X Y and Partners
Project
address
Client Description
Steel Beam Design Made by
CJB
tel & fax nos
Checked
Originated from Steel Beam
Analysis Span (m)
UC
UDL Point load Point load Point load Point load Partial UDL Partial UDL
M max kNm 173.23
Dead Imposed Position kN kN m 25 10 -
-
Vertical shear Moment Buckling Deflection
PFC
205000 325300
Revision
Page No
02
-
Design Status
RSJ
E (N/mm²) Ix (cm4)
2001
12-8-00
Design in accordance with BS 5950 : Part 1 : 1990 Simply supported beam
UB
Choose steel section:
15.000
Load Factors Dead 1.4 Imposed 1.6 LOADING
Unregistered Copy for Evaluation
© 2000-2007 Chris Buczkowski
Job No
Date
Length m -
PASS PASS PASS PASS
capacity ratio 0.02 0.08 0.04 0.06
200 180 160 140 120 100 80 60 40 20 0 -20
Bending Moment Diagram
RESULTS Max. deflection (mm) FV max Imposed Total kN only load -46.19 -0.66 -4.25
60
40 20
0
Design
-20
Design Strength py N/mm² 265
grade S275 grade S355
section classification
Plastic Moment Capacity Maximum Moment Critical section
Position m 7.500 7.500
Moment kNm 173.23 173.23
Shear Capacity Area capacity Av Pv mm² kN 13635.3 2168.01 Fv kN 0.00 0.00
Mcx kNm 2213.02 2213.02
Maximum moment Uniform factor Buckling moment
MA m Mbar
Shear Force Diagram cl. 4.2.3
Unity Factor 0.08 0.08
kNm
Zx (cm³)
7204
40.30 1.00 40.30
Sx (cm³)
8351
Deflection Allowable mm 41.7 75.0
cl. B.2.4 cl. 4.3.7.6
cl. 4.3.7.5
cl. B.2.5 (d)
UB
Deflection Diagram
lLo
34.95
correction factor
n
1.00
buckling parameter
u
0.854
torsional index
x
46.8
slenderness factor
v
0.923 101.37
equivalent slenderness
lLT
cl. B.2.3
Perry coefficient
hLT
0.465
Plastic moment capacity
Mp
2213.02
Elastic critical moment
ME
1644.18
Buckling index
fB
2310.83
cl. B.2.2 table 5
914x305x201
limiting slenderness
cl. B.2.5
cl. B.2.1
Section used:
1 0 -1 -1 -2 -2 -3 -3 -4 -4 -5
cl. 4.3.7.2
Slenderness Ratio Effective length radius of slenderness LE factor L gyration ry (cm) m l m 6.000 1.0L+2D 7.806 6.07 128.60
Deflection Limits span/deflection ratios Imposed Loads 360 Total Loads 200
-60
* low shear
Lateral torsional buckling Equivalent Uniform Moment
-40
Buckling capacity
Mb
1006.47
X Y and Partners
Project
address
Client Description
Steel Beam Design Made by
CJB
tel & fax nos
Checked
Originated from Steel Beam
Analysis Span (m)
Choose steel section:
6.000
UDL Point load Point load Point load Point load Partial UDL Partial UDL
M max kNm 40.30
UB
Dead Imposed Position kN kN m 25 10 -
205000 8249
Revision
-
Page No
03
-
Design Status
RSJ
E (N/mm²) Ix (cm4)
2001
12-8-00
Design in accordance with BS 5950 : Part 1 : 1990 Simply supported beam with full lateral restraint
UC
Load Factors Dead 1.4 Imposed 1.6 LOADING
Unregistered Copy for Evaluation
© 2000-2007 Chris Buczkowski
Job No
Date
Vertical shear Moment Deflection
PFC
Length m -
PASS PASS PASS
capacity ratio 0.08 0.27 0.20
45 40 35 30 25 20 15 10 5 0 -5
Bending Moment Diagram
RESULTS Max. deflection (mm) FV max Imposed Total kN only load -26.86 -1.66 -6.15
30
20 10
0
Design
-10
Design Strength py N/mm² 275
grade S275 grade S355
section classification
Plastic
Shear Capacity Area capacity Av Pv mm² kN 2094.0 345.51
-20 -30
Shear Force Diagram cl. 4.2.3
1
0
Moment Capacity Maximum Moment Critical section Zx (cm³)
473
Sx (cm³)
543
Position m 3.000 3.000
Moment kNm 40.30 40.30
Fv kN 0.00 0.00
Unity Factor 0.27 0.27
-1
* low shear
-6
-2 -3
-4 -5
-7
Deflection Diagram
Deflection Deflection Limits span/deflection ratios Imposed Loads 360 Total Loads 200
Section used:
Mcx kNm 149.33 149.33
UB
Allowable mm 16.7 30.0
table 5
356x127x33
X Y and Partners
Project
address
Client Description
Steel Beam Design Made by
CJB
tel & fax nos
Checked
Originated from Steel Beam
Analysis Span (m)
UC
UDL Point load Point load Point load Point load Partial UDL Partial UDL
M max kNm -83.05
Dead Imposed Position kN kN m 25 15 -
-
Vertical shear Moment Buckling Deflection
PFC
205000 7171
Revision
Page No
04
-
Design Status
RSJ
E (N/mm²) Ix (cm4)
2001
12-8-00
Design in accordance with BS 5950 : Part 1 : 1990 Cantilever beam
UB
Choose steel section:
2.750
Load Factors Dead 1.4 Imposed 1.6 LOADING
Unregistered Copy for Evaluation
© 2000-2007 Chris Buczkowski
Job No
Date
Length m -
PASS PASS PASS PASS
capacity ratio 0.17 0.56 0.93 0.47
0 -10 -20 -30 -40 -50 -60 -70 -80 -90
Bending Moment Diagram
RESULTS Max. deflection (mm) FV max Imposed Total kN only load 60.40 -2.65 -7.25
70
60 50 40
30
Design
20
Design Strength py N/mm² 275
grade S275 grade S355
section classification
Plastic
Shear Capacity Area capacity Av Pv mm² kN 2161.2 356.60
10 0 -10
Shear Force Diagram cl. 4.2.3
0 -1
Moment Capacity Critical section
Position m 0.000
Moment kNm -83.05
Fv kN 60.40
Mcx kNm 148.23
Unity Factor 0.56
-2
* low shear
-6
-3
-4 -5
-7
Lateral torsional buckling Equivalent Uniform Moment Maximum moment Uniform factor Buckling moment
MA m Mbar
-8
kNm
Zx (cm³)
471
-83.05 1.00 -83.05
Sx (cm³)
539
cl. 4.3.7.2
Slenderness Ratio Effective length radius of slenderness LE factor L gyration ry (cm) m l m 2.750 1.00 2.750 2.67 103.00
Deflection Deflection Limits span/deflection ratios Imposed Loads 180 Total Loads 180
Allowable mm 15.3 15.3
cl. B.2.4 cl. 4.3.7.6
cl. 4.3.7.5
cl. B.2.5 (d)
UB
lLo
34.31
correction factor
n
1.00
buckling parameter
u
0.872
torsional index
x
29.7
slenderness factor
v
0.889 79.84
equivalent slenderness
lLT
cl. B.2.3
Perry coefficient
hLT
0.319
Plastic moment capacity
Mp
148.23
Elastic critical moment
ME
171.08
Buckling index
fB
186.92
Mb
89.04
cl. B.2.2 table 5
305x127x37
limiting slenderness
cl. B.2.5
cl. B.2.1
Section used:
Deflection Diagram
Buckling capacity
X Y and Partners
Project
address
Client Description
Steel Beam Design Made by
CJB
tel & fax nos
Checked
Originated from Steel Beam
Unregistered Copy for Evaluation
© 2000-2007 Chris Buczkowski
UB
Choose steel section:
grade S275
UC
grade S355
RSJ PFC
Design Strength of Web pyw N/mm² 275
12-8-00 Revision
-
-
2001 Page No
05
Design in accordance with BS 5950 : Part 1 : 1990
Web Bearing and Buckling Design Steel grade
Job No
Date
E (N/mm²)
Design Status Web Buckling Web Bearing
PASS PASS
capacity ratio 0.41 0.46
205000
Section Dimensions (mm) depth D 311 web thickness t 9 flange thickness T 14 depth between fillets d 265.2 root radius r 8.9
Flange Unrestrained
Web Compression Strength Perry strut formula (N/mm²) design strength pyw 275 Robertson constant a 5.5 slenderness 71.45 l limiting slenderness lo 17.15 Perry factor 0.299 h Euler strength pE 396.29
FULL DESIGN LOADING (kN) Concentrated loading or 150 reaction at support * * factored
Web Buckling Web Slenderness Ratio Flange Restrained (not used) d t mm mm 265.2 9
cl. 4.5.2.1
Le factor
0.70
Le
185.64
ry (mm) l
2.60 71.45
Tick for flange restrained
Web Buckling Resistance, Pw b1 mm 75
c mm 0
n1 mm 155.50
t mm 9
pc N/mm² 178.25
root
Pw kN 369.78
compressive strength
f pc
394.82 178.25
ref: Appendix C
cl. 4.5.2.1
Tick for support reaction
Web Bearing Local Web Bearing Capacity, Pcrip b1 mm 75
c mm 0
n2 mm 57.25
t mm 9
pyw N/mm² 275
Pcrip kN 327.32 cl. 4.5.3
Section used:
UB
305x127x48
NOTES. b1 = stiff bearing length. n1 = length obtained by load dispersion at 45 degs though half the section depth. n2 = length obtained by load dispersion through the flange and root radius at a slope of 1:2.5. c = overlap distance from end of beam section to the stiff bearing. (If end of beam section on stiff bearing, c = 0)
Factors for Lateral Torsional Buckling Equivalent Uniform Moment Factor Calculator Smaller end Larger end ratio factor moment (M) moment (bM) kNm
kNm
b
m
20
-10
-0.50
0.43
ref: Table 18
Table 15. Slenderness Correction Factor Calculator Smaller end Larger end Midspan M/Mo moment (M) moment (bM) moment kNm kNm Mo a 20 -10 5 4.00 Table 15. Slenderness correction factor, n, for members with applied loading substantially concentrated within the middle fifth of the unrestrained length. b positive b negative a=M/Mo 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 > 50.00 1.00 0.96 0.91 0.86 0.82 0.77 0.72 0.68 0.65 50.00 1.00 0.96 0.92 0.87 0.82 0.77 0.72 0.67 0.66 10.00 0.99 0.99 0.94 0.90 0.85 0.80 0.75 0.69 0.68 5.00 0.98 0.98 0.97 0.93 0.89 0.84 0.79 0.73 0.71 2.00 0.96 0.95 0.95 0.95 0.94 0.94 0.89 0.84 0.79 1.50 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.90 0.85 1.00 0.93 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.91 0.50 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.89 0.88 0.00 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 0.86 -0.10 0.85 0.85 0.85 0.85 0.85 0.86 0.86 0.86 0.86 -0.20 0.83 0.83 0.83 0.84 0.84 0.85 0.85 0.85 0.86 -0.30 0.81 0.82 0.82 0.83 0.83 0.84 0.85 0.85 0.86 -0.40 0.79 0.80 0.81 0.81 0.82 0.83 0.84 0.85 0.85 -0.50 0.77 0.78 0.79 0.80 0.82 0.83 0.85 0.86 0.86 -0.60 0.62 0.66 0.72 0.77 0.80 0.82 0.84 0.85 0.86 -0.70 0.56 0.56 0.61 0.67 0.73 0.79 0.83 0.85 0.87 -0.80 0.56 0.53 0.54 0.59 0.65 0.71 0.77 0.83 0.89 -0.90 0.59 0.57 0.54 0.53 0.57 0.64 0.71 0.77 0.84 -1.00 0.62 0.58 0.54 0.52 0.54 0.59 0.66 0.72 0.80 -1.10 0.66 0.62 0.57 0.54 0.54 0.57 0.63 0.68 0.76 -1.20 0.70 0.66 0.60 0.55 0.54 0.55 0.60 0.65 0.73 -1.30 0.73 0.69 0.63 0.57 0.55 0.54 0.57 0.61 0.69 -1.40 0.74 0.70 0.64 0.58 0.56 0.54 0.55 0.60 0.66 -1.50 0.75 0.70 0.64 0.59 0.56 0.54 0.55 0.59 0.65 -1.60 0.76 0.72 0.65 0.60 0.57 0.55 0.55 0.58 0.64 -1.70 0.77 0.74 0.66 0.61 0.58 0.56 0.55 0.58 0.63 -1.80 0.79 0.77 0.68 0.63 0.59 0.56 0.56 0.57 0.62 -1.90 0.80 0.79 0.69 0.64 0.60 0.57 0.56 0.57 0.61 -2.00 0.81 0.81 0.70 0.65 0.61 0.58 0.56 0.56 0.60 -5.00 0.93 0.89 0.83 0.77 0.72 0.67 0.64 0.61 0.60 -50.00 0.99 0.95 0.90 0.86 0.79 0.74 0.70 0.67 0.64 < -50.00 1.00 0.96 0.91 0.86 0.82 0.77 0.72 0.68 0.65
Factor Calculator ratio
factor
b -0.50
n 0.75
loading substantially concentrated b negative -0.8 0.65 0.66 0.68 0.70 0.77 0.80 0.92 0.88 0.86 0.86 0.86 0.86 0.86 0.87 0.87 0.88 0.90 0.88 0.85 0.83 0.80 0.77 0.74 0.73 0.72 0.70 0.69 0.67 0.66 0.62 0.63 0.65
-1.0 0.65 0.65 0.67 0.70 0.76 0.80 0.92 0.88 0.86 0.86 0.86 0.87 0.87 0.88 0.88 0.89 0.90 0.91 0.92 0.89 0.87 0.83 0.81 0.80 0.80 0.78 0.76 0.75 0.74 0.65 0.65 0.65
Table 16. Slenderness Correction Factor Calculator Smaller end Larger end moment (M) moment (bM) kNm kNm 20 -10 Table 16. Slenderness correction factor, n, for members with applied loading other than as for table 15. b positive b negative a=M/Mo 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 > 50.00 1.00 0.96 0.91 0.86 0.82 0.77 0.72 50.00 1.00 0.96 0.92 0.87 0.83 0.77 0.72 10.00 0.99 0.98 0.95 0.91 0.86 0.81 0.76 5.00 0.99 0.98 0.97 0.94 0.90 0.85 0.80 2.00 0.98 0.98 0.97 0.96 0.94 0.92 0.90 1.50 0.97 0.97 0.97 0.96 0.95 0.93 0.92 1.00 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.50 0.96 0.96 0.96 0.96 0.96 0.95 0.94 0.00 0.94 0.94 0.94 0.94 0.94 0.94 0.94 -0.10 0.93 0.93 0.93 0.93 0.94 0.94 0.94 -0.20 0.92 0.92 0.92 0.92 0.93 0.93 0.93 -0.30 0.91 0.91 0.92 0.92 0.93 0.93 0.93 -0.40 0.90 0.90 0.91 0.91 0.92 0.92 0.92 -0.50 0.89 0.90 0.91 0.91 0.92 0.92 0.92 -0.60 0.71 0.77 0.84 0.87 0.89 0.91 0.92 -0.70 0.57 0.64 0.70 0.77 0.82 0.87 0.89 -0.80 0.47 0.52 0.59 0.67 0.73 0.80 0.86 -0.90 0.47 0.46 0.50 0.58 0.65 0.73 0.80 -1.00 0.50 0.48 0.46 0.51 0.58 0.66 0.73 -1.10 0.54 0.51 0.48 0.49 0.54 0.61 0.69 -1.20 0.57 0.54 0.50 0.47 0.51 0.56 0.64 -1.30 0.61 0.56 0.52 0.47 0.49 0.53 0.61 -1.40 0.64 0.59 0.55 0.49 0.48 0.51 0.58 -1.50 0.67 0.62 0.57 0.51 0.47 0.49 0.56 -1.60 0.69 0.64 0.59 0.52 0.48 0.50 0.55 -1.70 0.71 0.66 0.60 0.54 0.50 0.51 0.55 -1.80 0.74 0.69 0.62 0.55 0.51 0.51 0.54 -1.90 0.76 0.71 0.63 0.57 0.53 0.52 0.54 -2.00 0.78 0.73 0.65 0.58 0.54 0.53 0.53 -5.00 0.91 0.86 0.80 0.74 0.70 0.65 0.62 -50.00 0.99 0.95 0.89 0.84 0.79 0.74 0.70 < -50.00 1.00 0.96 0.91 0.86 0.82 0.77 0.72
erness Correction Factor Calculator Midspan M/Mo moment Mo a 5 4.00
ratio
factor
b -0.50
n 0.77
bers with applied loading other than as for
-0.4 0.68 0.67 0.70 0.75 0.86 0.89 0.93 0.94 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.90 0.87 0.81 0.77 0.73 0.70 0.67 0.64 0.63 0.61 0.60 0.58 0.57 0.59 0.66 0.68
b negative -0.6 0.65 0.66 0.68 0.71 0.82 0.86 0.93 0.94 0.94 0.94 0.94 0.94 0.93 0.92 0.92 0.92 0.92 0.90 0.87 0.83 0.80 0.77 0.74 0.71 0.69 0.68 0.66 0.65 0.63 0.58 0.63 0.65
-0.8 0.65 0.66 0.68 0.70 0.78 0.83 0.91 0.93 0.94 0.94 0.94 0.94 0.93 0.92 0.92 0.92 0.92 0.90 0.89 0.87 0.84 0.82 0.79 0.77 0.76 0.74 0.73 0.71 0.70 0.61 0.62 0.65
-1.0 0.65 0.65 0.67 0.70 0.76 0.79 0.89 0.92 0.94 0.94 0.93 0.94 0.93 0.92 0.92 0.91 0.92 0.90 0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81 0.80 0.79 0.67 0.65 0.65
NOTES
FOREWORD This spreadsheet performs an analysis and design of simply supported and cantilever, steel beams bending about their X X axis and subjected to gravity loads. Beams can be either with full restraint or without full restraint.
Design is in accordance with BS 5950-1:1990. Bending moments, shear forces and deflections are computed at 1/60th positions along the span and the maximums of these values are used for the design. The equations for the analysis have been obtained from the Reinforced Concrete Designer's Handbook by Reynolds and Steedman. Self weight of the steel section is automatically included in the calculations. The moment capacity of the section is calculated taking into accoun the corresponding shear force and a reduction is made as necessary. A check is made to see if a shear bucking calculation is required and a warning is issued. This spreadsheet also contains a calculation sheet for checking local web bearing and buckling. The spreadsheet uses UK steel section properties which have been directly obtained from the Corus Construction Manual, released on CD in February 2000. The values were imported into Microsoft Excel v8.0 from the html tables contained on the Corus CD. No typing in of values has been carried out and therefore these tables should accurately reflect the tables as published by Corus.
SETUP This spreadsheet has been formatted using Arial, Arial Black, Symbol and Tahoma truetype fonts. The spreadsheet has been optimised for a screen resolution of 1027x768 HiColor (16 bit) using large fonts. Use the Zoom button on the toolbar to reduce or enlarge the display to suit your computer. Use the Save button to permanently store your new settings. Recommended zoom settings are as follows: Screen resolution 800x600 with large fonts: 67% Screen resolution 800x600 with small fonts: 85% Screen resolution 1024x768 with large fonts: 85% Screen resolution 1024x768 with small fonts: 105% Company Details Enter your company name and other details in the title block on the first sheet only. This is the 'Not Full Restraint' sheet. The details will be automatically copied to the other sheets. Company details cannot be entered in the other sheets directly.
KEY INFORMATION Microsoft Excel This spreadsheet has been developed for use in Microsoft Excel 97 (v8.0) on the Microsoft Windows 95/98 operating system. British Standard Specification (BSI) This spreadsheet has been developed to comply with BS 5950 : Part 1 : 1990 and amendment no. AMD 6972 published 28 February 1992. Support Registered users may obtain support for this spreadsheet from:
[email protected] Additional Information Refer to the accompanying README.TXT file for additional information. USING STEEL BEAM FOR MICROSOFT EXCEL The following colour key is a guide to using the full calculation page spreadsheets. Input required. Computed output
24
Remove value Error/ Alert
Message Clear cell contents To clear the contents of a cell, right click your mouse on the cell and then click Clear Contents.
ACCURACY This spreadsheet calculates exact values of bending moment, shear force and deflections at 1/60th positions along the span of the beam. As the actual maximum moment may not occur at precisely one of these positions, a small error in the value of the moment may occur. In a simply supported beam, the shear force should be zero at the point of maximum moment. Where the critical section coincides with the maximum moment, a small value for shear force may be displayed. This occurs because of the small inaccuracy in determining the exact position of the maximum moment. The above inaccuracies are no different than that displayed in software produced by the Steel Construction Institute which employ similar methods of analysis and design. However, these inaccuracies should be viewed in the correct perspective. The fact that the beam is checked and designed at 61 positions along its span clearly indicates a more realistic approach to the actual behaviour of the beam. Consider a beam with a single point load where the maximum moment is at the point of zero shear. According to the code, one would be justified in stating 'low shear'. Yet, just a fraction away from the point of maximum moment, the shea force leaps to its maximum value which could result in 'high shear' and an under designed beam. This spreadsheet, by virtue of checking at 61 positions along the beam, would not be caught out by such mathematical anomalies.
MOMENT CAPACITY Moment capacity is calculated at 1/60th positions along the beam span taking into account the co-existent shear force. If the shear force is determined as 'high', then the corresponding moment capacity is reduced in accordance with code requirements. At each position the 'unity factor' is calculated. This factor is the ratio of the applied moment to the momen capacity. A unity factor of one represents full utilisation of the beam's capacity. A unity factor exceeding one indicates failure. The largest value of the unity factor determines the position of the critical section along the beam.
EFFECTIVE LENGTH Click on the "factor" cell and choose an effective length factor from the drop-down list. If circumstances dictate a factor which is not listed, enter the factor directly into the "factor" cell ignoring the drop-down list. This procedure can be used when considering a portion of beam between a lateral restraint and an end support. Calculate the effective length in accordance with clause 4.3.5 and divide it by the length between the restraint and the end support to obtain an effective length factor for entering into the "factor" cell..
LOCAL WEB BUCKLING AND BEARING Web Slenderness Ratio The effective length of an unstiffened web with the flange restrained is calculated from 2.5d/t (cl. 4.5.2.1). This is based on an effective length of the web equal to 0.7d where d is the depth between fillets. Clear the flange restrained tick box for a flange which is not restrained. This will enable the effective length of the web to be calculated using LE factors obtained from Table 24 of the code.
Support Reaction Tick Box Tick this box when considering the reaction at an end support. Clear the box when considering a point load applied to the top flange of a beam. A point load applied to the top flange will disperse to either side of the stiff bearing length. An end support reaction will disperse to only one side of the stiff bearing length plus a partial dispersal through any overlap of the end of the beam past the stiff bearing length. (see the sketch on the Bearing & Buckling sheet) Note! If a point load is closer to the end of a beam than half the dispersal length (n1 or n2), calculate as if for a support reaction.
Overlap Dimension 'c' This is the dimension between the end of a beam and the stiff bearing length when a beam overlaps the stiff bearing length. (see the sketch on the Bearing & Buckling sheet). If the end of the beam does not overlap the stiff bearing length then c = 0.
TIPS #1 When entering loads. the partial UDL cells can be used for point loads by entering zero in the loaded length cell. #2 To enter project data into a number of sheets simultaneously, hold down the CTRL key and click on the sheet tabs of the relevant sheets. This will 'group' the sheets and data entered into one sheet will be automatically entered into the others. When finished, click on any other sheet tab which has not been selected to release the 'group' selection feature.
SHORT CUTS Entering Numerical Data Expressions may be entered in place of numbers in cells requiring numerical input. e.g. To enter an expression:Click on the relevant cell. Enter the following: =4+8*3 - This expression evaluates to 28. You will see the expression if you double click on the cell or if you have the formula bar showing (go to View menu and click Formula Bar).
S
rted and cantilever, steel beams bending about their Xrestraint or without full restraint.
hear forces and deflections are computed at 1/60th ed for the design. The equations for the analysis have by Reynolds and Steedman. Self weight of the steel apacity of the section is calculated taking into account y. A check is made to see if a shear bucking so contains a calculation sheet for checking local web
n directly obtained from the Corus Construction ed into Microsoft Excel v8.0 from the html tables d out and therefore these tables should accurately
bol and Tahoma truetype fonts. The spreadsheet has using large fonts.
y to suit your computer. Use the Save button to are as follows:
first sheet only. This is the 'Not Full Restraint' sheet. ny details cannot be entered in the other sheets
(v8.0) on the Microsoft Windows 95/98 operating
rt 1 : 1990 and amendment no. AMD 6972 published
@structural-engineering.fsnet.co.uk
Not full
Full
d then click Clear Contents.
r force and deflections at 1/60th positions along the at precisely one of these positions, a small error in the
point of maximum moment. Where the critical section may be displayed. This occurs because of the small nt. ware produced by the Steel Construction Institute
ective. The fact that the beam is checked and listic approach to the actual behaviour of the beam. ent is at the point of zero shear. According to the n away from the point of maximum moment, the shear and an under designed beam. This spreadsheet, by ght out by such mathematical anomalies.
pan taking into account the co-existent shear force. If ment capacity is reduced in accordance with code actor is the ratio of the applied moment to the moment s capacity. A unity factor exceeding one indicates of the critical section along the beam.
the drop-down list. directly into the "factor" cell ignoring the drop-down m between a lateral restraint and an end support. ivide it by the length between the restraint and the "factor" cell..
d is calculated from 2.5d/t (cl. 4.5.2.1). This is based between fillets. Clear the flange restrained tick box ngth of the web to be calculated using LE factors
r the box when considering a point load applied to the erse to either side of the stiff bearing length. An end ngth plus a partial dispersal through any overlap of the e Bearing & Buckling sheet) persal length (n1 or n2), calculate as if for a support
ng length when a beam overlaps the stiff bearing of the beam does not overlap the stiff bearing length,
loads by entering zero in the loaded length cell. ld down the CTRL key and click on the sheet tabs of o one sheet will be automatically entered into the een selected to release the 'group' selection feature.
numerical input. e.g. To enter an expression:ession evaluates to 28. You will see the expression if go to View menu and click Formula Bar).
STEEL BEAM FOR MICROSOFT EXCEL Version Version 2.03 Please ensure you have the latest version of this software, which may be downloaded from the internet via this hyperlink : http://www.structural-engineering.org.uk Click the Connect button to go to the web site. If you have comments, suggestions, bug reports or require information, please email:
[email protected]
© 2000-2007 Chris Buczkowski. All rights reserved.
Copyright Registration
¤ THIS IS AN UNREGISTERED COPY ¤ VALID FOR 0 COPIES ONLY
Single user licence:
£40
Company multiple-user licence:
£40 per copy installed
Delivery will be by attachment to an email. To order a copy, please send a cheque payable to 'C. Buczkowski' to the following address: Flat 708, 100 Kingsway, North Finchley, LONDON N12 0EQ You should include your email or postal address and a contact telephone number. Also include the name you require the spreadsheet registered to (30 characters maximum).
Tel: 07939 Tel/fax: 020 email:
[email protected]
Licence for Use and Distribution This spreadsheet is NOT a public domain program. It is copyrighted by the Author*. This software is protected by Uni Kingdom copyright law and also by international treaty provisions. The Author grants you a licence to use this software evaluation purposes for an indefinite period. You may not use, copy, rent, lease, sell, modify, decompile, unprote disassemble, otherwise reverse engineer, or transfer this software except as provided in this agreement. Any su unauthorised use shall result in immediate and automatic termination of this licence. All rights not expressly granted h are reserved to the Author. You may copy and distribute the unregistered version of this spreadsheet, complet unaltered, without further permission. The readme.txt file must accompany copies of the spreadsheet. * The Author is Chris Buczkowski.
Disclaimer
THIS SOFTWARE IS PROVIDED FOR EVALUATION ONLY, ON AN "AS IS" BASIS. THE AUTHOR DISCLAIMS ALL WARRANT RELATING TO THIS SOFTWARE, WHETHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLI WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THE AUTHOR* SHALL NOT BE LIABLE F ANY INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE SU SOFTWARE, EVEN IF THE AUTHOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR CLAIMS. THE PERS USING THE SOFTWARE BEARS ALL RISK AS TO THE QUALITY AND PERFORMANCE OF THE SOFTWARE. ALTHOUGH EVE EFFORT HAS BEEN MADE TO ENSURE THE ACCURACY OF THIS PROGRAM, USERS SHOULD VERIFY THE RESULTS F THEMSELVES
Date 8/12/2000 11/13/2000
REVISION HISTORY Action Version Initial release 1.0 102x44x7 RSJ width corrected - Dr Shaiq Khan 1.1
2/11/2001
1.2
5/16/2001
2.0
8/13/2001 5/29/2006 3/2/2007
2.01 2.02 2.03
'n' factors calculator added. Number of loads increased, analysis increased to 60 nodes across span, calculation sheet rearranged, effective length factor improved. Cantilever beam sheet added. Web bearing and buckling sheet added. Other minor amendments. Amended conditional formatting error in partial UDL's. Administrative revisIon. Administrative revisIon.
AM EXCEL
ctural-engineering.org.uk
IS AN UNREGISTERED COPY ¤ ALID FOR 0 COPIES ONLY
Tel: 07939-187549 Tel/fax: 020-8343 9844 email:
[email protected]
d by the Author*. This software is protected by United he Author grants you a licence to use this software for opy, rent, lease, sell, modify, decompile, unprotect, e except as provided in this agreement. Any such n of this licence. All rights not expressly granted here nregistered version of this spreadsheet, completely mpany copies of the spreadsheet.
IS" BASIS. THE AUTHOR DISCLAIMS ALL WARRANTIES IED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED R PURPOSE. THE AUTHOR* SHALL NOT BE LIABLE FOR ING OUT OF THE USE OR INABILITY TO USE SUCH IBILITY OF SUCH DAMAGES OR CLAIMS. THE PERSON ERFORMANCE OF THE SOFTWARE. ALTHOUGH EVERY ROGRAM, USERS SHOULD VERIFY THE RESULTS FOR
ORY Action
han
ed to 60 nodes across span, calculation sheet Cantilever beam sheet added. Web bearing and ents.
al UDL's.
Other spreadsheets: BAR SCHEDULE FOR EXCEL 97 Bar Schedule for Excel 97 is a spreadsheet for the scheduling of steel for the reinforcement of concrete. The spreadsheet has been developed to comply with BS 4466 : 1989 and Amendment No. 1 published 28 February 1990. The aim of the spreadsheet is to reduce the time taken to produce a bar schedule, reduce arithmetical errors, reduce scheduli errors, increase compliance with the BSI specified format for bar scheduling and, eventually, become the basis for electronic interchange. The latest version of Bar Schedule may be downloaded from : http://www.structural-engineering.fsnet.co.uk
Other spreadsheets: WIND DESIGN WORKBOOK This spreadsheet implements the full Standard Method of calculating wind loads for buildings in accordance with BS 6399 : Par : 1997. This method is suitable for buildings up to 100m high. The workbook contains spreadsheets which can be printed as complete calculation pages. It also contains spreadsheets which can be used as design aids, useful for hand calculations or checking designs. For Engineers new to the code, the spreadsheet can prove an invaluable teaching aid. The latest version of Wind Design Workbook may be downloaded from : http://www.structural-engineering.fsnet.co.uk
Other spreadsheets: REINFORCED CONCRETE WORKBOOK A spreadsheet which is a powerful aid for the reinforced concrete detailer or designer. It contains many of the everyday calculations required for detailing and designing reinforced concrete such as lap lengths, minimum spacings, bar bend dimensions and much more! This spreadsheet could be looked on as an electronic book with an index followed by pages containing many individual calculators. Each calculator has a specific task to perform. The Reinforced Concrete Workbook also acts as an aide memoir, reminding the user of the various checks to be made. The latest version of Reinforced Concrete Workbook may be downloaded from : http://www.structural-engineering.fsnet.co.uk
FREE SPREADSHEETS !! REINFORCEMENT AREAS An interactive sheet for determining areas of reinforcement for concrete.
ISSUE SHEET A must for every office, a simple but presentable document/drawing issue sheet that can be customised with your company's name.
STRUCTURAL SECTIONS British Steel (Corus) steel section tables in Excel format. The latest versions may be downloaded from : http://www.structural-engineering.fsnet.co.uk
Other spreadsheets: BAR SCHEDULE 8666 FOR MICROSOFT EXCEL Bar Schedule 8666 for Microsoft Excel is a spreadsheet for the scheduling of steel for the reinforcement of concrete. The spreadsheet has been developed to comply with BS 8666 : 2000. The aim of the spreadsheet is to reduce the time taken to produce a bar schedule, reduce arithmetical errors, reduce scheduli errors, increase compliance with the BSI specified format for bar scheduling and, eventually, become the basis for electronic interchange. The latest version of Bar Schedule 8666 may be downloaded from : http://www.structural-engineering.fsnet.co.uk
ent of concrete. The spreadsheet has
e arithmetical errors, reduce scheduling ally, become the basis for electronic data
ings in accordance with BS 6399 : Part 2 eadsheets which can be printed as aids, useful for hand calculations or
contains many of the everyday minimum spacings, bar bend with an index followed by pages e Reinforced Concrete Workbook also
an be customised with your company's
he reinforcement of concrete. The
ce arithmetical errors, reduce scheduling ually, become the basis for electronic data
1
2
3
4
5
6
7
8
9
10
11
12
Universal Beams to BS4 Part1 1993 - Dimensions & Properties
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
Designation
Mass Depth Width Per of of metre section section
1016x305x487 1016x305x437 1016x305x393 1016x305x349 1016x305x314 1016x305x272 1016x305x249 1016x305x222 914x419x388 914x419x343 914x305x289 914x305x253 914x305x224 914x305x201 838x292x226 838x292x194 838x292x176 762x267x197 762x267x173 762x267x147 762x267x134 686x254x170 686x254x152 686x254x140 686x254x125 610x305x238 610x305x179 610x305x149 610x229x140 610x229x125 610x229x113 610x229x101 533x210x122 533x210x109 533x210x101 533x210x92 533x210x82 457x191x98 457x191x89 457x191x82 457x191x74 457x191x67 457x152x82 457x152x74 457x152x67 457x152x60
h mm 1036.1 1025.9 1016 1008.1 1000 990.1 980.2 970.3 921 911.8 926.6 918.4 910.4 903 850.9 840.7 834.9 769.8 762.2 754 750 692.9 687.5 683.5 677.9 635.8 620.2 612.4 617.2 612.2 607.6 602.6 544.5 539.5 536.7 533.1 528.3 467.2 463.4 460 457 453.4 465.8 462 458 454.6
kg/m 487 437 393 349 314 272 249 222 388 343 289 253 224 201 227 194 176 197 173 147 134 170 152 140 125 238 179 149 140 125 113 101 122 109 101 92.1 82.2 98.3 89.3 82 74.3 67.1 82.1 74.2 67.2 59.8
b mm 308.5 305.4 303 302 300 300 300 300 420.5 418.5 307.7 305.5 304.1 303.3 293.8 292.4 291.7 268 266.7 265.2 264.4 255.8 254.5 253.7 253 311.4 307.1 304.8 230.2 229 228.2 227.6 211.9 210.8 210 209.3 208.8 192.8 191.9 191.3 190.4 189.9 155.3 154.4 153.8 152.9
Ratios for Second Moment Depth Local Buckling of Area Root between radius Axis fillets Flange Web Web Flange x-x Thickness
s mm 30 26.9 24.4 21.1 19.1 16.5 16.5 16 21.4 19.4 19.5 17.3 15.9 15.1 16.1 14.7 14 15.6 14.3 12.8 12 14.5 13.2 12.4 11.7 18.4 14.1 11.8 13.1 11.9 11.1 10.5 12.7 11.6 10.8 10.1 9.6 11.4 10.5 9.9 9 8.5 10.5 9.6 9 8.1
t mm 54.1 49 43.9 40 35.9 31 26 21.1 36.6 32 32 27.9 23.9 20.2 26.8 21.7 18.8 25.4 21.6 17.5 15.5 23.7 21 19 16.2 31.4 23.6 19.7 22.1 19.6 17.3 14.8 21.3 18.8 17.4 15.6 13.2 19.6 17.7 16 14.5 12.7 18.9 17 15 13.3
r mm 30 30 30 30 30 30 30 30 24.1 24.1 19.1 19.1 19.1 19.1 17.8 17.8 17.8 16.5 16.5 16.5 16.5 15.2 15.2 15.2 15.2 16.5 16.5 16.5 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2
d mm 867.9 867.9 868.2 868.1 868.2 868.1 868.2 868.1 799.6 799.6 824.4 824.4 824.4 824.4 761.7 761.7 761.7 686 686 686 686 615.1 615.1 615.1 615.1 540 540 540 547.6 547.6 547.6 547.6 476.5 476.5 476.5 476.5 476.5 407.6 407.6 407.6 407.6 407.6 407.6 407.6 407.6 407.6
b/2t
d/s
Ix 4
2.85 3.12 3.45 3.77 4.18 4.84 5.77 7.11 5.74 6.54 4.81 5.47 6.36 7.51 5.48 6.74 7.76 5.28 6.17 7.58 8.53 5.4 6.06 6.68 7.81 4.96 6.51 7.74 5.21 5.84 6.6 7.69 4.97 5.61 6.03 6.71 7.91 4.92 5.42 5.98 6.57 7.48 4.11 4.54 5.13 5.75
28.9 32.3 35.6 41.1 45.5 52.6 52.6 54.3 37.4 41.2 42.3 47.7 51.8 54.6 47.3 51.8 54.4 44 48 53.6 57.2 42.4 46.6 49.6 52.6 29.3 38.3 45.8 41.8 46 49.3 52.2 37.5 41.1 44.1 47.2 49.6 35.8 38.8 41.2 45.3 48 38.8 42.5 45.3 50.3
cm 1021400 909900 807700 723100 644200 554000 481300 408000 719600 625800 504200 436300 376400 325300 339700 279200 246000 240000 205300 168500 150700 170300 150400 136300 118000 209500 153000 125900 111800 98610 87320 75780 76040 66820 61520 55230 47540 45730 41020 37050 33320 29380 36590 32670 28930 25500
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
457x152x52 406x178x74 406x178x67 406x178x60 406x178x54 406x140x46 406x140x39 356x171x67 356x171x57 356x171x51 356x171x45 356x127x39 356x127x33 305x165x54 305x165x46 305x165x40 305x127x48 305x127x42 305x127x37 305x102x33 305x102x28 305x102x25 254x146x43 254x146x37 254x146x31 254x102x28 254x102x25 254x102x22 203x133x30 203x133x25 203x102x23 178x102x19 152x89x16 127x76x13
52.3 74.2 67.1 60.1 54.1 46 39 67.1 57 51 45 39.1 33.1 54 46.1 40.3 48.1 41.9 37 32.8 28.2 24.8 43 37 31.1 28.3 25.2 22 30 25.1 23.1 19 16 13
449.8 412.8 409.4 406.4 402.6 403.2 398 363.4 358 355 351.4 353.4 349 310.4 306.6 303.4 311 307.2 304.4 312.7 308.7 305.1 259.6 256 251.4 260.4 257.2 254 206.8 203.2 203.2 177.8 152.4 127
152.4 179.5 178.8 177.9 177.7 142.2 141.8 173.2 172.2 171.5 171.1 126 125.4 166.9 165.7 165 125.3 124.3 123.4 102.4 101.8 101.6 147.3 146.4 146.1 102.2 101.9 101.6 133.9 133.2 101.8 101.2 88.7 76
7.6 9.5 8.8 7.9 7.7 6.8 6.4 9.1 8.1 7.4 7 6.6 6 7.9 6.7 6 9 8 7.1 6.6 6 5.8 7.2 6.3 6 6.3 6 5.7 6.4 5.7 5.4 4.8 4.5 4
10.9 16 14.3 12.8 10.9 11.2 8.6 15.7 13 11.5 9.7 10.7 8.5 13.7 11.8 10.2 14 12.1 10.7 10.8 8.8 7 12.7 10.9 8.6 10 8.4 6.8 9.6 7.8 9.3 7.9 7.7 7.6
10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 8.9 8.9 8.9 8.9 8.9 8.9 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6
407.6 360.4 360.4 360.4 360.4 360.4 360.4 311.6 311.6 311.6 311.6 311.6 311.6 265.2 265.2 265.2 265.2 265.2 265.2 275.9 275.9 275.9 219 219 219 225.2 225.2 225.2 172.4 172.4 169.4 146.8 121.8 96.6
6.99 5.61 6.25 6.95 8.15 6.35 8.24 5.52 6.62 7.46 8.82 5.89 7.38 6.09 7.02 8.09 4.47 5.14 5.77 4.74 5.78 7.26 5.8 6.72 8.49 5.11 6.07 7.47 6.97 8.54 5.47 6.41 5.76 5
53.6 37.9 41 45.6 46.8 53 56.3 34.2 38.5 42.1 44.5 47.2 51.9 33.6 39.6 44.2 29.5 33.1 37.4 41.8 46 47.6 30.4 34.8 36.5 35.7 37.5 39.5 26.9 30.2 31.4 30.6 27.1 24.1
21370 27310 24330 21600 18720 15690 12510 19460 16040 14140 12070 10170 8249 11700 9899 8503 9575 8196 7171 6501 5366 4455 6544 5537 4413 4005 3415 2841 2896 2340 2105 1356 834 473
13
14
15
16
17
18
19
20
21
22
23
24
Properties Second Moment Radius of of Area Gyration Axis y-y Iy
Axis Axis x-x y-y rx
4
ry
Elastic Modulus
Plastic Modulus
Axis x-x
Axis y-y
Axis x-x
Zx
Zy
Sx
3
3
Buckling Torsional Warping Torsional Area of Axis Parameter Index Constant Constant section y-y Sy
3 cm cm cm cm cm cm cm 26720 41 6.6 19720 1732 23200 2800 23450 40 6.5 17740 1535 20760 2469 20500 40 6.4 15900 1353 18540 2168 18460 40 6.4 14350 1223 16590 1941 16230 40 6.4 12880 1082 14850 1713 14000 40 6.4 11190 934 12830 1470 11750 39 6.1 9821 784 11350 1245 9546 38 5.8 8409 636 9807 1020 45440 38 9.6 15630 2161 17670 3341 39160 38 9.5 13730 1871 15480 2890 15600 37 6.5 10880 1014 12570 1601 13300 37 6.4 9501 871 10940 1371 11240 36 6.3 8269 739 9535 1163 9423 36 6.1 7204 621 8351 982 11360 34 6.3 7985 773 9155 1212 9066 34 6.1 6641 620 7640 974 7799 33 5.9 5893 535 6808 842 8175 31 5.7 6234 610 7167 959 6850 31 5.6 5387 514 6198 807 5455 30 5.4 4470 411 5156 647 4788 30 5.3 4018 362 4644 570 6630 28 5.5 4916 518 5631 811 5784 28 5.5 4374 455 5000 710 5183 28 5.4 3987 409 4558 638 4383 27 5.2 3481 346 3994 542 15840 26 7.2 6589 1017 7486 1574 11410 26 7.1 4935 743 5547 1144 9308 26 7 4111 611 4594 937 4505 25 5 3622 391 4142 611 3932 25 5 3221 343 3676 535 3434 25 4.9 2874 301 3281 469 2915 24 4.8 2515 256 2881 400 3388 22 4.7 2793 320 3196 500 2943 22 4.6 2477 279 2828 436 2692 22 4.6 2292 256 2612 399 2389 22 4.5 2072 228 2360 356 2007 21 4.4 1800 192 2059 300 2347 19 4.3 1957 243 2232 379 2089 19 4.3 1770 218 2014 338 1871 19 4.2 1611 196 1831 304 1671 19 4.2 1458 176 1653 272 1452 19 4.1 1296 153 1471 237 1185 19 3.4 1571 153 1811 240 1047 19 3.3 1414 136 1627 213 913 18 3.3 1263 119 1453 187 795 18 3.2 1122 104 1287 163
u
x
3
H
J 6
0.867 0.868 0.868 0.872 0.872 0.873 0.861 0.85 0.885 0.883 0.867 0.866 0.861 0.854 0.87 0.862 0.856 0.869 0.864 0.858 0.854 0.872 0.871 0.868 0.862 0.886 0.886 0.886 0.875 0.873 0.87 0.864 0.877 0.875 0.874 0.872 0.864 0.881 0.88 0.877 0.877 0.872 0.873 0.873 0.869 0.868
21.1 23.1 25.5 27.9 30.7 35 39.9 45.7 26.7 30.1 31.9 36.2 41.3 46.8 35 41.6 46.5 33.2 38.1 45.2 49.8 31.8 35.5 38.7 43.9 21.3 27.7 32.7 30.6 34.1 38 43.1 27.6 30.9 33.2 36.5 41.6 25.7 28.3 30.9 33.9 37.9 27.4 30.1 33.6 37.5
dm 64.4 55.9 48.4 43.3 37.7 32.2 26.8 21.5 88.9 75.8 31.2 26.4 22.1 18.4 19.3 15.2 13 11.3 9.39 7.4 6.46 7.42 6.42 5.72 4.8 14.5 10.2 8.17 3.99 3.45 2.99 2.52 2.32 1.99 1.81 1.6 1.33 1.18 1.04 0.922 0.818 0.705 0.591 0.518 0.448 0.387
A 4
cm 4299 3185 2330 1718 1264 835 582 390 1734 1193 926 626 422 291 514 306 221 404 267 159 119 308 220 169 116 785 340 200 216 154 111 77 178 126 101 75.7 51.5 121 90.7 69.2 51.8 37.1 89.2 65.9 47.7 33.8
2
cm 620 557 500 445 400 347 317 283 494 437 368 323 286 256 289 247 224 251 220 187 171 217 194 178 159 303 228 190 178 159 144 129 155 139 129 117 105 125 114 104 94.6 85.5 105 94.5 85.6 76.2
645 1545 1365 1203 1021 538 410 1362 1108 968 811 358 280 1063 896 764 461 389 336 194 155 123 677 571 448 179 149 119 385 308 164 137 89.8 55.7
18 17 17 17 17 16 16 15 15 15 15 14 14 13 13 13 13 12 12 13 12 12 11 11 11 11 10 10 8.7 8.6 8.5 7.5 6.4 5.4
3.1 4 4 4 3.9 3 2.9 4 3.9 3.9 3.8 2.7 2.6 3.9 3.9 3.9 2.7 2.7 2.7 2.2 2.1 2 3.5 3.5 3.4 2.2 2.2 2.1 3.2 3.1 2.4 2.4 2.1 1.8
950 1323 1189 1063 930 778 629 1071 896 796 687 576 473 754 646 560 616 534 471 416 348 292 504 433 351 308 266 224 280 230 207 153 109 74.6
84.6 172 153 135 115 75.7 57.8 157 129 113 94.8 56.8 44.7 127 108 92.6 73.6 62.6 54.5 37.9 30.5 24.2 92 78 61.3 34.9 29.2 23.5 57.5 46.2 32.2 27 20.2 14.7
1096 1501 1346 1199 1055 888 724 1211 1010 896 775 659 543 846 720 623 711 614 539 481 403 342 566 483 393 353 306 259 314 258 234 171 123 84.2
133 267 237 209 178 118 90.8 243 199 174 147 89.1 70.3 196 166 142 116 98.4 85.4 60 48.5 38.8 141 119 94.1 54.8 46 37.3 88.2 70.9 49.8 41.6 31.2 22.6
0.859 0.882 0.88 0.88 0.871 0.871 0.858 0.886 0.882 0.881 0.874 0.871 0.863 0.889 0.891 0.889 0.873 0.872 0.872 0.866 0.859 0.846 0.891 0.89 0.88 0.874 0.866 0.856 0.881 0.877 0.888 0.888 0.89 0.895
43.9 27.6 30.5 33.8 38.3 38.9 47.5 24.4 28.8 32.1 36.8 35.2 42.2 23.6 27.1 31 23.3 26.5 29.7 31.6 37.4 43.4 21.2 24.3 29.6 27.5 31.5 36.4 21.5 25.6 22.5 22.6 19.6 16.3
0.311 0.608 0.533 0.466 0.392 0.207 0.155 0.412 0.33 0.286 0.237 0.105 0.081 0.234 0.195 0.164 0.102 0.085 0.072 0.044 0.035 0.027 0.103 0.086 0.066 0.028 0.023 0.018 0.037 0.029 0.015 0.01 0.005 0.002
21.4 62.8 46.1 33.3 23.1 19 10.7 55.7 33.4 23.8 15.8 15.1 8.79 34.8 22.2 14.7 31.8 21.1 14.8 12.2 7.4 4.77 23.9 15.3 8.55 9.57 6.42 4.15 10.3 5.96 7.02 4.41 3.56 2.85
66.6 94.5 85.5 76.5 69 58.6 49.7 85.5 72.6 64.9 57.3 49.8 42.1 68.8 58.7 51.3 61.2 53.4 47.2 41.8 35.9 31.6 54.8 47.2 39.7 36.1 32 28 38.2 32 29.4 24.3 20.3 16.5
1
2
3
4
5
6
7
8
9
10
11
12
Universal Columns to BS4 Part1 1993 - Dimensions & Properties
Designation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
356x406x634 356x406x551 356x406x467 356x406x393 356x406x340 356x406x287 356x406x235 356x368x202 356x368x177 356x368x153 356x368x129 305x305x283 305x305x240 305x305x198 305x305x158 305x305x137 305x305x118 305x305x97 254x254x167 254x254x132 254x254x107 254x254x89 254x254x73 203x203x86 203x203x71 203x203x60 203x203x52 203x203x46 152x152x37 152x152x30 152x152x23
Ratios for Second Moment Thickness Mass Depth Width Depth Local Buckling of Area Root Per of of between Radius Axis metre Section Section Web Flange fillets Flange Web x-x
kg/m 634 551 467 393 340 287 235 202 177 153 129 283 240 198 158 137 118 96.9 167 132 107 88.9 73.1 86.1 71 60 52 46.1 37 30 23
h mm 474.6 455.6 436.6 419 406.4 393.6 381 374.6 368.2 362 355.6 365.3 352.5 339.9 327.1 320.5 314.5 307.9 289.1 276.3 266.7 260.3 254.1 222.2 215.8 209.6 206.2 203.2 161.8 157.6 152.4
b mm 424 418.5 412.2 407 403 399 394.8 374.7 372.6 370.5 368.6 322.2 318.4 314.5 311.2 309.2 307.4 305.3 265.2 261.3 258.8 256.3 254.6 209.1 206.4 205.8 204.3 203.6 154.4 152.9 152.2
s mm 47.6 42.1 35.8 30.6 26.6 22.6 18.4 16.5 14.4 12.3 10.4 26.8 23 19.1 15.8 13.8 12 9.9 19.2 15.3 12.8 10.3 8.6 12.7 10 9.4 7.9 7.2 8 6.5 5.8
t mm 77 67.5 58 49.2 42.9 36.5 30.2 27 23.8 20.7 17.5 44.1 37.7 31.4 25 21.7 18.7 15.4 31.7 25.3 20.5 17.3 14.2 20.5 17.3 14.2 12.5 11 11.5 9.4 6.8
r mm 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 15.2 12.7 12.7 12.7 12.7 12.7 10.2 10.2 10.2 10.2 10.2 7.6 7.6 7.6
d mm 290.2 290.2 290.2 290.2 290.2 290.2 290.2 290.2 290.2 290.2 290.2 246.7 246.7 246.7 246.7 246.7 246.7 246.7 200.3 200.3 200.3 200.3 200.3 160.8 160.8 160.8 160.8 160.8 123.6 123.6 123.6
b/2t 2.75 3.1 3.55 4.14 4.7 5.47 6.54 6.94 7.83 8.95 10.5 3.65 4.22 5.01 6.22 7.12 8.22 9.91 4.18 5.16 6.31 7.41 8.96 5.1 5.97 7.25 8.17 9.25 6.71 8.13 11.2
d/s 6.1 6.89 8.11 9.48 10.9 12.8 15.8 17.6 20.2 23.6 27.9 9.21 10.7 12.9 15.6 17.9 20.6 24.9 10.4 13.1 15.6 19.4 23.3 12.7 16.1 17.1 20.4 22.3 15.5 19 21.3
Ix cm4 274800 226900 183000 146600 122500 99880 79080 66260 57120 48590 40250 78870 64200 50900 38750 32810 27670 22250 30000 22530 17510 14270 11410 9449 7618 6125 5259 4568 2210 1748 1250
13
14
15
16
17
18
19
20
21
22
23
24
ns & Properties Second Moment Radius of of Area Gyration Axis y-y Iy
Axis Axis x-x y-y rx
4
ry
Elastic Modulus
Plastic Modulus
Axis x-x
Axis y-y
Axis x-x
Zx
Zy
Sx
3
3
3
Buckling Torsional Warping Torsional Area of Axis Parameter Index Constant Constant Section y-y Sy
u
x
3
cm cm cm cm cm cm cm 98130 18 11 11580 4629 14240 7108 82670 18 11 9962 3951 12080 6058 67830 18 11 8383 3291 10000 5034 55370 17 11 6998 2721 8222 4154 46850 17 10 6031 2325 6999 3544 38680 17 10 5075 1939 5812 2949 30990 16 10 4151 1570 4687 2383 23690 16 9.6 3538 1264 3972 1920 20530 16 9.5 3103 1102 3455 1671 17550 16 9.5 2684 948 2965 1435 14610 16 9.4 2264 793 2479 1199 24630 15 8.3 4318 1529 5105 2342 20310 15 8.2 3643 1276 4247 1951 16300 14 8 2995 1037 3440 1581 12570 14 7.9 2369 808 2680 1230 10700 14 7.8 2048 692 2297 1053 9059 14 7.8 1760 589 1958 895 7308 13 7.7 1445 479 1592 726 9870 12 6.8 2075 744 2424 1137 7531 12 6.7 1631 576 1869 878 5928 11 6.6 1313 458 1484 697 4857 11 6.6 1096 379 1224 575 3908 11 6.5 898 307 992 465 3127 9.3 5.3 850 299 977 456 2537 9.2 5.3 706 246 799 374 2065 9 5.2 584 201 656 305 1778 8.9 5.2 510 174 567 264 1548 8.8 5.1 450 152 497 231 706 6.9 3.9 273 91.5 309 140 560 6.8 3.8 222 73.3 248 112 400 6.5 3.7 164 52.6 182 80.2
H
J 6
0.843 0.841 0.839 0.837 0.836 0.835 0.834 0.844 0.844 0.844 0.844 0.855 0.854 0.854 0.851 0.851 0.85 0.85 0.851 0.85 0.848 0.85 0.849 0.85 0.853 0.846 0.848 0.847 0.848 0.849 0.84
5.46 6.05 6.86 7.86 8.85 10.2 12.1 13.4 15 17 19.9 7.65 8.74 10.2 12.5 14.2 16.2 19.3 8.49 10.3 12.4 14.5 17.3 10.2 11.9 14.1 15.8 17.7 13.3 16 20.7
dm 38.8 31.1 24.3 18.9 15.5 12.3 9.54 7.16 6.09 5.11 4.18 6.35 5.03 3.88 2.87 2.39 1.98 1.56 1.63 1.19 0.898 0.717 0.562 0.318 0.25 0.197 0.167 0.143 0.04 0.031 0.021
A 4
cm 13720 9240 5809 3545 2343 1441 812 558 381 251 153 2034 1271 734 378 249 161 91.2 626 319 172 102 57.6 137 80.2 47.2 31.8 22.2 19.2 10.5 4.63
cm2 808 702 595 501 433 366 299 257 226 195 164 360 306 252 201 174 150 123 213 168 136 113 93.1 110 90.4 76.4 66.3 58.7 47.1 38.3 29.2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Joists to BS4 Part 1 1993 - Dimensions & Properties Inside Slope = 8o Ratios for Second Moment Mass Depth Width Thickness Radius Depth Local Buckling of Area Per of of between Designation metre Section Section Web Flange Root Toe fillets Flange Web Axis Axis
1 2 3 4 5 6 7 8 9
mm x mm x kg/m 254x203x82 203x152x52 152x127x37 127x114x29 127x114x27 102x102x23 102x44x7 89x89x19 76x76x13
82 52.3 37.3 29.3 26.9 23 7.5 19.5 12.8
h
b
s
t
r1
mm
mm
mm
mm
mm
254 203.2 152.4 127 127 101.6 101.6 88.9 76.2
203.2 10.2 152.4 8.9 127 10.4 114.3 10.2 114.3 7.4 101.6 9.5 44.5 4.3 88.9 9.5 76.2 5.1
19.9 16.5 13.2 11.5 11.4 10.3 6.1 9.9 8.4
19.6 15.5 13.5 9.9 9.9 11.1 6.9 11.1 9.4
r2
d
b/2t
d/s
mm 9.7 7.6 6.6 4.8 5 3.2 3.3 3.2 4.6
166.6 133.2 94.3 79.5 79.5 55.2 74.6 44.2 38.1
5.11 4.62 4.81 4.97 5.01 4.93 3.65 4.49 4.54
16.3 15 9.07 7.79 10.7 5.81 17.3 4.65 7.47
x-x
y-y
cm4
cm4
12020 4798 1818 979 946 486 153 307 158
2280 816 378 242 236 154 7.82 101 51.8
15
16
Radius of Gyration
17
18
Elastic Modulus
19
20
Plastic Modulus
Axis Axis Axis Axis Axis Axis x-x
y-y
x-x
cm
cm
cm3 cm3 cm3 cm3
4.67 3.5 2.82 2.54 2.63 2.29 0.91 2.02 1.79
947 224 1077 371 472 107 541 176 239 60 279 100 154 42 181 71 149 41 172 68 96 30 113 51 30 3.5 35.4 6 69 23 82.7 38 42 14 48.7 22
11 8.5 6.2 5.1 5.3 4.1 4 3.5 3.1
y-y
x-x
y-y
21
22
23
24
25
Buckling Torsional Warping Torsional Area of Parameter Index Constant Constant Section u
0.89 0.891 0.866 0.853 0.868 0.836 0.872 0.83 0.852
x
11 10.7 9.33 8.76 9.32 7.43 14.9 6.57 7.22
H
J
A
dm6
cm4
cm2
0.312 0.0711 0.0183 0.00807 0.00788 0.00321 0.00018 0.00158 0.0006
152 64.8 33.9 20.8 16.9 14.2 1.25 11.5 4.59
105 66.6 47.5 37.4 34.2 29.3 9.5 24.9 16.2
1
2
3
4
5
6
7
8
9
10
11
12
Parallel Flange Channels - Dimensions and Properties
Designation
Mass Depth Width Thickness Root Depth Ratios for Local Second Moment Per of of Radius between Buckling of Area metre Section Section Web Flange Fillets Flange Web Axis D
Kg/m 1 430x100x64 64.4 2 380x100x54 54.0 3 300x100x46 45.5 4 300x90x41 41.4 5 260x90x35 34.8 6 260x75x28 27.6 7 230x90x32 32.2 8 230x75x26 25.7 9 200x90x30 29.7 10 200x75x23 23.4 11 180x90x26 26.1 12 180x75x20 20.3 13 150x90x24 23.9 14 150x75x18 17.9 15 125x65x15 14.8 16 100x50x10 10.2
mm 430 380 300 300 260 260 230 230 200 200 180 180 150 150 125 100
B
t
mm mm 100 11 100 9.5 100 9 90 9 90 8 75 7 90 7.5 75 6.5 90 7 75 6 90 6.5 75 6 90 6.5 75 5.5 65 5.5 50 5
T mm 19 17.5 16.5 15.5 14 12 14 12.5 14 12.5 12.5 10.5 12 10 9.5 8.5
r mm 15 15 15 12 12 12 12 12 12 12 12 12 12 12 12 9
d mm 362 315 237 245 208 212 178 181 148 151 131 135 102 106 82 65
b/T 5.26 5.71 6.06 5.81 6.43 6.25 6.43 6 6.43 6 7.2 7.14 7.5 7.5 6.84 5.88
d/t 32.9 33.2 26.3 27.2 26 30.3 23.7 27.8 21.1 25.2 20.2 22.5 15.7 19.3 14.9 13
x-x cm4 21940 15030 8229 7218 4728 3619 3518 2748 2523 1963 1817 1370 1162 861 483 208
13
14
15
16
17
18
19
20
21
22
23
24
25
rties Second Moment Radius of of Area Gyration Axis Axis Axis y-y 4
cm 722 643 568 404 353 185 334 181 314 170 277 146 253 131 80 32.3
x-x cm 16.3 14.8 11.9 11.7 10.3 10.1 9.27 9.17 8.16 8.11 7.4 7.27 6.18 6.15 5.07 4
y-y
Elastic Elastic Plastic Plastic Buckling Torsion Warping Torsion Modulus NA Modulus NA Parameter Index Constant Constant Axis Axis Axis Axis x-x
y-y
3
3
cm cm cm 2.97 1020 97.9 3.06 791 89.2 3.13 549 81.7 2.77 481 63.1 2.82 364 56.3 2.3 278 34.4 2.86 306 55 2.35 239 34.8 2.88 252 53.4 2.39 196 33.8 2.89 202 47.4 2.38 152 28.8 2.89 155 44.4 2.4 115 26.6 2.06 77.3 18.8 1.58 41.5 9.89
cy
x-x
y-y
3
3
cm cm cm 2.62 1222 176 2.79 933 161 3.05 641 148 2.6 568 114 2.74 425 102 2.1 328 62 2.92 355 98.9 2.3 278 63.2 3.12 291 94.5 2.48 227 60.6 3.17 232 83.5 2.41 176 51.8 3.3 179 76.9 2.58 132 47.2 2.25 89.9 33.2 1.73 48.9 17.5
ceq cm 0.954 0.904 1.31 0.879 1.14 0.676 1.69 1.03 2.24 1.53 2.36 1.34 2.66 1.81 1.55 1.18
u
x
H
J 6
0.917 0.932 0.944 0.934 0.942 0.932 0.95 0.947 0.954 0.956 0.949 0.946 0.936 0.946 0.942 0.942
22.5 21.2 17 18.4 17.2 20.5 15.1 17.3 12.9 14.8 12.8 15.3 10.8 13.1 11.1 10
dm 0.219 0.15 0.081 0.058 0.038 0.02 0.028 0.015 0.02 0.011 0.014 0.008 0.009 0.005 0.002 0
cm4 63 45.7 36.8 28.8 20.6 11.7 19.3 11.8 18.3 11.1 13.3 7.34 11.8 6.1 4.72 2.53
26
Area of Section
A cm2 82.1 68.7 58 52.7 44.4 35.1 41 32.7 37.9 29.9 33.2 25.9 30.4 22.8 18.8 13