Standard Requirements for Seismic Evaluation and Retrofit of Existing Concrete Buildings Public Discussion Draft

February 18, 2018 | Author: Abdulkadir Cüneyt Aydın | Category: Strength Of Materials, Prestressed Concrete, Concrete, Ultimate Tensile Strength, Structural Load
Share Embed Donate


Short Description

Descripción: Standard Requirements for Seismic Evaluation and Retrofit of Existing Concrete Buildings...

Description

369.1 Public Discussion Draft 1 2

Standard Requirements for Seismic Evaluation and Retrofit of Existing Concrete Buildings

3

(369.1) and Commentary

4

Reported by Committee 369

5 Wassim Ghannoum, Chair Anna Birely

Adolfo Matamoros

Sergio Brena

Steven McCabe

Casey Champion

Murat Melek

Jeffrey Dragovich

Jack Moehle

Kenneth Elwood

Arif Ozkan

Una Gilmartin

Robert Pekelnicky

Garrett Hagen

Jose Pincheira

Arne Halterman Wael Hassan

Mario Rodriguez

Mohammad Iqbal

Murat Saatcioglu

Jose Izquierdo-Encarnacion

Siamak Sattar

Afshar Jalalian

Halil Sezen

Thomas Kang

Roberto Stark

Dominic Kelly

Andreas Stavridis

Insung Kim

John Wallace

Laura Lowes

Tom Xia

Kenneth Luttrell

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 1 of 217

1 2

Keywords: ASCE 41; acceptance criteria; anchorage; axial failure; bond-strength; concrete;

3

connection; deformation-controlled; demand-capacity ratio; force-controlled; foundation;

4

dynamic analysis; earthquake; effective flexural strength; stiffness; effective width; linear static

5

analysis; load-deformation relationship; m-factor; modeling parameters; moment-frames;

6

nonlinear analysis; plastic hinge; plastic rotation; probability of failure; posttensioned; prestress;

7

shear strength; slab-column moment frames; seismic rehabilitation; retrofit; retrofit measure;

8

stiffness; structural wall.

9

PREFACE

10

In this standard, reference to ASCE 41 implies reference to the ASCE/SEI 41-17 standard. In this

11

standard, reference to ACI 318 implies reference to the ACI 318-14 Building Code.

12

This standard provides retrofit and rehabilitation criteria for reinforced concrete buildings based

13

on results from the most recent research on the seismic performance of existing concrete

14

buildings. The intent of the ACI 369.1 standard is to provide a continuously updated resource

15

document for modifications to Chapter 10 of ASCE 41, similar to how the National Earthquake

16

Hazards Reduction Program (NEHRP) Recommended Seismic Provisions produced by the

17

Federal Emergency Management Agency (FEMA) (FEMA 450) have served as source

18

documents for the International Building Code (IBC) and its predecessor building codes.

19

Specifically, this version of ACI 369.1 serves as the basis for Chapter 10, “Concrete” of ASCE

20

41.

21

This standard should be used in conjunction with Chapters 1 through 7 of ASCE/SEI 41-

22

17. Chapter 1 of ASCE 41 provides general requirements for evaluation and retrofit, including

23

the selection of performance objectives and retrofit strategies. Chapter 2 of ASCE 41 defines

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 2 of 217

1

performance objectives and seismic hazards. Chapter 3 of ASCE 41 provides the requirements

2

for evaluation and retrofit, including treating as-built information and selecting the appropriate

3

screening procedures. Chapter 4 of ASCE 41 summarizes Tier 1 screening procedures, while

4

Chapters 5 and 6 summarize Tier 2 deficiency-based procedures and Tier 3 systematic

5

procedures for evaluation and retrofit, respectively. Chapter 7 of ASCE 41 details analysis

6

procedures referenced in ACI 369.1, including, linear and nonlinear analysis procedures,

7

acceptance criteria, and alternative methods for determining modeling parameters and

8

acceptance criteria. Chapter 8 of ASCE 41 provides geotechnical engineering provisions for

9

building foundations and assessment of seismic-geologic site hazards. References to these

10

chapters can be found throughout the standard. The design professional is referred to the FEMA

11

report, FEMA 547, for detailed information on seismic rehabilitation measures for concrete

12

buildings. Repair techniques for earthquake-damaged concrete components are not included in

13

ACI 369.1. The design professional is referred to FEMA 306, FEMA 307, and FEMA 308 for

14

information on evaluation and repair of damaged concrete wall components.

15

This standard does not provide modeling procedures, acceptance criteria, and rehabilitation

16

measures for concrete-encased steel composite components. Future versions will provide

17

provision updates for concrete moment frames and will add provisions for concrete components

18

and systems omitted in the present version of the standard.

19 20 21

INTRODUCTION

22

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 3 of 217

1

Earthquake reconnaissance has clearly demonstrated that existing concrete buildings designed

2

before the introduction of seismic design codes in the 1980’s are more vulnerable to severe

3

damage or collapse when subjected to strong ground motion than concrete buildings built after

4

that period. Seismic rehabilitation of existing buildings where new components are added or

5

existing components are modified or retrofitted with new materials, or both, can be used to

6

mitigate the risk to damage in future earthquakes. Seismic rehabilitation is encouraged not only

7

to reduce the risk of damage and injury in future earthquakes, but also to extend the life of

8

existing buildings and reduce using new materials in the promotion of sustainability objectives.

9

It is not possible to codify all problems encountered in the process of performing the seismic

10

evaluation and retrofit of reinforced concrete buildings, nor is the intent of the standard to do so.

11

The standard provides a basic framework for modeling and evaluation of structures that reflects

12

the latest information available from researchers and practicing engineers, so that seismic

13

evaluation and retrofit can be performed with a consistent set of criteria. Many provisions in the

14

standard rely on the use of sound engineering judgement for their implementation. The

15

commentary of the standard provides references that describe in detail the implementation of

16

methodologies adopted in the standard.

17 18

CHAPTER 1 - GENERAL

19

1.1―ScopeThis standard sets forth requirements for the seismic evaluation and retrofit of concrete

20

components of the seismic-force-resisting system of an existing building. These building standard

21

requirements apply to existing concrete components, retrofitted concrete components, and new

22

concrete components. Provisions of this standard do not apply to concrete-encased steel composite

23

components.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 4 of 217

1

Chapter 2 specifies data collection procedures for obtaining material properties and performing

2

condition assessments. Chapter 3 provides general analysis and design requirements for concrete

3

components. Chapters 4 through 9 provide modeling procedures, component strengths, acceptance

4

criteria, and retrofit measures for cast-in-place and precast concrete moment frames, concrete

5

frames with masonry infills, cast-in-place and precast concrete shear walls, and concrete braced

6

frames. Chapters 10 through 12 provide modeling procedures, strengths, acceptance criteria, and

7

retrofit measures for concrete diaphragms and concrete foundation systems.

8

C1.1—Scope 

9

These  standard  requirements  were  developed  based  on  the  best  knowledge  of  the  seismic 

10

performance of existing concrete buildings at the time of publication. These requirements are not 

11

intended to restrict the licensed design professional from using new information that becomes 

12

available  before  the  issuance  of  the  next  edition  of  this  standard.  Such  new  information  can 

13

include tests conducted to address specific building conditions. 

14

This standard provides short descriptions of potential seismic retrofit measures for each concrete 

15

building system. The licensed design professional, however, is referred to FEMA 547 for detailed 

16

information on seismic retrofit measures for concrete buildings. Repair techniques for earthquake‐

17

damaged concrete components are not included in this standard. The licensed design professional 

18

is referred to FEMA 306, FEMA 307, and FEMA 308 for information on evaluation and repair of 

19

damaged concrete wall components. 

20

Concrete‐encased steel composite components behave differently from concrete sections reinforced 

21

with reinforcing steel. Concrete‐encased steel composite components frequently behave as over‐

22

reinforced sections. This type of component behavior was not represented in the data sets used 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 5 of 217

1

to  develop  the  force–deformation  modeling  relationships  and  acceptance  criteria  in  this 

2

standard and is not covered in this standard. Concrete encasement is often provided for fire 

3

protection rather than for strength or stiffness and typically lacks transverse reinforcement. In 

4

some cases, the transverse reinforcement does not meet detailing requirements in AISC 360. 

5

Lack of adequate confinement can result in lateral expansion of the core concrete, which exacerbates 

6

bond slip and, undermines the fundamental principle that plane sections remain plane. 

7

Testing and analysis used to determine acceptance criteria for concrete‐encased steel composite 

8

components should include the effect of bond slip between steel and concrete, confinement ratio, 

9

confinement reinforcement detailing, kinematics, and appropriate strain limits. 

10

To preserve historic buildings, exercise care in selecting the appropriate retrofit approaches and 

11

techniques for application. 

12 13 14

CHAPTER 2―MATERIAL PROPERTIES AND CONDITION ASSESSMENT

15

2.1―General

16

Mechanical properties of materials shall be obtained from available drawings, specifications, and

17

other documents for the existing building in accordance with the requirements of ASCE 41 Section

18

3.2. Where these documents fail to provide adequate information to quantify material properties,

19

such information shall be supplemented by materials testing based on requirements of Chapter 2.

20

The condition of the concrete components of the structure shall be determined using the

21

requirements of Section 2.3.

22

Material properties of existing concrete components shall be determined in accordance with

23

Section 2.2. The use of default material properties based on historical information is permitted This draft is not final and is subject to revision. This draft is for public review and comment only. Page 6 of 217

1

in accordance with Section 2.2.5. A condition assessment shall be conducted in accordance with

2

Section 2.3. The extent of materials testing and condition assessment performed shall be used to

3

determine the knowledge factor as specified in Section 2.4.

4

 

5

C2.1―General 

6

Chapter 2 identifies properties requiring consideration and provides requirements for determining 

7

building properties. Also described is the need for a thorough condition assessment and utilization of 

8

knowledge  gained in analyzing  component and  system behavior. Personnel involved in  material 

9

property  quantification  and  condition  assessment  should  be  experienced  in  the  proper 

10

implementation of testing practices and the interpretation of results. 

11

When modeling a concrete building, it is important to investigate local practices relative to seismic 

12

design.  Specific  benchmark  years  can  be  determined  for  the  implementation  of  earthquake‐

13

resistant  design  in  most  locations,  but  caution  should  be  exercised  in  assuming  optimistic 

14

characteristics for any specific building. Particularly with concrete materials, the  date of original 

15

building construction significantly influences seismic performance. Without deleterious conditions 

16

or materials, concrete gains compressive strength from the time it is originally cast and in place. 

17

Strengths  typically  exceed  specified  design  values  (28‐day  or  similar).  In  older  construction, 

18

concrete  strength  was  often  very  low  (less  than  3000  psi)  and  it  was  rarely  specified  in  the 

19

drawings.. Early adoptions of concrete in buildings often used reinforcing steel with relatively low 

20

strength  and  ductility,  limited  continuity,  and  reduced  bond  development.  Continuity  between 

21

specific existing components and elements, such as beams, columns, diaphragms, and shear walls, 

22

can be particularly difficult to assess because of concrete cover and other barriers to inspection.  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 7 of 217

1

Properties of welded wire reinforcement for various periods  of  construction  can  be  obtained 

2

from the Wire Reinforcement Institute (WRI 2009). 

3

Documentation  of  the  material  properties  and  grades  used  in  component  and  connection 

4

construction is invaluable and can be effectively used to reduce the amount of in‐place testing 

5

required.  The  licensed  design  professional  is  encouraged  to  research  and  acquire  all  available 

6

records from original construction, including photographs, to confirm reinforcement details shown 

7

on the plans. 

8

Further guidance on the condition assessment of existing concrete buildings can be found in the 

9

following:   

10



11

structures; 

12



13

structures before retrofit; and 

14



15

including analytical and load test methods. 

ACI 201.1R, which provides guidance on conducting a condition survey of existing concrete 

ACI 364.1R, which describes the general procedures used for the evaluation of concrete 

ACI 437R, which describes methods for strength evaluation of existing concrete buildings, 

16 17

2.2 Properties of In-Place Materials and Components

18

2.2.1 Material Properties

19

2.2.1.1 General―The following component and connection material properties shall be obtained

20

for the as-built structure:

21

1.

Concrete compressive strength; and

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 8 of 217

1

2.

2

Yield and ultimate strength of conventional and prestressing reinforcing steel, cast-in place and post-installed anchors, and metal connection hardware.

3

Where materials testing is required by ASCE 41 Section 6.2, the test methods to quantify material

4

properties shall comply with the requirements of Section 2.2.3. The frequency of sampling,

5

including the minimum number of tests for property determination, shall comply with the

6

requirements of Section 2.2.4.

7

 

8

C2.2.1.1 General―Other material properties and conditions of interest for concrete components 

9

include 

10

1.  Tensile strength and modulus of elasticity of concrete; 

11

2.  Ductility, toughness, and fatigue properties of concrete; 

12

3.  Carbon equivalent present in the reinforcing steel; and 

13

4.  Presence of any degradation such as corrosion or deterioration of bond between concrete and 

14

reinforcement. 

15

The extent of effort made to determine these properties depends on availability of accurate, updated 

16

construction  documents  and  drawings;  construction  quality  and  type;  accessibility;  and  material 

17

conditions.  The  analysis  method  selected—for  example,  linear  static  procedure  (LSP)  or  nonlinear 

18

static  procedure  (NSP)—might  also  influence  the  testing  scope.  Concrete  tensile  strength  and 

19

modulus of elasticity can be estimated based on the compressive strength and may not warrant the 

20

damage associated with any extra coring required. 

21

The sample size and removal practices followed are referenced in FEMA 274, Sections C6.3.2.3 

22

and  C6.3.2.4.  ACI  228.1R  provides  guidance  on  methods  to  estimate  the  in‐place  strength  of 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 9 of 217

1

concrete  in  existing  structures,  whereas  ACI  214.4R  provides  guidance  on  coring  in  existing 

2

structures  and  interpretation  of  core  compressive  strength test  results.  Generally,  mechanical 

3

properties for both concrete and reinforcing steel can be established from combined core and 

4

specimen sampling at similar locations, followed by laboratory testing. Core drilling should minimize 

5

damage to the existing reinforcing steel. 

6 7

2.2.1.2 Nominal or Specified Properties―Nominal material properties, or properties specified in

8

construction documents, shall be taken as lower-bound material properties. Corresponding

9

expected material properties shall be calculated by multiplying lower-bound values by a factor

10

taken from Table 1 to translate from lower-bound to expected values. Alternative factors shall be

11

permitted where justified by test data.

12 13

2.2.2 Component Properties―The following component properties and as-built conditions shall

14

be established:

15

1.

16 17

Cross-sectional dimensions of individual components and overall configuration of the structure;

2.

Configuration of component connections, size, embedment depth, and type of

18

anchors, thickness of connector material, anchorage and interconnection of

19

embedments and the presence of bracing or stiffening components;

20

3.

Modifications to components or overall configuration of the structure;

21

4.

Most recent physical condition of components and connections, and the extent of

22

any deterioration;

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 10 of 217

1

5.

2 3

Deformations beyond those expected because of gravity loads, such as those caused by settlement or past earthquake events; and

6.

Presence of other conditions that influence building performance, such as

4

nonstructural components that can interact with structural components during

5

earthquake excitation.

6

C2.2.2 Component Properties―Component properties are required to properly characterize 

7

building performance in seismic analysis. The starting point for assessing component properties 

8

and condition is retrieval of available construction documents. A preliminary review should 

9

identify primary gravity‐ and seismic‐force‐resisting elements and systems and their critical 

10

components and connections. If there are no drawings of the building, the licensed design 

11

professional should perform a thorough investigation of the building to identify these elements, 

12

systems, and components as described in Section 2.3. 

13 14

2.2.3 Test Methods to Quantify Material Properties

15

2.2.3.1 General―Destructive and nondestructive test methods used to obtain in-place mechanical

16

properties of materials identified in Section 2.2.1 and component properties identified in Section

17

2.2.2 are specified in this section. Samples of concrete and reinforcing and connector steel shall

18

be examined for physical condition as specified in Section 2.3.2.

19

When determining material properties with the removal and testing of samples for laboratory

20

analysis, sampling shall take place in primary gravity- and seismic-force-resisting components in

21

regions with the least stress.

22

Where Section 2.2.4.2.1 does not apply and the coefficient of variation is greater than 20%, the

23

expected concrete strength shall not exceed the mean less one standard deviation. This draft is not final and is subject to revision. This draft is for public review and comment only. Page 11 of 217

1

2.2.3.2 Sampling―For concrete material testing, the sampling program shall include the removal

2

of standard cores. Core drilling shall be preceded by nondestructive location of the reinforcing

3

steel, and core holes shall be located to avoid damage to or drilling through the reinforcing steel. Core

4

holes shall be filled with concrete or grout of comparable strength having nonshrinkage properties. If

5

conventional reinforcing steel is tested, sampling shall include removal of local bar segments and

6

installation of replacement spliced material to maintain continuity of the reinforcing bar for

7

transfer of bar force unless an analysis confirms that replacement of the original components is

8

not required.

9

Removal of core samples and performance of laboratory destructive testing shall be permitted to

10

determine existing concrete strength properties. Removal of core samples shall use the procedures

11

included in ASTM C42. Testing shall follow the procedures contained in ASTM C42, ASTM C39,

12

and ASTM C496. Core strength shall be converted to in-place concrete compressive strength by

13

an approved procedure.

14

Removal of bar or tendon samples and performance of laboratory destructive testing shall be

15

permitted to determine existing reinforcing steel strength properties. The tensile yield and ultimate

16

strengths for reinforcing and prestressing steels shall follow the procedures included in ASTM

17

A370. Reinforcing samples that are slightly damaged during removal are permitted to be machined

18

to a round bar as long as the tested area is at least 70% of the gross area of the original bar.

19

Prestressing materials shall meet the supplemental requirements in ASTM A416, ASTM A421, or

20

ASTM A722, depending on material type. Properties of connector steels shall be permitted to be

21

determined by wet and dry chemical composition tests and direct tensile and compressive strength

22

tests as specified by ASTM A370. Where strength, construction quality or both of anchors or

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 12 of 217

1

embedded connectors are required to be determined, in-place testing shall satisfy the provisions of

2

ASTM E488-96.

3

 

4

C2.2.3.2 Sampling―ACI 214.4R and FEMA 274 provide further guidance on correlating concrete 

5

core strength to in‐place strength and provide references for various test methods that can be 

6

used to estimate material properties. Chemical composition can be determined from retrieved 

7

samples to assess the condition of the concrete. Section C6.3.3.2 of FEMA 274 (1997b) provides 

8

references for these tests. 

9

When concrete cores are taken, care should be taken when patching the holes. For example, a 

10

core through the thickness of a slab should have positive anchorage by roughening the surface 

11

and possibly dowels for anchorage. For that case, the holes should be filled with concrete or grout 

12

and the engineer should provide direction for filling the hole so that the added concrete or grout 

13

bonds to the substrate. 

14

The reinforcing steel system used in the construction of a specific building is usually of uniform 

15

grade and similar strength. One grade of reinforcement is occasionally used for small‐diameter 

16

bars, like those used for stirrups and hoops, and another grade for large‐diameter bars, like those 

17

used for longitudinal reinforcement. In some cases, different concrete design strengths or classes 

18

are  used.  Historical  research  and  industry  documents  contain  insight  on  material  mechanical 

19

properties used in different construction eras (Section 2.2.5). This information can be used with 

20

laboratory  and  field  test  data  to  gain  confidence  in  in‐place  strength  properties.  Undamaged 

21

reinforcing steel can be reduced to a smooth bar, as long as the samples meet the requirements 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 13 of 217

1

of  ASTM  A370,  excluding  the  limitations  of  Annex  9.  This  type  of  reinforcing  would  occur  in  a 

2

situation where only a limited length of bar can be removed for testing. 

3 4

2.2.4 Minimum Number of Tests―Materials testing is not required if material properties are

5

available from original construction documents that include material test records or reports.

6

Material test records or reports shall be representative of all critical components of the building

7

structure.

8

Based on Section 6.2 of ASCE 41, data collection from material tests is classified as either

9

comprehensive or usual. The minimum number of tests for usual data collection is specified in

10

Section 2.2.4.1. The minimum number of tests necessary to quantify properties by in-place testing

11

for comprehensive data collection is specified in Section 2.2.4.2. If the existing gravity-load-

12

resisting-system or seismic-force-resisting system is replaced during the retrofit process, material

13

testing is only required to quantify properties of existing materials at new connection points.

14 15

C2.2.4 Minimum Number of Tests―To quantify in‐place properties accurately, it is essential that 

16

a minimum number of tests be conducted on primary components of the seismic‐force‐resisting 

17

system. The minimum number of tests is dictated by the availability of original construction data, 

18

structural system type used, desired accuracy, quality and condition of in‐place materials, level of 

19

seismicity, and target performance level. Accessibility to the structural system can influence the 

20

testing  program  scope.  The  focus  of  testing  should  be  on  primary  seismic‐force‐resisting 

21

components  and  specific  properties  for  analysis.  Test  quantities  provided  in  this  section  are 

22

minimal; the licensed design professional should determine whether further testing is needed to 

23

evaluate as‐built conditions.  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 14 of 217

1

Testing is generally not required on components other than those of the seismic‐force‐resisting 

2

system. 

3

The licensed design professional and subcontracted testing agency should carefully examine test 

4

results  to  verify  that  suitable  sampling  and  testing  procedures  were  followed  and  appropriate 

5

values for the analysis were selected from the data. 

6

 

7

2.2.4.1 Usual Data Collection―The minimum number of tests to determine concrete and

8

reinforcing steel material properties for usual data collection shall be based on the following

9

criteria:

10

1.

If the specified design strength of the concrete is known, at least one core shall be

11

taken from samples of each different concrete strength used in the construction of the

12

building, with a minimum of three cores taken for the entire building;

13

2.

If the specified design strength of the concrete is not known, at least one core shall be

14

taken from each type of seismic-force-resisting component, with a minimum of six

15

cores taken for the entire building;

16

3.

17 18

If the specified design strength of the reinforcing steel is known, nominal or specified material properties shall be permitted without additional testing; and

4.

If the specified design strength of the reinforcing steel is not known, at least two

19

strength test coupons of reinforcing steel shall be removed from the building for

20

testing.

21

5.

Cast-in-place or post-installed anchors shall be classified in groups of similar type,

22

size, geometry and structural use. In groups of anchors used for out-of-plane wall

23

anchorage and in groups of anchors whose failure in tension or shear would cause This draft is not final and is subject to revision. This draft is for public review and comment only. Page 15 of 217

1

the structure not to meet the selected Performance Objective, 5% of the anchors with

2

a minimum of three anchors of each anchor group shall be tested in-place in tension

3

to establish an available strength, construction quality or both. The test load shall be

4

specified by the licensed design professional and shall be based on the anticipated

5

demand or strength in accordance with available construction information. If the test

6

load is used as the basis for anchor strength calculation, the available anchor strength

7

shall not be taken greater than 2/3 of the test load. Testing of the anchors to failure is

8

not required and a test load lower than the expected failure load shall be permitted.

9

If the test load is not achieved in one or more anchors tested in a group, anchors in

10

that group shall be tested under a tensile load smaller than that specified for the

11

preceding tests. Otherwise, the strength of the tested anchor group shall be ignored.

12

Testing in accordance with 2.2.4.2.5 shall be permitted to determine the available

13

strength based on a statistical distribution of the test results.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 16 of 217

1

2.2.4.2 Comprehensive Data Collection

2

2.2.4.2.1 Coefficient of Variation―Unless specified otherwise, a minimum of three tests shall be

3

conducted to determine any property. If the coefficient of variation exceeds 20%, additional tests

4

shall be performed until the coefficient of variation is equal to or less than 20%. If additional

5

testing does not reduce the coefficient of variation below 20%, a knowledge factor reduction per

6

Section 4.4 shall be used. In determining coefficient of variation, cores shall be grouped by grades

7

of concrete and element type. The number of tests in a single component shall be limited so as not

8

to compromise the integrity of the component.

9

2.2.4.2.2 Concrete Materials―For each concrete element type of the seismic-force-resisting

10

system, as well as secondary systems for which failure could result in a collapse hazard, a

11

minimum of three core samples shall be taken and subjected to compression tests. A minimum of

12

six total tests shall be performed on a building for concrete strength determination, subject to the

13

limitations of this section. If varying concrete classes or grades were used in the building

14

construction, a minimum of three samples and tests shall be performed for each class and grade.

15

The modulus of elasticity and tensile strength shall be permitted to be estimated from the

16

compressive strength testing data. Samples shall be taken from components, distributed throughout

17

the building, that are critical to the structural behavior of the building.

18

Tests shall be performed on samples from components that are identified as damaged or degraded

19

to quantify their condition. Test results from areas of degradation shall be compared with strength

20

values specified in the construction documents. If test values less than the specified strength in the

21

construction documents are found, further strength testing shall be performed to determine the cause

22

or identify the degree of damage or degradation.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 17 of 217

1

The minimum number of tests to determine compressive strength of each concrete element type

2

shall conform to one of the following criteria:

3

1.

For concrete elements for which the specified design strength is known and test results

4

are not available, a minimum of three core tests shall be conducted for each floor level,

5

400 yd3 (306 m3) of concrete, or 10,000 ft2 (930 m2) of surface area, whichever requires

6

the most frequent testing; or

7

2.

For concrete elements for which the specified design strength is unknown and test

8

results are not available, a minimum of six core tests shall be conducted for each floor

9

level, 400 yd3 (306 m3) of concrete, or 10,000 ft2 (930 m2) of surface area, whichever

10

requires the most frequent testing. Where the results indicate that different classes of

11

concrete were used, the degree of testing shall be increased to confirm class use.

12

3.

Alternately, for concrete elements for which the design strength is known or unknown,

13

and test results are not available, it is permitted to determine the lower bound

14

compressive strength based on core sample testing and applying the provisions in

15

Section 6.4.3 of ACI 562-16. If the lower bound compressive strength is determined in

16

this manner, the expected compressive strength shall be determined as the lower bound

17

compressive strength value obtained from ACI 562-16 Equation 6.4.3 plus one standard

18

deviation of the strength of the core samples. When following the provisions in Section

19

6.4.3 of ACI 562-16, the minimum number of samples per element type shall be four.

20

The sample locations shall be:

21 22 23

a. Distributed to quantify element material properties throughout the height of the building b. Distributed to quantify element material properties in locations critical to the This draft is not final and is subject to revision. This draft is for public review and comment only. Page 18 of 217

structural system being investigated.

1 2 3

Quantification of concrete strength via ultrasonics or other nondestructive test methods shall not

4

be substituted for core sampling and laboratory testing.

5

 

6

C2.2.4.2.2 Concrete Materials―ACI 214.4R provides guidance on coring in existing structures and 

7

interpretation of core compressive strength test results. 

8

If a structure was constructed in phases or if construction documents for different parts of the 

9

structure  were  issued  at  separate  times,  the  licensed  design  professional,  for  the  purpose  of 

10

determining sampling size, should consider the concrete in each construction phase or in each set 

11

of construction documents as of different type. Section 6.4.3 of ACI 562‐16 provides a method to 

12

calculate an equivalent specified concrete strength f’c based on statistical analysis of compression 

13

strength  test  results  from  core  samples.    ASTM  E178  provides  guidance  on  consideration  of 

14

outliers  in  a  set  of  core  samples.  Equation  6.4.3  in  Section  6.4.3  of  ACI  562‐16  defines  the 

15

equivalent specified compressive strength of concrete as a function of the number of tests, the 

16

coefficient of variation of the samples, and a factor to account for the number of samples. Section 

17

6.4.3  of  ACI  562‐16  permits  the  engineer  to  select  the  number  of  samples  used  to  evaluate 

18

concrete compressive strength but imposes a penalty to the results to account for the uncertainty 

19

associated with the number of samples.     

20

Equation 6.4.3 of ACI 562‐16 was derived with the objective of calculating the 13% fractile of the 

21

in‐place  concrete  compressive  strength,  which  some  studies  have  shown  to  be  approximately 

22

equal to the specified compressive strength of concrete f’c (Bartlett and MacGregor, 1996). The  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 19 of 217

1

first term in Equation 6.4.3 of ACI 562‐16 represents the effect of sample size on the uncertainty 

2

of the mean in‐place strength, where the coefficient kc is obtained from a Student’s t distribution 

3

with n‐1 degrees of freedom and a 90% confidence level. The second term in Equation 6.4.3 of ACI 

4

562‐16 represents the uncertainty attributable to correction factors relating cylinder strength to 

5

specified  compressive  strength,  which  were  assumed  to  have  a  normal  distribution,  also 

6

estimated with a 90% confidence level. The study by Bartlett and MacGregor (1996) showed that 

7

the specified compressive strength f’c corresponds approximately to the 13% fractile of the 28‐

8

day in‐place strength in walls and columns, and approximately the 23% fractile of the 28‐day in‐

9

place  compressive  strength  in  beams  and  slabs.  The  former  was  considered  to  be  a  more 

10

appropriate measure of specified compressive strength f’c than the latter because the nominal 

11

strength  of  columns  is  more  sensitive  to  concrete  compressive  strength  than  the  strength  of 

12

beams and slabs (ACI 214.4).   

13

In  Section  2.2.1.2  of  this  standard  it  is  stated  that  nominal  material  properties  or  properties 

14

specified  in  construction  documents  shall  be  taken  as  lower‐bound  material  properties  unless 

15

otherwise specified. The method to estimate of the specified concrete compressive strength f’c in 

16

Section 6.4.3 of ACI 562‐16 was adopted in this standard to obtain the lower bound compressive 

17

strength consistent with the provisions in Section 2.2.1.2. 

18

ACI  214.4R  provides  guidance  on  coring  in  existing  structures  and  interpretation  of  core 

19

compressive  strength  test  results.  The  minimum  of  4  samples  was  adopted  based  on  the 

20

recommendations in ACI 214.4. The following equation is provided in ACI 214.4 

21

 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 20 of 217



1

 

 

(C1) 

2

 

3

where nsamples represents the minimum number of samples, COVpopulation represents the estimated 

4

coefficient of variation of the population, and epopulation represents the predetermined maximum 

5

error expressed as a percentage of the population average. For a total of 4 samples the previous 

6

equation dictates that the maximum error is equal to the estimate of the coefficient of variation 

7

of the population. Bartlett and MacGregor (1995) report that for many batches of cast‐in‐place 

8

concrete,  and  samples  obtained  from  many  members,  the  coefficient  of  variation  was 

9

approximately 13%. If the maximum error is equal to the coefficient of variation, a maximum error 

10

of 13% corresponds to approximately 1.13 standard deviations, which is considered adequate for 

11

an estimate of lower bound material properties.   

12

Users of the document are cautioned that for coefficients of variation between 13 and 20%, the 

13

minimum number of samples needed to limit the error below one standard deviation according 

14

to the recommendations in ACI 214.4 is higher than 4. For example, for a coefficient of variation 

15

of 20% a minimum of 7 samples is recommended to limit the error to one standard deviation. If 

16

the  maximum  error  is  reduced  to  10%  the  minimum  number  of  samples  recommended  is 

17

significantly higher. For a coefficient of variation of 15.87% (one standard deviation away from 

18

the mean) and a maximum error of 10%, the minimum number of samples recommended is 11, 

19

and for a coefficient of variation of 20% and a maximum error of 10%, the minimum number of 

20

samples  recommended  is  16.  If  the  coefficient  of  variation  exceeds  20%,  the  requirements  in 

21

Section 2.2.4.2.1 shall be satisfied. 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 21 of 217

1

 

2 3

Ultrasonics  and  nondestructive  test  methods  should  not  be  substituted  for  core  sampling  and 

4

laboratory testing as they do not yield accurate strength values directly. These methods should 

5

only  be  used  for  confirmation  and  comparison.  Guidance  for  nondestructive  test  methods  is 

6

provided in ACI 228.2R.   

7 8

2.2.4.2.3 Conventional Reinforcing and Connector Steels―Tests shall be conducted to determine

9

both yield and ultimate strengths of reinforcing and connector steel. Connector steel is defined as

10

additional structural steel or miscellaneous metal used to secure precast and other concrete shapes

11

to the building structure. A minimum of three tensile tests shall be conducted on conventional

12

reinforcing steel samples from a building for strength determination, subject to the following

13

supplemental conditions:

14

1.

If original construction documents defining properties exist, then at least three strength

15

coupons shall be removed from random locations from each element or component

16

type and tested; or

17

2.

If original construction documents defining properties are unavailable, but the

18

approximate date of construction is known and a common material grade is confirmed,

19

at least three strength coupons shall be removed from random locations from each

20

element or component type for every three floors of the building; and

21 22 23

3.

If the construction date is unknown, at least six strength coupons for every three floors shall be performed.

Refer to Section 2.2.3.2 for replacement of sampled material.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 22 of 217

1

2.2.4.2.4 Prestressing Steel―Sampling prestressing steel tendons for laboratory testing shall only

2

be performed on prestressed components that are part of the seismic-force-resisting system.

3

Prestressed components in diaphragms shall be permitted to be excluded.

4

Tendon or prestress removal shall be avoided if possible. Any sampling of prestressing steel

5

tendons for laboratory testing shall be done with extreme care. It shall be permitted to determine

6

material properties without tendon or prestress removal by careful sampling of either the tendon

7

grip or the extension beyond the anchorage, if sufficient length is available.

8

All sampled prestressed steel shall be replaced with new, fully connected, and stressed material

9

and anchorage hardware, unless an analysis confirms that replacement of original components is

10

not required.

11

2.2.4.2.5 Cast-in-place or post-installed anchors― Cast-in-place or post-installed anchors shall

12

be classified in groups in accordance with 2.2.4.1. In groups of anchors used for out-of-plane

13

wall anchorage and in groups of anchors whose failure in tension or shear would cause the

14

structure not to meet the selected Performance Objective, 10% of the anchors with a minimum of

15

six anchors of each anchor group shall be tested in-place to in tension to establish an available

16

strength, construction quality or both. Testing of the anchors to failure is not required. The test

17

load shall be specified by the licensed design professional and shall be based on the anticipated

18

demand or strength in accordance with available construction information. If the test load is

19

used as the basis for anchor strength calculation, the available anchor strength shall not be taken

20

greater than 2/3 of the test load. Testing of the anchors to failure is not required and a test load

21

lower than the expected failure load shall be permitted.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 23 of 217

1

 

2

C2.2.4.2.5 Cast‐in‐place or post‐installed anchors― To estimate ultimate strength of the 

3

anchors in accordance with Section 3.6, the frequency of the test should be increased to at least 

4

25% of the anchors and the test load should be at least the nominal design strength in 

5

accordance with Chapter 17 of ACI 318. In‐place anchor testing performed in accordance with 

6

2.2.4.2.5 provides the minimum available tensile strength of a single anchor, which is likely 

7

governed by pullout or bond strength in tension. Other failure modes and parameters that affect 

8

the strength of the anchors, such as proximity to edges, group effect, presence of cracks, or 

9

eccentricity of applied loads, should be considered in accordance with Chapter 17 of ACI 318. 

10 11

2.2.5 Default Properties―Default material properties to determine component strengths shall be

12

permitted to be used in conjunction with the linear analysis procedures of ASCE 41 Chapter 7.

13

Default lower-bound concrete compressive strengths are specified in Table 2. Default expected

14

concrete compressive strengths shall be determined by multiplying lower-bound values by an

15

appropriate factor selected from Table 1, unless another factor is justified by test data. The

16

appropriate default compressive strength, lower-bound strength, or expected strength as specified

17

in ASCE 41 Section 7.5.1.3, shall be used to establish other strength and performance

18

characteristics for the concrete as needed in the structural analysis.

19

Default lower-bound values for reinforcing steel are specified for various ASTM specifications

20

and periods in Tables 3 or 4. Default expected strength values for reinforcing steel shall be

21

determined by multiplying lower-bound values by an appropriate factor selected from Table 1,

22

unless another factor is justified by test data. Where default values are assumed for existing

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 24 of 217

1

reinforcing steel, welding or mechanical coupling of new reinforcement to the existing reinforcing

2

steel shall not be permitted.

3

The default lower-bound yield strength for steel connector material shall be taken as 27,000 lb/in.2

4

(186 MPa). The default expected yield strength for steel connector material shall be determined

5

by multiplying lower-bound values by an appropriate factor selected from Table 1, unless another

6

value is justified by test data.

7

The default lower-bound yield strength for cast-in-place or post-installed anchor material shall be

8

taken as 27,000 lb/in.2 (186 MPa) unless another value is justified by test data. Component actions

9

on the connections shall be considered as force-controlled actions and default expected yield

10

strength shall not be used.

11

The use of default values for prestressing steel in prestressed concrete construction shall not be

12

permitted.

13 14

C2.2.5 Default Properties―Default values provided in this standard are generally conservative. 

15

Whereas  the  strength  of  reinforcing  steel  can  be  fairly  consistent  throughout  a  building,  the 

16

strength of concrete in a building could be highly variable, given variability in concrete mixtures 

17

and  sensitivity  to  water–cement  ratio  and  curing  practices.  A  conservative  assumption  based 

18

upon  the  field  observation  of  the  concrete  compressive  strength  in  the  given  range  is 

19

recommended, unless a higher strength is substantiated by construction documents, test reports, 

20

or material testing. For the capacity of an element in question, the lower value within the range 

21

can be conservative. It  can be appropriate to use the maximum value  in a given range where 

22

determining the force‐controlled actions on other components. 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 25 of 217

1

Until about 1920, a variety of proprietary reinforcing steels was used. Yield strengths are likely to 

2

be in the range of 33,000 to 55,000 lb/in.2 (230 to 380 MPa), but higher values are possible and 

3

actual yield and tensile strengths can exceed minimum values. Once commonly used to designate 

4

reinforcing steel grade, the terms “structural,” “intermediate,” and “hard” became obsolete in 

5

1968. Plain and twisted square bars were occasionally used between 1900 and 1949. 

6

Factors to convert default reinforcing steel strength to expected strength include consideration of 

7

material overstrength and strain hardening. 

8 9

2.3 Condition Assessment

10

2.3.1 General―A condition assessment of the existing building and site conditions shall be

11

performed as specified in this section.

12

The condition assessment shall include the following:

13

1.

14 15

presence of any degradation shall be noted; 2.

16 17

3.

A review and documentation of other conditions, including neighboring party walls and buildings, presence of nonstructural components and mass, and prior remodeling;

4.

20 21

Verification of the presence and configuration of components and their connections, and the continuity of load paths between components, elements, and systems;

18 19

Examination of the physical condition of primary and secondary components, and the

Collection of information needed to select a knowledge factor in accordance with Section 4.4; and

5.

Confirmation of component orientation, plumbness, and physical dimensions.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 26 of 217

1

 

2

C2.3.1  General―The  condition  assessment  also  affords  an  opportunity  to  review  other 

3

conditions that can influence concrete elements and systems and overall building performance. 

4

Of  particular  importance  is  the  identification  of  other  elements  and  components  that  can 

5

contribute  to  or  impair  the  performance  of  the  concrete  system  in  question,  including  infills, 

6

neighboring buildings, and equipment attachments. Limitations posed by existing coverings, wall 

7

and ceiling space, infills, and other conditions shall also be defined such that prudent retrofit 

8

measures can be planned. 

9

 

10

2.3.2 Scope and Procedures―The scope of the condition assessment shall include critical

11

structural components as described in the following subsections.

12

2.3.2.1 Visual Condition Assessment―Direct visual inspection of accessible and representative

13

primary components and connections shall be performed to

14



Identify configuration issues;

15



Determine if degradation is present;

16



Establish continuity of load paths;

17



Establish the need for other test methods to quantify the presence and degree of

18 19 20

degradation; and 

Measure dimensions of existing construction to compare with available design information and reveal any permanent deformations.

21

A visual building inspection shall include visible portions of foundations, seismic-force-resisting

22

members, diaphragms (slabs), and connections. As a minimum, a representative sampling of at

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 27 of 217

1

least 20% of the components and connections shall be visually inspected at each floor level. If

2

significant damage or degradation is found, the assessment sample of all similar-type critical

3

components in the building shall be increased to 40% or more, as necessary, to accurately assess the

4

performance of components and connections with degradation.

5

If coverings or other obstructions exist, partial visual inspection through the obstruction shall be

6

permitted to be performed using drilled holes and a fiberscope.

7

 

8

C2.3.2.1  Visual  Condition  Assessment―Further  guidance  can  be  found  in  ACI  201.1R,  which 

9

provides a system for reporting the condition of concrete in service. 

10 11

2.3.2.2 Comprehensive Condition Assessment―Exposure is defined as local minimized removal

12

of cover concrete and other materials to inspect reinforcing system details. All damaged concrete

13

cover shall be replaced after inspection. The following criteria shall be used for assessing primary

14

connections in the building for comprehensive data collection:

15

1.

If detailed design drawings exist, exposure of at least three different primary

16

connections shall occur, with the connection sample including different types of

17

connections (for example, beam–column, column–foundation, beam–diaphragm, and

18

diaphragm-wall). If no deviations from the drawings exist or if the deviations from the

19

drawings are consistently similar, it shall be permitted to consider the sample as being

20

representative of installed conditions. If inconsistent deviations are noted, then at least

21

25% of the specific connection type shall be inspected to identify the extent of

22

deviation; or

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 28 of 217

1

2.

In the absence of detailed design drawings, at least three connections of each primary

2

connection type shall be exposed for inspection. If common detailing among the three

3

connections is observed, it shall be permitted to consider this condition as representative

4

of installed conditions. If variations are observed among like connections, additional

5

connections shall be inspected until an accurate understanding of building construction

6

is gained.

7

2.3.2.3 Additional Testing―If additional destructive and nondestructive testing is required to

8

determine the degree of damage or presence of deterioration, or to understand the internal

9

condition and quality of concrete, test methods approved by the licensed design professional shall

10

be used.

11

 

12

C2.3.2.3 Additional Testing―The physical condition of components and connectors affects their 

13

performance.  The  need  to  accurately  identify  the  physical  condition  can  dictate  the  need  for 

14

certain  additional  destructive  and  nondestructive  test  methods.  Such  methods  can  be  used  to 

15

determine the degree of damage or presence of deterioration and to improve understanding of 

16

the internal condition and concrete quality. Further guidelines and procedures for destructive and 

17

nondestructive tests that can be used in the condition assessment are provided in ACI 228.1R, ACI 

18

228.2R, FEMA 274 (Section C6.3.3.2), and FEMA 306(Section 3.8). 

19

The  nondestructive  examination  (NDE)  methods  having  the  greatest  use  and  applicability  to 

20

condition assessment are listed below: 

21 22



Surface  NDE  methods  include  infrared  thermography,  delamination  sounding,  surface  hardness measurement, and crack mapping. These methods can be used to find surface 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 29 of 217

1

degradation in components such as service‐induced cracks, corrosion, and construction 

2

defects; 

3



Volumetric NDE methods, including radiography and ultrasonics, can be used to identify 

4

the presence of internal discontinuities and loss of section. Impact‐echo ultrasonics is often 

5

used and is a well‐understood technology; 

6



On‐line monitoring using acoustic emissions, strain gauges, in‐place static or dynamic load 

7

tests,  and  ambient  vibration  tests  can  be  used  to  assess  structural  condition  and 

8

performance. Monitoring is used to determine if active degradation or deformations are 

9

occurring,  whereas  nondestructive  load  testing  provides  direct  insight  on  load‐carrying 

10 11

capacity;  

Electromagnetic methods using a pachometer or radiography can be used to locate, size, 

12

or  perform  an  initial  assessment  of  reinforcing  steel.  Further  assessment  of  suspected 

13

corrosion  activity  should  use  electrical  half‐cell  potential  and  resistivity  measurements; 

14

and 

15



Lift‐off testing (assuming original design and installation data are available), or another 

16

nondestructive method such as the “coring stress relief” specified in SEI/ASCE 11, can 

17

be  used  where  absolutely  essential to  determine  the  level of  prestress  remaining  in  an 

18

unbonded prestressed system. 

19 20

2.3.3 Basis for the Mathematical Building Model―Results of the condition assessment shall be

21

used to quantify the following items needed to create the mathematical building model:

22

1.

Component section properties and dimensions;

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 30 of 217

1

2.

2

Component configuration and the presence of any eccentricities or permanent deformation;

3

3.

Connection configuration and the presence of any eccentricities;

4

4.

Presence and effect of alterations to the structural system since original

5 6

construction; and 5.

7

Interaction of nonstructural components and their involvement in seismic force resistance.

8

All deviations between available construction records and as-built conditions obtained from visual

9

inspection shall be accounted for in the structural analysis.

10

Unless concrete cracking, reinforcement corrosion, or other mechanisms of degradation are

11

observed in the condition assessment as the cause for damage or reduced capacity, the cross-

12

sectional area and other sectional properties shall be assumed to be those from the design drawings

13

after adjustment for as-built conditions. If some sectional material loss has occurred, the loss shall

14

be quantified by direct measurement and sectional properties reduced accordingly using the

15

principles of structural mechanics.

16

2.4 Knowledge Factor―A knowledge factor () for computation of concrete component

17

acceptance criteria shall be selected in accordance with ASCE 41 Section 6.2.4 with additional

18

requirements specific to concrete components. A knowledge factor, equal to 0.75 shall be used if

19

any of the following criteria are met:

20

1.

Components are found to be damaged or deteriorated during assessment, and

21

further testing is not performed to quantify their condition or justify the use of

22

higher values of ;

23

2.

Mechanical properties have a coefficient of variation exceeding 20%; and

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 31 of 217

1

3.

Components contain archaic or proprietary material and the condition is uncertain.

2 3

CHAPTER 3 – GENERAL ASSUMPTIONS AND REQUIREMENTS

4

3.1―Modeling and Design

5

3.1.1 General―Seismic retrofit of a concrete building involves the design of new components

6

connected to the existing structure, seismic upgrading of existing components, or both. New

7

components shall comply with ACI 318, except as otherwise indicated in this standard.

8

Original and retrofitted components of an existing building are not expected to satisfy provisions

9

of ACI 318 but shall be assessed using the provisions of this standard. Brittle or low-ductility

10

failure modes shall be identified as a part of the seismic evaluation.

11

Evaluation of demands and capacities of reinforced concrete components shall include

12

consideration of locations along the length where seismic force and gravity loads produce

13

maximum effects; where changes in cross section or reinforcement result in reduced strength; and

14

where abrupt changes in cross section or reinforcement, including splices, can produce stress

15

concentrations that result in premature failure. 

16

C3.1.1 General―Brittle or low‐ductility failure modes typically include behavior in direct or nearly 

17

direct  compression;  shear  in  slender  components  and  in‐component  connections;  torsion  in 

18

slender  components;  and  reinforcement  development,  splicing,  and  anchorage.  The  stresses, 

19

forces, and moments acting to cause these failure modes should be determined from a limit‐state 

20

analysis, considering probable resistances at locations of nonlinear action. 

21

 

22

3.1.2 Stiffness―Component stiffnesses shall be calculated considering shear, flexure, axial

23

behavior, and reinforcement slip deformations. Stress state of the component, cracking extent This draft is not final and is subject to revision. This draft is for public review and comment only. Page 32 of 217

1

caused by volumetric changes from temperature and shrinkage, deformation levels under gravity

2

loads and seismic forces shall be considered. Gravity load effects considered for effective

3

stiffnesses of components shall be determined using ASCE/SEI 41 Equation 7-3.

4 5

C3.1.2  Stiffness―For  columns  with low axial loads (below  approximately  0.1Agfc),  deformations 

6

caused by bar slip can account for as much as 50% of the total deformations at yield. Further 

7

guidance  regarding  calculation  of  the  effective  stiffness  of  reinforced  concrete  columns  that 

8

include the effects of flexure, shear, and bar slip can be found in Elwood and Eberhard (2009). 

9

Flexure‐controlled wall stiffness can vary from approximately 0.15EcEIg to 0.5EcEIg, depending on 

10

wall  reinforcement  and  axial  load.  A  method  for  calculating  wall  stiffness  which  provides 

11

compatibility with fiber section analysis is offered in C7.2.2. 

12 13

3.1.2.1 Linear Procedures―Where design actions are determined using the linear procedures of

14

ASCE 41 Chapter 7, component effective stiffnesses shall correspond to the secant value to the

15

yield point of the component. Alternate stiffnesses shall be permitted where it is demonstrated by

16

analysis to be appropriate for the design loading. Alternatively, effective stiffness values in Table

17

5 shall be permitted.

18 19

C3.1.2.1  Linear  Procedures―The  effective  flexural  rigidity  values  in  Table  5  for  beams  and 

20

columns account for the additional flexibility from reinforcement slip within the beam–column 

21

joint or foundation before yielding. The values specified for columns were determined based on a 

22

database of 221 rectangular reinforced concrete column tests with axial loads less than 0.67Agfc 

23

and shear span–depth ratios greater than 1.4. Measured effective stiffnesses from the laboratory  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 33 of 217

1

test data suggest that the effective flexural rigidity for low axial loads could be approximated as 

2

0.2EIg;  however,  considering  the  scatter  in  the  effective  flexural  rigidity  and  to  avoid 

3

underestimating the shear demand on columns with low axial loads, 0.3EIg is recommended in 

4

Table 5 (Elwood et al. 2007). In addition to axial load, the shear span–depth ratio of the column 

5

influences the effective flexural rigidity. A more refined estimate of the effective flexural rigidity 

6

can be determined by calculating the displacement at yield caused by flexure, slip, and shear 

7

(Elwood and Eberhard 2009).   

8

The  modeling  recommendations  for  beam–column  joints  (Section  6.2.2.1)  do  not  include  the 

9

influence of reinforcement slip. When the effective stiffness values for beams and columns from 

10

Table 5 are used in combination with the modeling recommendations for beam–column joints, 

11

the  overall  stiffness  is  in  close  agreement  with  results  from  beam–column  subassembly  tests 

12

(Elwood et al. 2007). 

13

The effect of reinforcement slip can be accounted for by including rotational springs at the ends 

14

of the beam or column elements (Saatcioglu et al. 1992). If this modeling option is selected, the 

15

effective flexural rigidity of the column element should reflect only the flexibility from flexural 

16

deformations. In this case, for axial loads less than 0.3Agfc, the effective flexural rigidity can be 

17

estimated as 0.5EIg, with linear interpolation to the value given in Table 5 for axial loads greater 

18

than 0.5Agfc. 

19

Because  of  low  bond  stress  between  concrete  and  plain  reinforcement  without  deformations, 

20

components with plain longitudinal reinforcement and axial loads less than 0.5Agfc can have lower 

21

effective flexural rigidity values than in Table 5. 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 34 of 217

1 2

3.1.2.2 Nonlinear Procedures―Where design actions are determined using the nonlinear

3

procedures of ASCE 41 Chapter 7, component load-deformation response shall be represented by

4

nonlinear load-deformation relations. Linear relations shall be permitted where nonlinear response

5

does not occur in the component. The nonlinear load-deformation relation shall be based on

6

experimental evidence or taken from quantities specified in Chapters 4 through 12. For the nonlinear

7

static procedure (NSP), the generalized load-deformation relation shown in Fig. 1 or other curves

8

defining behavior under monotonically increasing deformation shall be permitted. For the nonlinear

9

dynamic procedure (NDP), load-deformation relations shall define behavior under monotonically

10

increasing lateral deformation and under multiple reversed deformation cycles as specified in Section

11

3.2.1.

12

The generalized load-deformation relation shown in Fig. 1 shall be described by linear response from

13

A (unloaded component) to an effective yield B, then a linear response at reduced stiffness from

14

point B to C, then sudden reduction in seismic force resistance to point D, then response at reduced

15

resistance to E, and final loss of resistance thereafter. The slope from point A to B shall be

16

determined according to Section 3.1.2.1. The slope from point B to C, ignoring effects of gravity

17

loads acting through lateral displacements, shall be taken between zero and 10% of the initial slope,

18

unless an alternate slope is justified by experiment or analysis. Point C shall have an ordinate equal

19

to the strength of the component and an abscissa equal to the deformation at which significant

20

strength degradation begins. Representation of the load-deformation relation by points A, B, and

21

C only (rather than all points A–E) shall be permitted if the calculated response does not exceed

22

point C. Numerical values for the points identified in Fig. 1 shall be as specified in Sections 3.2.2.2

23

for beams, columns, and joints, 3.3.2.2 for post-tensioned beams, 3.4.2.2 for slab–column

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 35 of 217

1

connections, and 7.2.2 for shear walls, wall segments, and coupling beams. Other load-

2

deformation relations shall be permitted if justified by experimental evidence or analysis.

3 4

C3.1.2.2 Nonlinear Procedures―Typically, the response shown in Fig. 1 is associated with flexural 

5

response  or  tension  response.  In  this  case,  the  resistance  at  Q/Qy  =  1.0  is  the  yield  value,  and 

6

subsequent strain hardening is accommodated by hardening in the load‐deformation relation as 

7

the  member  is  deformed  toward  the  expected  strength.  Where  the response shown in Fig. 1 is 

8

associated with compression,  the  resistance  at  Q/Qy  =  1.0  typically  is  the value where concrete 

9

begins  to  spall,  and  strain  hardening  in  well‐confined  sections  can  be  associated  with  strain 

10

hardening of the longitudinal reinforcement and an increase in strength from the confinement of 

11

concrete. Where the response shown in Fig. 1 is associated with shear, the resistance at Q/Qy = 

12

1.0 typically is the value at which the design shear strength is reached and, typically, no strain 

13

hardening follows. 

14

The deformations used for the load‐deformation relation of Fig. 1 shall be defined in one of two 

15

ways, as follows: 

16

Deformation, or Type I: In this curve, deformations are expressed directly using terms such  as 

17

strain,  curvature,  rotation,  or  elongation.  The  parameters  anl  and  bnl  refer  to  deformation 

18

portions that occur after yield, or plastic deformation. The parameter cnl is the reduced resistance 

19

after the sudden reduction from C to D. Parameters anl, bnl, and cnl are defined numerically in 

20

various  tables  in  this  standard.  Alternatively,  parameters  anl,  bnl,  and  cnl  can  be  determined 

21

directly by analytical procedures justified by experimental evidence. 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 36 of 217

1

Deformation Ratio, or Type II: In this curve, deformations are expressed in terms such as shear 

2

angle and tangential drift ratio. The parameters dnl and enl refer to total deformations measured 

3

from  the  origin.  Parameters  cnl,  dnl,  and  enl  are  defined  numerically  in  various  tables  in  this 

4

standard.  Alternatively,  parameters  cnl,  dnl,  and  enl  can  be  determined  directly  by  analytical 

5

procedures justified by experimental evidence. 

6

Provisions  for  determining  alternative  modeling  parameters  and  acceptance  criteria  based  on 

7

experimental evidence are given in ASCE 41 Section 7.6. 

8

Displacement demands determined from nonlinear dynamic  analysis  are  sensitive  to  the  rate  of 

9

strength  degradation  included  in  the  structural  model.  Unless  there  is  experimental  evidence  of 

10

sudden strength loss for a particular component under consideration, the use of a model with a 

11

sudden strength loss from point C to D in Fig. 1 can result in overestimation of the drift demands 

12

for  a  structural  system  and  individual  components.  A  more  realistic  model  for  many  concrete 

13

components would have a linear degradation in resistance from point C to E. 

14

Strength loss that occurs within a single cycle can result in dynamic instability of the structure, 

15

whereas strength loss that occurs between cycles is unlikely to cause such instability. Fig. 1 does not 

16

distinguish  between  these  types  of  strength  degradation  and  may  not  accurately  predict  the 

17

displacement demands if the two forms of strength degradation are not properly considered. 

18 19

3.1.3 Flanged Construction―In beams consisting of a web and flange that act integrally, the

20

combined stiffness and strength for flexural and axial loading shall be calculated considering a

21

width of effective flange on each side of the web equal to the smallest of:

22

1.

The provided flange width;

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 37 of 217

1

2.

Eight times the flange thickness;

2

3.

Half the distance to the next web; or

3

4.

One-fifth of the beam span length.

4

Where the flange is in compression, the concrete and reinforcement within the effective width

5

shall be considered effective in resisting flexure and axial load. Where the flange is in tension,

6

longitudinal reinforcement within the effective width of the flange and developed beyond the

7

critical section shall be considered fully effective for resisting flexural and axial loads. The portion

8

of the flange extending beyond the width of the web shall be assumed ineffective in resisting

9

shear.

10

In walls, effective flange width should be computed using Chapter 18 of ACI 318.

11 12

3.2 Strength and Deformability

13

3.2.1 General―Actions in a structure shall be classified as being either deformation-controlled or

14

force-controlled. Deformation-controlled actions are defined by the designation of linear and

15

nonlinear acceptance criteria in Tables 7 through 10 and 13 through 22. Where linear and nonlinear

16

acceptance criteria are not specified in the tables, actions shall be taken as force-controlled unless

17

component testing is performed in accordance with ASCE 41 Section 7.6. Strengths for deformation-

18

controlled and force-controlled actions shall be calculated in accordance with Sections 3.2.2 and 3.2.3,

19

respectively.

20

Components shall be classified as having low, moderate, or high ductility demands, according to

21

Section 3.2.4.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 38 of 217

1

Where strength and deformation capacities are derived from test data, the tests shall be representative

2

of proportions, details, and stress levels for the component and comply with Section 7.6.1 of

3

ASCE 41.

4

The strength and deformation capacities of concrete members shall correspond to values resulting

5

from a loading protocol involving three fully reversed cycles to the design deformation level, in

6

addition to similar cycles to lesser deformation levels, unless a larger or smaller number of

7

deformation cycles is determined considering earthquake duration and dynamic properties of the

8

structure.

9 10

C3.2.1 General―In this standard, actions are classified as either deformation‐controlled or force‐

11

controlled. Actions are considered to be deformation‐controlled where the component behavior 

12

is well documented by test results. Where linear or nonlinear acceptance criteria are tabulated in 

13

this standard, the committee has judged the action to be deformation‐controlled and expected 

14

material properties should be used. Where such acceptance criteria are not specified, the action 

15

should  be  assumed  force‐controlled,  thereby  requiring  the  use  of  lower‐bound  material 

16

properties,  or  the  licensed  design  professional  can  opt  to  perform  testing  to  validate  the 

17

classification of deformation‐controlled. ASCE 41 Section 7.6 provides guidance on procedures to 

18

be followed during testing, and ASCE 41 Section 7.5.1.2 provides a methodology based on the test 

19

data  to  distinguish  force‐controlled  from  deformation‐controlled  actions.  Further  guidance  on  the 

20

testing of moment‐frame components can be found in ACI 374.1.   

21

In  some  cases,  including  short‐period  buildings  and  those  subjected  to  a  long‐duration  design 

22

earthquake, a building can be expected to be subjected to additional cycles to the design deformation 

23

levels beyond the three cycles recommended in Section 3.2.1. The increased number of cycles can  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 39 of 217

1

lead to reductions in resistance and deformation capacity. The effects on strength and deformation 

2

capacity of additional deformation cycles should be considered in design. 

3 4

3.2.2 Deformation-Controlled Actions―Strengths used for deformation-controlled actions shall

5

be taken as equal to expected strengths QCE obtained experimentally or calculated using accepted

6

principles of mechanics. Unless specified in this standard, other procedures specified in ACI 318 to

7

calculate strengths shall be permitted, except that the strength reduction factor ϕ shall be taken

8

equal to unity. Deformation capacities for acceptance of deformation-controlled actions

9

calculated by nonlinear procedures shall be as specified in Chapters 4 through 12 of this standard. For

10

components constructed of lightweight concrete, QCE shall be modified in accordance with ACI 318

11

procedures for lightweight concrete.

12

 

13

C3.2.2 Deformation‐Controlled Actions―Expected yield strength of reinforcing steel, as specified 

14

in Section 4.2.1.2, includes material overstrength considerations. 

15

 

16

3.2.3 Force-Controlled Actions―Strengths used for force-controlled actions shall be taken as

17

lower-bound strengths QCL, obtained experimentally or calculated using established principles of

18

mechanics. Lower-bound strength is defined as the mean less one standard deviation of

19

resistance expected over the range of deformations and loading cycles to which the concrete

20

component is likely to be subjected. Where calculations are used to define lower-bound

21

strengths, lower-bound estimates of material properties shall be used. Unless other procedures

22

are specified in this standard, procedures specified in ACI 318 to calculate strengths shall be

23

permitted, except that the strength reduction factor  shall be taken equal to unity. For This draft is not final and is subject to revision. This draft is for public review and comment only. Page 40 of 217

1

components constructed of lightweight concrete, QCL shall be modified in accordance with ACI

2

318 procedures for lightweight concrete.

3

 

4

3.2.4 Component Ductility Demand Classification―Table 6 provides classification of component

5

ductility demands as low, moderate, or high based on the maximum value of the demand–capacity

6

ratio (DCR) defined in ASCE 41 Section 7.3.1.1 for linear procedures or the calculated

7

displacement ductility for nonlinear procedures.

8 9

3.3―Flexure and Axial Loads

10

Flexural strength of members with and without axial loads shall be calculated according to ACI

11

318 or by other demonstrated rational methods, such as sectional analysis using appropriate

12

concrete and steel constitutive models. Deformation capacity of members with and without axial

13

loads shall be calculated considering shear, flexure, and reinforcement slip deformations, or based

14

on acceptance criteria given in this standard. Strengths and deformation capacities of components

15

with monolithic flanges shall be calculated considering concrete and developed longitudinal

16

reinforcement within the effective flange width, as defined in Section 3.1.3.

17

Strength and deformation capacities shall be determined based on the available development of

18

longitudinal reinforcement. Where longitudinal reinforcement has embedment or development

19

length that is insufficient for reinforcement strength development, flexural strength shall be

20

calculated based on limiting stress capacity of the embedded bar as defined in Section 3.5.

21

Where flexural deformation capacities are calculated from basic principles of mechanics,

22

reductions in deformation capacity caused by applied shear shall be considered. Where using

23

analytical models for flexural deformability that do not directly account for the effect of shear on This draft is not final and is subject to revision. This draft is for public review and comment only. Page 41 of 217

1

deformation capacity and if the design shear equals or exceeds 6 f c' Aw , lb/in.2 ( 0.5 f c' Aw , MPa),

2

the design flexural deformation capacity shall not exceed 80% of the value calculated using the

3

analytical model.

4

For concrete columns or walls under combined axial load and biaxial bending, the combined

5

strength shall be evaluated considering biaxial bending. When using linear procedures, the axial

6

load PUF or PUD shall be calculated as a force-controlled action or deformation-controlled action

7

per ASCE 41 Section 7.5.2. The design moments MUD should be calculated about each of two

8

orthogonal axes. Combined strength shall be based on principles of mechanics with applied

9

bending moments calculated as MUDx/(mxκ) and MUDy/(myκ) about the x- and y-axes, respectively.

10

Acceptance shall be based on the applied bending moments lying within the expected strength

11

envelope calculated at an axial load level of PUF if the member is in compression or PUD /

12

[(minimum of mx and my)κ] if the member is in tension.

13 14

C3.3 Flexure and Axial Loads―Laboratory tests indicate that flexural deformability can be reduced 

15

as  coexisting  shear  forces  increase.  As  flexural  ductility  demands  increase,  shear  capacity 

16

decreases, which can result in a shear failure before theoretical flexural deformation capacities 

17

are  reached.  Use  caution  where  flexural  deformation  capacities  are  determined  by  calculation. 

18

FEMA 306 (ASCE 41 Section 5.2) is a resource for guidance on the interaction between shear and 

19

flexure. 

20

The combined strength under uniaxial or biaxial bending with axial load is difficult to generalize 

21

in  a  closed‐form  solution,  given  the  range  of  column  section  geometries  encountered.  For  a 

22

particular class of rectangular column sections, closed‐form solutions based on section capacities 

23

about the principal axes have been developed that provide excellent agreement when compared  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 42 of 217

1

to a more generalized analysis (Hsu 1988, Furlong et al. 2004). A circular envelope provides a poor 

2

prediction of the strength for all but circular columns. For general sections, the strength envelope 

3

should be developed based on principles of mechanics. 

4

When  flexural  strength  of  an  axially  loaded  member  needs  to  be  calculated  in  the  linear 

5

procedure,  compressive load  level should  be  considered as a  force‐controlled  action  due to  its 

6

non‐ductile  nature  while,  tensile  load  level  should  be  considered  as  a  deformation‐controlled 

7

action because the tensile strength and stiffness of the member are based on steel reinforcement 

8

contribution only. The m‐factor for the flexural behavior can be conservatively used to estimate 

9

the deformation‐controlled action due to the tension. 

10 11

3.3.1 Usable Strain Limits―For deformation- and force-controlled actions in elements without

12

confining transverse reinforcement, the maximum usable strain at the extreme concrete

13

compression fiber used to calculate the moment and axial strength shall not exceed:

14

a) 0.002 for members in nearly pure compression

15

b) 0.005 for other members

16

Larger values of maximum usable strain in the extreme compression fiber shall be allowed where

17

substantiated by experimental evidence.

18

For deformation- and force-controlled actions in elements with confined concrete, the maximum

19

usable strain at the extreme concrete compression fiber used to calculate moment and axial strength

20

shall be based on experimental evidence and consider limitations posed by transverse

21

reinforcement fracture, longitudinal reinforcement buckling, and degradation of component

22

resistance at large deformation levels. In the case of force-controlled actions in elements with

23

confined concrete, it shall be permitted to adopt usable strain limits for unconfined concrete. This draft is not final and is subject to revision. This draft is for public review and comment only. Page 43 of 217

1

For deformation-controlled actions the maximum compressive strains in the longitudinal

2

reinforcement used to calculate the moment and axial strength shall not exceed 0.02, and

3

maximum tensile strains in longitudinal reinforcement shall not exceed 0.05. Monotonic coupon test

4

results shall not be used to determine reinforcement strain limits. If experimental evidence is used to

5

determine strain limits for reinforcement, the effects of low-cycle fatigue and transverse

6

reinforcement spacing and size shall be included in testing procedures.

7 8

C3.3.1 

9

Early research on the stress‐strain behavior of unconfined concrete (Hognestad, 1952) has shown 

10

that the stress‐strain behavior of concrete is different in members subjected to flexure than in 

11

members subjected to nearly pure compression. Concrete subjected to concentric compression 

12

exhibits crushing shortly after the maximum stress is reached at strains of approximately 0.0015 

13

to  0.0020  (Hognestad,  1952),  while  crushing  in  the  extreme  compression  fiber  of  members 

14

subjected to flexure and axial load is observed at higher strains, ranging between 0.003 to 0.005 

15

(Hognestad, 1952). The maximum usable strain limits established in this section are intended to 

16

caution engineers when using stress‐strain relationships for concrete to calculate moment and 

17

axial  strengths.  In  members  subjected  to  nearly  pure  compression,  redistribution  of  stresses 

18

within the compression zone after the strain in the concrete exceeds the strain corresponding to 

19

peak stress (0.0015 to 0.0020 for unconfined concrete) (Hognestad, 1952) is not possible because 

20

most of the concrete in the cross section will be on the descending branch of the stress‐strain 

21

curve for concrete.   

22

Usable strain limits specified in this section do not preclude engineers from using the provisions 

23

in Section 22.2 of ACI 318. Section 22.2.2.1 of ACI 318 stipulates that to calculate the moment and 

Usable Strain Limits 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 44 of 217

1

axial  strength  of  reinforced  concrete  members,  the  maximum  usable  strain  in  the  extreme 

2

compression fiber of reinforced concrete shall be assumed to be 0.003. This usable strain is within 

3

the limit of 0.005 specified in Section 3.3.1 of this standard. In the case of members subjected to 

4

nearly pure compression, provisions in Section 22.4.2 of ACI 318 establish that the design axial 

5

strength of columns with unconfined concrete shall not exceed 80% of the nominal axial strength. 

6

According to the commentary of Section 22.4.2.1 of ACI 318, the reduced nominal axial strength 

7

corresponds to a minimum eccentricity of 5% of the column depth. The usable strain limit of 0.002 

8

specified  in  Section  3.3.1  of  this  standard  is  intended  to  prevent  overestimating  the  flexural 

9

strength of columns with very small eccentricities, so the provisions in Section 22.4.2.1 for the ACI 

10

318 Code can be used in lieu of calculating the axial and moment strength based on stress‐strain 

11

models for concrete.   

12

While provisions in Section 21.2.2 of ACI 318 establish that for tension‐controlled members the 

13

strain in the reinforcement at failure shall be at least 0.005, there is no upper limit in the code for 

14

the usable strain in the reinforcement of beams and columns. Although an upper limit in the strain 

15

at  failure  of  beams  and  columns  is  implied  in  the  provisions  for  minimum  reinforcement  in 

16

Sections 9.6 and 10.6 of ACI 318, those limits are not intended for members that will be subjected 

17

to deformation cycles in the nonlinear range of response. The reinforcement tensile strain limit in 

18

Section 5.3.1 of this standard is based on consideration of the effects of material properties and 

19

low‐cycle  fatigue.  Low‐cycle  fatigue  is  influenced  by  spacing  and  size  of  transverse 

20

reinforcement  and  strain  history.  Using  extrapolated  monotonic  test  results  to  develop  tensile 

21

strains  greater  than  those  specified  above  is  not  recommended.  California  Department  of 

22

Transportation  (Caltrans)  “Seismic  Design  Criteria”  (Caltrans  2006)  recommends  an  ultimate  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 45 of 217

1

tensile strain of 0.09 for No. 10 (No. 32) bars and smaller, and 0.06 for No. 11 (No. 36) bars and 

2

larger, for ASTM A706 60 kip/in.2 (420 MPa) reinforcing bars. A lower bound is selected here 

3

considering the variability in materials and details typically found in existing structures. 

4

Refer  to  Brown  and  Kunnath  (2004)  for  incorporating  the  effects  of  low‐cycle  fatigue  and 

5

transverse reinforcing for determining strain limits based on testing. 

6 7

3.4―Shear and Torsion

8

Strengths in shear and torsion shall be calculated according to ACI 318, except as modified in this

9

standard.

10

Within yielding regions of components with moderate or high ductility demands, shear and

11

torsional strength shall be calculated according to procedures for ductile components, such as the

12

provisions in Chapter 18 of ACI 318. Within yielding regions of components with low ductility

13

demands per Table 6 and outside yielding regions for all ductility demands, procedures for

14

effective elastic response, such as the provisions in Chapter 22 of ACI 318, shall be permitted to

15

calculate the design shear strength.

16

Unless otherwise noted, where the longitudinal spacing of transverse reinforcement exceeds half

17

the component effective depth measured in the direction of shear, transverse reinforcement shall

18

be assumed to have reduced effectiveness in resisting shear or torsion by a factor of 2(1-s/d).

19

Where the longitudinal spacing of transverse reinforcement exceeds the component effective

20

depth measured in the direction of shear, transverse reinforcement shall be assumed ineffective in

21

resisting shear or torsion. For beams and columns, lap-spliced transverse reinforcement shall be

22

assumed not more than 50% effective in regions of moderate ductility demand and ineffective in

23

regions of high ductility demand, and applies in addition to the effectiveness factor due to spacing. This draft is not final and is subject to revision. This draft is for public review and comment only. Page 46 of 217

1

Shear friction strength shall be calculated according to ACI 318, considering the expected axial

2

load from gravity and earthquake effects. Where retrofit involves the addition of concrete requiring

3

overhead work with dry pack, the shear friction coefficient  shall be taken as equal to 70% of the

4

value specified by ACI 318.

5 6

C3.4 Shear and Torsion―The reduction in the effectiveness of transverse reinforcement in this 

7

section accounts for the limited number of ties expected to cross an inclined crack when ties are 

8

provided  at  large  spacing.  Furthermore,  reduction  in  the  effectiveness  of  the  transverse 

9

reinforcement is needed since the widely spaced ties may not be fully developed both above and 

10

below  the  crack.  For  tie  spacing  equal  to  the  effective  depth  of  the  member,  it  is  possible  to 

11

develop an inclined crack that does not cross any ties, and hence the contribution of the transverse 

12

reinforcement should be ignored. 

13 14

3.5―Development and Splices of Reinforcement

15

Development of straight bars, hooked bars, and lap-spliced bars shall be calculated according to

16

the provisions of ACI 318, with the following modifications:

17

1.

Deformed straight, hooked, and lap-spliced bars satisfying the development

18

requirements of Chapter 25 of ACI 318 using expected material properties, shall be

19

deemed capable of developing their yield strength, except as adjusted in the

20

following: (a) the development of lapped straight bars in tension without

21

consideration of lap splice classifications is permitted to be used as the required lap

22

splice length; (b) for columns, where deformed straight and lap-spliced bars pass

23

through regions where inelastic deformations and damage are expected, the bar

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 47 of 217

1

length within those regions shall be considered effective for anchorage only until

2

inelastic deformations occur. In such cases, the development length obtained using

3

ACI 318 procedures shall be compared with a degraded available development

4

length (lb-deg) as defined in (2) below;

5

2.

Where existing deformed straight bars, hooked bars, and lap-spliced bars do not

6

meet the development requirements of (1) above, the capacity of existing

7

reinforcement shall be calculated using Eq. 1:

8

1.25

9

(1a)

/

If the maximum applied bar stress is larger than fs given in Eq. (1a), members shall

10

be deemed controlled by inadequate development or splicing.

11

For columns, where deformed straight and lap-spliced longitudinal bars pass

12

through regions where inelastic deformations and damage are expected, the bar

13

length within those regions shall be considered effective for anchorage only until

14

inelastic deformations occur. In such cases, if fs = fylL/E from Eq. (1a), the degraded

15

reinforcement capacity fs-deg accounting for the loss of anchorage in the damaged

16

region shall be evaluated using a degraded available development length (lb-deg). lb-

17

deg

18

maximum flexural demand in any direction damage is anticipated within the

19

column.

20

shall be evaluated by subtracting from lb a distance of 2/3d from the point of

1.25

/

(1b)

21

In cases where fs = fylL/E from Eq. (1a) but the maximum applied longitudinal bar

22

stress is larger than fs-deg given in Eq. (1b), columns shall be deemed controlled by This draft is not final and is subject to revision. This draft is for public review and comment only. Page 48 of 217

1

inadequate development or splicing and the capacity of the existing reinforcement

2

taken as fylL/E;

3

3.

For inadequate development or splicing of straight bars in beams and columns: for

4

nonlinear procedures it shall be permitted to assume that the reinforcement retains

5

the calculated maximum stress evaluated using Eq. (1a) up to the deformation levels

6

defined by anl in Tables 7, 8 and 9; for linear procedures, the calculated maximum

7

stress evaluated using Eq. (1a) shall be used for strength calculations. For members

8

other than beams and columns controlled by inadequate development or splicing

9

and hooked anchorage the developed stress shall be assumed to degrade from 1.0fs,

10

at a ductility demand or DCR equal to 1.0, to 0.2fs at a ductility demand or DCR

11

equal to 2.0;

12

4.

Strength of deformed straight, discontinuous bars embedded in concrete sections or

13

beam–column joints, with clear cover over the embedded bar not less than 3db, shall

14

be calculated according to Eq. 2:

15

/

(lb/in.2 units)

16

/

(MPa units)

(2)

17

Where fs is less than fyL/E and the calculated stress in the bar caused by design loads

18

equals or exceeds fs, the maximum developed stress shall be assumed to degrade

19

from 1.0fs, at a ductility demand or DCR equal to 1.0, to 0.2fs at a ductility demand

20

or DCR equal to 2.0. In beams with bottom bar embedment length into beam–

21

column joints less than the requirements of ACI 318, flexural strength shall be

22

calculated considering the stress limitation of Eq. 2;

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 49 of 217

1

5.

For plain straight, hooked, and lap-spliced bars, development and splice lengths

2

shall be taken as twice the values determined in accordance with ACI 318, unless

3

other lengths are justified by approved tests; and

4

6.

Doweled bars added in seismic retrofit shall be assumed to develop yield stress

5

where all the following conditions are satisfied:

6

a.

Drilled holes for dowel bars are cleaned;

7

b.

Embedment length le is not less than 10db and;

8

c.

Minimum dowel bar spacing is not less than 4le and minimum edge distance

9

is not less than 2le.

10

Design values for dowel bars not satisfying these conditions shall be verified by

11

test data. Field samples shall be obtained to ensure that design strengths are

12

developed in accordance with Chapter 3.

13

7.

Square reinforcing bars in a building should be classified as either twisted or

14

straight. The developed strength of twisted square bars shall be as specified for

15

deformed bars in this Section, using an effective diameter calculated based on the

16

area of the square bar. Straight square bars shall be considered as plain bars, and

17

the developed strength shall be as specified for plain bars in this Section.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 50 of 217

1

C3.5 Development and Splices of Reinforcement―Development requirements in accordance with 

2

Chapter 25 of ACI 318 are applicable to development of bars in all components. Chapter 18 of ACI 

3

318 provides development requirements that are intended only for use in yielding components of 

4

reinforced concrete moment frames that comply with the cover and confinement provisions of 

5

Chapter 18 of ACI 318. Chapter 25 of ACI 318 permits reductions in lengths if minimum cover and 

6

confinement are present in an existing component. For additional information on development and 

7

lap splices, see ACI 408R‐03, and for hooked anchorage, see Sperry et al. (2005). 

8

Eq. (1a), which is a modified version of the model presented by Cho and Pincheira (2006), reflects 

9

the intent of ACI 318 development and splice equations to develop 1.25 times the nominal bar 

10

strength,  referred  to  in  this  standard  as  the  expected  yield  strength.  The  nonlinear  relation 

11

between developed stress and development length reflects the effect of increasing slip, and hence, 

12

reduced unit bond strength, for longer development lengths. Refer to Elwood et al. (2007) for 

13

more details. 

14

Bond strength can be significantly curtailed in damaged regions within plastic hinges (Sokoli and 

15

Ghannoum  2015,  Ichinose  1992).  The  length  where  bond  capacity  is  curtailed  during  inelastic 

16

deformations is recommended to be 2/3 of the section effective depth (d) (Sokoli and Ghannoum 

17

2015). If fs evaluated using Eq. (1a) equals fylL/E, then bond failure is not expected prior to inelastic 

18

hinging  and  the  bar  under  consideration  can  be  expected  to  resist  the  full  yield  stress  fylL/E. 

19

However, fs should be re‐evaluated using a degraded effective anchorage length (lb‐deg) using Eq. 

20

(1b), which is reduced by the bar length within the region expected to be damaged. If fs‐deg remains 

21

equal to fylL/E even after the anchorage length is reduced, then no anchorage failure is expected 

22

even  during  inelastic  deformations.  If,  however,  fs‐deg  becomes  smaller  than  fylL/E  when  the  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 51 of 217

1

available anchorage length is reduced, then anchorage failure is expected, but only after inelastic 

2

deformations  occur.  In  such  cases,  the  limiting  stress  in  longitudinal  bars  will  be  fylL/E  but  the 

3

modeling  parameters  in  Tables  8  and  9  for  columns  with  inadequate  development  or  splicing 

4

should be used. 

5

For buildings constructed before 1950, the bond strength developed between reinforcing steel 

6

and concrete can be less than present‐day strength. Present equations for development and splices 

7

of reinforcement account for mechanical bond from deformations present in deformed bars as 

8

well as chemical bond. The length required to develop plain bars is much greater than for deformed 

9

bars and more sensitive to cracking in concrete. Testing and assessment procedures for tensile lap 

10

splices and development length for plain reinforcing steel are found in CRSI (1981). 

11 12

3.6―Connections to Existing Concrete

13

Connections used to connect two or more components shall be classified according to their

14

anchoring systems as cast-in-place or as post-installed and shall be evaluated and designed

15

according to Chapter 17 of ACI 318 as modified in this section. The properties of the existing

16

anchors and connection systems obtained in accordance with Section 2.2 shall be considered in

17

the evaluation. These provisions do not apply to connections in plastic hinge zones.

18

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 52 of 217

1

C3.6  Connections  to  Existing  Concrete―Chapter  17  of  ACI  318  accounts  for  the  influence  of 

2

cracking on the load capacity of connectors; however, cracking and spalling expected in plastic 

3

hinge  zones  is  likely  to  be  more  severe  than  the  level  of  damage  for  which  Chapter  17  is 

4

applicable.  ACI  355.2  and  ACI  355.4  describe  simulated  seismic  tests  that  can  be  used  for 

5

qualification  of  post‐installed  anchors.  Such  tests  do  not  simulate  the  conditions  expected  in 

6

plastic hinge zones. 

7

ASCE/SEI  41‐06  Section  6.3.6.1,  required  the  load  capacity  of  anchors  placed  in  areas  where 

8

cracking is expected to be reduced by a factor of 0.5. This provision was included in FEMA 273 for 

9

both cast‐in‐place and post‐installed anchors, before the introduction of ACI 318‐02 Appendix D. 

10

Because cracking is now accounted for in ACI 318, the 0.5 factor is not required in Section 3.6 of 

11

this standard. 

12

Capacities  of  existing  anchors  should  be  evaluated  based  on  the  obtained  properties  in 

13

accordance with Section 2.2 and Chapter 17 of ACI 318. If the anchors are not tested to failure 

14

but to a load based on the force‐controlled action determined by the engineer for the seismic 

15

hazard  under  consideration,  the  procedure  in  Chapter  17  of  ACI  318  can  be  used  to  calculate 

16

available strength based on the test results and the geometry of anchors measured or assumed 

17

by the engineer. 

18

To  evaluate  the  capacity  of  existing  cast‐in‐place  and  post‐installed  anchors  using  ACI  318 

19

Chapter 17, it is necessary to know the geometry of the anchor (i.e., embedment, edge distance, 

20

spacing,  and  anchor  diameter)  and  material  properties.  Edge  distance,  spacing,  and  anchor 

21

diameter can be established from construction documents or by visual inspection. Unless known 

22

from  construction  documents,  embedment  and  material  properties  of  the  anchor  are  more  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 53 of 217

1

difficult  to  determine.  Where  failure  of  the  anchor  is  not  critical  to  meeting  the  target 

2

performance level, embedment of post‐installed anchors can be assumed equal to the minimum 

3

embedment required by manufacturer’s specifications for the anchor type in question. For cast‐

4

in‐place anchors, embedment can be taken as less than or equal to the minimum embedment 

5

from the original design code for an embedded bolt of the same diameter. It is recommended that 

6

where the consequence of failure of an anchor is critical to satisfying the target performance level, 

7

anchor  embedment  not  known  from  construction  documents  is  determined  by  nondestructive 

8

testing (e.g., ultrasonic testing). 

9

Lower‐bound  properties  for  steel  connector  materials  and  concrete  strength  based  on  default 

10

values, construction documents, or test values can be assumed for anchor strength calculations. 

11

It is noted that direct testing of anchors can provide greater certainty and can provide higher 

12

capacities. Judgment should be exercised in the use of default lower‐bound material properties, 

13

since doing so may not yield a conservative estimate of anchor capacity in cases where the steel 

14

strength is determined to govern the anchor capacity, and additional requirements of ACI 318, 

15

Chapter 17, for ductile behavior are waived as a result. 

16

Not  all  manufacturers  of  post‐installed  anchors  publish  information  on  the  mean  and  the 

17

standard  deviation  of  the  ultimate  anchor  capacity.  Older  testing  for  existing  post‐installed 

18

anchors  is  often  reported  at  allowable  stress  design  levels  and  may  not  comply  with  the 

19

requirements of Chapter 17 of ACI 318 for simulated seismic tests. It is recommended that care 

20

and judgment should be used in determining pullout strength for anchors, particularly those that 

21

are  critical  to  satisfying  the  target  performance  level.  Where  necessary,  in situ  strengths  of 

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 54 of 217

1

anchors can be obtained or verified by static testing of representative anchors. ACI 355.2 and ACI 

2

355.4 can be used for guidance on testing. 

3

Proper installation of post‐installed anchors is critical to their performance and should be verified 

4

in all cases. 

5 6

3.6.1 Cast-in-Place Anchors and Connection Systems―All component actions on cast-in-

7

place anchors and connection systems shall be considered force-controlled. Lower-bound

8

strength of the anchors and connections shall be nominal strength as specified in Chapter 17 of

9

ACI 318 for the connections of structural components. The amplification factor to account for

10

the seismic overstrength, Ω0, shall be taken equal to unity for the connections of structural

11

components.

12

A strength reduction factor, and amplification factor, Ω0, shall be used for the connections of

13

non-structural components. 

14

 

15

C3.6.1 Cast‐in‐Place Anchors and Connection Systems―The strength reduction factor, in ACI 

16

318 shall be taken equal to unity for the lower bound connection strength of structural 

17

components but the requirements in Section 17.2.3 of ACI 318 shall be satisfied including the 

18

reduction of the strength due to cracked concrete and cyclic loading. The component actions on 

19

the anchors and connection systems for structural components are considered as force‐

20

controlled actions according to Sections 7.5.2 and 7.5.3 of ASCE 41 so further amplification of 

21

the seismic demand is not necessary.   

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 55 of 217

1

However, the seismic demand on non‐structural components in Chapter 13 of ASCE 41 is based 

2

on that in ASCE/SEI 7. A strength reduction factor, , and amplification factor, Ω0, should be 

3

consistent with the demand. 

4 5

3.6.2 Post-installed Anchors―All component actions on post-installed anchor connection systems

6

shall be considered force-controlled. The lower-bound capacity of post-installed anchors shall be

7

nominal strength, as specified in Chapter 17 of ACI 318, or mean less one standard deviation of

8

ultimate values published in approved test reports for the connections of structural components.

9

The amplification factor to account for the seismic overstrength, Ω0, shall be taken equal to unity

10

for the connections of structural components.

11

A strength reduction factor,and amplification factor, Ω0, shall be used for the connections of

12

non-structural components.

13 14

C3.6.2 Post‐installed Anchors and Connection Systems―The strength reduction factor,  in ACI 

15

318  shall  be  taken  equal  to  unity  for  the  lower  bound  connection  strength  of  structural 

16

components  but  the  requirements  in  Section  17.2.3  of  ACI  318  shall  be  satisfied  including  the 

17

reduction of the strength due to cracked concrete and cyclic loading. The component actions on 

18

post‐installed  anchors  for  structural  components  are  considered  as  force‐controlled  actions 

19

according to Sections 7.5.2 and 7.5.3 of ASCE 41 so further amplification of the seismic demand 

20

is not necessary.   

21

However, the seismic demand on non‐structural components in Chapter 13 of ASCE 41 is based 

22

on  that  in  ASCE/SEI  7.  Strength  reduction  factor,and  amplification  factor,  Ω0,  should  be 

23

consistent with the demand.  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 56 of 217

1 2

3.7―Retrofit Measures

3

Seismic retrofit measures for concrete buildings shall meet the requirements of this section and

4

other provisions of this standard.

5

Retrofit measures shall include replacement or retrofit of the component or modification of the

6

structure so that the component is no longer deficient for the selected Performance Objective. If

7

component replacement is selected, the new component shall be designed in accordance with this

8

standard and detailed and constructed in compliance with the applicable building code.

9

Retrofit measures shall be evaluated to ensure that the completed retrofit achieves the selected

10

performance objective. The effects of retrofit on stiffness, strength, and deformability shall be

11

taken into account in an analytical model of the rehabilitated structure. The compatibility of new

12

and existing components shall be checked at displacements consistent with the selected

13

Performance Level.

14

Connections required between existing and new components shall satisfy the requirements of Section

15

3.6 and other requirements of this standard.

16 17 18

4―CONCRETE MOMENT FRAMES 4.1―Types of Concrete Moment Frames

19

Concrete moment frames are defined as elements composed primarily of horizontal frame

20

components, such as beams, slabs, or both; vertical frame components, such as columns; and joints

21

connecting horizontal and vertical frame components. To resist seismic forces, these elements act

22

alone or in conjunction with shear walls, braced frames, or other elements.

23

Frames that are cast monolithically, including monolithic concrete frames created by the addition

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 57 of 217

1

of new material, are addressed in this chapter. Frames addressed include reinforced concrete

2

beam–column moment frames, post-tensioned concrete beam–column moment frames, and slab–

3

column moment frames.

4

The frame classifications in Sections 4.1.1 through 4.1.3 include existing construction, new

5

construction, existing construction that has been retrofitted, frames intended as part of

6

the seismic-force-resisting system, and frames not intended as part of the seismic-force-resisting

7

system in the original design.

8

4.1.1 Reinforced Concrete Beam–Column Moment Frames―Reinforced concrete beam–column

9

moment frames, addressed in Section 4.2, are defined by the following conditions:

10

1.

Frame components are beams with or without slabs, columns, and their connections;

11

2.

Frames are of monolithic construction that provide for moment and shear transfer between

12 13

beams and columns; and 3.

14

Primary reinforcement in components contributing to seismic-force resistance is nonprestressed.

15

4.1.2 Post-tensioned Concrete Beam–Column Moment Frames―Post-tensioned concrete beam–

16

column moment frames, addressed in Section 4.3, are defined by the following conditions:

17

1.

Frame components are beams (with or without slabs), columns, and their connections;

18

2.

Frames are of monolithic construction that provide for moment and shear transfer between

19 20 21

beams and columns; and 3.

Primary reinforcement in beams contributing to seismic-force resistance includes posttensioned reinforcement with or without non prestressed reinforcement.

22

4.1.3 Slab–Column Moment Frames―Slab–column moment frames, addressed in Section 2.4, are

23

defined by the following conditions:

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 58 of 217

1

1.

2 3

and their connections; 2.

4 5 6

Frame components are slabs with or without beams in the transverse direction, columns,

Frames are of monolithic construction that provide for moment and shear transfer between slabs and columns; and

3.

Primary reinforcement in slabs contributing to seismic-force resistance includes nonprestressed reinforcement, prestressed reinforcement, or both.

7 8

4.2―Reinforced Concrete Beam–Column Moment Frames

9

4.2.1 General―The analytical model for a beam–column frame element shall represent strength,

10

stiffness, and deformation capacity of beams, columns, beam–column joints, and other

11

components of the frame, including connections with other elements. Potential failure in flexure,

12

shear, and reinforcement development at any section along the component length shall be

13

considered. Interaction with other elements, including nonstructural components, shall be included.

14

Analytical models representing a beam–column frame using line elements with properties

15

concentrated at component centerlines shall be permitted. Where beam and column centerlines do

16

not intersect, the eccentricity effects between frame centerlines shall be considered. Where the

17

centerline of the narrower component falls within the middle third of the adjacent frame component

18

measured transverse to the framing direction, this eccentricity need not be considered. Where

19

larger eccentricities occur, the effect shall be represented either by reductions in effective stiffness,

20

strength, and deformation capacity or by direct modeling of the eccentricity.

21

The beam–column joint in monolithic construction is the zone having horizontal dimensions

22

equal to the column cross-sectional dimensions and vertical dimension equal to the beam depth. A

23

wider joint is acceptable where the beam is wider than the column. The beam–column joint shall

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 59 of 217

1

be modeled according to Section 4.2.2 or as justified by experimental evidence. The model of the

2

connection between columns and foundation shall be selected based on details of the column–

3

foundation connection and rigidity of the foundation–soil system.

4

Action of the slab as a diaphragm interconnecting vertical components shall be considered.

5

Action of the slab as a composite beam flange shall be considered in developing stiffness, strength,

6

and deformation capacities of the beam component model per Section 3.1.3.

7

Inelastic action shall be restricted to those components and actions listed in Tables 7, 8, and 9,

8

except where it is demonstrated by experimental evidence and analysis that other inelastic action

9

is acceptable for the selected performance level. Acceptance criteria are specified in Section 4.2.4.

10 11

C4.2.1  General―Nonstructural  components  should  be  included  in  the  analytical  model  if  such 

12

elements  contribute  significantly  to  building  stiffness,  modify  dynamic  properties,  or  have 

13

significant  impact  on  the  behavior of  adjacent structural  elements.  Section  7.2.3.3  of  ASCE  41 

14

suggests that nonstructural components should be included if their lateral stiffness exceeds 10% 

15

of the total initial lateral stiffness of a story. Partial infill walls and staircases are examples of 

16

nonstructural elements that can alter the behavior of adjacent concrete structural elements. 

17 18

4.2.2 Stiffness of Reinforced Concrete Beam–Column Moment Frames

19

4.2.2.1 Linear Static and Dynamic Procedures―Beams shall be modeled considering flexural

20

and shear stiffnesses, including the effect of the slab acting as a flange in monolithic construction

21

according to the provisions in Section 3.1.3. Columns shall be modeled considering flexural, shear,

22

and axial stiffnesses. Refer to Section 3.1.2 to compute the effective stiffnesses. Where joint

23

stiffness is not modeled explicitly, it shall be permitted to be modeled implicitly by adjusting a This draft is not final and is subject to revision. This draft is for public review and comment only. Page 60 of 217

1

centerline model (Fig. 2):

2

1.

For ΣMColE/ΣMnBE > 1.2, column offsets are rigid and beam offsets are not;

3

2.

For ΣMColE/ΣMBE < 0.8, beam offsets are rigid and column offsets are not; and

4

3.

For 0.8 ≤ ΣMColE/ΣMBE ≤ 1.2, half of the beam and column offsets are considered rigid.

5

MColE shall be calculated considering axial force from the gravity loads specified in Equation 7-

6

3 of ASCE 41. Because this modeling approach accounts only for joint shear flexibility, stiffness

7

values used for the beams and columns shall include the flexibility resulting from bar slip.

8 9

C4.2.2.1  Linear Static and Dynamic Procedures―Various approaches to explicitly model beam–

10

column joints are available in the literature (El‐Metwally and Chen 1988; Ghobarah and Biddah 

11

1999; Shin and LaFave 2004; Mitra and Lowes 2007, Lin and Restrepo, 2002). For simplicity of 

12

implementation  in  commercial  structural  analysis  software  and  agreement  with  calibration 

13

studies performed in the development of this standard, this section defines an implicit beam–

14

column  joint  modeling  technique  using  centerline  models  with  semirigid  joint  offsets.  Fig.  2 

15

shows an example of an explicit joint model and illustrates the implicit joint modeling approach. 

16

In the implicit joint model, only a portion of the beam and column, or both, within the geometric 

17

joint region is defined as rigid. In typical commercial software packages, this portion can range 

18

from 0, in which case the model is a true centerline model, to 1.0, where the entire joint region 

19

is rigid. Further commentary is provided in Section C5.1.2.1, and background material is provided 

20

in Elwood et al. (2007) and Birely et al. (2009). 

21 22

4.2.2.2 Nonlinear Static Procedure―Nonlinear load-deformation relations shall comply with

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 61 of 217

1

Section 3.1.2. Nonlinear modeling parameters for beams, columns, and beam–column joints are

2

provided in Tables 7, 8, 9, and 10, respectively.

3

Beams and columns shall be modeled using concentrated or distributed plastic hinge models.

4

Other models whose behavior represents the behavior of reinforced concrete beam and column

5

components subjected to seismic loading shall be permitted. The beam and column model shall be

6

capable of representing inelastic response along the component length, except where it is shown

7

by equilibrium that yielding is restricted to the component ends. Where nonlinear response is

8

expected in a mode other than flexure, the model shall be established to represent such effects.

9

Monotonic load-deformation relations shall be established according to the generalized load-

10

deformation relation shown in Fig. 1, with the exception that different relations shall be permitted

11

where verified by experiments. The overall load-deformation relation shall be established so that

12

maximum resistance is consistent with the strength specifications of Sections 3.2 and 4.2.3.

13

For beams and columns, the generalized deformation in Fig. 1 is plastic hinge rotation. For

14

beam–column joints, the generalized deformation is shear strain. Values of the generalized

15

deformation at points B, C, and D shall be derived from experiments or rational analyses and shall

16

take into account the interactions among flexure, axial load, and shear.

17 18

C4.2.2.2  Nonlinear  Static  Procedure―The  modeling  parameters  and  acceptance  criteria 

19

specified in Tables 8 and 9 reflect results from research on reinforced concrete columns and an 

20

updated database of columns tests that includes 319 rectangular and 171 circular column tests 

21

without  lap‐splices  (Ghannoum  and  Sivaramakrishnan  2012  a,b),  and  a  database  of  39 

22

rectangular  columns  containing  lap‐splices  (Al  Awaar  2015).  Most  circular  columns  in  the 

23

database  contained  spiral  reinforcement.  Separate  tables  are  given  for  rectangular  columns  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 62 of 217

1

(Table 8) and spirally reinforced circular columns (Table 9). For circular columns reinforced with 

2

ties  not  conforming  to  ACI  318  seismic  hoop  designation,  Table  8  should  be  used.  The  three 

3

parameters that are used in Tables 8 and 9 to calculate modeling parameters and acceptance 

4

criteria for columns not controlled by inadequate development or splicing are: axial load ratio, 

5

transverse reinforcement ratio, and ratio of shear demand at flexural yielding to shear capacity 

6

(VyE/VCol0E). For columns controlled by inadequate development or splicing, the same modeling 

7

parameters  were  introduced  for  rectangular  and  circular  columns  in  Tables  8  and  9  and  are 

8

related  to:  axial  load  ratio,  transverse  reinforcement  ratio,  and  the  ratio  of  transverse 

9

reinforcement to longitudinal reinforcement strength.   

10

The modeling parameters in Tables 8 and 9 define the plastic rotations according to Fig. 1a. As 

11

shown in Fig. 1a, modeling parameter anl provides the plastic rotation at significant loss of lateral 

12

force capacity. For the purposes of determining anl values based on test data, it was assumed 

13

that this point represented a 20% or greater reduction in the lateral force resistance from the 

14

measured peak shear capacity. For columns expected to experience flexural failures (VyE/ VCol0E ≤ 

15

0.6), such loss of lateral load resistance can be caused by concrete crushing, bar buckling, and 

16

other flexural damage mechanisms. For columns expected to experience shear failures, either 

17

before  or  after  flexural  yielding  (VyE/  VCol0E  >  0.6),  loss  of  lateral  load  resistance  is  commonly 

18

caused  by  severe  diagonal  cracking  indicative  of  shear  damage.  For  columns  with  inadequate 

19

anchorage  or  splicing,  loss  of  lateral  load  resistance  is  caused  by  bond  splitting  failures  that 

20

gradually  unload  the  longitudinal  bars.  Consistent  with  Section  7.5.1.2  of  ASCE  41,  modeling 

21

parameter bnl provides an estimate of the plastic rotation at the loss of gravity load support, that 

22

is, axial load failure.  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 63 of 217

1

Modeling  parameters  given  in  Tables  8  and  9  represent  median  estimates  of  parameters 

2

extracted  from  columns  in  the  database  (Ghannoum  and  Sivaramakrishnan  2012  a,b).  For 

3

columns with longitudinal bars that are adequately anchored or spliced, equations for modeling 

4

parameter anl were obtained from a weighted regression analysis of the data (Ghannoum and 

5

Matamoros 2014). An upper bound on the transverse reinforcement ratio (ρt) of 0.0175 was 

6

selected because few columns in the database contained a ratio exceeding that limit, as well as 

7

to limit the maximum deformation capacity of highly confined columns. Equations for modeling 

8

parameters cannot be used for columns with a transverse reinforcement ratio below 0.0005 as 

9

they are not intended for unreinforced columns. For columns with ties not adequately anchored 

10

into the core, an upper bound on the transverse reinforcement ratio of 0.0075 was selected to 

11

limit their contribution to deformation capacity. A lower limit on VyE/ VCol0E of 0.2 is prescribed 

12

because few columns in the database have lower values of VyE/ VCol0E. 

13

Due to the scarcity of collapse tests, equations for modeling parameter bnl were obtained from 

14

a behavioral model adapted from Elwood and Moehle (2005) (Ghannoum and Matamoros 2014). 

15

Recent  test  data  from  columns  tested  to  axial  failure  (Matamoros  et  al.  2008;  Woods  and 

16

Matamoros 2010; Henkhaus 2010; and Simpson and Matamoros 2012) show that the drift ratio 

17

at  axial  failure  for  columns  with  various  configurations  and  loading  histories  is  estimated 

18

adequately using the failure model proposed by Elwood and Moehle (2005). The set of columns 

19

evaluated  included  slender  and  short  columns,  as  well  as  shear‐critical  columns  and  columns 

20

failing  in  shear  after  flexural  yielding.  Table  C1  presents  the  practical  range  of  modeling 

21

parameters for concrete columns evaluated using the equations in Tables 8 and 9.   

22

The  tabulated  relations  for  modeling  parameters  were  evaluated  using  the  data  from  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 64 of 217

1

laboratory  tests  (Ghannoum  and  Matamoros  2014).  The  An  error  ratio  was  is  defined  as  the 

2

modeling parameters evaluated from tables divided by the experimental modeling parameter 

3

values  for  the  column  tests.  The  error  ratios  were  found  to  follow  lognormal  probability 

4

distributions for all modeling parameters (Ghannoum and Matamoros 2014). Fitted lognormal 

5

distributions were used to produce multipliers for the tabulated modeling parameter relations 

6

to achieve specific probabilities of exceedance (Table C2).   

7

Acceptance criteria  in  Tables  8  and  9  were  selected as  15%  of  the  anl  values  for  Immediate 

8

Occupancy, 50% of the bnl values for Life Safety, and 70% of the bnl values for Collapse Prevention. 

9

The fractions of bnl values were selected based on Table C2 to achieve low probabilities of axial 

10

failure for columns satisfying the acceptance criteria. These probabilities were 10% and 25% for 

11

Life Safety and Collapse Prevention, respectively. 

12

Note that the probabilities of exceedance in Table C1 correspond to the probability of failure 

13

for a column given a plastic rotation demand equal to the  modeling parameter scaled by the 

14

appropriate multiplier in Table C2.   

15

Most laboratory tests ignore some factors that can influence the drift capacity, such as loading 

16

history and bidirectional loading. The probabilities of exceedance in Table C2 can therefore be 

17

larger if these factors are considered. Databases used to assess the model conservatism consist 

18

of rectangular and circular columns subjected to unidirectional lateral forces applied parallel to 

19

either one of the column principal axes. Actual columns have configurations and loadings that 

20

differ from those used in the databases. Note that bidirectional loading on corner columns and 

21

long duration seismic motions is expected to result in lower deformation capacities (Matamoros 

22

et al. 2008; Henkhaus 2010, Woods and Matamoros 2010; Simpson and Matamoros 2012; and  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 65 of 217

1

Ghannoum  and  Matamoros  2014).  Test  data  has  shown  that  the  drift  ratio  at  axial  failure  of 

2

columns subjected to biaxial loading and/or a large number of cycles per drift ratio can be lower 

3

than that of column with loading histories consisting of uniaxial loading with three cycles per drift 

4

ratio. Limited data exist, however, to assess the degree of reduction anticipated. 

5

The  acceptance  criteria  for  linear  procedures  in  Table  10  were  determined  based  on  the 

6

modeling  parameters  for  nonlinear  procedures  in  Tables  8  and  9  in  accordance  with  ASCE  41 

7

Section 7.6. 

8

The  licensed  design  professional  is  referred  to  the  following  reports  for  further  guidance 

9

regarding determination of modeling parameters and acceptance criteria for reinforced concrete 

10

columns: Lynn et al. 1996; Panagiotakos and Fardis 2001; Sezen 2002; Fardis and Biskinis 2003; 

11

Biskinis  et  al.  2004;  Elwood  and  Moehle  2004,  2005a,  and  2005b;  Berry  and  Eberhard  2005; 

12

Henkhaus,  2010;  Matamoros  et  al.  2008;  Woods  and  Matamoros  2010;  and  Ghannoum  and 

13

Matamoros 2014. 

14 15

4.2.2.3 Nonlinear Dynamic Procedure―For NDP, the complete hysteretic behavior of each

16

component shall be modeled using properties verified by experimental evidence. The use of the

17

generalized load-deformation relation described by Fig. 1 to represent the envelope relation for the

18

analysis shall be permitted. Refer to Section 4.2.2.2 for the application of parameters for columns

19

in Tables 8 and 9. Unloading and reloading properties shall represent significant stiffness and

20

strength-degradation characteristics.

21 22

4.2.3 Strength of Reinforced Concrete Beam–Column Moment Frames―Component strengths

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 66 of 217

1

shall be computed according to the general requirements of Section 3.2, as modified in this section.

2

The maximum component strength shall be determined considering potential failure in flexure,

3

axial load, shear, torsion, bar development, and other actions at all points along the length of the

4

component, under the actions of design gravity load and seismic force combinations.

5 6

4.2.3.1 Columns―For columns, the shear strength Vcol shall be permitted to be calculated using

7

Eq. (3).

8 9

(3)

10

11

12





/



13

14







1



.

/





1

.



0.8



⁄ .

(3)

/







/

/



0.8



/

15 16 17

in which knl = 1.0 in regions where displacement ductility demand is less than or equal to 2, 0.7 in

18

regions where displacement ductility demand is greater than or equal to 6, and varies linearly for This draft is not final and is subject to revision. This draft is for public review and comment only. Page 67 of 217

1

displacement ductility between 2 and 6;

2

  0.75 for lightweight aggregate concrete and 1.0 for normal-weight aggregate concrete;

3

NUG is the axial compression force calculated using Eq. 7-3 of ASCE 41 (set to zero for tension

4

force);

5

MUD/VUDd is the largest ratio of moment to shear times effective depth for the column under design

6

loadings evaluated using Eq. (7-34) of ASCE 41, but shall not be taken greater than 4 or less

7

than 2; and

8 9 10

αCol = 1.0 for s/d ≤ 0.75, 0.0 for s/d ≥ 1.0, and varies linearly for s/d between 0.75 and 1.0. Alternative formulations for column strength that consider effects of reversed cyclic inelastic deformations and that are verified by experimental evidence shall be permitted.

11

For columns satisfying the detailing and proportioning requirements of ACI 318, Chapter 18,

12

and for which shear is classified as a deformation-controlled action, as well as for columns in

13

which shear is classified as a force-controlled action, it shall be permitted to use the shear strength

14

equations in Chapter 18 of ACI 318.

15 16

C4.2.3.1  Columns―The use of shear strength equations and material properties to calculate the 

17

shear strength VCol0E in this standard is illustrated in Figure C‐1. 

18

As  discussed  in  Section  C5.3,  experimental  evidence  indicates  the  possibility  that  flexural 

19

deformability can be reduced as coexisting shear forces increase. As flexural ductility demands 

20

increase, shear capacity decreases, which can result in a shear failure before theoretical flexural 

21

deformation  capacities  are  reached.  Caution  should  be  exercised  when  flexural  deformation 

22

capacities are determined by calculation. 

23

Eq.  (3)  illustrates  the  reduction  in  column  shear  capacity  with  increasing  nonlinear  This draft is not final and is subject to revision. This draft is for public review and comment only. Page 68 of 217

1

deformations and provides an estimate of the mean observed shear strength for 51 rectangular 

2

reinforced concrete columns subjected to unidirectional lateral forces parallel to one face of the 

3

column  (Sezen  and  Moehle  2004).  The  coefficient  of  variation  for  the  ratio  of  measured  to 

4

calculated shear strength is 0.15. 

5

For  a  column  experiencing  flexural  yielding  before  shear  failure  (VyE  3.0 and shall be considered short 

5

or squat if their aspect ratio is  d/2

0.0030

0.01

0.2

0.0015

0.005

0.01

Condition iii. Beams Controlled by Inadequate Development or Splicing Along the Span Stirrup spacing  d/2

0.0030

0.02

0.0

0.0015

0.01

Stirrup spacing > d/2

0.0030

0.01

0.0

0.0015

0.005

b

0.02 0.01 b

Condition iv. Beams Controlled by Inadequate Embedment into Beam–Column Joint 0.015

0.03

0.2

0.01

0.02

0.03

Note: fc in lb/in. (MPa) units. a Values between those listed in the table shall be determined by linear interpolation. b Where more than one of Conditions i, ii, iii, and iv occur for a given component, use the minimum appropriate numerical value from the table. c “C” and “NC” are abbreviations for conforming and nonconforming transverse reinforcement, respectively. Transverse reinforcement is conforming if, within the flexural plastic hinge region, hoops are spaced at  d/3, and if, for components of moderate and high ductility demand, the strength provided by the hoops (Vs) is at least 3/4 of the design shear. Otherwise, the transverse reinforcement is considered nonconforming. d V is the shear force from NSP or NDP. 2

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 195 of 217

1 2 3

Table 8—Modeling parameters and numerical acceptance criteria for nonlinear procedures— reinforced concrete columns other than circular with spiral reinforcement or seismic hoops as defined in ACI 318 Modeling Parameters Plastic rotation angles, anl and bnl ( radians) Residual strength ratio, cnl

Acceptance criteria Plastic rotation angle (radians) Performance level IO LS CP Columns not controlled by inadequate development or splicing along the clear height‡

 V yE N a nl   0.042  0.043 UD'  0.63  t  0.023  VColOE Ag f cE  For

  N UD 0 .5   0.5 bnl   0.01  a nl ' Ag f cE N 1 f cE' UD  5  0.8 A g f cE'  t f ytE 

cnl  0.24  0.4

   0 .0   a

0.15 anl ≤ 0.005

0.5 bnlb

0.7 bnlb

NUD  0.0 Ag fcE'

Columns controlled by inadequate development or splicing along the clear heightc

 1  t f ytE anl   8  f l ylE 

  0 .0 d    0.025 

 0.0   N e bnl   0.012  0.085 UD'  12t   anl   Ag fcE    0.06

0.0

0.5 bnl

0.7 bnl

cnl  0.15  36t  0.4

4 5 6 7 8 9 10 11 12 13 14 15 16 17

ρt shall not be taken greater than 0.0175 in any case nor greater than 0.0075 when ties are not adequately anchored in the core. Equations in the table are not valid for columns with ρt smaller than 0.0005. VyE/VColOE shall not be taken less than 0.2. NUD shall be the maximum compressive axial load accounting for the effects of lateral forces as described in Eq. (7-34) of ASCE 41. Alternatively, it shall be permitted to evaluate NUD based on a limit-state analysis. a bnl shall be reduced linearly for NUD/(Agf’cE) > 0.5 from its value at NUD/(Agf’cE) = 0.5 to zero at NUD/(Agf’cE) = 0.7 but shall not be smaller than anl b

NUD/(Agf’cE) shall not be taken smaller than 0.1. Columns are considered to be controlled by inadequate development or splices where the calculated steel stress at the splice exceeds the steel stress specified by Eqs. (1a) or (1b). Modeling parameter for columns controlled by inadequate development or splicing shall never exceed those of columns not controlled by inadequate development or splicing. d anl for columns controlled by inadequate development or splicing shall be taken as zero if the splice region is not crossed by at least two tie groups over its length. e ρt shall not be taken greater than 0.0075. c

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 196 of 217

1 2 3

Table 9—Modeling parameters and numerical acceptance criteria for nonlinear procedures— reinforced concrete circular columns with spiral reinforcement or seismic hoops as defined in ACI 318 Modeling Parameters Plastic rotation angles, anl and bnl ( radians) Residual strength ratio, cnl

Acceptance criteria Plastic rotation angle (radians) Performance level IO LS Columns not controlled by inadequate development or splicing along the clear height‡

 V N a nl   0.06  0.06 UD'  1.3  t  0.037 yE  A f V g cE ColOE  For

   0 .0  

  N UD 0.65   0.5 bnl   0.01  a nl ' Ag f cE N 1 f cE' UD  5 '  0.8 Ag f cE  t f ytE 

cnl  0.24  0.4

CP

a

0.15 anl ≤ 0.005

0.5 bnlb

0.7 bnlb

NUD  0.0 Ag fcE'

Columns controlled by inadequate development or splicing along the clear heightc

 1  t f ytE anl   8  f l ylE 

  0 .0 d    0.025 

 0.0   NUD e   bnl  0.012  0.085  12t  anl   Ag f cE'    0.06

4 5 6 7 8 9 10 11 12 13 14 15 16

0.0

0.5 bnl

0.7 bnl

cnl  0.15  36t  0.4 ρt shall not be taken greater than 0.0175 in any case nor greater than 0.0075 when ties are not adequately anchored in the core. Equations in the table are not valid for columns with ρt smaller than 0.0005. VyE/VColOE shall not be taken less than 0.2. NUD shall be the maximum compressive axial load accounting for the effects of lateral forces as described in Eq. (7-34) of ASCE 41. Alternatively, it shall be permitted to evaluate NUD based on a limit-state analysis. a bnl shall be reduced linearly for NUD/(Agf’cE) > 0.5 from its value at NUD/(Agf’cE) = 0.5 to zero at NUD/(Agf’cE) = 0.7 but shall not be smaller than anl b NUD/(Agf’cE) shall not be taken smaller than 0.1. c Columns are considered to be controlled by inadequate development or splices where the calculated steel stress at the splice exceeds the steel stress specified by Eqs. (1a) or (1b). Modeling parameter for columns controlled by inadequate development or splicing shall never exceed those of columns not controlled by inadequate development or splicing. d anl for columns controlled by inadequate development or splicing shall be taken as zero if the splice region is not crossed by at least two tie groups over its length. e ρt shall not be taken greater than 0.0075.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 197 of 217

1

Table 10a - Numerical Acceptance Criteria for Linear Procedures—Reinforced concrete columns

2

other than circular with spiral reinforcement or seismic hoops as defined in ACI 318

m-factorsa Performance Level

 NUD    A f'   g cE 

Component Type

t

Primary VyE/VColOE

IO

LS

Secondary CP

LS

CP ‡

Columns not controlled by inadequate development or splicing along the clear height  0.1

 0.0175

≥ 0.2 < 0.6

1.7

3.4

4.2

6.8

8.9

 0.7

 0.0175

≥ 0.2 < 0.6

1.2

1.4

1.7

1.4

1.7

 0.1

 0.0005

≥ 0.2 < 0.6

1.5

2.6

3.2

2.6

3.2

 0.7

 0.0005

≥ 0.2 < 0.6

1.0

1.0

1.0

1.0

1.0

 0.1

 0.0175

≥ 0.6 < 1.0

1.5

2.7

3.3

6.8

8.9

 0.7

 0.0175

≥ 0.6 < 1.0

1.0

1.0

1.0

1.0

1.0

 0.1

 0.0005

≥ 0.6 < 1.0

1.3

1.9

2.3

1.9

2.3

 0.7

 0.0005

≥ 0.6 < 1.0

1.0

1.0

1.0

1.0

1.0

 0.1

 0.0175

≥ 1.0

1.3

1.8

2.2

6.8

8.9

 0.7

 0.0175

≥ 1.0

1.0

1.0

1.0

1.0

1.0

 0.1

 0.0005

≥ 1.0

1.1

1.0

1.1

1.7

2.1

 0.7

 0.0005

≥ 1.0

1.0

1.0

1.0

1.0

1.0

Columns controlled by inadequate development or splicing along the clear height‡

3 4 5 6 7

 0.1

 0.0075

1.0

1.7

2.0

5.3

6.8

 0.7

 0.0075

1.0

1.0

1.0

2.8

3.5

 0.1

 0.0005

1.0

1.0

1.0

1.4

1.6

 0.7

 0.0005

1.0

1.0

1.0

1.0

1.0

a

Values between those listed in the table shall be determined by linear interpolation. ‡ Columns are considered to be controlled by inadequate development or splicing where the calculated steel stress at the splice exceeds the steel stress specified by Eqs. (1a) or (1b). Acceptance criteria for columns controlled by inadequate development or splicing shall never exceed those of columns not controlled by inadequate development or splicing.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 198 of 217

1

Table 10b - Numerical Acceptance Criteria for Linear Procedures—Reinforced concrete circular

2

columns with spiral reinforcement or seismic hoops as defined in ACI 318

m-factorsa Performance Level

 NUD    A f'   g cE 

Component Type

t

Primary VyE/VColOE

IO

LS

Secondary CP

LS

CP ‡

Columns not controlled by inadequate development or splicing along the clear height  0.1

 0.0175

≥ 0.2 < 0.6

1.7

4.8

6.2

8.9

11.6

 0.7

 0.0175

≥ 0.2 < 0.6

1.4

2.1

2.6

2.1

2.6

 0.1

 0.0005

≥ 0.2 < 0.6

1.6

3.2

4.0

3.2

4.0

 0.7

 0.0005

≥ 0.2 < 0.6

1.0

1.0

1.0

1.0

1.0

 0.1

 0.0175

≥ 0.6 < 1.0

1.7

3.7

4.7

8.9

11.6

 0.7

 0.0175

≥ 0.6 < 1.0

1.1

1.0

1.1

1.0

1.1

 0.1

 0.0005

≥ 0.6 < 1.0

1.4

2.1

2.5

2.3

2.8

 0.7

 0.0005

≥ 0.6 < 1.0

1.0

1.0

1.0

1.0

1.0

 0.1

 0.0175

≥ 1.0

1.4

2.3

2.9

8.9

11.6

 0.7

 0.0175

≥ 1.0

1.0

1.0

1.0

1.0

1.0

 0.1

 0.0005

≥ 1.0

1.0

0.8

0.8

2.3

2.8

 0.7

 0.0005

≥ 1.0

1.0

1.0

1.0

1.0

1.0

Columns controlled by inadequate development or splicing along the clear height‡

3 4 5 6 7

 0.1

 0.0075

1.0

1.7

2.0

5.3

6.8

 0.7

 0.0075

1.0

1.0

1.0

2.8

3.5

 0.1

 0.0005

1.0

1.0

1.0

1.4

1.6

 0.7

 0.0005

1.0

1.0

1.0

1.0

1.0

a

Values between those listed in the table shall be determined by linear interpolation. ‡ Columns are considered to be controlled by inadequate development or splicing where the calculated steel stress at the splice exceeds the steel stress specified by Eqs. (1a) or (1b). Acceptance criteria for columns controlled by inadequate development or splicing shall never exceed those of columns not controlled by inadequate development or splicing.

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 199 of 217

Table 11. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures—Reinforced Concrete Beam–Column Joints Modeling Parametersa

Acceptance Criteriaa Plastic Rotations Angle (radians)

Plastic Rotations Angle (radians) a

Conditions

Performance Level

Residual Strength Ratio

b

c

IO

LS

CP

Condition i. Interior joints (Note: for classification of joints, refer to Fig. 3) P A g f ' cE

Transverse reinforcementc

V VJ

 0.1

C

 1.2

0.015

0.03

0.2

0.0

0.02

0.03

 0.1

C

 1.5

0.015

0.03

0.2

0.0

0.015

0.02

 0.4

C

 1.2

0.015

0.025

0.2

0.0

0.015

0.025

 0.4

C

 1.5

0.015

0.2

0.2

0.0

0.015

0.02

 0.1

NC

 1.2

0.005

0.2

0.2

0.0

0.015

0.02

 0.1

NC

 1.5

0.005

0.015

0.2

0.0

0.01

0.015

 0.4

NC

 1.2

0.005

0.015

0.2

0.0

0.01

0.015

 0.4

NC

 1.5

0.005

0.015

0.2

0.0

0.01

0.015

b

d

Condition ii. Other joints (Note: for classification for joints, refer to Fig. 3) P A g f ' cE

Transverse reinforcementc

V VJ

 0.1

C

 1.2

0.01

0.02

0.2

0.0

0.015

0.02

 0.1

C

 1.5

0.01

0.015

0.2

0.0

0.01

0.015

 0.4

C

 1.2

0.01

0.02

0.2

0.0

0.015

0.02

 0.4

C

 1.5

0.01

0.015

0.2

0.0

0.01

0.015

 0.1

NC

 1.2

0.005

0.01

0.2

0.0

0.0075

0.01

 0.1

NC

 1.5

0.005

0.01

0.2

0.0

0.0075

0.01

 0.4

NC

 1.2

0.0

0.0075

0.0

0.0

0.005

0.0075

 0.4

NC

 1.5

0.0

0.0075

0.0

0.0

0.005

0.0075

b

d

a

Values between those listed in the table shall be determined by linear interpolation. P is the design axial force on the column above the joint calculated using limit-state analysis procedures in accordance with Section 4.2.4, and Ag is the gross cross-sectional area of the joint. c “C” and “NC” are abbreviations for conforming and nonconforming transverse reinforcement. Joint transverse reinforcement is conforming if hoops are spaced at  hc/2 within the joint. Otherwise, the transverse reinforcement is considered nonconforming. d V is the shear force from NSP or NDP, and VJ is the shear strength for the joint. The shear strength shall be calculated according to Section 4.2.3. b

1 This draft is not final and is subject to revision. This draft is for public review and comment only. Page 200 of 217

1 2 3

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 201 of 217

1 Table 12. Values of  for Joint Strength Calculation

Value of  Condition i: Interior Jointsa Transverse Reinforcementb

Condition ii: other joints

Interior Joint Exterior Joint Knee Joint with or Interior Joint with Without Transverse Exterior Joint with Without Transverse Without Transverse Transverse Beams Beams Transverse Beams Beams Beams

C

20

15

15

12

8

NC

12

10

8

6

4

a

For classification of joints, refer to Fig. 3. b “C” and “NC” are abbreviations for conforming and nonconforming transverse reinforcement. Joint transverse reinforcement is conforming if hoops are spaced at  hc/2 within the joint. Otherwise, the transverse reinforcement is considered nonconforming.

2 3

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 202 of 217

Table 13. Numerical Acceptance Criteria for Linear Procedures—Reinforced Concrete Beams m-factorsa

Performance Level Component Type Primary Conditions

IO

LS

Secondary CP

LS

CP

Condition i. Beams Controlled by Flexureb V

d

 –  ------------- bal

Transverse reinforcementc

 0.0

C

 3 (0.25)

3

6

7

6

10

 0.0

C

 6 (0.5)

2

3

4

3

5

 0.5

C

 3 (0.25)

2

3

4

3

5

 0.5

C

 6 (0.5)

2

2

3

2

4

 0.0

NC

 3 (0.25)

2

3

4

3

5

 0.0

NC

 6 (0.5)

1.25

2

3

2

4

 0.5

NC

 3 (0.25)

2

3

3

3

4

 0.5

NC

 6 (0.5)

1.25

2

2

2

3 4

bw d

f 'cE

Condition ii. Beams Controlled by Shearb Stirrup spacing  d/2

1.25

1.5

1.75

3

Stirrup spacing > d/2

1.25

1.5

1.75

2

3

Condition iii. Beams Controlled by Inadequate Development or Splicing Along the Span Stirrup spacing  d/2

1.25

1.5

1.75

3

Stirrup spacing > d/2

1.25

1.5

1.75

2

b

4 3 b

Condition iv. Beams Controlled by Inadequate Embedment into Beam–Column Joint 2

2

3

3

4

Note: fc in lb/in. (MPa) units. a Values between those listed in the table shall be determined by linear interpolation. b Where more than one of Conditions i, ii, iii, and iv occurs for a given component, use the minimum appropriate numerical value from the table. c “C” and “NC” are abbreviations for conforming and nonconforming transverse reinforcement. Transverse reinforcement is conforming if, within the flexural plastic hinge region, hoops are spaced at  d/3, and if, for components of moderate and high ductility demand, the strength provided by the hoops (Vs) is at least 3/4 of the design shear. Otherwise, the transverse reinforcement is considered nonconforming. d V is the shear force calculated using limit-state analysis procedures in accordance with Section 4.2.4.1. 2

1 2

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 203 of 217

Table 14—Numerical acceptance criteria for linear procedures—reinforced concrete beam–column joints m-Factorsa

Performance Level Component Type Primary Conditions

IO

LS

Secondary CP

LS

CP

Condition i. Interior Joints (for classification of joints, refer to Fig. 3) P A g f ' cE

b

Transverse reinforcementc

V VJ

d

 0.1

C

 1.2

1

1

1

3

4

 0.1

C

 1.5

1

1

1

2

3

 0.4

C

 1.2

1

1

1

3

4

 0.4

C

 1.5

1

1

1

2

3

 0.1

NC

 1.2

1

1

1

2

3

 0.1

NC

 1.5

1

1

1

2

3

 0.4

NC

 1.2

1

1

1

2

3

 0.4

NC

 1.5

1

1

1

2

3

Condition ii. Other Joints (for classification of joints, refer to Fig. 3) P A g f ' cE

b

Transverse reinforcementc

V VJ

d

 0.1

C

 1.2

1

1

1

3

4

 0.1

C

 1.5

1

1

1

2

3

 0.4

C

 1.2

1

1

1

3

4

 0.4

C

 1.5

1

1

1

2

3

 0.1

NC

 1.2

1

1

1

2

3

 0.1

NC

 1.5

1

1

1

2

3

 0.4

NC

 1.2

1

1

1

1.5

2

 0.4

NC

 1.5

1

1

1

1.5

2

a

Values between those listed in the table shall be determined by linear interpolation. P is the design axial force on the column above the joint calculated using limit-state analysis procedures in accordance with Section 10.4.2.4. Ag is the gross cross-sectional area of the joint. c V is the shear force and VJ is the shear strength for the joint. The design shear force and shear strength shall be calculated according to Section 4.2.4.1 and Section 4.2.3, respectively. d “C” and “NC” are abbreviations for conforming and nonconforming transverse reinforcement, respectively. Transverse reinforcement is conforming if hoops are spaced at  hc/2 within the joint. Otherwise, the transverse reinforcement is considered nonconforming. b

1 2

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 204 of 217

Table 15. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures—Two-Way Slabs and Slab–Column Modeling Parametersa

Acceptance Criteriaa Plastic Rotation Angle (radians)

Plastic Rotation Angle (radians) Conditions

a

b

Performance Level

Residual Strength Ratio c

Secondary IO

LS

CP

b

Condition i. Reinforced Concrete Slab–Column Connections Vg ----Vo c

Continuity reinforceme ntd

0

Yes

0.2 0.4

0.035

0.05

0.2

0.01

0.035

0.05

Yes

0.03

0.04

0.2

0.01

0.03

0.04

Yes

0.02

0.03

0.2

0

0.02

0.03

 0.6

Yes

0

0.02

0

0

0

0.02

0

No

0.025

0.025

0

0.01

0.02

0.025

0.2

No

0.02

0.02

0

0.01

0.015

0.02

0.4

No

0.01

0.01

0

0

0.008

0.01

0.6

No

0

0

0

0

0

0

> 0.6

No

0

0

0



e

e



—e

0.05

Condition ii. Post-tensioned Slab–Column Connectionsb Vg ----Vo c

Continuity reinforceme ntd|

0

Yes

0.035

0.05

0.4

0.01

0.035

0.6

Yes

0.005

0.03

0.2

0

0.025

0.03

> 0.6

Yes

0

0.02

0.2

0

0.015

0.02

0

No

0.025

0.025

0

0.01

0.02

0.025

0.6

No

0

0

0

0

0

0

> 0.6

No

0

0

0



e

e

—e



Condition iii. Slabs Controlled by Inadequate Development or Splicing Along the Spanb 0

0.02

0

0

0.01

0.02 b

Condition iv. Slabs Controlled by Inadequate Embedment into Slab–Column Joint 0.015

0.03

0.2

0.01

0.02

0.03

a

Values between those listed in the table shall be determined by linear interpolation. Where more than one of Conditions i, ii, iii, and iv occur for a given component, use the minimum appropriate numerical value from the table. c Vg is the gravity shear acting on the slab critical section as defined by ACI 318, and Vo is the direct punching shear strength as defined by ACI 318. b

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 205 of 217

d

“Yes” shall be used where the area of effectively continuous main bottom bars passing through the column cage in each direction is greater than or equal to 0.5Vg/(fy). Where the slab is posttensioned, “Yes” shall be used where at least one of the post-tensioning tendons in each direction passes through the column cage. Otherwise, “No” shall be used. e Action shall be treated as force-controlled.

1 2

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 206 of 217

Table 16. Numerical Acceptance Criteria for Linear Procedures—Two-Way Slabs and Slab–Column m-Factorsa

Performance Level Component Type Primary Conditions

IO

LS

Secondary CP

LS

CP

Condition i. Reinforced Concrete Slab–Column Connectionsb Vg ----Vo c

Continuity reinforcementd

0

Yes

2

2.75

3.5

3.5

4.5

0.2

Yes

1.5

2.5

3

3

3.75

0.4

Yes

1

2

2.25

2.25

3

 0.6

Yes

1

1

1

1

2.25

0

No

2

2.25

2.25

2.25

2.75

0.2

No

1.5

2

2

2

2.25

0.4

No

1

1.5

1.5

1.5

1.75

0.6

No

1

1

1

1

1

> 0.6

No



e



e



e



e

—e

Condition ii. Post-tensioned Slab–Column Connectionsb Vg ----Vo c

Continuity reinforcementd

0

Yes

1.5

2

2.5

2.5

3.25

0.6

Yes

1

1

1

2

2.25

> 0.6

Yes

1

1

1

1.5

1.75

0

No

1.25

1.75

1.75

1.75

2

0.6

No

1

1

1

1

1

> 0.6

No



e



e



e



e

—e

Condition iii. Slabs Controlled by Inadequate Development or Splicing Along the Spanb —e

—e

—e

3

4

Condition iv. Slabs Controlled by Inadequate Embedment into Slab–Column Jointb

1 2 3 4 5 6 7 8 9

2

2

3

3

a

4

Values between those listed in the table shall be determined by linear interpolation. Where more than one of conditions i, ii, iii, and iv occur for a given component, use the minimum appropriate numerical value from the table. c Vg is the the gravity shear acting on the slab critical section as defined by ACI 318, and Vo is the direct punching shear strength as defined by ACI 318. d “Yes” shall be used where the area of effectively continuous main bottom bars passing through the column cage in each direction is greater than or equal to 0.5Vg/(ϕfy). Where the slab is post-tensioned, “Yes” shall be used where at least one of the posttensioning tendons in each direction passes through the column cage. Otherwise, “No” shall be used. e Action shall be treated as force controlled. b

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 207 of 217

Table 17. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures—Reinforced Concrete Infilled Frames Modeling Parametersa

Total Strain Conditions d e b i. Columns Modeled as Compression Chords Columns confined along entire 0.02 0.04 lengthc All other cases 0.003 0.01

Residual Strength Ratio c

Acceptance Criteria Total Strain Performance Level IO LS CP

0.4

0.003

0.03

0.04

0.2

0.002

0.01

0.01

0.0

0.01

0.04

0.05

ii. Columns Modeled as Tension Chordsb Columns with well-confined splices or no splices All other cases

0.05

0.05

See 0.03 0.2 See 0.02 0.03 note d note d a Interpolation shall not be permitted. b If load reversals result in both Conditions i and ii applying to a single column, both conditions shall be checked. c A column shall be permitted to be considered to be confined along its entire length where the quantity of hoops along the entire story height including the joint is equal to threequarters of that required by ACI 318 for boundary components of concrete shear walls. The maximum longitudinal spacing of sets of hoops shall not exceed either h/3 or 8db. d Potential for splice failure shall be evaluated directly to determine the modeling and acceptance criteria. For these cases, refer to the generalized procedure of Section 6.3.2.

1 2

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 208 of 217

Table 18. Frames

Numerical Acceptance Criteria for Linear Procedures—Reinforced Concrete Infilled

m-Factorsa

Performance Level Component Type Primary

Secondary

Conditions i. Columns Modeled as Compression Chordsb

IO

LS

CP

LS

CP

Columns confined along entire lengthc

1

3

4

4

5

All other cases

1

1

1

1

1

ii. Columns Modeled as Tension Chordsb Columns with well-confined splices or no splices

3

4

5

5

6

All other cases 1 2 2 3 4 a Interpolation shall not be permitted. b If load reversals result in both Conditions i and ii applying to a single column, both conditions shall be checked. c A column is permitted to be considered to be confined along its entire length where the quantity of hoops along the entire story height, including the joint, is equal to three-quarters of that required by ACI 318 for boundary components of concrete shear walls. The maximum longitudinal spacing of sets of hoops shall not exceed either h/3 or 8db.

1

This draft is not final and is subject to revision. This draft is for public review and comment only. Page 209 of 217

Table 19. Modeling Parameters and Numerical Acceptance Criteria for Nonlinear Procedures— R/C Shear Walls and Associated Components Controlled by Flexure

Acceptable Plastic Hinge Rotationa (radians)

Plastic Hinge Rotation (radians) Conditions

Residual Strength Ratio

Performance Level

a

b

c

IO

LS

CP

0.015 0.010 0.009 0.005 0.008 0.006 0.003 0.002

0.020 0.015 0.012 0.010 0.015 0.010 0.005 0.004

0.75 0.40 0.60 0.30 0.60 0.30 0.25 0.20

0.005 0.004 0.003 0.0015 0.002 0.002 0.001 0.001

0.015 0.010 0.009 0.005 0.008 0.006 0.003 0.002

0.020 0.015 0.012 0.010 0.015 0.010 0.005 0.004

0.75

0.010

0.025

0.050

0.50

0.005

0.020

0.040

0.50

0.006

0.020

0.035

0.25

0.005

0.010

0.025

i. Shear Walls and Wall Segments

 As  A's  f yE  P

V

twlw f 'cE

twlw f 'cE

Confined Boundaryb

 0.1  0.1  0.25  0.25  0.1  0.1  0.25  0.25

4 6 4 6 4 6 4 6

Yes Yes Yes Yes No No No No

ii. Shear Wall Coupling Beamsc Longitudinal reinforcement and transverse reinforcementd

V twlw

0.050

f ' cE

Conventional longitudinal reinforcement with conforming transverse reinforcement

3

0.025

6

0.020

Conventional longitudinal reinforcement with nonconforming transverse reinforcement

3

0.020

6

0.010

0.040 0.035 0.025 0.050

NA 0.030 0.050 0.80 0.006 0.030 0.050 Diagonal reinforcement a Linear interpolation between values listed in the table shall be permitted. b A boundary element shall be considered confined where transverse reinforcement exceeds 75% of the requirements given in ACI 318 and spacing of transverse reinforcement does not exceed 8db. It shall be permitted to take modeling parameters and acceptance criteria as 80% of confined values where boundary elements have at least 50% of the requirements given in ACI 318 and spacing of transverse reinforcement does not exceed 8db. Otherwise, boundary elements shall be considered not confined. c For coupling beams spanning
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF