Stability of structures - Solved examples

May 1, 2017 | Author: Andrej Markovic | Category: N/A
Share Embed Donate


Short Description

Stability of structures - Solved examples (Reijo kouhia)....

Description

Stability of stru tures, solved example problems Reijo Kouhia

Pekka Marjamäki

De ember, 2005

1

Equilibrium paths, post riti al state and imperfe tions

Example 1.1

Determine all equilibrium paths of the stru ture onsisting of two rigid bars and

a linear elasti rotational spring. Investigate also the stability of all paths. P = λ4k/L.

k  b 

b @ @

P

L/2

Solution:

b  @ b @b

L/2

Let's assume that the bars displa e by an angle

ϕ,

then in the middle pin the angle

will be 2ϕ.

b @ @

ϕ

2ϕ k  b

P ````` `` `b  @ b@ b

The total potential energy

Π

of the stru ture is thus:

1 Π = k(2ϕ)2 − P L(1 − cos ϕ) 2 ∂Π = 4kϕ − P L sin ϕ ∂ϕ ∂2Π = 4k − P L cos ϕ. ∂ϕ2

(1) (2)

(3)

The stru ture will be in equilibrium when the total potential energy attains its minimum, thus the rst variation of the TPE will vanish.

δΠ =

∂Π ∂Π δϕ = 0 ∀ δϕ 6= 0 ⇒ =0 ∂ϕ ∂ϕ   ϕ= primary path 0 ⇒ 4k ϕ  P = sek ondary path L sin ϕ

(4)

(5)

Let us rst investigate the primary path. A point on an equilibrium path is stable, if a small

hange (disturban e) in the equilibrium position will will in rease the value of

Π. Sin e the rst

variation is zero on an equilibrium path, then the se ond variation will determine the hange in the TPE. Sin e now

ϕ = 0, δ2Π =

∂2Π (δϕ)2 = 0 ∂ϕ2

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

1

∂2Π = 4k − P L cos ϕ = 4k − P L ∂ϕ2 k ⇒ Pkr = 4 L



The primary equilibrium path is thus stable up to the point

(6)

(ϕ = 0, Pkr ).

Next, the stability properties of the se ondary path is investigated.

∂2Π = 4k − P L cos ϕ ∂ϕ2

(7)

P = 4kϕ/L sin ϕ to the   ϕ > 0 ∀ϕ = 4k 1 − tan ϕ

Insering the equation of the se ondary path

∂ 2 Π ∂ϕ2 PII

The se ondary path is this stable for all values of

0, Pkr = 4k/L,

and the se ond variation of

Π

ϕ,

equation above, gives

ex ept the bifur ation point where

(8)

ϕ=

is zero.

The equilibrium paths are shown in the

λ − ϕ- oordinate

system in the gure below.

1.2 1 0.8

λ

0.6 0.4 0.2 0 -1

-0.8

-0.6

-0.4

-0.2

0

ϕ

0.2

0.4

0.6

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

0.8

1

2

Example 1.2

Determine all equilibrium paths of the stru ture onsisting of two rigid bars and

a linear elasti rotational spring. Investigate also the stability of all paths. Are there riti al points on the paths?

b @ @

ϕ0

k  b

P ````` `` `b  @ b @b

cos ϕ0 L/2 Solution:

cos ϕ0 L/2

The total potential energy expression is now

1 k[2(ϕ − ϕ0 )]2 − P L(cos ϕ0 − cos ϕ) Π = 2 ∂Π = 4k(ϕ − ϕ0 ) − P L sin ϕ ∂ϕ ∂2Π = 4k − P L cos ϕ ∂ϕ2 The stru ture will be in equilibrium when the total potential energy attains its minimum, thus the rst variation of the TPE will vanish.

δΠ =

∂Π δϕ = 0 ∀ δϕ ∂ϕ

∂Π = 0 ∂ϕ 4k(ϕ − ϕ0 ) ⇒P = L sin ϕ



An equilibrium state is stable if the se ond variation of the TPE is positive

δ2Π = ⇒

∂2Π > 0 ∂ϕ2 ⇒P <

Inserting the equilibrium equation

ondition for stability

∂2Π (δϕ)2 > 0 ∂ϕ2 4k . L cos ϕ

P = 4k(ϕ − ϕ0 )/L sin ϕ

in the expression above, gives the

  ϕ − ϕ0 4k 1 − > 0 tan ϕ ϕ − ϕ0 < 1, ⇒ tan ϕ whi h is valid for all non-negative values of

ϕ. Thus this equilibrium path does not have riti al

points.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

3

2 1.8 1.6 1.4 1.2

λ

1 0.8 0.6 0.4 0.2 0 -2

-1.5

-1

-0.5

0

ϕ

0.5

1

1.5

2

In the gure above, dotted line shows the equilibrium path of the perfe t stru ture and solid line indi ates the stable path when

ϕ0 > 0.

ϕ 0 = 0,

The path in the negative part of

shown by a solid line is a omplementary path. The load parameter

λ = P/Pkr = P L/(4k).

λ

ϕ

axis

is dened as

(9)

Noti e, that the omplementary path is not stable everywhere. Determine the unstable and stable parths of the omplementary path! Note too, that this means an existen e of a

riti al point on the omplementary path.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

4

Example 1.3

Determine all equilibrium paths starting from the unloaded state of the stru ture

onsisting of two rigid bars (length L/2) and a linear elasti rotational spring. Investigate also the stability of all paths. The perturbation load F = ǫ4k/L, where ǫ is a dimensionless (se ond) perturbation parameter.

b @ @

ϕ0

F k  b?

P ````` `` `b  @ b @b

cos ϕ0 L/2 Solution:

cos ϕ0 L/2

The total potential energy of the stru ture

Π

is

1 1 Π(ϕ; ϕ0 , ǫ) = k[2(ϕ − ϕ0 )]2 − P L(cos ϕ0 − cos ϕ) − F L(sin ϕ0 − sin ϕ) 2 2

(10)

A ne essary ondition of an equilibrium state is the stationarity of the TPE, thus the rst variation of the total potential energy must vanish

  1 dΠ δϕ = 4k(ϕ − ϕ0 ) − P L sin ϕ + F L cos ϕ δϕ = 0 δΠ = dϕ 2

∀ δϕ 6= 0

(11)

An equilibrium path is thus dened by

  k ϕ − ϕ0 + 21 ǫ cos ϕ P =4 L sin ϕ This equation determines a unique path with respe t to

ǫ = 2ϕ0 .

not satisfy the ondition the unloaded state

Case ǫ = 2ϕ0

P = 0.

ϕ

(12)

if the perturbation parameters does

In su h a ase the stru ture is a straight bar of length

L

at

Let us examine this spe ial ase rst.

The equilibrium equation is now

dΠ = (ϕ − ϕ0 ) − P L sin ϕ + 4kϕ0 cos ϕ dϕ

(13)

= 4kϕ − P L sin ϕ + 4kϕ0 (cos ϕ − 1) = 0

(14)

and the two solutions are

ϕ=0   k ϕ + ϕ0 (cos ϕ − 1) P =4 L sin ϕ

primary path

PI ,

(15)

se ondary path

PII

(16)

An equilibrium state is stable if the se ond variation of

δ2Π =

Π:

d2 Π (δϕ)2 = (4k − P L cos ϕ − 4kϕ0 sin ϕ)(δϕ)2 2 dϕ

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

∀ δϕ 6= 0

(17)

5

is positive. Let us rst examine stability of the primary path, i.e. when

δ 2 Π|P =

d2 Π (δϕ)2 = (4k − P L)(δϕ)2 P 2 dϕ

The primary path is thus stable when

riti al load is thus

Pcr = 4k/L.

P < 4k/L

ϕ = 0,

and unstable when

thus

(18)

P > 4k/L,

and the

Let us examine wheather the riti al point is a symmetri or

asymmetri bifur ation point. The expression of the third variation of the TPE is

δ 3 Π|P = where

d3 Π (δϕ)3 dϕ3 P

(19)

d3 Π = −P L sin ϕ − 4kϕ0 cos ϕ dϕ3

(20)

At the riti al point the value of the third derivatve of the TPE is on

d3 Π = −4kϕ0 6= 0 dϕ3 kr

(21)

thus the riti al point is an asymmetri bifur ation point. The equilibrium path is drawn in gure 1.

Case ǫ 6= 2ϕ0

Let us examine stability of the equilibrium path, dened in (12). The se ond

variation of the TPE

δ2Π =

d2 Π (δϕ)2 dϕ2

(22)

is obtained from the expression of the rst variation (11). An equilibrium state is stable if the se ond variation of the TPE is positive for all kinemati ally admissible variations

δϕ,

thus

in this single degree of freedom example it is su ient to investigate the sign of the se ond derivative of the TPE

d2 Π = 4k − P L cos ϕ − 2kǫ sin ϕ dϕ2

(23)

Let's insert the expression of the equilibrium path (12) in the expression above, gives

sin ϕ − (ϕ − ϕ0 ) cos ϕ − 21 ǫ d2 Π = 4k dϕ2 sin ϕ Let us examine the ases In the ase

ǫ > 2ϕ0

ǫ > 2ϕ0 ,

and

ǫ < 2ϕ0

(24)

separately.

the stru ture is below the horizonal line dened by the supports

before applying the ompressive load, thus the stru ture will ontinue to displa e below the support line, thus

ϕ < 0.

Let us dene

ǫ = 2ϕ0 + ǫ¯,

and the expression (24) gives

sin ϕ − ϕ cos ϕ − ϕ0 (1 − cos ϕ) − ǫ¯ d2 Π = 4k 2 dϕ sin ϕ Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

(25)

6

Sin e now

ϕ < 0

and both the nominator and denominator are negative, thus

positive, i.e. the path is stable when The ase

ǫ < 2ϕ0

δΠ

is always

ǫ > 2ϕ0 .

is more interesting. Now

ϕ>0

and the denominator of the expression

(24) is always positive but the nominator an have zero points. These roots an be solved from the trans endental equation

sin ϕ − (ϕ − ϕ0 ) cos ϕ − 21 ǫ = 0.

(26)

Sin e analyti al solution is impossible, let's try the asymptoti analysis assuming that the angles

ϕ

and

ϕ0

are small, thus

sin ϕ ≈ ϕ − 61 ϕ3 ,

cos ϕ ≈ 1 − 12 ϕ2 ,

and the expression (26) will has a form

1 3 ϕ 3

− 21 ϕ0 ϕ2 + (ϕ0 − 12 ǫ) = 0

(27)

The third order polynomial above an have both negative and positive values for positive values of

ϕ.

To show that, let us srt al ulate the minumum point

ϕ2 − ϕ0 ϕ = 0

=⇒

ϕ = ϕ0 .

The minimum value of the fun tion dened in (27) (kun nagativity we get an inequality (let's dene

ǫ < 2ϕ0

ϕ > 0)

and the ondition for the

ǫ = ηϕ0 )

− 13 ϕ20 + 1 − 21 η < 0 Taking the ondition

(28)

=⇒

η > 2 − 31 ϕ20

into a

ount we'll get a ondition for the perturbation parameter

ǫ = ηϕ0 : 2 > η > 2 − 31 ϕ20

i.e.

2ϕ0 > ǫ > (2 − 13 ϕ20 )ϕ0

for the existen e of a limit point on the equilibrium path. In the following gure, some equilibrium paths are shown for some values of the perturbation parameter

ǫ

To sum up, the equilibrium paths of this stru ture an have



a trivial equilibrium path and an asymmetri bifur ation point if



A stable equilibrium path without riti al points if



ǫ = 2ϕ0 . The

se ondary

path is dened in equation (16).

An equilibrium path has a limit point if

ǫ > 2ϕ0

or if

(2 − 13 ϕ20 )ϕ0 / ǫ / 2ϕ0 ,

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

ǫ / (2 − 13 ϕ20 )ϕ0 .

7

2

ǫ = 2ϕ0 ǫ = 1.99ϕ0 ǫ = 1.8ϕ0 ǫ = 2.2ϕ0

1.5

λ

1

0.5

0

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

ϕ Figure 1: Equilibrium paths

λ = P/Pcr = P L/(4k).

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

8

4. Problem The stru ture in the problem 1 is an idealized olumn having a onstant bending stiness

k

Determine the spring oe ient

EI .

and how the riti al load will dier from the exa t beam

solution.

Solution:

The spring onstant

k

an be determined either by



letting the bifur ation loads to be equal for both models,



to make the displa ements at the middle equal under uniform load.



to make the displa ements at the middle equal under point load at the middle,

Dee tion under a point load is

δPp =

1 F L3 48 EI

δqp =

5 qL4 . 384 EI

and for a unform load

For the spring-bar system the orresponding dee tions are

δPj

1 qL3 1 F L2 j and δq = . = 8 k 16 k

Let

δPj = δPp 6EI ⇒ kP = L δqj = δqp 12EI ⇒ kq = L The riti al load of the spring-bar system is thus

Pcr =

24EI 48EI 4k P ⇒ Pkr = and Pcrq = . 2 L L L2

One additional way to ompute

k

is to make the bending strain energies equal under a

uniform load.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

9

Example 1.4

Determine the equilibrium paths of the simple stru ture shown, onsisting of

rigid bars and elasti springs. Investigate also the stability of the equilibrium paths. Investigate espe ially ases k1 = k2 ja k1 = 5k2 . What kind of real stru tures these models imitate?

Solution:

The total potential energy expression is

Π=U +V 1 1 U = k1 L2 sin2 ϕ + k2 u2 + k2 [u − 2L(1 − cos ϕ)]2 2 2 V = −P u

(29)

The equilibrium paths an be obtained from the stationarity ondition of the TPE:

δΠ = Sin e the variations of the displa ement

∂Π ∂Π δϕ + δu = 0 ∂ϕ ∂u u

and rotation

ϕ

(30)

are arbitrary, the equilibrium paths

are obtained from equations

∂Π = k1 L2 sin ϕ cos ϕ + k2 [u − 2L(1 − cos ϕ)](−2L sin ϕ) = 0 ∂ϕ ∂Π = 2k2 u + k2 [u − 2L(1 − cos ϕ)] − P = 0 ∂u (31)

After some manipulations we get

sin ϕ[k1 L2 cos ϕ − 2Lk2 u + 4k2 L2 (1 − cos ϕ)] = 0 P 2 u= + L(1 − cos ϕ) 3k2 3 Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

(32) (33)

10

Equation (32) is satised, if

sin ϕ = 0

tai

(k1 − 4k2 )L2 cos ϕ + 4k2 L2 − 2k2 Lu = 0 k2 = k  P = kL 4 + ( 32 α − 4) cos ϕ

If equation (33) is put into equation (34) and dene



whi h is the proje tion of the se ondary path onto the

ja

k1 = αk ,

(34) we get (35)

(ϕ, P )-plane. A

ordingly from equation

(33) we get

cos ϕ = 1 +

3u P − , 2kL 2 L

whi h is substituted into (35)



P =

kL h ui 2α + (8 − 3α) , 4−α L

whi h des ribes the proje tion of the se ondary path onto the

(u, P )-plane.

The primary paths are dened as

  ϕ = and the se ondary paths

Let's investigate the

2

0 P  u = 3k

  P = [4 + ( 3 α − 4) cos ϕ]kL 2 h kL ui  P = 2α + (8 − 3α) 4−α L

ases α = 1 ja α = 5.  P = (4 − 5 cos ϕ)kL  2 α=1⇒ P = 1 kL 2 + 5 u 3 L

1.8 1.6 1.4 1.2 P kL

1 0.8 0.6 0.4 0.2 0 -0.3

-0.2

-0.1

0

ϕ

0.1

0.2

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

0.3

11

4 3.5 0.333*(2+5*x) 3*x

3 2.5 P kL

2 1.5 1 0.5 0 0

0.2

0.4

0.6

0.8

1 u/L

1.2

1.4

1.6

1.8

2

We noti e, that displa ements are in reasing more rapidly on the se ondary path than in the primary path. However, the load an still be in reased over the riti al value at the bifur ation point.

(Pkr = 32 kL,

thus the se ondary path is stable. In ompressed thin plates

su h kind of behaviour an be obtained. The strong stability of the se ondary paths an be utilized also in design for some ases.

 P = (4 + 7 cos ϕ)kL 2   α=5⇒ P = −kL 10 − 7 u L

8 7 6 5 P kL

4 3 2 1 0 -0.3

-0.2

-0.1

0

ϕ

0.1

0.2

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

0.3

12

8 7 6 5 P kL

-10+7*x 3*x

4 3 2 1 0 0

0.5

1

1.5 u/L

2

2.5

3

In this ase the bifur ation load is mu h higher than in the preious one. However, the se ondary equilibrium path is now unstable. Shells, espe ially exhibit su h kind of unstable behaviour after bifur ation. If the post-bu kling regime is unstable, su h stru tures are imperfe tion sensitive, whi h means that the riti al load of an imperfe t stru ture is mu h lower than the theoreti al bifur ation load. Imperfe tions are due to e

entri ities, geometri al deviations et .

Example 1.5

Investigate the ee t of imperfe tions in the previous example. Draw the im-

perfe tion sensitivity diagram for the ase k1 = 5k2. Solution:

Let's determine the riti al load as a fun tion of

Now

ϕ

the imperfe tion amplitude

ϕ0 .

1 1 U = k1 L2 (sin ϕ − sin ϕ0 )2 + k2 u2 + [u − 2L(cos ϕ0 − cos ϕ)]2 2 2

and

∂Π = k1 L2 (sin ϕ − sin ϕ0 ) cos ϕ + k2 [u − 2L(cos ϕ0 − cos ϕ)](−2L sin ϕ) = 0 ∂ϕ ∂Π = 2k2 u + k2 [u − 2L(cos ϕ0 − cos ϕ)] − P = 0 ∂u Solving

u

from the equation above and substitute it into the equation below, gives

k1 sin ϕ − sin ϕ0 L − 2L(cos ϕ − cos ϕ0 ) 2k2 tan ϕ 3k1 sin ϕ − sin ϕ0 L − 8k2 L((cos ϕ − cos ϕ0 ) P = 3k2 u − 2k2 L((cos ϕ − cos ϕ0 ) = 2 tan ϕ u =

Let's program the equations into matlabiin and draw the fure (2).

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

13

λmax

as a fun tion of the imperfe tion amplitude

0.5

0.6

Figure 2: The maximum load

ϕ0

8 7 6 5 P kL

4

ǫ0 = 0 0.003 0.03 0.1

3 2 1 0

0

0.1

0.2

0.3

0.4

0.7

0.8

0.9

1

ϕ Figure 3: Equilibrium paths with dierent imperfe tion amplitude.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

14

Investigate stability properties of the stru ture below, are there limit or bifur-

Example 1.6

ation points on the paths? (EI = EA = ∞) c

Solution:

k  a 

L

k  a 

L

c c c

P

L

Let's determine the displa ements by using the following gure

  ab  ϕ2 b b b b b v2 b b b3 ϕ bc

ϕ1   ! a! !   ϕ 12 ! !! ! ! v1 !! ! c! ϕ0

sin ϕ0 =

v2 − v1 v2 v1 , sin ϕ12 = , sin ϕ3 = L L L

In addition

v1 v2 − v1 − arcsin L L v2 − v1 v2 = arcsin + arcsin L L

ϕ1 = ϕ0 − ϕ12 = arcsin ϕ2 = ϕ3 + ϕ12

Assuming small rotations we an approximate springs are

ϕ1 = = ϕ2 = =

arcsin x ≈ x + 1/6 x3 ,

and the rotations at the

  1 1 3 2 δ1 + δ1 − δ2 − δ1 + (δ2 − δ1 ) 6 6 1 3 1 3 1 2 1 2 2δ1 − δ2 + δ1 − δ2 + δ1 δ2 − δ1 δ2 3 6 2 2 1 3 1 δ2 + δ2 + δ2 − δ1 + (δ2 − δ1 )2 6 6 1 3 1 3 1 2 1 2 2δ2 − δ1 + δ2 − δ1 − δ1 δ2 + δ1 δ2 3 6 2 2

Dee tion under the load

  q q p 2 2 2 ∆ = L 3 − 1 − δ1 − 1 − (δ1 − δ2 ) − 1 − δ2   3 2 2 1 3 1 4 1 4 1 3 2 2 ≈ L δ1 + δ2 − δ1 δ2 + δ1 + δ2 − δ1 δ2 + δ1 δ2 − δ1 δ2 4 4 2 4 2 Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

15

The total potential energy expression is

1 1 Π = Π(δ1 , δ2 ) = kϕ21 (δ1 , δ2 ) + kϕ22 (δ1 , δ2 ) − P ∆(δ1 , δ2 ) 2 2 Equilibrium paths are determined from the stationarity ondition

δΠ = 0,

whi h gives

∂Π ∂ϕ1 ∂ϕ2 ∂∆ = kϕ1 + kϕ2 −P =0 ∂δ1 ∂δ1 ∂δ1 ∂δ1

(36)

∂Π ∂ϕ1 ∂ϕ2 ∂∆ = kϕ1 + kϕ2 −P =0 ∂δ2 ∂δ2 ∂δ2 ∂δ2

(37)

in whi h

∂ϕ1 ∂δ1 ∂ϕ2 ∂δ1 ∂∆ ∂δ1 ∂ϕ1 ∂δ2 ∂ϕ2 ∂δ2 ∂∆ ∂δ2

1 = 2 + δ12 + δ22 − δ1 δ2 2 1 2 1 2 = −1 − δ1 − δ2 + δ1 δ2 2   2 3 2 3 2 1 3 3 = L 2δ1 − δ2 + δ1 − δ1 δ2 + δ1 δ2 − δ2 2 2 2 1 2 1 2 = −1 − δ1 − δ2 + δ1 δ2 2 2 1 2 = 2 + δ2 − δ1 δ2 + δ12 2   1 3 3 2 3 2 3 = L 2δ2 − δ1 + δ2 − δ1 + δ1 δ2 − δ1 δ2 2 2 2

Equations (36) and (37) are satised, if

ϕ1 = ϕ2 = ∆ = 0

i.e.

δ1 = δ2 = 0.

Let's investigate

stability of this primary path. The se ond variation of the total potential energy is

∂2Π ∂2Π ∂2Π 2 [δ(δ )] + 2 [δ(δ2 )]2 δ(δ )δ(δ ) + 1 1 2 2 ∂δ12 ∂δ ∂δ ∂δ 2   1 2 ! ∂2Π   ∂ 2 Π2 δ(δ ) 1 ∂δ1 ∂δ2 ∂δ1 , = (δ(δ1 ) δ(δ2 )) ∂2Π   ∂2Π δ(δ2 ) 2

δ2Π =

∂δ1 ∂δ2

in whi h the matrix if

2

δ Π > 0.

K = [∂ 2 Π/∂δi ∂δj ]

∂δ1

is the stability matrix. The path is stable, if and only

This is true if the stability matrix

K

is positive denite, whi h means that all its

eigenvalues are positive.

δ1 = δ2 = 0 the elements of the stability matrix are 2 2   ∂ 2 ϕ2 ∂2∆ ∂ 2 ϕ1 ∂ϕ1 ∂ϕ2 ∂2Π + kϕ − P = kϕ + k + k 2 1 ∂δ12 ∂δ12 ∂δ1 ∂δ12 ∂δ1 ∂δ12

On the primary path

(38)

∂2Π = 5k − 2P L ∂δ12 ∂2Π = −4k + P L ∂δ1 ∂δ2 Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

16

∂2Π = 5k − 2P L ∂δ22 Denoting

P = λk/L

and solving the eigenvalues of

K.

The path is stable, when

K

is

positive denite, i.e. all its eigenvalues are positive

K x¯ = ω x¯ ⇒ (K − ωI)¯ x = 0 ⇒ det(K − ωI) = 0 ! 5 − 2λ − ω λ−4 det =0 λ−4 5 − 2λ − ω ω1 = 1 − λ ja ω2 = 9 − 3λ λ

The zero points of the eigenvalues o

ur when path is stable when

λ < 1.

The eigenmodedes of

obtained from

λ=1⇒

3 −3

−3 3

!(

K

δ1 δ2

)

  a 

λ=3⇒

−1 1

=

(

0 0

)

is:

  a`  ``` ``` ``` c

1 −1

!(

δ1 δ2

)

The primary

⇒ δ1 = δ2

Pkr = k/L

=

(

0 0

)

  aa a aa aa aa aaa  

And the bu ling mode orresponding to the riti al load

c

λ = 3.

and

i.e. the bu kling modes of the stru ture are

The bu kling mode orresponding to the riti al load

c

λ=1

have values

c

c

⇒ δ1 = −δ2

Pkr = 3k/L

is:

c

c

c

Let's nally investigate the post-bifur ation paths after the bran hing point at

δ1 = δ2 = δ ⇒ ϕ1 = ϕ2 into the equation of equilibrium     = 0 ⇒ k δ + 16 δ 3 2 + 21 δ 2 − 1 − P L δ − 21 δ 3 = 0     ⇒ δ k 1 + 16 δ 2 1 + 21 δ 2 − P L 1 + 21 δ 2 = 0  ⇒ δ = 0 tai PII = 1 + 61 δ 2 Lk

Substituting displa ements

∂Π ∂δ1

The same orresponding to the higher bifur ation load:

−ϕ1 )

∂Π ∂δ1

λ=3

kohdalla (δ1

(36).

(39)

= −δ2 = δ ⇒ ϕ2 =

   = 0 ⇒ k 3δ + 32 δ 3 2 + 52 δ 2 − (−1 − 2δ 2 ) − P L 3δ + 29 δ 3 = 0     ⇒ δ 3k 1 + 12 δ 2 3 + 29 δ 2 − P L 3 + 29 δ 2 = 0  ⇒ δ = 0 tai PIII = 1 + 21 δ 2 3k L

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

λ = 1.

(40)

17

Let's draw the paths

4 3.5 3 2.5

λ

PII PIII

2 1.5 1 0.5 0 -0.4

-0.2

0

0.2

0.4

δ If we want to investigate stability properties of the paths

PII

and

PIII

we have to substi-

tute the equations of the paths (39) and (40) into the expression of the se ond variation of the TPE (38). For path

∂ 2 Π ∂δ12

PII

∂ Π ∂δ12 2

PIII

δ

it is valid (δ1

= δ2 )

  2       1 2 1 2 3 2 1 3 1 3 2 2+ δ + k δ + δ · 0 + k(−1) − k 1 + δ = k δ+ δ δ+k 2+ δ 6 2 6 6 2   1 7 = k 3 + δ2 + δ4 > 0 ∀ δ 6 6

For the path

when

PII

PIII (δ1 = −δ2 , ϕ1 = −ϕ2 )   2    5 2 3 3 3 3 − k 3δ + δ (−2δ) + k(−1 − 2δ 2 )2 = k 3δ + δ 3δ + k 2 + δ 2 2 2    1 15 −3k 1 + δ 2 2 + δ2 2  2  3 7 = k −1 + δ 2 + δ 4 < 0, 2 2

is su iently small. Therefore the path

PII

is stable and the path

PIII

is unstable near

the bifur ation point.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

18

Example 1.7

Determine the riti al load of the rigid frame suppotred by two linearly elasti

translational springs. Investigate also stability of the paths. It is assumed that the point C is not moving horizontally.

P 

a D-? 

  C 

A



a-

6

 

L

θ

B

?

?v

Solution:

The total potential energy expression is

1 1 2 k∆A + k∆2B − P ∆D 2 2 = k(v 2 + a2 sin2 θ) − P [v  + L(1 − cos θ)]  1 = ka2 (u2 + sin2 θ) − P u + (1 − cos θ) , α

Π(v, θ) =

in whi h

v = au

and

a = αL.

P = λka, we get the form   Π 1 2 2 ˜ = Π = u + sin θ − λ u + (1 − cos θ) ka2 α By dening

The equilibrium equations are

˜ λ ∂Π = 2u − λ = 0 ⇒ u = ∂u 2 ˜ 1 ∂Π = 2 sin θ cos θ − λ sin θ = 0 ∂θ α   1 = sin θ 2 cos θ − λ = 0 α ⇒ Thus the primary path is dened as

Let's substitute the

(

sin θ = 0 ⇒ θ = 0 λ = 2α cos θ

u = λ/2

ja

θ = 0.

Stability of the primary path

˜ ˜ ˜ ∂2Π ∂2Π ∂2Π λ = 2, = 0, = 2 cos 2θ − cos θ ∂u2 ∂u∂θ ∂θ2 α expressions of the primary path u = λ/2 and θ = 0,

matrix:

K=

"

2

0

0 2−

λ α

into the stability

#

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

19

The riti al value of the load parameter

λkr

an be obtained from the ondition det(K)

2

λkr = 2αka = 2α kL. λ = 2α cos θ: " # " # 2 0 1 0 K= =2 0 2 cos 2θ − 2 cos2 θ 0 − sin2 θ

On the se ondary equilibrium path

The se ondary path is unstable sin e

u = λ/2

=0⇒

ja

2 ˜ K2 2 = ∂ 2 Π/∂θ = − sin2 θ ≤ 0 ∀ θ.

2

1.5

λ/α

1

0.5

0 -0.4

-0.2

0

0.2

0.4

θ

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

20

2

Continuous models, beams et .

Example 2.1

Derive the expression of urvature for a plane beam using (a) the Lagrangian

and (b) the Eulerian approa h. Solution:

The dieren e between the Lagrangian and Eulerian approa hes is the meaning of

the independent variable

x. In the Lagrangian approa h the oordinate is atta hed to a material

point. The dispa ement at point

x is

the displa ement of the point a

upying the position

x

at

the initial undeformed onguration. In the Eulerian approa h the oordinate is referring only to a spatial point

x.

da = dx

x, u

ϕ

?

dv

y, v

da u

Lagrange:

-

u + du

It is seen from the gure

dv dv = = v′ da dx ⇒ ϕ = arcsin v ′

sin ϕ =

sin e the urvature is

κ = 1/R = ϕ′

we get

1 v ′′ , = ϕ′ = p R 1 − (v ′ )2



d arcsin x 1 =√ dx 1 − x2

da

-



x, u

ϕ

?

dv

y, v

da dx

Euler:

From the gure

da =



p dv 2 + dx2 = dx (v ′ )2 + 1

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

21

dv = v′ dx ⇒ ϕ = arctan v ′

tan ϕ =

we obtain for the urvature

  1 ∂ϕ ∂ϕ κ= not = !! R ∂a ∂x     d arctan x 1 ∂ dv 1 where = = 1 + v ′2 ∂a dx dx 1 + x2 2 √ 1 1 dv √ = (where da = dx 1 + v ′2 ) ′2 2 1 + v dx 1 + v ′2 v ′′ v ′′ √ = = (1 + v ′2 ) 1 + v ′2 (1 + v ′2 )3/2 Note! When the higher order terms are negle ted we get the same result for both approa hes:

κ = v ′′

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

22

Example 2.2

Determine Pcr starting from the dierential equation.

2 EI

e

EI

 x

L/2

e

P

-

e e

L/2

Solution: In part 1 1

(4)

v1 + k 2 v1′′ = 0,

(4) 2 v2

where

k 2 = P/2EI .

(see problem ??)

=0

  BC : v1 − L2 = v1′ − L2 = v2 v1 (0) = v2 (0)

L 2



= v2′

L 2



=0

v1′ (0) = v2′ (0)

M -1 

M2 X   z  XXX X XP  X XXX XX XQ2 Q1 X  

P X

M1 (0) = M2 (0) Q1 (0) = Q2 (0) + P v2′ (0) Solutions for the homogenious equations are

v1 = C1 sin kx + C2 cos kx + C3 x + C4 v1′ = C1 k cos kx − C2 k sin kx + C3

v1′′ = −C1 k 2 sin kx − C2 k 2 cos kx

v1′′′ = −C1 k 3 cos kx + C2 k 3 sin kx v2 = C5 x3 + C6 x2 + C7 x + C8 v2′ = 3C5 x2 + 2C6 x + C7 v2′′ = 6C5 x + 2C6 v2′′′ = 6C5

Taking the boundary onditions into a

ount

Q1 (0) = Q2 (0) + P v2′ (0) −2EIv1′′′ (0) = −EIv2′′′ (0) + P v2′ (0) 2C1 k 3 = −6C5 + 2k 2 C7 1 1 C5 = − k 3 C1 + k 2 C7 3 3

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

23

M1 (0) = M2 (0) −2EIv1′′ (0) = −EIv2′′ (0)

2C2 k 2 = −2C6 ⇒ C6 = −k 2 C2 v1′ (0) = v2′ (0)

1 1 1 C1 k + C3 = C7 ⇒ C5 = − k 3 C1 + k 2 (C1 k + C3 ) = k 2 C3 3 3 3 v1 (0) = v2 (0) C2 + C4 = C8   kL kL L L = 0 ⇒ C4 = C1 sin − C2 cos + C3 v1 − 2 2 2  2 L kL kL v1′ − = 0 ⇒ C3 = −k(C1 cos + C2 sin ) 2 2 2  3  2   1 2 L L L L 2 = 0 ⇒ k C3 − k C2 + (C1 k + C3 ) + C2 + C4 = 0 v2 2 3 2  2    2 kL 1 kL kL ⇒ 1 + (kL)2 + sin C1 − kL cos 2 2 24 2    1 kL kL 1 2 2 1 + (kL) C2 = 0 − kL sin + 1 − (kL) − cos 4 2 2 24    2 L L L ′ 2 v2 = 0 ⇒ k C3 − 2k 2 C2 + C1 k + C3 = 0 2 2 2        kL 1 kL 1 2 2 kC1 + −kL − 1 + (kL) sin C2 = 0 ⇒ 1 − 1 + (kL) cos 4 2 4 2



"

a(kL) b(kL) c(kL) d(kL)

#(

C1 C2

)

=

(

0 0

det = 0 ⇒ kL ≈ 7.55 ⇒ Pkr = 114

) EI L2

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

24

Example 2.3

Determine Pcr starting from the dierential equation. (α = 2, β = 1)

α β

EI

EI

EA

EA



Sin e

Part 1: 2:

-

x

L/2

Solution:

@ @ @ @ @ @ @ @

P

L/2

β = 1 ⇒ (EA)1 = (EA)2 ⇒ P1 = P2 = P/2. (4) P/2 P = 4EI v1 + k12 v1′′ = 0 k12 = 2EI (4)

v2 − k22 v2′′ = 0 √ k22 = 2k12 ⇒ k2 = 2k1

k22 =

  BC : v1 − L2 = v1′ − L2 = v2 v1 (0) = v2 (0)

L 2



P/2 EI

= v2′

=

P 2EI

L 2



=0

M -1 P  2 X  X

v1′ (0) = v2′ (0)

2   z  XXX X XP  X XX Q XX X X X2 Q1 X z P2 X  X 

M

M1 (0) = M2 (0) Q1 (0) = Q2 (0) + P v2′ (0) Solutions for the homogenious dierential equations are

v1 = C1 sin kx + C2 cos kx + C3 x + C4 v1′ = C1 k cos kx − C2 k sin kx + C3

v1′′ = −C1 k 2 sin kx − C2 k 2 cos kx

v1′′′ = −C1 k 3 cos kx + C2 k 3 sin kx

v2 = C5 sinh kx + C6 cosh kx + C7 x + C8 v2′ = C5 k cosh kx − C6 k sinh kx + C7

v2′′ = −C5 k 2 sinh kx − C6 k 2 cosh kx

v2′′′ = −C5 k 3 cosh kx + C6 k 3 sinh kx Taking the boundary onditions into a

ount

Q1 (0) = Q2 (0) + P v2′ (0) −2EIv1′′′ (0) = −EIv2′′′ (0) + P v1′ (0) 2C1 k13

C5

= −C5 k23 + 4k12 (C1 k1 + C3 )  2 1 1 = − 3 2k13 C1 + 4k12 C3 = √ C1 + √ C3 k2 2 2k1

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

25

M1 (0) = M2 (0) −2EIv1′′ (0) = −EIv2′′ (0) 2C2 k12

=

−C6 k22

⇒ C6 = −2



k1 k2

2

C2 = −C2

v1′ (0) = v2′ (0) C1 k 1 + C3

= C5 k2 + C7 ⇒ C7 = C1 k1 + C3 − C5 k2 = −C3

v1 (0) = v2 (0) C2 + C4

= C6 + C8 ⇒ C8 = C2 + C4 − C6 = 2C2 + C4

 k1 L k1 L L L = 0 ⇒ C4 = C1 sin − C2 cos + C3 v1 − 2 2  2  2 L k1 L k2 L v1′ − = 0 ⇒ C3 = −k1 C1 cos + C2 sin 2 2 2     k1 L k1 L k1 L k1 L k1 L k1 L C1 − cos C2 − cos + sin ⇒ C4 = sin 2 2 2 2 2 2     L 1 kL L k L 2 √ C1 + √ C3 sinh 2 − C2 cosh 2 − C3 + 2C2 + C4 = 0 v2 = 2 2 2 2 2k1   2 2 k1 L k2 L k1 L 1 √ − √ cos sinh C1 + sin ⇒ 2 2 2 2 2   2 k2 L k2 L k1 L k1 L − √ sin C2 = 0 sinh − cosh + 2 − cos 2 2 2 2 2     k2 L 1 2 2 k1 L k1 L L ′ √ C1 − √ C1 cos = k2 cosh − √ C2 sin v2 2 2 2 2 2 2 2 k2 L k1 L k1 L −C2 k2 sinh + k1 C1 cos + k1 C2 sin =0 2 2 2   k2 k2 L k1 L k2 L 2k2 k1 L ⇒ √ cosh C1 − √ cos cosh + k1 cos 2 2 2 2  2 2 k1 L k2 L 2k2 k2 L k1 L + k1 sin C2 = 0 − k2 sinh − √ sin cosh 2 2 2 2 2 



"

a(kL) b(kL) c(kL) d(kL)

#(

C1 C2

)

=

(

The riti al load is obtained from the equation det[℄

0

)

= ad − bc = 0

⇒ k1 L ≈ 10, 637 ⇒ Pkr = 4k12 If the dire tion of the load is reversed, the result is

0

EI EI = 452, 6 2 2 L L

247, 5EI/L2.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

26

Example 2.4

Derive the Euler equations of the antilever beam shown below. Assume inex-

tensible beam and small dee tions. Solve the equations and determine the eigenmodes and show that the eigenmodes are orthogonal.

EI



P

L

Solution:

The total potential energy fun tional is

1 Π(v) = 2

ZL 0

where the horizontal dee tion



 EI(v ′′ )2 − P (v ′)2 dx,

∆ under the load P

an be determined as

     ϕ

dx + du

The Euler equations are obtained from the stationarity ondition of the fun tional

δΠ = Π,v δv =

ZL 0

where

δv

is the variation of the dee tion, i.e. an arbitrary fun tion satisfying the homogenious

v(0) = v ′ (0) = 0.

kinemati al boundary onditions

δv

(EIv ′′ δv ′′ − P v ′ δv ′ )dx = 0,

After integration by parts we get the term

as a ommon fa tor inside the integral

L L ZL ZL ′ ′′ ′ ′′ ′ ′ δΠ = EIv δv − (EIv ) δv dx − P v δv + δvdx 0

0

0

0

L L L ZL ′ ′′ ′ ′′ ′ = EIv δv − (EIv ) δv − P v δv + [(EIv ′′ )′′ + (P v ′ )′ ] δvdx 0

At the lower limit

0

δv(0) = δv ′ (0) = 0,

0

0

and taking into a

ount the denitions of the moment

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

27

dv

and shear for e:

M = −EIv ′′

sekä

Q = −(EIv ′′ )′ ,



we get

ZL



δΠ = −M(L)δv (L) + [Q(L) − P v (L)]δv(L) +

[(EIv ′′ )′′ + (P v ′ )′ ] δvdx = 0,

0

sin e

δv

is arbitrary fun tion satisfying the boundary onditions

(EIv ′′ )′′ + (P v ′)′ = 0 M(L)

=0

Q(L) − P v ′ (L) = 0

lowing equations have to be satised

v(0)

=0

v ′ (0) = 0 If the bending stiness

EI

v(0) = v ′ (0) = 0, thus the folx ∈ (0, L) (Euleri equation) natural

)

boundary onditions

essential

)

and the ompressive for e

boundary onditions

P

are onstants in the domain, we

get a homogeneous dierential equation with onstant oe ients

EIv (4) + P v ′′ = 0 ⇒ EIv ′′ + P v = Cx + D, (C, D constants) ⇒ v = A sin kx + B cos kx + Cx + D, k =

r

P EI

The derivatives are

v ′ = Ak cos kx − Bk sin kx + C

v ′′ = −Ak 2 sin kx − Bk 2 cos kx

v ′′′ = −Ak 3 cos kx + Bk 3 sin kx

v(0) = 0 ⇒ B + D = 0

v ′ (0) = 0 ⇒ Ak + C = 0

v ′′ (L) = 0 ⇒ A sin kL + B cos kL = 0 −EIv ′′′ (L)−P v ′ (L) = 0 ⇒ −EI(−Ak 3 cos kL+Bk 3 sin kL)−P (Ak cos kL−Bk sin kL+C) = 0 λ EI ⇒ k= 2 L L A = 0 ⇒ C = 0 ⇒ B cos kL = 0 ⇒ B = 0 P =λ

It follows from equation (41) that If

B=0 ⇒ v≡0

(41)



or

cos kL = 0.

it yields a trivial solution, hen e we should have

cos kL = 0 ⇒ kL =

π + nπ, n = 0, 1, 2, ... 2

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

28

⇒ λn = and the lowest bu kling load is

λ0 =

 π 2

π 2

+ nπ

2

π 2 EI 4 L2

⇒ Pcr =

2

λn

The eigenmode orresponding to the eigenvalue

,

is

vn = B(cos kn x − 1), kn =

 1 π + nπ L 2

It was asked to give the normalized eigenmodes. For that we should dene how this normalization should be done. It is usual to use the energy norm

ZL

||vn ||2E =

EI(vn′′ )2 dx.

0

The energy orthogonality thus means

ZL 0

Lets normalize the eigenmodes

[E1 ] =



vn

′′ EIvn′′ vm dx = 0, kun n 6= m. su h, that

Nm.

||vn ||E = E1 ,

vn′′ = −Bkn2 cos kn x ⇒

E12

=

EIB 2 kn4

ZL

E1

where

is the energy unit and

cos2 kn xdx

0

Lets hange variables su h, that

1 y = kn x, dx = dy rajat kn

(

x=0

⇒ y=0

x=L ⇒ y=

π 2

+ nπ

π +nπ 2



E12

=

EIB 2 kn3

Z

2

cos ydy =

1 EIB 2 kn3

0

2

2E12 2E12  = ⇒ B2 = 4 EIkn3 π2 + nπ EI π16 (1 + 2n)4 √ 3/2 4 2L E1 √ ⇒ B= π 2 (1 + 2n)2 EI

π 2

+ nπ



The energy orthonormal eigenfun tions are thus

√ 4 2 E1 L3/2 √ vn (x) = bn (cos kn x − 1), Bn = 2 π (1 + 2n)2 EI Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

29

Orthogonality:

ZL 0

′′ EIvn′′ vm dx = 0, kun n 6= m.

ZL 0

′′ vn′′ vm dx

=

ZL 0

hπ xi xi cos (1 + 2m) cos (1 + 2n) 2 L 2 L

2L = π

ZL





πx 2L merk. y = , dx = dy 2L π



cos[(1 + 2n)y] cos[(1 + 2m)y]dy = 0, kun n 6= m.

0

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

30

Example 2.5

Determine the maximum def etion and maximum monents at supports and in

span as a fun tion of the ompressive for e P for the beam shown below. q

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? e e

EI

Solution:

e e



P

L

The dierential equation for the beam- olumn is

v (4) + k 2 v ′′ =

q P , where k 2 = EI EI

The solution is

v = C1 sin kx + C2 cos kx + C3 x + C4 + Ax2 , where A =

q q = . 2 2EIk 2P

Let's hoose the zero o-ordinate at the midspan. From the boundary onditions we get

v ′ (0) = 0 ⇒ C1 k + C3 = 0

v′′′ (0)  = 0 ⇒ C1 = 0 ⇒ C3 = 0 L kL qL v′ = 0 ⇒ −C2 k sin + =0 2 2 2P qL ⇒ C2 = 2kP sin kL 2   kL L2 L = 0 ⇒ C2 cos + C4 + A =0 v ± 2 2 4 qL2 qL − ⇒ C4 = − 8P 2kP tan kL 2

Denoting

  qL kL kL q 2 kL qL cos kx − cos + + sin x ⇒ v(x) = kL kL 2 4 2 2P 2kP sin 2 2kP sin 2 √ P = λ EI/L2 , thus kL = λ. √ ! λ qL qL2 √ ⇒ v(0) = 1 − cos − 2 8P 2kP sin 2λ !  qL2 kL cos kx q ′′ 2 EI = −1 ⇒ M(x) = −EIv = C2 k cos kx − P λ 2 sin kL 2

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

31

The bending moment at the lamped support



x=±

L 2





2

Mt =

qL λ

λ

2 tan



λ 2

−1

!

The bending moment in the midspan

qL2 (x = 0) Mk = λ



λ

2 sin

√ λ 2

−1

!

4

P/Pkr

λ

Mt /qL2

Mk /qL2

v(0)/ qL EI

0

0

-0.0833

0.0417

0.0026

0.5

2π 2

-0.1363

0.0908

0.0052

2

-0.2390

0.1911

0.0103

-0.5439

0.4944

0.0257

0.75



0.9

3.6π 2

0.6 0.4

Mt Mk

0.2 M qL2

0 -0.2 -0.4 -0.6 0

0.1

0.2

0.3

0.4

0.5

P/Pcr

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

0.6

0.7

0.8

0.9

32

Example 2.6

Determine the bending moment distribution at the load levels P/PE = 0.25, 0.50

and 0.75, where PE is the riti al load of the bu kling problem. Determine also the expressions of the support moments at both ends and the bending moment in the midspan as a fun tion of the ompressive for e. F

2 EI

e

P x

L/2

e

EI

? 

-

e e

L/2

Solution: Osalla 1 2

(4)

v1 + k 2 v1′′ = 0,

missä

k2 =

P 2EI

(4)

v2 = 0

  BC : v1 − L2 = v1′ − L2 = 0   v2 L2 = v2′ L2 = 0 v1 (0) = v2 (0)

v1′ (0) = v2′ (0)

M -1 

F

M2 X z  XXX ? X   XP  X XXX XX XQ2 Q1 X  

P X

M1 (0) = M2 (0) Q1 (0) = Q2 (0) + P v2′ (0) + F Solution for the homogeneous dierential equations are:

v1 = C1 sin kx + C2 cos kx + C3 x + C4 v1′ = C1 k cos kx − C2 k sin kx + C3

v1′′ = −C1 k 2 sin kx − C2 k 2 cos kx

v1′′′ = −C1 k 3 cos kx + C2 k 3 sin kx v2 = C5 x3 + C6 x2 + C7 x + C8 v2′ = 3C5 x2 + 2C6 x + C7 v2′′ = 6C5 x + 2C6 v2′′′ = 6C5

Taking the boundary onditions into a

ount

Q1 (0) = Q2 (0) + P v2′ (0) Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

33

−2EIv1′′′ (0) = −EIv2′′′ (0) + P v2′ (0) + F F 2C1 k 3 = −6C5 + 2k 2 C7 + EI 1 3 1 2 F C5 = − k C1 + k C7 + 3 3 6EI M1 (0) = M2 (0) −2EIv1′′ (0) = −EIv2′′ (0)

2C2 k 2 = −2C6 ⇒ C6 = −k 2 C2 v1′ (0) = v2′ (0)

1 F 1 F 1 = k 2 C3 + C1 k + C3 = C7 ⇒ C5 = − k 3 C1 + k 2 (C1 k + C3 ) + 3 3 6EI 3 6EI v1 (0) = v2 (0) C2 + C4 = C8   L kL kL L v1 − = 0 ⇒ C4 = C1 sin − C2 cos + C3 2 2 2  2 kL kL L = 0 ⇒ C3 = −k(C1 cos + C2 sin ) v1′ − 2 2 2      3  2 L 1 2 L F L L 2 v2 = 0⇒ k C3 + − k C2 + (C1 k + C3 ) + C2 + C4 = 0 2 3 6EI 2 2  2    kL 1 kL kL 1 + (kL)2 + sin C1 − kL cos ⇒ 2 2 24 2    1 F L3 kL kL 1 2 2 1 + (kL) C2 = − − kL sin + 1 − (kL) − cos 4 2 2 24 48EI      2 L F L L v2′ = 0 ⇒ k 2 C3 + − 2k 2 C2 + C1 k + C3 = 0 2 2EI 2  2      1 F L2 kL kL 1 2 2 kC1 + −kL − 1 + (kL) sin kC2 = − ⇒ 1 − 1 + (kL) cos 4 2 4 2 8EI The expressions for the bending moments are

( The oe ients

M1 (x) = 2EIk 2 (C1 sin kx + C2 cos kx) M2 (x) = −EI(6C5 x + 2C6 )

C1

and

C2

C5

and

C6

L 2

≤x≤0 L 2

when 0 < x ≤

an be solved from the equation system below

( The oe ients

when −

3

FL [·] C1 + [·] C2 = − 48EI 2

L [·] kC1 + [·] kC2 = − F8EI

)

have already been solved as a fun tions of

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

C1

and

C2 . 34

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

35

Example 2.7

A beam with ir ular ross-se tion has an initial dee tion v0 (x) = v0 sin(πx/L).

What is the safety fa tor with respe t to the yield limit if the ompressive load has the value

P = 50 kN? The yield stress is σy = 220 MPa and the Young's modulus E = 210 GPa. The amplitude of the initial dee tion is v0 = L/1000. Determine also the resistan e and the partial safety fa tor γf a

ording to the Finnish steel design spe i ations B7. b b b @ @ bhhh h

b  " " @ (" b @ b (((

P

r = 50mm

t = 5mm 



L = 5.0 m

Solution:

The bending moment distribution due to the ompressive for e is

M(x) + P [v(x) + v0 (x)] = 0 ⇒ v ′′ (x) + k 2 v(x) = −k 2 v0 (x), where k 2 =

P EI

(42)

Let's nd the parti ular solution of the dierential equation above.

vy (x) = A sin

 πx  L

Substituting the trial fun tion above into equation 42

⇒ ⇒

 πx πx π2 2 = −k 2 v0 sin − 2 + k A sin L L L k 2 v0 A=− 2 k 2 − Lπ 2 

The solution is the sum of the general solution of the homogeneous equation and the parti ular solution

v(x) = C1 sin kx + C2 cos kx + C3 x + C4 −

πx k 2 v0 sin 2 L k 2 − Lπ 2

Boundary onditions:

v(0) = C2 + C4 = 0 v ′′ (0) = k 2 C2 = 0

⇒ C2 = 0 ⇒ C4 = 0

v ′′ (L) = k 2 C1 sin kL = 0 ⇒ C1 = 0(∗) v(L) = C3 L = 0

At

(∗)

the solution

kL = nπ

is not valid, sin e the equation must hold on for all values of

⇒ v(x) = −

k:

πx k 2 v0 , 2 sin π L k 2 − L2

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

36

and the bending moment has the expression

M(x) = −EIv ′′ (x) = − The largest bending moment is at the middle

πx EIk 2 v0 π 2 sin 2 2 2 k L −π L

(k 2 = P/EI):

  P v0 π 2 L = − P L2 M 2 − π2 EI The bu kling load for an ideal straight olumn is

PE = π 2 EI/L2 ,

the bending moment an be

expressed as

  P v0 L =− P M 2 −1 P E

The bending moment

M(L/2) approa hes

to innity when

of the beam in the outmost bers are

M P = −P σ=− ± A W

1 ± A

P → PE ! The stresses

1 v0 P −1W PE

!

at the middle

(43)

Taking the ross-se tion dimensions into a

ount

A = π(502 − 452) = 1492mm2

I = π4 (504 − 454 ) = 1.688 · 106 mm4

W

k2

=

1 I 50 mm2 −3

= 1.41 · 10

= 33760mm3

, when P = 50 kN

From equation 43 we get

σ = −33.5 ± 15.4 MPa Let's solve the ompressive for e value the yield point

σy .

P,

when the outmost bers at the mid-se tion attains

From the equation 43 we get



1 A

v0 1 P −1 W P



σy = −P + E    v P P 0 − 1 σy − A − W P =0 ⇒ PE  ⇒ P 2 − σm A + PE + PEWAv0 P + σy PE A = 0 Substituting the dimensions, gives

2

P − 509.5P + 45945 = 0 ⇒

(

P1 = 117.1 kN P2 = 392.4 kN

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

37

Safety fa tor with respe t to the yield is thus

n=

117.1 = 2.34 50

Resistan e and partial safety fa tor a

ording to B7.



The resistan e of the beam depends on the hosen bu kling urve. Dieren e between the



Let's use the bu kling urve C

bu kling urve is in the assumed level of imperfe tion

i = ¯k = λ β = fck = NRc

From the resistan e

NRc

v0

⇒ α = 0.49 r I = 33.6 mm A r Lc fy = 1.53 iπ E ¯ k − 0.2) + λ ¯2 1 + α(λ k = 0.852 2 ¯ 2 λ k q ¯ 2 )fy = 66.99 MPa (β − β 2 − 1/λ k

A = fck = 66.99 · 1492 = 99.97 kN γm

we get the partial safety fa tor

γf = If we hoose the bu kling urve A

99.97 = 2.0 50

⇒ α = 0.21, γf =

it results in

118 = 2.36 50

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

38

Example 2.8

An elasti beam with ir ular ross se tion is loaded by a tensile for e and a

twisting moment. Determine the riti al twisting moment when the beam loses its stability. Does the beam bu kle if the for e N is ompressive?

M t --

Mt



Solution:

@ @

@ @

-

N

The equilibrium equations at the deformed state

Let's investigate the proje tions of

the

dee tion

urve

on

the

o-

ordinate planes

The bending moments aused by the normal for e are

−Ny

ja

−Nz .

The twistiong moment produ es the bending moments

Mz ′

in

aiheutuu

Vääntömomentista

taavasti and

taivutusmomentit

−My ′

(bending in

(bending vas-

xy -plane)

xz -plane).

We get the system of equations

−EIy ′′ = −Ny + Mz ′

−EIz ′′ = −Nz − My ′

Let's try the solution of the form



(

(44)

y = C1 erx , z = C2 erx

EIr 2 C1 erx = NC1 erx − MC2 rerx EIr 2 C2 erx = NC2 erx + MC1 rerx

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

(45)

39

(45)1 ⇒ C2 (EIr 2 − N) = MC1 r (45)2 ⇒ EIr 2 C1 − NC1 + Mr

MC1 r =0 EIr 2 − N

⇒ (EIr 2 − N)2 + M 2 r 2 = 0 By denoting

α2 = −r 2

(46)

we get from the solutions of the equations (46) the following equations

−EIα2 − N = Mα ⇒ α2 +

M α EI

EIα2 + N = Mα ⇒ α2 −

M α EI

The latter ase is not valid sin e

α1 , α2 > 0. α1,2 =

+

N EI

=0 (47)

+

N EI

=0

Therefore

M ± − EI

q

 M 2 EI

2

N − 4 EI

(48)

Thus

y = A1 sin α1 x + B1 cos α1 x + C1 sin α2 x + D1 cos α2 x z = A2 sin α1 x + B2 cos α1 x + C2 sin α2 x + D2 cos α2 x

Substituting these expressions ba k to the equations (441 ) give

EIz ′′ = EIA2 (−α12 ) sin α1 x − EIB2 α12 cos α1 x − EIC2 α22 sin α2 x − EID2 α22 cos α2 x −Nz = −NA2 sin α1 x − NB2 cos α1 x − NC2 sin α2 x − ND2 cos α2 x

−My ′ = MB1 α1 sin α1 x − MA1 α1 cos α1 x + MD1 α2 sin α2 x − MC1 α2 cos α2 x

Sin e the equation

EIz ′′ − Nz − My ′ = 0

must hold for all the values of

x,

the following

equations must be fullled

(−EIα12 − N)A2 + MB1 α1 = 0

(−EIα12 − N)B2 − MA1 α1 = 0

(−EIα22 − N)C2 + MD1 α2 = 0

(−EIα22 − N)D2 − MC1 α2 = 0

Taking equations (47) into a

ount we get the following relationships for the oe ients

A2 =

M B1 α1 EIα21 +N

=

M B1 α1 −M α1

= −B1

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

40

B2 = C2 = D2 =

Therefore

−M A1 α1 EIα21 +N M D1 α2 EIα22 +N −M C1 α2 EIα22 +N

−M A1 α1 −M α1 D1 α2 = M−M α2 −M C1 α2 = −M α2

=

= A1 = −D1

= C1

z = −B1 sin α1 x + A1 cos α1 x − D1 sin α2 x + C1 cos α2 x.

From the boundary onditions we get

y(0) = 0 ⇒ B1 + D1 = 0 z(0) = 0 ⇒ A1 + C1 = 0

y(L) = 0 ⇒ A1 sin α1 L + B1 cos α1 L + C1 sin α2 L + D1 cos α2 L = 0

z(L) = 0 ⇒ −B1 sin α1 L + A1 cos α1 L − D1 sin α2 L + C1 cos α2 L = 0

The riti ality ondition is the zero determinat, thus

2 − 2(cos α1 L cos α2 L + sin α1 L sin α2 L) = 2 − 2 cos(α1 L − α2 L) = 0 i.e.

(α1 − α2 )L = n2π .

On the other hand we get from equation (48) the following relationship

α1 − α2 = ±2 If

α1 = α2 ,

s

M 2EI

2



N EI

the solution above is not valid, therefore the trigonometri fun tions should be

repla ed by polynomials (partially). However, this is not possible. A situation where is possible, but a

ording to the equations (44) it would imply

′′

′′

y = z = 0.

N =M =0

This kind of rigid

body motion is prevented by boundary onditions. Su h kind of deformed equilibrium state is not possible when

When

α2 − α1 = 0, therefore we have to hoose (α2 − α1 )L = 2π . s 2 N M L = 2π − ⇒ ±2 2EI EI  2  π 2 M N ⇒ = − 2EI EI L r  π 2 N + ⇒ Mcr = ±2EI EI L

N > 0, Mcr

always exists

N < 0, Mcr

is possible, until

N = −π 2 EI/L2

= the Euler bu kling load

This kind of phenomena is present when twisting a string. From a ertain value of the twisting moment one has to apply also a normal for e to prevent the string to be plaitened.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

41

Example 2.9

A long bolt has been pla ed inside a wide sleeve (of lengtht L) as shown in the

gure below. When starting to tighten the bolt: 1. Determine the for e when the sleeve will bu kle when assuming the rorations at the ends to be equal for the bolt and the sleeve. Use the Berry's fun tion for ompressed beam for the sleeve and the orresponding fun tions for a tensile bar for the bolt. 2. What is the value of Pcr , when Ibolt = Isleeve ? 3. What is the value of Pcr , when the normal beam oe ients for a linear bar is used for the bolt? 4. What is the result if there is no spa e between the bolt and the sleeve?

Solution: 1. Let's use the for e method and denoting the quantities related to the sleeve by a sus ript 1 and ralated to the bolt by a subs ript 2.

L L ψ1 − M21 φ1 3EI1 6EI1 L 1 = −M0 (ψ1 + ϕ1 ) 3EI1 2 L L ψ2 − M21 φ2 = M12 3EI2 6EI2 L 1 = M0 (ψ2 + ϕ2 ) 3EI2 2

sleeve : ϕ12 = M12

bolt : ϕ12

Sin e

ϕ12,sleeve = ϕ12,bolt ⇒ M0 6= 0 ⇒

L 1 1 L (ψ1 + ϕ1 ) + M0 (ψ2 + ϕ2 ) = 0 3EI1 2 3EI2 2 I1 1 1 (ψ2 + ϕ2 ) + (ψ1 + ϕ1 ) = 0 I2 2 2

M0

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

42

Substituting the Berry fun tions for the tensile and ompressed bars

  I1 3 1 1 1 1 − + − I2 (kL)2 tanh(kL)2 (kL)2 (kL)2 sinh(kL)  2 1 1 1 1 3 =0 − + − + (kL)1 (kL)  1 tan(kL)1 sin(kL)  1  (kL)1  I1 (kL)1 1 1 1 1 ⇒ − + − =0 I2 (kL)2 tanh(kL)2 sinh(kL)2 sin(kL)1 tan(kL)1 ⇒ Pcr = EI1 k12

2. If

I1 = I2 ⇒ (kL)1 = (kL)2 = kL ⇒

cosh kL − 1 cos kL − 1 22.4EI = ⇒ kL ≈ 4.73 ⇒ Pcr = sinh kL sin kL L2

3. If we use the linear oe ients for the bolt, then

ψ2 = ϕ2 = 1

1 I1 3 + (ψ1 + φ1 ) = 0 I2 2 2   3 1 1 I1 3 ⇒ − = − (kL)1 sin(kL)1 tan(kL)1 I2 2 If

I1 /I2 = 1

EI L2 then v1 = v2

⇒ kL ≈ 4.057 ⇒ Pcr = 16.5 4. If there is no spa e between the bolt and the sleeve,



(

M1 = −EI1 v1′′ = P v1 − M0

M2 = −EI2 v2′′ = −P v2 + M0

⇒ EI1 v1′′ + EI2 v2′′ = 0 ⇒ v1′′ = 0

⇒ v1 = Ax + B

⇒ v1 ≡ 0 (since v1 (0) = v1 (L) = 0)

Bu kling is not possible. The situation is line in a pretensioned on rete beams.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

43

Example 2.10

What is the bu klng load of a beam with rounded ends. The length to height

ratio is L/h = 20.  

 P   @ @ b b

EI

?h 6

L Solution:

EIv + P v = 0 · vˆ ZL ZL ⇒ EI v (4) vˆdx + P v ′′ vˆdx = 0 (4)

′′

0

⇒ −EI

0

ZL 0

v (3) vˆ′ dx − P

ZL

v ′ vˆdx = 0

0

(M = −EIv ′′ ) L ZL ZL ′ ′′ ′′ ⇒ M vˆ + EI v vˆ dx − P v ′ vˆ′ dx = 0 0

0

0

⇒ M(L)ˆ v ′ (L) − M(0)ˆ v ′ (0) + EI

ZL

v ′′ vˆ′′ dx − P

0

ZL

v ′ vˆ′ dx = 0

0

Boundary onditions:

M(0) + P Rv ′(0) = 0 and orrespondingly, when

x=L

M(L) − P Rv ′(L) = 0

Let's hoose

v(x) = v0 sin πx , vˆ(x) = sin πx L L ′







⇒ P R[v (L)ˆ v (L) + v (0)ˆ v (0)] + EI

ZL

′′ ′′

v vˆ dx − P

ZL

v ′ vˆ′ dx = 0

0 0  π 2 L  π 2  π 4 L − P v0 + 2P Rv0 =0 ⇒ EIv0 L 2 L L 2     π 2 L EI R ⇒ v0 π2 2 − P 1 − 4 =0 L 2 L L π 2 EI ⇒ P = L2 1 − 4R L L 10 EI if R = ⇒ P = π2 2 40 9 L

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

44

Example 2.11

Determine the riti al load of the given beam by the nite element method.

Use two Euler-Bernoulli beam elements.

2EI

EI

L/2 Solution: dom:

@b b @

L/2

The olumn is divided into two elements, thus the model has three degrees of free-

v2 , ϕ2 , ϕ3 . 1j

Denoting where

K

P = λEI/L2 .

2j

  2 ? 1

L/2

λSx,

P 

3  ?P @ @ b b

L/2

We get a generalized linear algebrai eigenvalue problem

is the linear stiness matrix

λS

Kx =

is the gemetri stiness matrix, or initial stress

matrix. The element matri es of the Euler-Bernoulli model are

K

λS

(e)

(e)

EI = L

      

  (e)  ˜ =N  

12 L2

6 L

4

− L122 − L6 12 L2

symm. 6 5L

1 10 2L 15

6 − 5L 1 − 10 6 5L

symm.

and the lo al degrees of freedom are thus in the order

6 L



 2   6  −L  4 1 10 L − 30 1 − 10 2L 15

     

v1 , v1′ , v2 , v2′ .

Now

˜ (1) = N ˜ (2) = P = N

λEI/L2 . The onne tion from lo al to lo al degrees of freedom is:

(2) ϕ1 , δ3

=

(1)

δ1 = v2

(2)

(1)

= v1 , δ2 = ϕ2

=

(2) ϕ2 . The elements in the global matri es are:

8 · 12 EI 8 · 12 2EI + EI = 288 3 3 3 L L L EI (1) (2) = K34 + K12 = −24 2 L EI (2) = K14 = 24 2 L EI (1) (2) = K44 + K22 = 24 L (1)

(2)

K11 = K33 + K11 = K12 K13 K22

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

45

(2)

EI L EI =8 L

K23 = K24 = 4 (2)

K33 = K44

(1)

(2)

(1)

(2)

S11 = S33 + S11 = P

24 24EI =λ 5L 5L3

S12 = S34 + S12 = 0 EI 1 (2) =λ S13 = S14 = P 10 10L2 2EI 2L (1) (2) =λ S22 = S44 + S22 = P 15 15L L EI (2) S23 = S24 = −P = −λ 60 60L EI L (2) =λ S33 = S44 = P 15 15L Written in a matrix format:



288 −24 24

EI   −24 L  24

where it is repla ed

24 4



  4   8

δ1 /L δ2 δ3





24 5

   = λ EI  0  L 

1 10

0 2 15 1 − 60

1 10 1 − 60 1 15



δ1 /L

   δ2  δ3



 , 

δ1 → δ1 /L and the uppermost equation is divided by L. From this eigenvalue

λi 's and the orresponding eigenve tors   1 24 −24 24 − λ 10 288 − λ 5   2 1  = 0 ⇒ λ det  −24 24 − λ 15 4 + λ 60 kr = 26.32   1 1 1 4 + λ 60 8 − λ 15 24 − λ 10

problem we an solve

Let's investigate the onvergen e of the numeri al solution and how we an esitimate the error in our nite element solutions and how we an extrapolate an estimate of the exa t solution. If we know a priori the asymptoti onvergen e rate of the desired quantitity and the element in question, we an have have an improved estimate by omputing the problem at least by two dierent dis retizations, i,e meshes. The error in the numeri al solution in proportional to

h

Chk , where C

is a positive onstant,

is the mesh parameter (i.e. the hara teristi length of the largest element) and

k

is the rate

of onvergen e of the quantity in question. As an example, let's onsider the estimation of the exa t value of the load parameter by using extrapolation. The nite element solutions

λ1 = λ(h1 )

and

λ2 = λ(h2 )

satify

λ1 = λex + Chk1 λ2 = λex + Chk2 Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

46

First we eliminate equation, gives

C = (λ1 − λex )h−k 1

from the upper equation, and substituting it to the lower



h2 λ2 = λex + (λ1 − λex ) h1 from where we an solve

λex

k

 k

λ2 − λ1 hh12 =  k 1 − hh21

If we solve the same problem by using 10 elements (both parts of the beam have 5 equal elements), we get the value

λ = 25.18

for the ritial load. The rate of onvergen e of the

eigenvalues of the Euler-Bernoulli beam is

k=4

From this data we get the extrapolated value

and now

h1 = L/2, h2 = L/10 ⇒ h2 /h1 = 0.2.

λ1ex = 25.18,

whi h is also obtained by using 50

elements for the beam.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

47

Example 2.12

Determine the bu kling load of the stru ture below by the nite element

method and using one element for a member. The members an be assumed axially innitely sti i.e. EA = ∞. P

P

?

? EI

EI

EI

e

Solution:

L

2L

e

Let's rst hoose the global o-ordinate system.

EA = ∞ ⇒ u2 = u3 = 0 6u ϕ2 2

 ?

v2

2j

6u3  ? ϕ3  3j

v3

v2 = v3

By symmetry

ϕ1 = ϕ4 ϕ2 = ϕ3 

ϕ1 ?e

1j



ϕ4 ?e

4j

Therefore

the

bu kling

mode is antisymmetri

The global degrees of freedom are

ϕ1 , v2 , ϕ2 .

The elements of the global stiness matrix

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

48

are

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(2)

EI 4EI =4 2L L 6EI EI = −2 = −3 2 2 (2L) L EI 2EI =2 =2 2L L 12EI EI =2 =3 3 3 (2L) L 6EI EI = −2 = −3 2 2 (2L) L

K11 = K22 + K22 = 2 K12 = K23 + K23 K13 = K24 + K24

K22 = K33 + K33 K23 = K34 + K34

(2)

(2)

(2)

(3)

K33 = K44 + K22 + K44 + K24 + K42 + K44 = 2

Note that the term

K33

4EI 2EI EI 4EI +2 +2 = 16 2L L L L

has the mixed terms 24 and 42 of the element 2.

The elements of the global geometri stiness matrix are

˜e Sije = N

The last element

S33

RL 0

Ni′ Nj′ dx

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

S11

= S22 + S22

S12

= S23 + S23

S13

= S24 + S24

S22

= S33 + S33

S23

= S34 + S34

S33

= S44 + S44

2 · 2L 8 EI P = λ 15 15 L 1 EI 1 = −2 P = − λ 2 10 5 L 2L 2 EI = −2 P = − λ 30 15 L 6 EI 6 P = λ 3 =2 5 · 2L 5 L 1 1 EI = −2 P = − λ 2 10 5 L 2 · 2L 8 EI =2 P = λ 15 15 L =2

does not have any terms from the element 2, sin e the normal for e of

that parti ular element is zero. The generalized linear algebrai eigenvalue problem is thus



4

− L3

2



ϕ1





   EI  3 3   = λ EI   −3 v − 2 2  L  L  L L L  3 ϕ2 2 − L 16

8 15 1 − 5L 2 − 15

1 − 5L

6 5L2 1 − 5L

2 − 15



ϕ1



  1   v − 5L 2   8 ϕ2 15

These matri es an be non-dimensionalized by using a dimensionless displa ement and multiplying the se ond equation by

L.

δ2 = v2 /L

The lowest eigenvalue, i.e. the bu kling load fa tor

is

λkr = 0.528 ⇒ Pkr = 0.528 Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

EI L2 49

Example 2.13

Determine the riti al load of the stru ture shown below using the nite ele-

ment method and dividing the beam into two Euler-Bernoulli beam elements. Both ends of the beam are fully lamped. Determine as a fun tion of β , espe ially the ase α = 2 and 1 ≤ β ≤ 4. Hint:

Determine rst the distribution of the axial for e.

α β

EI

EI

EA

EA



L/2

Solution:

@ @ @ @ @ @ @ @

P

L/2

The normal for e distribution by solving the dierential equation of the axial dis-

pla ement:

(EA)i u′′ = 0 ⇒ u 1 = C1 x + C2

u 2 = C3 x + C4

Assuming linear elasti material, we get the for e-dee tion relationship:

Ni = (EA)i u′ =

(

βEAC1 − L2 ≤ x < 0

EAC3

0 0, the spring will reload elasti ally, i.e. Ei = E . 2

E1 = E, E2 = ET ⇒ P1 = PR = 2ER aL ,

where

ER = 2(EET )/(E + ET ).

In the ase of plasti bu kling the se ondary paths are stable when when

is

P0 ∈ (PT , PE ).

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

P0 ∈ (PT , PR )

and unstable

60

Example 3.4

In the beam theory taking the average transverse shear deformations into a -

ound, the equilibrium equations are

−EIθ′′ − kGA(v ′ − θ) = 0 kGA(v ′ − θ)′ − P v ′′ = 0

(49)

Show that in the ase of entrally ompressed antilever olumn the riti al load is

Pcr =

PE , 1 + αPE

where PE is the Euler bu kling load PE = π 2 EI/(4L2 ) and α = 1/(kGA) and k = 1/ζ .

P

Solution :

Equations (49) are the equilibrium equations

(

M′ − Q = 0

Q′ − P v ′′ = 0

expressed in terms of the kinemati al quantites

v and θ. The bending moment and the transverse

shear for e an be expressed as

( if

EI, kGA

and

P

M = −EIθ′

Q = kGA(v ′ − θ)

⇒ (49)

are onstants.

Dividing the equations (49) by

kGA

we get

v ′ − θ + αEIθ′ = 0

(1 − αP )v ′′ − θ′ = 0 Boundary onditions:

v(0) = 0

``` Q H H H    QQ  P

Q(0) = 0 M(L) = −EIθ(L) = 0

v′

Q(L) = P v ′ (L)

Let's try the solution in the form



v = Aerx , θ = Berx [Ar + B(αEIr 2 − 1)] erx = 0

[(1 − αP )Ar 2 − Br] erx = 0

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

61



"

r (1 − αP )r 2

αEIr 2 − 1 −r

To have a meaningfull nontrivial solution (A

#

A B

6= 0 6= B ),

!

0

=

0

!

it is required

det = 0   ⇒ −r 2 1 + (1 − αP )(αEIr 2 − 1) = 0

⇒ r1,2 = 0 tai 1 + (1 − αP )(αEIr 2 − 1) = 0 −P ⇒ r2 = (1 − αP )EI

Now

P > 0,

what about

(1 − αP ) = 1 − P/kGA?

Denoting

P = λEI/L2

E I EI = 2(1 + ν)k −1 (inserting G = , k −1 = η) 2 2 kGAL AL 2(1 + ν) I 1 2(1 + ν)η , 0 ≤ ν ≤ , η ≈ 1, I/A GIt r −2 .

P r 2 − GIt EIω

The general solution of this equation is

ϕ = A + Bx + C cos kx + D sin kx and the boundary onditions are

ϕ(0) = 0 ⇒ A + C = 0

ϕ(L) = 0 ⇒ A + BL + C cos kL + D sin kL = 0

ϕ′′ (0) = 0 ⇒ C = 0 ⇒ A = 0

ϕ′′ (L) = 0 ⇒ C cos kL + D sin kL = 0 ⇒ D sin kL = 0 ⇒ B = 0 Sin e

A = B = C = 0,

we get

nπ L P r 2 − GIt  nπ 2 = ⇒ EIω L 2 GIt + EIω Lπ 2 ⇒ Pcr,ϕ = r2

sin kL = 0 ⇒ k =

Let's insert the inertias

It

bt 2 (b + t2 ) 12 = 0.78bt3



= 0

Iz

= Iy =

⇒ Pcr,ϕ = Now when

Iω = 0

It t2 GA GA = 4.67 2 GA = 4.67 2 Iz + Iy b +t 1 + (b/t)2

the torsional b kling load is onstant and does not depend on the length of

the beam. The torsional bu kling load for the ase in question ould be obtained dire tly from equation (57)3 by setting

Iω = 0 (P r 2 − GIt )ϕ′′ = 0 ⇒ Pcr,ϕ = GIt /r 2

What is the bu kling mode in this ase?

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

89

Example 4.2

Determine the riti al load Pcr for a entrally ompressed lamped beam. The

ross-se tion is shown below and b = 10t, ν = 0. Determine the riti al load as a fun tion of the length. ? t 6

b

b

Solution:

The dierential equations for torsional bu kling for a olumn are

   

EIz v (4) + P (v ′′ + zv ϕ′′ ) = 0

EIy w (4) + P (w ′′ − yv ϕ′′ ) = 0    EI ϕ(4) − GI ϕ′′ + P (z v ′′ − y w ′′ + r 2 ϕ′′ ) = 0 ω t v v For a T-beam we have



-

b

d= 6 ? -

6

z

b ?

y

?

b 4

zv = 0,

EIω = 0

yv = −b/4 5 b3 t , Iz = b3 t Iy ≈ 12 24 Ip 5 2 3 + yv2 + zv2 = b2 It ≈ t b, r 2 = 3 A 24

The equations simplify now to the form

EIz v (4) + P v ′′ = 0 EIy w (4) + P [w ′′ − yv ϕ′′ ] = 0

−GIt ϕ′′ + P [−yv w ′′ + r 2 ϕ′′ ] = 0

The upper equation, i.e. the displa ement in the

z -dire tion

y -dire tion

un ouples from the displa ement in

and from the twist-rotation, thus the bu kling in

Py = 4π 2

y−dire tion

gives the load

EIz L2

Fun tion whi h satisfy the boundary onditions are

 nπx  w = B 1 − cos 2 L  nπx  ϕ = C 1 − cos 2 L

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

90

Let's denote

P = λGIt r −2 GIt r2

where

"

α = 4π 2 (r/L)2 EIy /GIt .

α−λ

yv λ r 2 (1 − λ)

yv λ

#

B C

!

!

0

=

0

In order to have a non-trivial solution for

has to vanish. The riti al value for the

λ

A, B

the determinant

parameter an be found by solving the hara teristi

polynomial

If we denote

(yv /r)2 =

Iy = I ,

then

  y 2  v λ2 − (1 + α)λ + α = 0 1− r

Iz = 52 I

and

2 I . If 25

ν=0

then

G = E/2

and

GIt =

1 EI . Also 25

3 , thus the hara teristi polynomial has the form 10

λ2 − where

It =

α=

10 10 (1 + α)λ + α = 0 7 7

125 2 π (b/L)2 . The smaller toot is 6

λ1 = 57 (1 + α) 1 − Note, that

λ1 ≤ 1 . Py =

s

14α 1− 5(1 + α)2

!

The bu kling load is now the minimum from

EIz 4π 2 2 L

 2  r 2 GI GIt 625 2 b t = 250π = π 2 L r 12 L r2 2

Pz,φ,1 = λ1

z−dire tion  2 GIt GIt 125 2 b 2 EIy π = Py > Pz,φ,1 Pz = 4π 2 2 = α 2 = L r 6 L r2 5

Note that, if the torsional mode is prevented the bu kling load in

The riti al load parameter

λcr = λ1

GIt r2

is

is shown below as a fun tion of the slenderness

(L/b)

1 0.9 0.8 0.7 0.6

λcr 0.5 0.4 0.3 0.2 0.1 0

0

20

40

60

80

100

L/b Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

91

What is the riti al load for a olumn lamped at its lower end and the upper

Example 4.3

end free. The ompressive for e a ts on the enter or gravity. The hight of the olumn is 1000 mm and the material's Young's modulus is E = 210 GPa, the Poisson ratio ν = 0.3 and the yield strength σm = 220 MPa. The ross se tion is shown below and the warping an take pla e freely at the upper end of the olumn. The hight of the ross-se tion is h = 100 mm and the wall thi kness is t = 10 mm. ? t 6

h

h Solution:

The orresponding dierential equation system is

EIz v (4) + P [v ′′ + zv )ϕ′′ ] = 0 EIy w (4) + P [w ′′ − yv )ϕ′′ ] = 0

EIz ϕ(4) − GIt ϕ′′ + P (zv v ′′ − yv w ′′ + r 2 )ϕ′′ ) = 0

where

(yv , zv )

are the oordinates of the shear enter and

r 2 = yv2 + zv2 + (Iz + Iy )/A.

For the

C-se tion prole in question we have

• Iy = 13 h3 t • Iz =

7 3 ht 12 3

• It = ht

• A = 3ht

We have to ompute the shear enter oordinates, therefore we need the se torial quantities.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

92

Let's hoose the pole B as the orner point

ωB = ωB (s) =

s = 2h

s =hhhh

hhh −h2 hhh hh h

Zs

h(s)ds

0

−h ≤ s ≤ h , ωB = 0

h ≤ s ≤ 2h , ωB = h(h − s)

When omputing the se torial oordinate

ω

the sign is

positive when we rotate ounter lo kwise and negative

s=0 s=h

B

when we are moving in a lo kwise dire tion.

The shear enter oordinates are

yv = yB + Izω /Iy = 0 (symmetry) zv = zB + Iyω /Iz

Next we determine

Iyω

−h/2

 





 





 

−h/2



Iyω y

h/2 Now the se torial oordinate

×

ωv′

` 3 2 ```` h ``` 7 ``` ` DD D D D V D ωv′ D D 3 D h 7 D D D B ```` ``` ``` ` `

Adding a onstant

C

s

th4 h = y(s)ωB (s)t(s)ds = t − h(h − s)ds = 2 4 h   h 16 1 47 3 ⇒ zv = − − ht h t =− h 3 4 12 21 521 I + I z y = h2 ⇒ r 2 = yv2 + zv2 + A 588

wrt the shear enter.

1 2 h − 14

The

ωv -diagram

above is not nal, sin e it has to fulll

the normalizing ondition

I

1 2 h 2

ωv (s)t(s)ds = 0

s

ωv -diagram, we have I I I ′ ′ ωv tds + Ctds = ωv tds + C tds = 0

to the

I

Z2h

Z

s

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

s

93

⇒C = −

If we hoose the origin of the

3 2 h 14 ````

DD D

×V

``` ``` ` `

D D

D

s- oordinate

6

3 − 14 h

ωv′ tds 3 = − h2 A 14

the point

y = 0, z = −h/3.

 h 3 h    − 28 (14s + 13h) , − 2 h ≤ s ≤ − 2 3 ωv (s) = hs , − h2 ≤ s ≤ h2 3    − h (14s − 13h) , h ≤ s ≤ 3 h 28 2 2

ωv

D D `D `` ``` D ``` `` 2 `

s

− 27 h2

s

D D

H

2 2 h 7

The warping rigidity is

Iω =

Z

A



 ωv2dA = 2t 

Zh/2 0

9 2 2 h s ds + 49

3h/2 Z

h/2



1 2  5h5 t h (14s − 13h) = 282 84

Now we an investigate the stability of the olumn

P

?

The boundary onditions are

L

v(0) = w(0) = ϕ(0) = 0

x 6

v ′ (0) = w ′ (0) = ϕ′ (0) = 0 v ′′ (L) = w ′′ (L) = ϕ′′ (L) = 0

Fun tions satisfying the above boundary onditions are

      πx πx πx − 1 , w = C2 cos − 1 , ϕ = C3 cos −1 v = C1 cos 2L 2L 2L Inserting these into the dierential equations we get

 π2 EIz − P C1 − P zv C3 = 0 2   4L2 π EIy − P C2 = 0 4L2   2 π 2 EIω + GIt − P r C3 = 0 −P zv C1 + 4L2



Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

94

Let's denote

π2 π2 π2 Py = EI , P = EI , P = EIω + GIt z z y ϕ 4L2 4L2 4L2      0 C1 Py − P 0 −zv P            ⇒ 0 Pz − P 0   C2  =  0  0 C3 −zv P 0 Pϕ − P r 2

In order to have a nontrivial solution we must have

det[·]=0

  ⇒ (Pz − P ) (Py − P )(Pϕ − P r 2 ) − zv2 P 2 = 0 ⇒ P1 = Pz

tai (r 2 − zv2 )P 2 − (Pϕ p + Py r 2 )P + Py Pϕ = 0 (Pϕ + Py r 2 ) ± (Pϕ + Py r 2 )2 − 4Py Pϕ (r 2 − zv2 ) ⇒ P2,3 = 2(r 2 − zv2 )

Inserting the values we get the gures

P1 = 1727 kN, P2 = 964 kN, P3 = 11454 kN ⇒ Pkr = P2 Pkr σ= = 321 MPa > σm = 220 MPa A ⇒ Pkr ≤ 660 kN So, the yielding takes pla e prior to bu kling, therefore we should determine the plasti -bu kling load.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

95

Example 4.4

A beam with a re tangular ross-se tion is loaded by a onstant bending moment

M . The lower boundary of the ross-se tion annot move in lateral dire tion but an rotate. The rotation is supressed at the simply supported boundaries. Determine the riti al bu kling moment Mcr .

M 

M 

b b 6666666666666666666666@ @ @ @ b b

L = 50b

Solution:

 b b

b

In this ase the dierential equations are

(

EIy w (4) − Mz0 ϕ′′ = 0

−GIt ϕ′′ − Mz0 w ′′ = 0

Dierentiating the lower equation twi e and multiplying by parts the rst equation by

(58)

Mz0 /EIy

we get

2

(M 0 ) − z ϕ′′ + Mz0 w (4) = 0 EIy −GIt ϕ(4) − Mz0 w (4) = 0 Adding these two equations, gives

2

(M 0 ) − z ϕ′′ − GIt ϕ(4) = 0 trial ϕ = erx EIy 0 2 (M ) ⇒ − z r 2 erx − GIt r 4 erx = 0 EIy 2 (Mz0 ) 2 ⇒r =− EIy GIt Denoting

k 2 = −r 2

we get

ϕ = A1 sin kx + A2 cos kx + A3 x + A4

(59)

w = B1 sin kx + B2 cos kx + B3 x + B4

(60)

In a similar fashion we get

Substituting equations (59) and (60) to equations (58) we get

B1 = −A1

GIt GIt , B = −A 2 2 Mz0 Mz0

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

96

Sin e the lower boundary is immovable in

w+ Hen e

z -axis

dire tion

5b w 5b ϕ≡0 ⇒ =− 2 ϕ 2

(61)

w B2 5b B1 2GIt = = − ⇒ Mz0 = ≡ ϕ A1 A2 2 5b

The bu kling mode requires

M0 nπ n halfwaves k=p z = L EIy GIt 2GIt nπ p EIy GIt = L 5b

⇒ Mz0 =

Let's insert the ross-se tional values

Iy = It = L = ⇒ Mz0 = ⇒n =

5 5b · b3 = b4 12 12 5 1 3 5b · b = b4 3 3 50b and if G = 0.4E nπ 4 p Eb 0.5 · 5/12 · 5/3 = 0.0331nEb3 = 0.267Eb3 50b 8.

The riti al moment an be obtained by substituting equation (61) into equation (582 ):

′′

⇒ −GIt ϕ − Now

ϕ′′ 6= 0,

sin e if

A=B=0⇒ϕ≡0

ϕ′′ = 0 ⇒ ϕ = Ax + B .

Mz0

  5b − ϕ′′ = 0 2

Taking boundary onditions into a

ount, we get

and bu kling is not possible hen e

−GIt −

Mz0



5b − 2



= 0 ⇒ Mz0 =

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

2GIt 5b

97

Example 4.5

Determine the riti al lateral bu kling moment Mcr for the beam shown below.

The support on the rhs side prevents verti al and lateral displa ements but the ross-se tion

an rotate about the support. The ross-se tion is re tangular with dimensions b × h where

h ≫ b.

M 

M 

b @ @

Solution:

b @ @ b b



The dierential equations takes now the form

(

EIy w (4) − Mz0 ϕ′′ = 0

(62)

−GIt ϕ′′ − Mz0 w ′′ = 0

Boundary onditions on the lhs support

w(0) = 0, w ′′ (0) = 0, ϕ(0) = 0 The rhs boundary onditions are slightly more ompli ated

ϕ   A ? A A A M * z¯ -z, w   A A A A AU A Ay ¯A  A @ @

The kinemati al onstraint at the enter of gravity of the ross-se tion is

?y, v

h w(L) = − ϕ(L) 2

A M z¯  K  K My¯-z A    M y ?

Let's divide the external moment

M

into

omponets parallel to the deformed oordinate axis

6z

Mx¯ w ′ (L) :   C M    CCW z¯ ? M  



-

z

Mz¯ ≈ M

My¯ = EIy w ′′ ≈ −ϕ(L)M

Mx¯ = −w ′ (L)M

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

98

The boundary onditions are

w(0) = 0 w ′′ (0) = 0 ϕ(0) = 0

h w(L) = − ϕ(L) 2 −EIy w ′′ (L) = −ϕ(L)M GIt ϕ′ (L) = −w ′ (L)M

Substituting equation (622 ) into equation (621 ) saadaan

w

(4)

M2 + k w = 0, k = EIy GIt ⇒ w = A sin kx + B cos kx + Cx + D 2

2

′′

From boundary onditions we get

w(0) = w ′′ (0) = 0 ⇒ D = B = 0 ⇒ w = A sin kx + Cx

From the dierential equation (622 ) we an dedu e that

ϕ

is of similar form

⇒ ϕ = E sin kx + F x

⇒ −GIt k 2 E sin kx − Mk 2 A sin kx = 0 M ⇒ E = − GI A t

Let's substitute the boundary onditions into these trial fun tions

M A cos kx − F ) = −(Ak cos kx + C)M GIt M ⇒F =− C GIt h M h (A sin kL + CL) w(L) = − ϕ(L) ⇒ A sin kL + CL = 2   2 GIt   Mh Mh ⇒ 1− A sin kL + 1 − CL = 0 2GIt 2GIt M (A sin kL + CL) −EIy w ′′ (L) = −ϕ(L)M ⇒ EIy k 2 A sin kL = GI t   M2 M 2 ⇒ EIy k − A sin kL + − C=0 GIt GIt GIt ϕ′ (L) = −w ′ (L)M ⇒ −GIt (k

Sin e

k 2 = M 2 /EIy GIt

it follows from equation (63)

(63) we obtain



Mh 1− 2GIt



−(M/GIt )C = 0 ⇒ C = 0. From equation

 sin kL = 0

The riti al moment is then

Mcr = min

(

2GIt , π h

p

EIy GIt L

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

) 99

The eigenmodes are

w(x) = A sin kx M ϕ(x) = − A sin kx GIt Note! if

Mcr =

2GIt h

⇒ kL 6= π ⇒ w(L), ϕ(L) 6= 0.

If

Mcr =

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

2GIt h

⇒ kL = π .

100

Example 4.6

Determine the riti al bu kling moment in the form Mcr = λ

p EIy GIt /L, where

the parameter λ = λ(k, h/L). Draw the riti al load parameter λ as a fun tion of k , when

k ∈ (−1, 1) and L/h = 20, ν = 0. Use the prin iple of minimum potential energy or some other numeri al method and use trigonometri trial fun tions.

M 

kM 

b @ @

b @ @ b b

L Solution by the prin iple of minimum potential energy:



h

b

The expression for the total potential

energy is

1 Π = 2

ZL 0

  GIt (ϕ′ )2 + EIy (w ′′ )2 + 2(Mz0 ϕ)′ w ′ dx

ZL i 1 h ′ GIt (ϕ′ )2 + EIy (w ′′ )2 + 2(Mz0 ϕ + ϕ′ Mz0 )w ′ dx = 2 0

where



Mz0 = M(1 − x/L) + kMx/L = M[1 + (k − 1)x/L] ⇒ Mz0 = (k − 1)M/L.

trial fun tions

ZL

ϕ = ϕ0 sin πx/L, w = w0 sin πx/L.

Let's use the

Hen e



Mz0 ϕw ′dx = 0

0

ZL

x πx L cos2 dx = L L 4

0

    π 2 L  π 4 L  π 2 L L 1 2 2 GIt ϕ0 + EIy w0 + 2M ϕ0 w 0 + (k − 1) ⇒Π = 2 L 2 L 2 L 2 4 Minimizing the potential energy

∂Π ∂ϕ0 ∂Π ∂w0

  π 2  L π 2 GIt L = =0 ϕ0 + M + (k − 1) w0 2L L 2 4   π 2 π 4 EIy L L =0 = w + M ϕ + (k − 1) 0 0 3 2L L 2 4 ! ! "  # π 2 EIy M k−1 w 0 1 + 0 3 2L = ⇒  2L GI 2 k−1 M t ϕ0 0 1 + 2L 2 2L

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

101

The riti al moment is obtained in the form

π Mcr = ± 1 1 + 2 (k − 1) When

k = 1

p

we get the exa t result. When

GIt EIy = λ(k) L

p

GIt EIy L

k → −1 ⇒ λ → ∞,

thus the trial fun tion is

inadequate to model su h a situation. How the trial fun tion should be sele ted to result in a



λ





π

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

k meaningful solution for the ase

k = −1?

Solution by the method of weighted residuals:

Let's start from the dierential equations

EIy w (4) − (Mz0 ϕ)′′ = 0

−GIt ϕ′′ − Mz0 w ′′ = 0.

Multiplying the rst equation by the lateral displa ement weight fun tion

φˆ and integrate over the domain Z L (4) w[EI ˆ − (Mz0 ϕ)′′ ]dx = 0 yw 0 Z L ′′ 0 ′′ ϕ(−GI ˆ t ϕ − Mz w )dx = 0.

by the rotation weight fun tion



and the lower one

we get

0

Integrating by parts

L L Z L ′′ 0 ′ ′′′ 0 ′ [EIy w − (M ϕ) ]wˆ − (EIy w − M ϕ)wˆ + (w ˆ ′′EIy w ′′ − wˆ ′′ Mz0 ϕ)dx = 0 z z 0 0 0 L Z L ′ (ϕˆ′ GIt ϕ′ − ϕM ˆ z0 w ′′)dx = 0. − ϕˆ GIt ϕ + 0

0

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

102

The boundary terms wanish and if we use same basis for the weight as for the trial ones

ψ(x) = sin(πx/L): w = w0 ψ(x),

ϕ = ϕ0 ψ(x),

wˆ = wˆ0 ψ(x),

and

ϕˆ = ϕˆ0 ψ(x),

we get the equation

wˆ0 ϕˆ0

!T "

K11

MG12

MG21

K22

#

w0 ϕ0

!

=0

where

G12

K22

L

L π 4 EIy π4 EIy (ψ (x)) dx = EIy 4 sin2 (πx/L)dx = L 2L3 0 0 Z L Z L π2 = G21 = − [1 + (k − 1)x/L] ψ(x)ψ ′′ dx = [1 + (k − 1)x/L] 2 sin2 (πx/L)dx L 0 0   2 k−1 π 1+ = 2L 2 Z L π 2 GIt = GIt (ψ ′ (x))2 dx = 2L 0

K11 =

Z

′′

Z

2

So we got the same stiness matrix as in the potential energy approa h. Let's try to write the stiness matrix in a dimensionless form. First we write it in the form

wˆ0 /L ϕˆ0 where

Denoting

!T "

˜ 11 M G ˜ 12 K ˜ 21 K ˜ 22 MG

#

w0 /L ϕ0

!

=0

  2 k−1 π2 π 4 EIy ˜ 22 = K22 π GIt ˜ ˜ 1+ , K , G12 = K11 = 2L 2 2 2L p M = λ EIy GIt /L and η 2 = EIy /GIt we obtain the matrix in a dimensionless wˆ0 /L ϕˆ0

!T

π2

p

EIy GIt 2L

"

π2η

λ 1+

The riti al value for the load parameter

λ

k−1 2 −1

λ 1+

k−1 2



η

 #

w0 /L ϕ0

!

form

=0

is then

λcr = ±

π 1+

1 (k 2

− 1)

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

103

Example 4.7

Determine the riti al moment Mcr for the beam shown below, the proportions

are b = 10t, L = 20b, ν = 1/3. What is the result if M is negative?

M 

M 

b @ @

b @ @ b b

L Solution:

b @ I @ @b



@ R @ @ @

The ross-se tional onstants are

√ 1 3 1 3 2 2 3 b, zv = 0 It = t b, Iy = tb , Iz = tb , yv = − 3 Z 3 12 Z 4 Z √ √ √ bt 2 1 2 1 2 4 2 2 3 2 y(y + z )dA − 2yv , y dA = 0, yz dA = 2 b b = tb ⇒ βz = 2b βz = Iz 6 4 2 24

The dierential equations for the lateral/torsional bu kling are

  EIy w (4) − Mϕ′′ = 0

 −GIt ϕ′′ − Mw ′′ − βz Mϕ′′ = 0 w (4) +



ϕ′′ = −

M w ′′ GIt + βz M

M2 w ′′ = 0 EIy (GIt + βz M)

The general solution is

w = A sin kx + B cos kx + Cx + D

k2 =

where

M2 EIy (GIt + βz M)

The boundary onditions are

w(0) = 0 ⇒ B + D = 0

w ′′ (0) = 0

B=0

w(L) = 0

A sin kL + CL = 0 Ak 2 sin kL = 0

′′

w (L) = 0

The lowest bu kling load is obtained when

M 2 − βz denoting

p M = λ EIy GIt /L

and

n = 1,



kL = nπ,

hen e

π2 π2 EI M − EI GI y y t 2 = 0 L2 L

EIy = α2 GIt λ2 − π 2 α

βz − λ − π2 = 0 L

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

104

The roots are

2

λ= Substituting

βz =



π α 2



βz L





1 ±

s

2 b, L = 20 b, α2 = 4000/3, λ = 2.62π 2

1+

4 π 2 α2



L βz

gives the result



2

 

λ = −0.04π 2

k 2 is positive for negative λ values, i.e. if it holds GIt +βz M > 0. p √ ! EIy GIt 5 = GIt 1 + 2 √ λ = −0.02 GIt + βz λ L 3

Let's he k if the expression for

Therefore the trial fun tion for

w

is wrong for a negative moment. In this ase

M2 EIy (GIt + βz M) w(x) = A sinh kx + B cosh kx + Cx + D

w ′′′′ − k 2 w ′′ = 0, where k 2 = −

From boundary onditions we get

B=D=0

A sinh kL + CL = 0 Ak 2 sinh kL = 0 Sin e

k 6= 0

and

!

⇒A=C =0∨k =0

the beam does not bu kle laterally. However, the anges an bu kle in a plate-like

mode.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

105

5

Bu kling of plates

Example 5.1

A square plate is stiened by equidistant beams of re tangular ross-se tion in

the loading dire tion. How many stieners are required to obtain a bu kling load Nx at least 2

the value 10 πa2D . Thi kness of the plate is h, whi h is also the width of the beam. The height of the beams is αh = 4h. The material is isotropi with Poisson's ratio 0.3. Use the energy method and a one-parametri trial fun tion for the dee tion w(x, y). The plate is simply supported and the torsional stiness of the beams need not to be taken into a

ount. h = a/40, where a is the side-length of the plate.

Nx

-

a n+1

n kpl palkkeja

? y

Solution:

          

-

x

a

a

Let's use the following trial fun tion to the dee tion

w(x, y) = w0 sin

πy πx sin a a

Expression for the total potential energy of the plate is

∆Π = ∆UZ + ∆V = ∆Uplate + ∆Ubeams + ∆Vplate + ∆Vbeams D ∆Uplate = (∆w)2 dA 2 A

∆w = w,xx + w,yy , and w,xx D π4 2 w 2 a2 Z0 Nx Nx π 2 2 2 = − w w,x dA = − 2 2 4 0

πx πy π2 sin = w,yy = −w0 2 sin a a a

⇒ ∆Uplate = ∆Vplate

A

∆Ubeams =

n X i=1

∆Vbeams = −

EI 2

n X i=1

Za

2 w,xx dx =

0

σx hαh 2

Za

EI π 4 2 X 2 πi sin w 4 a3 0 n+1

2 w,x dx, where σx h = Nx

0

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

106

X Nx h πi = − α w02 π 2 sin2 n+1   4 4a Nx π 2 EI π 4 X 2 πi Nx h 2 X 2 πi Dπ w02 − + sin − α π sin ⇒ ∆Π = 2 3 2 a 2 4 4 a n+1 4 a n+1 When omputing the

∆Vpalkit

term, it is assumed that the load

Nx

is equally distributed for

the ross-se tional area of the beam. Using the notation

Nx = λ In the example ase

α=4

α3 h4 Eh3 π 2 Eh3 , I = , D = , when ν = 0 12a2 12 12

and

h = a/40.

" n X πi Eh3 π 4 2 3 h sin2 w0 1 + α −λ ⇒ ∆Π = 2 24 a 2a i=1 n+1 The equilibrium equations from the ondition

hara terized by

n

h X 2 πi 1 sin +α 4 2a i=1 n+1

δΠ = 0 ⇒ w0 = 0,

!#

and the riti al point is

∂2Π =0 ∂w02 P πi h sin2 n+1 1 + α3 2a P 2 πi ≥ 10 ⇒λ = 1 h sin n+1 + α 2a 4 δ2Π = 0 ⇒

Substituting

α=4

ja

h = a/40

n=1 ⇒ n=2 n=5 n=9

and trying dierent

πi n+1 X πi sin2 n+1 X πi sin2 n+1 X 2 πi sin n+1 X

sin2

n's:

1 + 54 1 1 = 6 + 20 4 1 + 45 32 3 3 =2· = ⇒λ= 1 1 3 ≈ 6.8 4 2 + 4 20 2 =1⇒λ=

= 3 ⇒ λ = 8.5 = 5 ⇒ λ = 10

Nine stieners will be su ient.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

107

Example 5.2

Determine τcr for an innite plate strip using a trial fun tion

w(x, y) = A sin(πy/b) sin[π(x − αy)/s] where s is the half wavelength of the bu kling mode. The plate is simply supported and it's bending stiness is D . How large is the error in omparison to the analyti al solution τcr =

5.35π 2 D/b2 t (t is the thi kness of the plate)?    τ      

b - - - - - - - - - -

τ Solution:

Using the trial fun tion

w(x, y) = A sin where and

s

is the half wavelength in

x = αy + s

x-axis

πy π sin (x − αy) b s

dire tion. Dee tion vanish (w

= 0)

at lines

x = αy

in addition to the boundaries.

s x

y αb The expression for the total potential energy is

D ∆Π = 2

Z

2

(∆w) dA + Nxy

A

Let's integrate a sli e between the lines

Z

w,x w,y dA

A

y = 0, y = b, x = αy

and

x = αy + s,

i.e. the area of

one half-wavelength:

π πy π w,x = A sin cos (x − αy) s b s Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

108

π2 πy π w,xx = −A 2 sin sin (x − αy) s b s πy π π πy π π sin (x − αy) − Aα sin cos (x − αy) w,y = A cos b b s s b s π2 πy π ππ πy π w,yy = −A 2 sin sin (x − αy) − Aα cos cos (x − αy) b b s bs b s 2 πy π π πy π ππ cos cos (x − αy) − Aα2 2 sin sin (x − αy) −Aα sb b s b s s 2 πy π π2 π2 2π sin (x − αy) ∆w = w,xx + w,yy = −A 2 + 2 + α 2 sin s b s b s ππ πy π −2Aα cos cos (x − αy) bs b s hπ i πy π πy π π πy π 2π w,x w,y = A sin cos (x − αy) cos sin (x − αy) − α sin cos (x − αy) s b s b b s s b s Change of variables

( Sin e det[

Zb 0

x = t + αr y=r

∂(x, y)/∂(t, r)

x−αy+s Z

Z b Zs 0

Z b Zs 0

0

"

xt yt xr yr

#

=

"

1 0 α 1

#

℄ = 1, the s ale is preserved.

(∆w)2 dxdy =

x−αy

∂(x, y) = ⇒ ∂(t, r)

(∆w)2 dtdr = A2

0

2

w,x w,y dtdr = −A

Z Z

α

"

π2 π2 π2 + + α b2 s2 s2

2

# 4 π bs + 4α2 2 (bs) 2 2

2 π2 2 πr 2 πt 2 π b sin cos dtdr = −A α s2 b s 4 s

#  2 2 4 π2 π2 b π bs π 2 2 − 2α (1 + α ) + 2 +α Nxy = 0 s2 b 4 bs 4 s   s2 b2 π2D 2 2 2 2 + 6α + 2 + 2 (1 + α ) ⇒ Nxy = 2αb2 b s  2 2 s b π2D 2 2 2 2 + 6α + 2 + 2 (1 + α ) ⇒ τ= 2αb2 t b s

∂2 D ⇒ ∆Π = 2 ∂A2 2

"

The expression of the shear stress still ontains two free parameters obtained when

τ

α

and

s.

The minimum is

is minimized with respe t to these two paramaters:

  π2D s2 b2 (1 + α2 )2 π2D 2 = + 6α + + f (α, s) τ = 2b2 t α b2 α s2 α 2b2 t ∂f 2s (1 + α2 )2 (−2b2 ) s √ = + = 0 ⇒ = 1 + α2 2 3 ∂s αb α s b 2 1 + α ⇒ f˜ = + 6α + 2 α α Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

109

∂ f˜ 2 2α2 − (1 + α2 ) 1 s √ = − 2 +6+2 = 0 ⇒ α = ± = ⇒ ∂α α α2 b 2 √ π2D π2D ⇒ τcr = 4 2 2 ≈ 5.66 2 bt bt

The dieren e to the analyti al value 5.35

r

3 2

π2 D , is thus 5.8 %. b2 t

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

110

Example 5.3

Derive the bu kling equations for a ir ular plate uniformly ompressed in the

radial dire tion.

Nr =-P

R

Solution:

Let's rst investigate the equilibrium equations of a plate loaded in its plane The

equilibrium equation in the radial dire tion is

The plate has

  dϕ ∂Nr dr (r + dr)dϕ − Nr rdϕ − 2Nϕ dr = 0 Nr + ∂r 2 ∂Nr Nr − Nϕ + =0 ⇒ ∂r r 0 0 now a stress state Nr , Nϕ . Investigating the equilibrium in a slightly

state, gives

D



d4 w 2 d3 w 1 d2 w 1 dw + − − 3 4 3 2 2 dr r dr r dr r dr

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005



dee ted

= p˜ 111

where

p˜ is

Nr0 , Nϕ0 :       ∂ 0 dw 0 dw 0 dw rdϕ + Nr Nr dr (r + dr)dϕ + p˜rdrdϕ = −Nr dr dr ∂r dr   ∂ ∂ 0 dw 0 dw 0 dw = Nr N rdrdϕ + Nr (dr)2 dϕ drdϕ + dr ∂r  r dr  ∂r dr N 0 dw d dw ⇒ p˜ = r Nr0 + r dr dr dr

the lateral omponent due to the membrane for es

The resulting dierential equation is thus

   d4 w 2 d3 w 1 d2 w 1 dw 1 Nr0 dw d 0 dw Nr + − 2 2 − 3 = + dr 4 r dr 3 r dr r dr D r dr dr dr

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

112

Derive the potential energy expression for a radially ompressed ir ular plate:

Example 5.4

) #  ′ 2 ZR ( " 2ν w + w ′w ′′ − P (w ′)2 rdr Π(w) = π D (w ′′ )2 + r r 0

Solution:

The strain energy for a plate is

U = U0

Z

uo dV = 2π V

ZR Zh/2

U0 dzrdr

0 −h/2

1 1 σr ¯ǫr + σϕ ǫ¯ϕ + σr0 ǫ¯r + σϕ0 ǫ¯ϕ = 2 2

where the strains have expressions

ǫ¯r = ǫr + zκr ǫ¯ϕ = ǫϕ + zκϕ 

Zh/2 1 ⇒ U = 2π σr zdz + κϕ σϕ zdz 2 0 −h/2 −h/2 −h/2  −h/2 h/2 h/2 h/2 h/2 Z Z Z Z  0 0 0 0 dz  rdr zdz + κϕ σϕ dz + κr σr dz + ǫϕ σϕ +ǫr σr ZR

= 2π

1  ǫr 2

Zh/2

1 σr dz + ǫϕ 2

Zh/2

−h/2

−h/2 R Z 

1 σϕ dz + κr 2

−h/2

Zh/2

−h/2

 1 1 1 1 0 0 ǫr Nr + ǫϕ Nϕ + κr Mr + κϕ Mϕ + ǫr Nr + ǫϕ Nϕ rdr 2 2 2 2

0

The potential of external loads is

V

  = −2πRNr0 u(R) = −2πR Nr0 u(R) − Nr0 u(0)  ZR  d 0 0 = −2π Nr u(r) + [Nr u(r)]r dr dr 0

The bending moments for an isotropi plate are

Mr = D(κr + νκϕ ) Mϕ = D(κϕ + νκr )

⇒ ∆Π = π

ZR 0



 κr D(κr + νκϕ ) + κϕ D(κϕ + νκr ) + 2(Nr0 ǫr + Nϕ0 ǫr ) rdr

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

113



ZR

= πD

ZR

0

(ǫr Nr + ǫϕ Nϕ )rdr − 2π

ZR 

Nr0 u

0

(κ2r + κ2ϕ + 2νκr κϕ )rdr + 2π

0

ZR 0

 d 0 + (Nr u)r dr dr

 ZR  d 0 0 0 0 (Nr ǫr + Nϕ ǫϕ )rdr − 2π Nr u + (Nr u)r dr + π dr 0

Let's substitute the expressions

du 1 ǫr = + dr 2



dw dr

2

, ǫϕ =

d2 w 1 dw u , κr = − 2 , κϕ = − r dr r dr

and after some manipulations we get:

ZR 

∆Π = πD

0

 (w ′)2 2ν ′ ′′ (w ) + 2 + w w rdr r r ′′ 2

  ZR   1 ′ 2 0 ′ 0 ′ +2π Nr u + (w ) − (Nr u) rdr 2 0

+2π

ZR

(Nϕ0



Nr0 )udr



0

The expressions for

Nr0

and

Nϕ0

Nr =

ZR

(ǫr Nr + ǫϕ Nϕ )rdr

0

in terms of strains are

E (ǫ 1−ν 2 r

Nϕ =

+ νǫϕ), where

E (ǫ 1−ν 2 ϕ

+ νǫr )

du = u′ dr u ǫϕ = r

ǫr =

Taking the radial equilibrium equation into a

ount gives:

dNr Nr − Nϕ + =0 dr r  u u 1 1 ′ ν u + ν − − νu′ = 0 ⇒ u′′ + u′ − νu 2 + r r r r r 1 1 ′ ′′ ⇒ u + u − 2 =0 r r 2 du 2d u ⇒ r +r −u=0 dr 2 dr Let's make a hange of variables

r = et ⇒ t = lnr du dt 1 du du = = dr dt  dr rdt   1 d2 u du d 1 du d2 u = 2 = − dr 2 dr r dt r dt2 dt After substitutions:

r2

d2 u du +r −u=0 2 dr dr

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

114

d2 u du du − + −u=0 dt2 dt dt d2 u −u=0 ⇒ dt2 ⇒ u = C1 et + C2 e−t C2 ⇒ u = C1 r + r



The boundary onditions are

  du u E = −P, kun r = R +ν = 1 − ν 2 dr r u(r = 0) < ∞ ⇒ C2 = 0 P (1 − ν) E (1 + ν)C ⇒ C = − ⇒ −P = 1 1 1 − ν2 E P (1 − ν) ⇒ u=− r E Nr0

The for e in the radial dire tion is thus

Nr0 =

E E (1 + ν)C1 = −P, Nϕ0 = (1 + ν)C1 = −P ⇒ Nr0 = Nϕ0 2 2 1−ν 1−ν

whi h do not depend on

r.

The potential energy expression is then

#  ′ 2 Z " Z Z w 2ν ′′ 2 0 ′ 2 ′′ ′ ∆Π = πD (w ) + + w w rdr + π Nr (w ) rdr + π (ǫr Nr + ǫϕ Nϕ )rdr r r The last terms des ribes the energy due to the hanges of the midsurfa e. At the very moment of bu kling (w

6= 0) this term will vanish,

sin e the midsurfa e do not stret h,

ǫr = ǫϕ = 0. The

nal form of the total potential energy expression is thus

) #  ′ 2 ZR ( " 2ν w + w ′′ w ′ − P (w ′)2 rdr D (w ′′ )2 + ∆Π = π r r 0

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

115

Example 5.5

Compute the riti al load of an isotropi ir ular plate ompressed uniformly in

the radial dire tion. Use a simple trial fun tion for the dee tion. Solution:

The potential energy expression is

) #  ′ 2 ZR ( " 2ν w + w ′′ w ′ − P (w ′)2 rdr ∆Π = π D (w ′′ )2 + r r 0

Let's rst investigate a simply supported plate with a tral fun tion

w

as

  r w0 r2 w = w0 1 − 2 ⇒ w ′ = −2w0 2 ⇒ w ′′ = −2 2 R R  Z  R r r  4r 3 r ⇒ ∆Π = π D 4 4 + 4 4 + 8ν 4 − P 4 drw02 R R R R 2 d ∆Π D = 0 ⇒ P = 4(1 + ν) 2 2 dw0 R The error is 24 % in omparison to the analyti al solution (Timoshenko, Gere: Theory of Elasti Stability). For a lamped plate let's use the trial fun tion:

w = w′ = w ′′ = ⇒ ∆Π = ⇒P =

The analyti al result is 14.68

2  r2 w0 1 − 2 R 2 r r 4w0 1− 2 − R  R R r2 4w0 − 2 1−3 2 R R  32D 2 π − P w02 2 3R 3 D 16 2 R

D/R2 .

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

116

6

Non onservative problems, algorithms for linear algebrai eigenvalue problems

Example 6.1

Show, that the following load system is non- onservative. The load P remains

parallel to the beam A-B in the deformed onguration.

P 6

B



L q2 A b k2 

? 6

L



 

q1

 ?O bk1 

Solution:

The for e is onservative if there exists a potential fun tion

Fi = −

V

su h, that

∂V ∂qi

The virtual work done by su h loads is then

δW = Fi δqi = −

∂V δqi = −δV ∂qi

(63)

In our ase

δW = Pi δxBi P¯ = −P sin q2¯i − P cos q2¯j x¯B = (sin q1 + sin q2 )L¯i + (cos q1 + cos q2 )L¯j ⇒ δ¯ xB = (δq1 cos q1 + δq2 cos q2 )L¯i − (δq1 sin q1 + δq2 sin q2 )L¯j ⇒ δW = P L(− cos q1 sin q2 − sin q1 cos q2 )δq1 + 0 · δq2

From the equation below and from equation (63) we get



(

∂V ∂q1 ∂V ∂q2

= −P L sin(q1 + q2 ) = 0

whi h is learly a ontradi tion. Hen e

P~

⇒ V = V (q1 )

is not a onservative for e.

Non- onservativity of a for e an also be proven by examining the work done in a losed path. If su h a work will vanish for all possible losed paths (i.e. the work is path independent) the for e is onservati e. In the example it is easy to onstru t a losed path for whi h the work will not vanish. For example

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

117

1. rotating the bar OA

⇒ ∆W1 = 2P L

2. rotating the bar AB

180◦

180◦

ounter lo kwise keeping the bat AB in a verti al position

lo kwise

3. rotating the whole olumn OAB original upright position

⇒ ∆W2 = 0

180◦

lo kwise, after whi h the olumn is ba k in its

⇒ ∆W3 = 0

The total work done by this losed deformation path is

W = ∆W1 + ∆W2 + ∆W3 = 2P L 6= 0 ⇒

the for e

P~

is non- onservative.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

118

Example 6.2

Determine the riti al load of the rigid bar supported by a linear elasti spring

and a linear dashpot.

Solution:

P- b

k b



η

Sin e the bar is assumed to be rigid

b

! ! ϕ !

P

! !! ! 6 δ b!! - ? 6

A

EI = ∞. δ = Lϕ δ˙ = Lϕ˙ ZL/2 1 x2 dm = ρAL3 Jp = 2 12 0

1 1 JA = Jp + ρAL3 = ρAL3 4 3

F = η δ˙

The moment equilibrium with respe t to the point A gives

 2 L ϕ¨ − kϕ − ηL2 ϕ˙ + P Lϕ = 0 −Jp ϕ¨ − ρAL 2 1 −(Jp + ρAL3 )ϕ¨ − ηL2 ϕ˙ − (k − P L)ϕ = 0 4 k − PL ηL2 ϕ˙ + ϕ = 0 ϕ¨ + JA JA Let's denote

ϕ¨ + aϕ˙ + bϕ = 0

and using a trial fun tion

ϕ = ert ,

we get the hara teristi

equation

a r 2 + ar + b = 0 ⇒ r = − 2



r

4b 1− 2 a

!

The behaviour of the solution depends on the properties of the roots of the hara teristi equation. Let's assume the following initial onditions

ϕ(0) = ϕ0 , ϕ(0) ˙ =0 We have to investigate the following ve ases

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

119

1.

For

r1 , r2 ∈ R ja r1 < 0, r2 > 0  ϕ0 ⇒ ϕ(t) = r2 er1 t − r1 er2 t r2 − r1 ⇒ ϕ(t) → ∞, kun t → ∞ r2 > 0 , 1−

ϕ ϕ0

we have to have

4b k >1⇒P > 2 a L t

The solution is this unstable and behaves as shown in the following gure.

2.

r1 , r2 ∈ R ja r1 < 0, r2 = 0 4b k 1− 2 =1⇒P = a L ⇒ ϕ(t) = ϕ0

Now the equation is

3.

4.

ϕ ϕ0

t

ϕ¨ + aϕ˙ = 0.

r1 6= r2 ∈ R ja r1 , r2 < 0 4b ϕ 0 k/L.

In this ase the equilibrium is unstable. If we perturb the stru ture with a

small disturban e the bar starts to move towards the point B. The bar starts to vibrate around the point B and due to the vis ose damper the movement nally dies out and the bar remains in the tilted onguration. So the stru ture will not return to the original equilibrium state

ϕ = 0.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

121

Example 6.3

Determine the riti al load pf the two bar olumn using the dynami method.

The for e P is a dead-weight load, i.e. stays verti al.

P B?

6

L q2

b A k2     q1 O  ? b k1  ? 6

L

Solution:

The equation of virtual work is

δWi + δWe = δWj X ¯ ¯ · δq δWi = Li δqi = L X ¯ ¯ · δq δWe = Qi δqi = Q X ¯ δWi = Ji δqi = J¯ · δq

Now

δWi = −M1 δq1 − M2 δq2

= −k1 q1 δq1 − k2 q2 δq2

δWe = P δv, jossa v = L[2 − cos q1 cos(q1 + q2 )]   = P L [sin q1 + sin(q1 + q2 )]δq1 + sin(q1 + q2 )δq2 Z X x¨¯ · δ¯ xdρ, jossa dρ = mdξ δWj = sauvat

For bar 1:

ZL

x¨¯ · δ¯ xmdξ

0

x¯ = x¯˙ = δ¯ x = x¨¯ = ⇒

ZL 0

x¨¯ · δ¯ xmdξ =

 sin q1 ξ  cos q1  cos q1 ξ q˙1  − sin q1  cos q1 ξδq1    − sin q1  sin q1 cos q1 ξ(q˙1 )2 ξ q¨1 − cos q1 − sin q1 ZL 1 m ξ 2 q¨1 δq1 dξ = mL3 q¨1 δq1 3 

0

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

122

For bar 2:

   sin(q1 + q2 ) sin q1 ξ L+ x¯ = cos(q   1 + q2 )  cos q1  cos(q1 + q2 ) cos q1 ξ(q˙1 + q˙2 ) Lq˙1 + x¯˙ =  1 + q2 )   − sin(q  − sin q1  cos(q1 + q2 ) sin q1 cos q1 2 ξ(¨ q1 + q¨2 ) ξ(q˙1 ) + L¨ q1 − x¨¯ = − sin(q1 + q2 ) −  cos q1  sin q1 sin(q1 + q2 ) ξ(q˙1 + q˙2 )2 − cos(q1 + q2 )  ZL 1 1 3 ¨ x¯ · δ¯ xmdξ = mL q¨1 δq1 + cos q2 (¨ ⇒ q1 + q¨2 )δq1 − sin q2 (q˙1 + q˙2 )2 δq1 2 2 

0

 1 1 q1 + q¨2 )(δq1 + δq2 ) q1 (δq1 + δq2 ) + sin q2 (q˙1 )2 (δq1 + δq2 ) + (¨ − cos(2q1 + q2 )¨ 2 3



From the virtual work equation we get

¯+Q ¯ = J¯ L   −k1 q1 ¯ L =   −k2 q2 sin q + sin(q + q ) 1 1 2 ¯ = Q sin(q1 + q2 ) 1 1 4 q1 + q¨2 ) − sin q2 (q˙1 + q˙2 )2 J1 = mL3 q¨1 + cos q2 (¨ 3 2 2  1 1 1 2 − cos(2q1 + q2 )¨ q1 + sin q2 (q˙1 ) + (¨ q1 + q¨2 ) 2  3 3  1 1 1 3 2 J2 = mL − cos(2q1 + q2 )¨ q1 + sin q2 (q˙1 ) + (¨ q1 + q¨2 ) 2 3 3 Linearizing this non-linear equation at the point

(¯ qe , ¯0, ¯0)

we get

¯ ¯ ∂Q ¯ = Q(¯ ¯ qe , ¯0) + ∂ Q (¯ qe , ¯0)¯ q∗ + (¯ qe , ¯0)q¯˙∗ Q ˙ ∂ q¯ ∂ q¯ ¯ ¯ ∂ L ∂ L ¯ = L(¯ ¯ qe , ¯0) + L (¯ qe , ¯0)¯ q∗ + (¯ qe , ¯0)q¯˙∗ ∂ q¯ ∂ q¯˙ ¯ ¯ ¯ ¯ 0) ¯ + ∂ J (¯ ¯ 0)¯ ¯ q ∗ + ∂ J (¯ ¯ ¯0)q¯˙∗ + ∂ J (¯ J¯ = J¯(¯ qe , 0, qe , 0, qe , 0, qe , ¯0, ¯0)q¨¯∗ ∂ q¯ ∂ q¯˙ ∂ q¨¯ ¯ and Q ¯ do not depend on angular velo ities we have ∂ L/∂ ¯ q¯˙ = ∂ Q/∂ ¯ q¯˙ = 0. At equilibrium L ¯ 0) ¯ and also ∂ J¯/∂ q¯˙(¯ ¯ 0) ¯ = ∂ J¯/∂ q¯¨(¯ ¯ 0) ¯ = 0. qe , 0, qe , 0, qe , 0, have (¯

Sin e we

Sin e

¯ qe , ¯0) + L(¯ ¯ qe , ¯0) = J(¯ ¯ qe , ¯0, ¯0) Q(¯ we an write the linearized equation in the form

K q¯∗ + M q¨¯ = 0 Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

123

where

¯ ¯ ∂L ∂Q K = − (¯ qe , ¯0) − (¯ qe , ¯0) " ∂ q¯ # "∂ q¯ # k1 0 2 1 = − P L, attheequilibriumpoint 0 k2 1 1 " # 5 1 ∂ J¯ 1 M = mL3 (¯ qe , ¯0, ¯0) = ∂ q¯¨ 3 1 1

  0 q¯e = 0

Using the trial fun tion:

Let's assume that

k1 = k2 = k

q¯∗ = est x¯  K + s2 M x¯ = ¯0

and denote

P = λk/L

and

r 2 = s2 mL3 .

Hen e we get

  4 4 5 r + k 2 − λ r 2 + k 2 (1 − 3λ + λ2 ) = 0 9 3 q 2

⇒r =k

The riti al situation is when

r = 0,

−2 + 35 λ ∓

λ2 − 34 λ +

20 9

8/9

so we get

√ 5 3 λ − 3λ + 1 = 0 ⇒ λ = − 2 2 2

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

124

Example 6.4

Investigate the eigenvalue solution of the following stru ture dis retized by FEM. P

P

?

?

EI

EI

EI

e

2L

e

L

1. Show that in this parti ular ase the initial stiness matrix matrix

S

Solution:

K

and the geometri al stiness

are positive denite.

A matrix is SPD (=Symmetri Positive Denite) if it is symmetri and all its

eigenvalues are positive. In this ase



4 −3

2





   , S =  K= −3 3 −3    2 −3 16

8 15 − 15 2 − 15

2 − 15 − 15 6 5 1 −5



 − 15   8 15

The hara teristi equation is now third order polynomial, let's solve the eigenvalues by Matlab

>> K = [4 -3 2;-3 3 -3;2 -3 16℄ K = 4

-3

2

-3

3

-3

2

-3

16

>> S = [8./15 -0.2 -2./15; -.2 1.2 -.2; -2./15 -.2 8./15℄ S = Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

125

0.5333

-0.2000

-0.1333

-0.2000

1.2000

-0.2000

-0.1333

-0.2000

0.5333

>> k= eig(K) k = 0.3860 5.4268 17.1872 >> s = eig(S) s = 1.2899 0.6667 0.3101 2. Solve the lowest bu kling load and the orresponding eigenve tor by the inverse power iteration method

Solution: (a)

The inverse power iteration algorithm:

initial guess for eigenmode

(b)

iterating

φ1 ,

x1

whi h should have a omponent in the dire tion of the wanted

omputing the ve tor

k = 1, 2, ...,

until

y1 = Sx1

|(ρk+1 − ρk )/ρk+1 | < T OL Kxk+1 = yk yk = Sxk xTk+1 yk ρ(xk+1 ) = T xk+1 yk+1 yk+1 yk+1 = T (xk+1 yk+1 )1/2

If

y1T φ1 6= 0,

then

yk+1 → Sφ1 , ρ(xk+1 ) → λ1 , when k → ∞ Let's program this routine as a fun tion in Matlab

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

126

fun tion [arvo,vektori,tol,k℄=h19b(K,M,x1) k = 1; y1 = M*x1; p1 = 0; while (k > 0) xk =K\y1; yk = M*xk; pk = xk'*y1/(xk'*yk); tol(k) = abs((pk-p1)/pk); if (tol(k) < 1e-15) k = -k-1; end p1=pk; y1=yk/(xk'*yk)^.5; k = k+1; end eigenvalue = pk; eigenve tor = xk/(xk'*yk)^0.5; and running it gives

>> [eigenvalue eigenve tor tol℄=h19b(K,S,[1;1;1℄) eigenvalue = 0.5284

eigenve tor = 0.6820 0.9350 0.0823

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

127

tol = 3.8974e-09 3. Use shifting in the inverse power iteration, and use a shift whi h is (a)

50 %

(b)

90 %

( )

99 %

from the eigenvalue just solved.

Solution:

Shifting inuen es the rate of onvergen e of the inverse iteration. The idea is

the following:

Kφ = λSφ = aλSφ + (1 − a)λSφ ⇒ (K − µS)φ = ηSφ ˜ = ηSφ ⇒ Kφ

The eigenve tors are learly the same. The wanted eigenvalues an be obtained from

λ = η + µ.

The shifted inverse power iteration nds the lowest eigenvalue to the shift.

Using the Matlab fun tion above. Shifting is just substra tion from

K

the matrix

pλ1 S :

--------------- (a) --------------------->> sK = K - 0.5*oa*S; >> [a v t k℄=h19b(sK,S,[1;1;1℄) a = 0.2642

v = 0.6820 0.9350 0.0823

t =

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

128

8.9474e-08

k = -3 >> a+0.5*oa ans = 0.5284 --------------- (b) --------------------->> sK = K - 0.9*oa*S; >> [a v t k℄=h19b(sK,S,[1;1;1℄) a = 0.0528

v = 0.6820 0.9350 0.0823

t = 1.5519e-10

k =

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

129

-3 >> a+0.9*oa ans = 0.5284 --------------- ( ) --------------------->> sK = K - 0.99*oa*S; >> [a v t k℄=h19b(sK,S,[1;1;1℄) a = 0.0053

v = 0.6820 0.9350 0.0823

t = 3.6936e-07

k = -2 >> a+0.99*oa ans =

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

130

0.5284 4. Solve the same problem using the Rayleig quotien iteration

Solution: (a)

The Rayleigh quotient algorihm utilizes shifting at every iteration step:

starting from an initial quess of the vanted eigenve tor

(b)

iterating

k = 1, 2, ...,

φ1 ),

until

x1

(have to have a strong omponent in the dire tion

omputing ve tor

y1 = Sx1

|(ρk+1 − ρk )/ρk+1 | < T OL

(K − ρ(xk )S)xk+1 = yk

yk = Sxk xT yk ρ(xk+1 ) = T k+1 + ρ(xk ) xk+1 yk+1 yk+1 yk+1 = T (xk+1 yk+1)1/2

If

y1T φ1 6= 0,

then

yk+1 → Sφ1 , ρ(xk+1 ) → λ1 , when k → ∞ Let's program the RQI in a Matlab fun tion

fun tion [value,ve tor,tol,k℄=h19d(K,M,y1) k

= 1;

p1 = 0; sK = K; while (k>0) xk = sK\y1; yk = M*xk; pk = xk'*y1/(xk'*yk) + p1; tol(k) = abs(pk-p1); if (tol(k) < 1e-15) k = -k-1; end p1=pk; y1=yk/(xk'*yk)^.5; k = k+1; sK = (K-pk*M); end Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

131

value = pk; ve tor = xk/(xk'*yk)^0.5; and running it gives the solution

>> [a v t k℄=h19d(K,S,[1;1;1℄) a = 0.5284

v = 0.6820 0.9350 0.0823

t = 4.2295e-08

k = -3 5. Let's draw the onvergen e plots.

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

132

k¨a¨anteisiteraatio ⋄ shift + Rayleigh ◦

1+ ◦⋄

◦ + ⋄ ⋄ + ◦

+ ⋄

ln(virhe) 1e-10

+ ⋄

+ ⋄



+ ⋄

1e-20 1

2

3

4 iteraatiokierros

Rak-54.131 Stability of stru tures  exer ises / 12.12.2005

5

6

7

133

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF