎝ 2 ⎠ ⎥⎦
For simplicity, let I b = Ic ⎡ 24 6L EI ⎢ 6L 6L2 3 ⎢ L ⎢⎣6L L2
6L ⎤ ⎡ u 1 ⎤
⎡f s ⎤ ⎥⎢ ⎥ ⎢ ⎥ L2 u 2 = 0 ⎥⎢ ⎥ ⎢ ⎥ 2 6L ⎥⎦ ⎢⎣ u 3 ⎥⎦ ⎢⎣ 0 ⎥⎦
39
September 18, 2002
Ahmed Elgamal
Static condensation:
⎡6L2 ⎢u ⎥ = −⎢ 2 ⎣ 3⎦ ⎣L ⎡u 2 ⎤
=
−1
L ⎤ ⎡6L⎤ u1 ⎥ 2⎥ ⎢ 6L ⎦ ⎣6L⎦
−1 36L4 − L4
2
⎡6L ⎢ 2 ⎣- L
2
−1
- L ⎤ ⎡6L⎤ 2
⎥ ⎢ ⎥ u1 6L ⎦ ⎣6L⎦ 2
− 30 ⎡1⎤ − 6 ⎡1⎤ u1 = u1 = ⎢ ⎥ ⎢ ⎥ 35L ⎣1⎦ 7L ⎣1⎦
40
September 18, 2002
Ahmed Elgamal
Substitute in 1st Equation EI ⎡
36
36 ⎤
24 − − ⎥ u 1 = f s ⎢ 7 7⎦ L ⎣ 3
or,
f s =
96 EI
or,
k =
96EI
3
7 L
3
7L
u1
Same as in Example 1.1, Dynamics of Structures by Chopra
41
September 18, 2002
Ahmed Elgamal
Sample Exercise 1) 1.1 Derive stiffness matrix k for EI b h1
EIc1 EIc2
h2
L 1.2 For the special case of Ic1 = Ic2 = I b, h1 = h2 = h and L = 2h, find lateral stiffness k of the frame. 42
September 18, 2002
Ahmed Elgamal
Sample Exercise 2) Derive equation of motion for: m 2
EI b Flexural rigidity of beams and columns
h
EIc
m
EIc
E = 29,000 ksi,
EI b use 600 lb/ft
h
EIc
EIc 2h
Columns W8x24 sections with Ic = 82.4 in4 h = 12 ft I b = ½ Ic
43
View more...
Comments