STAM Formula Sheet

Share Embed Donate


Short Description

Formula Sheet for STAM...

Description

Exam STAM Adapt to Your Exam SEVERITY, FREQUENCY & SEVERITY, FREQUENCY & AGGREGATE  AGGREGATE MODELS MODELS MODELS Basic CDFs, Survival Functions, and Hazard Functions

() = Pr(Pr(  ≤ )) = *//- () d () = Pr(( ) > ) = *- () d ℎ() = (- ) () = */ℎ() d = − ln(() ; () = ((-) E[( )] = */// () ⋅ () d ( ) ( ) = * ′  ⋅ (   d H  H D D  = =E[ E[(]  ; −−=)] M = M M [ ] VarVar[ Var[      =  Var[( )] )] = E[( ) ] − E[E[( )]M Moments

 raw moment:  central moment:

( ) [ ] [ ] [ ] Cov( Cov    ,    = E    ]    − E    E     Coefficient of vari_ ation:  =  Skewness = _  ; Kurtosis =  (()()0 =) =E[E[ ]] () D (()()1 =) =E[E[ ](  − 1)1) ⋯ (  −  + 1)] () D Pr(Pr(  ∣ ) = Pr(rPr( (∩))()=)  Pr(r(Pr∣ () Pr()Pr( )  ∣∣() = Pr(Pr(  +) Paret ( ) Exponent i a l  Uniform( rm (0, − ))

www.coachingactuaries.com

á = 1 −−1  1, forfor  = 1,1, 2,⋯ E[(á)] = 1 −−  E[] ä = 11−−− ä 1 −−, forfoär  = 1,1,2,⋯, ⋯ E[(ä)] = 1 −  E[] (,,0)    =  +  , forfor  = 1,1,2,⋯, ⋯ Prbabiobabbiabilitytiylit=y =1 −   Var[ =] ã =,, (Proba Pro−−Prob )M(1 −− )   ∣  ∼∼ Neg.Bi PoiPoisson( sonBinomi()al(l ( =,∼Gamma( Gamma Neg. = )) (,, ) ℎ(( )∣  ) =[  ⋅(()]) ( ) - ( )    = ô −  , where where    = */  d ö  E[ö( =ö)∧] = = E=[ (ù  ,,∧ )) VaRæ ( )y = VaRæ( ) + VaRæ ( )y TVaRæ( ) æ √ƒ  + ¿¬ 1− E[ ] ⋅ ¿Φ¬1 −−æ√ƒ ( ) (  +=) =⋅ ( ( )) + ()  (  + ) ≤ ( ) +() () ≤ () Pr(  ≤ ) = 1 Tail-Value-at-Risk (TVaR)

(,,0)

Choosing from  Class Two methods to fit data to an distributions: Method 1: Compare  and • •

Distribution Poisson Binomial

Normal

Lognormal

Coherence  is coherent if it satisfies the properties below: Translation invariance: Positive homogeneity: Subadditivity: Monotonicity: , if VaR is not coherent because it fails subaddivity. TVaR is coherent. • • • •

Tail Weight 1. Fewer positive raw moments

À(-) = ∞ lim ÕÀ(-) = ∞⟹ lim -→ Ã(-) -→ ÕÃ(-) ℎ() ⟹ () ⟹

2. If

 or

 heavier tail

, then numerator

has a heavier tail. 3.  decreases with 4.  increases with

 heavy tail  heavy tail

CONSTRUCTION AND SELECTION OF CONSTRUCTION AND SELECTION OF PARAMETRIC MODELS PARAMETRIC MODELS Maximum Likelihood Estimators Steps to Calculating MLE 1. 3. 2. 4.

(())  == l∏n  (())

H() H = –—–  () Set  () = 0

Incomplete Data

 

Left-truncated at Right-censored at Grouped data on interval

(,]

 ()⁄() () Pr( <  ≤ )

Special Cases Distribution Gamma, fixed



Normal

Lognormal

Poisson Binomial, fixed

Shortcuts

” = ̅ ̂g= ̅  ÷ =  ∑¥∂I ¥ −̂ ̂ =  ∑g¥∂Iln¥ ÷ =  ∑g¥∂I(ln¥) − ̂ ◊ = ̅ ÷ = ̅ ◊ =  ̅

  E[ á] ̅ E[Bä ä] ̅ (0,) ” = max(I,,…,g) Neg. Binomial, fixed

Zero-Truncated Distribution: Match  to Zero-Modified Distribution: Match  to the proportion of zero observations Match  to Uniform Distribution on : •

• •



www.coachingactuaries.com

(,,0) ̅  Gg‹ Method 2: Observe the slope of g‹›À Neg. Binomial

 class

Method 1

̅ =   ̅ >    ̅ <   

 ( )

 Plot Graph the difference between empirical CDF and fitted CDF

Method 2 0 Negative Positive

Variance of MLE Fisher’s Information One Parameter:

[′′()] ()  Var”=y =−E [()].I (,) = −E ¿ fi,HfiHH—((,,)) Var[÷] [(,)].I = flCov÷, ”y

() = g¬ √− ∗¬∗√ () = g¬.I√− ¬√  Coordinate: Óg¬ √,∗¬√Ô where g¬√ =  + 1 Peak: Valley:

Two Parameters:

fi,HHH— (,) ƒ — (,”) Cov÷,y‡ Var”y

-  Plot 

Hypothesis Tests: Chi-Square Goodness-of-Fit Chi-Square Goodness-of-Fit Test

Delta Approximation One-Variable:

Var¬”√y ≈ Æ  ()Ø Var”y Var¬÷,”√y ≈ (fiH)VarH [÷] + 2” fiH—HCov÷,”y +(—) Vary ” ± (I•æ)/‰ VÂar ”y B I B  >     Two-Variable:

Confidence Interval

Hypothesis Tests : null hypothesis : alternative hypothesis Reject  when test statistic

 critical value

 is true

Reject

Fail to reject

 is false

Type I Error

Correct Decision

Correct Decision

Type II Error

Hypothesis Tests: Kolmogorov-Smirnov Empirical Distribution Equal probability for each observation

≤ g () = # of observations  Test statistic:  = max ÍÎÎ ∗  y   = max¬Ïg ¬√− ¬√Ï,Ïg ¬.I√− ∗¬√Ï√  ( ) ( )     −   ∗() = 1 − () ,for  ≥  Kolmogorov-Smirnov Test

 where

If data is truncated at , then

Kolmogorov-Smirnov Test Properties Individual data only Continuous fit only Lower critical value for censored data If parameters are estimated, critical value should be adjusted Lower critical value if sample size is large No discretion Uniform weight on all parts of distribution • • •

G ¬  −  √  Test statistic:  = Ò     where ∂I ::#expected of groups # of observations in group    : actual # of observations in group   •





 =  − 1 −

Degrees of freedom  where : # of estimated parameters •



Chi-Square Goodness-of-Fit Test Properties Individual and grouped data Continuous and discrete fit No adjustments to critical value for censored data If parameters are estimated, critical value is automatically adjusted via degrees of freedom No change for critical value if s ample size is large Data needs to be grouped according to More weights on intervals with poor fit • • •











Hypothesis Tests: Likelihood Ratio

)] Test statistic: = 2[( (Bparameters  = #−I) of#−free of free parametersin inI B Degrees of freedom

Score-Based Approaches Two types of criteria: Schwarz Bayesian Criterion (SBC), a.k.a. Bayesian Information Criterion (BIC) Akaike Information Criterion (AIC) •



SBC/BIC AIC

 − 2 ln − 

where  log-likelihood

::# of estimated parameters : sample size

Select model with the highest SBC or AIC value.



• • •

Copyright © 2018 Coaching Actuaries. All Rights Reserved.

2

CREDIBILITY

CREDIBILITY

Classical Credibility a.k.a. Limited Fluctuation Credibility Full Credibility # of exposures needed for full credibility, Full credibility of aggregate claims:

ı

:

ı = ´(•æ) ⁄≠ () ˆ ˆ = ´(•æ) ⁄≠ flµµ + ‡   = 0 à ˜ ¯ Full credibility of cl aˆim severity: set ˘¯ = 0 ˆ = ı ⋅ µ ; ı = µ Credibility premium: ˙ ==  ̅ ++ ((1̅−−))  Square Root Rule: = ¸  ı = ¸ ′ˆ ′ # of claims needed for ful l credibility, Full credibility of aggregate claims:



:

Full credibility of claim frequency: set



Exact Credibility

Minimize



”--

where : actual # of exposures : actual # of claims

Bayesian Credibility Model Distribution Distribution of model conditioned on a parameter Model density function:

 ( ∣ )  ( ) () ⋅ ∣ (data) (  data ∣  ( ∣ data) = ∫// (data ∣  ) ⋅ () ) d Prior Distribution Initial distribution of the parameter Prior density function:

• •





( ∣ data) Predictive Mean = Bayesian Premi um  = EE[  ∣ ]  = EVar[  ∣ ]  = VarE[  ∣ ]  Bühlmann :  =  Bühlmann Credibility Factor: =  +  ˙ ==  +̅ + ((1̅ −− )) Bühlmann Credibility Expected Hypothetical Mean (EHM): Expected Process Variance (EPV):

Variance of Hypothetical Mean (VHM):

Bühlmann Credibility Premium:

www.coachingactuaries.com

 

where

: Bayesian estimate given : Bühlmann estimate given

• •

• • •

Poisson/Gamma Binomial/Beta Exponential/Inv. Gamma Normal/Normal

Empirical Bayes Non-Parametric Methods Uniform Exposures

̂ =  ∑¥∂∑⋅∂ ¥  ÷ =  ∑¥∂ ∑∂( ¬− ¥1 )− ̅¥√ ÷ = ∑¥∂(−̅ ¥ −1 ̅) − ÷ Poisson ()  ∑¥∂ ∑∂ ¥¥ Gamma(,) ̂  = (∗ ∣ data ) ∼ Gamma (∗,∗)  ¥¬¥ − ̅¥√   ∑ ∑ ¥∂ ∂  ÷ = ∗ = + ∑¥∂¥   = Ó— + Ô ∗ ∗ ÷ = ∑¥∂ ∑¥¥∂(̅ ¥( −¥ −̅ )1) − ÷( − 1)  −  ∑¥∂ ¥ Neg.Binomial ( =  , =  ) ( ∼  Beta(, ∣  ) ∼ Bin,1omi) al (,) Estimate E M as: ̂ = ∑∑¥∂¥∂¥¥̅ ¥ (∗  ∣ data )  ∼ Beta(∗,∗,1) ÷ ∗  ==  ++  [∑¥∂()¥ − ∑¥∂ ¥] PoiNeg.sson() +̅ ) ̅ ( ) ( B i n omi a l ,  1 Gamma (,) ̅ Exponential () ̂ ÷ ( ∼ Inv.∣  )G ∼amma(,) (∗∣ data) ∼ Inv.Gamma(∗,∗) ∗  ==  ++ ∑¥∂ ¥ Pareto( = ∗, = ∗) ∣  ) ∼ Normal (,) (∼ Normal(,) (∗ ∣ data ) ∼ Normal (∗,∗) ∗  == (1−̅ +) (1− ) Normal( = ∗, =  + ∗) form (0, ) ( ∼ ∣  ) ∼ Uni(,) ( ∗ ∣ data ) ∼ (∗,∗) ∗  == max(,  +  ,…,)

Conjugate Priors Poisson/Gamma Model: Prior:

Posterior

!

!

!

Non-uniform Exposures !

"

!

"



!

!



!

Predictive

Balancing the Estimators

Binomial/Beta Model: Prior: • •

!

H

!

Empirical Bayes Semi-Parametric Methods To estimate :

Posterior



Model



Predictive

• •

Posterior

 %

-

Exponential/Inv. Gamma Model: Prior:

Posterior Distribution Revised distribution of the parameter Posterior density function:

Predictive Distribution Revised unconditional distribution (w.r.t. model) of the model Predictive density function:

∑ÍÎÎ - ´-¬- − ”-√ ≠  =    = 

Properties of a Bayesian/Bühlmann graph Bühlmann estimates are on a straight line Bayesian estimates are within the range of hypothetical means There are Bayesian estimates above and below the Bühlmann line Bühlmann estimates are between the sample mean and theoretical mean

Partial Credibility

where : manual premium : credibility factor/credibility

Bayesian estimate = Bühlmann estimate

Bühlmann As Least Squares Estimate of Bayesian

To estimate  and , use the non-parametric method formulas shown above.

• •

Predictive

Normal/Normal Model: Prior: • •

Posterior

• •

Predictive

Uniform/S-P Pareto Model: Prior:  S-P Pareto • •

 S-P Pareto

Posterior

• •

Predictive

-

Copyright © 2018 Coaching Actuaries. All Rights Reserved.

3

Variable Expense Ratio:  =ç ä FiPerxedmiExpens e Rat i o :  = ssiëble Loss Ratio: PLR = 1−  −ë

SHORT-TERM INSURANCES

Expenses and Profit

Insurance Coverages Homeowners Coinsurance

Compensation:  = /mimin,n(,  ⋅),7,  ≥<  ,  ≤   −  = 0,−7,   ≤  0,   K=M. =KM. − ⋅S  KUMUM..  == ∏U,ZXWYZ[\ ⋅ UM.W  = KM. − S  =KMK. M. 1 − 1M.7 where  AlterMnat. ively,  =  ⋅ + (1 −) ⋅  where  = 1M. K=M. =KMk. M−. ⋅SKM. UU,W,W  == k̂Wq.k,UM,. − U,W\z |U,W= = ∑U[U,WWÄ ⋅ |UU,,WW 

where

Disappearing Deductible Deductible decreases linearly over a specific range:

Premium

Premium

Claim Payment:

Loss Reserving Expected Loss Ratio Method 1. 2.

Uí = Uì − U + Uí\ 

Extension of Exposures Method Recalculates the premiums of historical policies under the current rate l evel Parallelogram Method Calculates average factors to be a pplied to the aggregate historical premiums to make them on-level

2. 3.

Bornhuetter-Ferguson Method

Ratemaking Loss Ratio Method

 is calculated based on the expected loss ratio method  is calculated based on the c hain-ladder method

Frequency-Severity Method  Alternate Method:

1. Apply the chain-ladder method to frequency and severity separately 2. 3. Closure Method:

Frequency 1. 2. Aggregate 1. 2.

, where  is the valuation CY

Data Preparation Losses

 Aggregation

Develop to Ultimate • Loss Development Factors

Projected Losses

U U

 ÉU = SU  + U −  U\  ÉU = SU  + U

Incurred losses for CY : where  is the reserves at the end of CY

Incurred losses for AY or PY : where  is the reserves as of the valuation date

www.coachingactuaries.com www.coachingactuaries.com

Indicated Avg. Rate Change = 1 − +− ë − 1 Indicated RelativityU = Current RelativityU  ⋅1+ IòôöõnUdicated Avg.Rate Change Indicated Base Rate = InCurdicratentedBasAvg.e RatReleat⋅ivity Off-Balance Factor Off-Balance Factor = CurrentAvg. Relativity † † † †    +  ç Indicated Avg.Rat eA=vg.1R−ate − ë Avg.Rela†tivityU = Base RateUU Adj.†U = Avg.RelativityUU ⋅ Expos† u†reU Indicated RelativityU = Adj I Adjndi.†.còôöõatU†ed Avg.Rate Indicated Base Rate = Indicated Avg.Relativity New Relativity = (Indicated Relativity) + (1 −)(Current Relativity)  = (()+ )+ ß®   = ß ⋅ Indicated Base Rate )  ̅ − ()() © = ̅(−   = (1− ©)⋅ Indicated Base Rate Pure Premium Method

Credibility-Weighted Relativities

Losses

• Calendar Year (CY) • Accident Year (AY) • Policy Year (PY)

Current Rate Level • Extension of Exposures   Method • Parallelogram Method

Unearned premium for CY :

1.



 Aggregation • Calendar Year (CY) • Policy Year (PY)

Premium at Current Rates

Chain-Ladder Method a.k.a. Loss Development Triangle Method



,  is the target profit and contingencies ratio

Trending • Trend Period • Trend Factor

Other Topics Increased Limit Factor

: original limit : increased limit Rate of policy variation with limit





Loss Elimination Ratio

: original deductible : increased deductible Rate of policy variation with deductible

• •

Copyright © 2018 Coaching Actuaries. All Rights Reserved. 4 Personal copies permitted. Resale or distribution is prohibited. Copyright © 2018 Coaching Actuaries. All Rights Reserved. 4

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF