Solutions Manual
May 22, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Solutions Manual...
Description
Soil Mechanics Principles and Practice Third Edition
Solutions Manual
Graham Barnes
Contents
2 3 4 5 6 7 9 10 11 12 13 14
Soil description and classification Permeability and seepage Effective stress and pore pressure Contact pressure and stress distribution Compressibility and consolidation Shear strength Shallow foundations – stability Shallow foundations – settlement Pile foundations Lateral earth pressure and retaining structures Slope stability Earthworks and soil compaction
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e Chapter 2
Solution Soil Description and Classification Volume of gravel = (m4 – m1) – (m3 – m2) = (1870.6 – 845.2) – (2346.0 – 1608.7) = 1025.4 – 737.3 = 288.1 cm3
2.1
mass of gravel = m2 – m1 = 1608.7 – 845.2 = 763.5 g
ρs = 763.5 = 2.65 g/ cm3 or Mg/m3 288.1
Sieve size
Mass retained g
Mass passing g
20 14 10 6.3 3.35 2 1.18 600 425 300 212 150 63 tray
0 18.9 67.4 44.2 75.8 122.1 193.7 240.0 282.2 242.1 233.7 265.3 240.0 80.0
2105.4 2086.5 2019.1 1974.9 1899.1 1777.0 1583.3 1343.3 1061.1 819.0 585.3 320.0 80.0 -
2.2
d10 = 0.11 mm U = 0.54 = 4.9 0.11
d30 = 0.23 mm Cc =
d50 = 0.42 mm
mw = 544.4 g
∴moderately uniformly graded
0.232 = 0.89 0.54 × 0.11
V0 = 250ml
wax Gs = 0.90
volume of soil lump = 250 – 544.4 – 537.5 = 242.33 cm3 0.90 bulk density ρb = ms = 537.5 × 106 = 2.218 Mg/m3, say 2.22 Mg/m3 V 242.33 × 106 Bulk weight density = 2.218 × 1000 × 9.81 = 21.76 kN/m3, say 21.8 kN/m3 1000 Moisture content = 537.5 – 479.2 × 100 = 12.17 %, say 12.2 % 479.2
ρd = ρb = = 2.218 = 1.977 Mg/m3, say 1.98 Mg/m3 1+w 1 + 0.122 Bulk weight density = 1.977 × 1000 × 9.81 = 19.39 kN/m3, say 19.4 kN/m3
Graham Barnes 2010
1
100 99.1 95.9 93.8 90.2 84.4 75.2 63.8 50.4 38.9 27.8 15.2 3.8
d60 = 0.54 mm
2.3 ms = 537.5 g
% passing
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution 1000
From Table 2.19
ρb = Gsρw (1 + w) (1 + e) 1 + e = 2.72 × 1.0 × 1.122 = 1.376 2.218
void ratio e = 0.376, say 0.38
2.4 n = e = 0.376 = 0.273, say 0.27 1 + e 1.376 Sr = w Gs × 100 = 0.122 × 2.72 × 100 = 88.3 %, say 88% e 0.376 Av = n (1 - Sr) = 0.273 (1 – 0.883) = 3.2 %
The degree of saturation would be 100 % Sr = w Gs = 100 e
2.5
w = e × 100 = 0.376 × 100 = 13.82 %, say 13.8 % Gs 2.72
ρb = Gsρw (1 + w) = 2.72 × 1.0 × 1.1382 = 2.25 Mg/m3 (1 + e) 1.376
Av = n (1 - Sr) with n =
2.6
e 1+e
and Sr = wGs e
Av = e – w Gs 1+e
e = Av + w Gs = 0.05 + 0.135 × 2.68 = 0.4335 1 - Av 1 – 0.05
ρb = 2.68 × 1.0 × (1 + 0.135) = 2.122 Mg/m3 , say 2.12 Mg/m3 1 + 0.4335
Liquid limit Plastic limit = 26.6 + 27.3 = 26.95, say 27 % 2
2.7
Plasticity index = 55 – 27 = 28 % Classification is CH
Graham Barnes 2010
2
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Liquidity index = 35 – 27 = 0.29 28
2.8 Consistency index = 55 – 35 = 0.71 28
Chapter 3
Permeability and Seepage Q = 200 ml
3.1
l = 100 mm
h = 234 mm
t = 225 s
k = Q l = 200 × 103 × 100 × 4 = 8.6 × 10-2 mm/s = 8.6 × 10-5 m/s Aht π × 752 × 234 × 225 a = π × 42 = 12.57 mm2 4
A = π × 1002 = 7854.0 mm2 4
3.2 k = 2.3 × 12.57 × 120 log10 (950/740) = 2.7 × 10-5 mm/s = 2.7 × 10-8 m/s 7854 30 × 60
koverall = Q l = 100 × 103 × 100 × 4 = 4.5 × 10-3 mm/s = 4.5 × 10-6 m/s A h t π × 752 × 672 × 745 kv =
3.3
Lsand + Lsilt d Lsand /ksand + Lsilt/ksilt
Lsand = 95 mm
Lsilt = 5 mm
ksand = 8.6 × 10-5 m/s 4.5 = 95 + 5 d 103 95 × 102 /8.6 + 5/ksilt ksilt = 2.4 × 10-4 mm/s = 2.4 × 10-7 m/s
At top of clay total head = 5.0 + 5.0 = 10.0 m At base of clay total head = 3.0 m ∴Head difference = 10.0 – 3.0 = 7.0 m
3.4
i = 7.0 = 1.4 5.0 q = 100 × 100 × 5 × 1.4 × 1000 × 60 × 60 × 24 108 = 60480 litres/day = 60.48 m3/day
Graham Barnes 2010
3
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Hc = 7.5 – 4.0 = 3.5 m f = 2.75
3.5
k=
q f d Hc
=
2.5 d 1000 × 60 × 2.75 × 0.15 × 3.5
= 2.9 × 10-5 m/s
Figure 3.41
3.7
datum at base of gravel h = 7.5 m
nf = 3
nd = 8
q = 3 × 7.5 × 3 × 1000 × 60 = 5.1 litres/min, say 5 litres/min 105 8 Location
Total head m
Elevation head m
Pressure head m
pore pressure kPa
0 1 2 3 4 5 6 7 8
7.5 7.5 × 7/8 = 6.56 7.5 × 6/8 = 5.63 7.5 × 5/8 = 4.69 7.5 × 4/8 = 3.75 7.5 × 3/8 = 2.81 7.5 × 2/8 = 1.88 7.5 × 1/8 = 0.94 7.5 × 0/8 = 0
5.5 2.56 0.1 -1.9 -3.0 -3.0 -3.0 -1.8 0
2.0 4.0 5.53 6.59 6.75 5.81 4.88 2.74 0
19.6 39.2 54.2 64.6 66.2 57.0 47.8 26.8 0
Graham Barnes 2010
4
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
3.7
Shape factor is the same 3/8
k overall =
3 10
5
×
6 10 4
= 1.34 ×10 −4 m/s
3.8 q = 1.34 × 7.5 × 3 × 1000 × 60 = 22.6 litres/min, say 23 litres/min 104 8 Consider last block for boiling condition ∆l = 1.8 m ∆h = 7.5/8 = 0.938 m Upward seepage force = γw × ∆h × ∆l × 1 = 9.8 × 0.938 × 1.8 × 1 = 16.55 kN
3.9
Downward seepage force = γbgravel × ∆l × 1.0 × 1 + γsubsand × ∆l × ∆l × 1 = 20.5 × 1.8 × 1.0 × 1 + (19 – 9.8) × 1.8 × 1.8 × 1 = 36.9 + 29.8 = 66.7 kN 16.55 kN < 66.7 kN ∴ ULS verified. See Worked example 3.12 for comments on this inequality.
Consider block 2.0 m × 4.0 m for heaving mean head hm = 1.41 + 2.81 = 2.11 m 2 upward force = 9.8 × 2.11 × 2.0 × 1 = 41.4kN Downward force = 20.5 × 1.0 × 2.0 × 1 + (19 – 9.8) × 3.0 × 2.0 × 1 = 41.0 + 55.2 = 96.2 kN 41.4 kN < 96.2 kN ∴ultimate limit state (ULS) verified
3.9
Applying partial factor γG;dst on destabilising action of 1.335 in the UK National Annex Design upward force = 41.36 × 1.335 = 55.2 kN partial factor γG;stb on stabilising action is 0.90 in the UK National Annex Design downward force = 96.2 × 0.90 = 86.6 kN 55.2 kN < 86.6 kN ∴ ULS verified. See Worked example 3.11 for comments on this inequality. Note: without gravel
Graham Barnes 2010
55.2 kN > 49.7 kN (55.2 × 0.90) kN ∴ULS is not verified.
5
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution head difference h = 8.0 m
3.10
nf = 2.5 nd = 16 q = 5 × 8.0 × 2.5 × 60 × 60 × 1000 106 16 = 22.5 litres/hour
3.11
Along the slip surface
D15soil = 0.15 mm
3.12
Location
Total head m
Elevation head m
Pressure head m
Pore pressure kPa
1
5.6
5.6
0
0
2
8.0 × 11/16 = 5.50
5.2
0.3
2.9
3
8.0 × 10/16 = 5.00
3.9
1.1
10.8
4
8.0 × 9/16 = 4.50
2.7
1.8
17.6
5
8.0 × 8/16 = 4.00
1.9
2.1
20.6
6
8.0 × 7/16 = 3.50
1.25
2.25
22.1
7
8.0 × 6/16 = 3.00
0.90
2.1
20.6
8
8.0 × 5/16 = 2.50
0.6
1.9
18.6
9
8.0 × 4/16 = 2.00
0.4
1.6
15.7
10
8.0 × 3/16 = 1.50
0.2
1.3
12.7
11
8.0 × 2/16 = 1.00
0.1
0.9
8.8
12
8.0 × 1/16 = 0.50
0.05
0.45
4.4
13
8.0 × 0/16 = 0
0
0
0
D85soil = 2.1 mm
Minimum D15filter = 5 × D15soil = 5 × 0.15 = 0.75 mm Maximum D15filter = 5 × D85soil = 5 × 2.1 = 10.5 mm < 5% fines
Graham Barnes 2010
6
Soil Mechanics Principles and Practice Third Edition
Exercis e Chapter 4
Graham Barnes
Solution Effective Stress and Pore pressure Total stress = 5 × 9.8 + 5 × 18 = 139 kPa
4.1
Pore pressure = 10 × 9.8 = 98 kPa Effective stress = 139 – 98 = 41 kPa
Total stress = 5 × 18 = 90 kPa
4.2
Pore pressure = 5 × 9.8 = 49 kPa Effective stress = 90 – 49 = 41 kPa
Top of sand Total stress = 5 × 21 = 105 kPa Pore pressure = 3 × 9.8 = 29.4 kPa Effective stress = 105 – 29.4 = 75.6 kPa
4.3 Bottom of sand Total stress = 5 × 21 + 5 × 18 = 195 kPa Pore pressure = 8 × 9.8 = 78.4 kPa Effective stress = 195 – 78.4 = 116.6 kPa
At 5 m Total stress = 2 × 16.5 + 3 × 18 = 87 kPa Pore pressure = 2 × 9.8 = 19.6 kPa Effective stress = 87 – 19.6 = 67.4 kPa
4.4 At 2 m Total stress = 2 × 16.5 = 33 kPa Pore pressure = –1 × 9.8 = –9.8 kPa Effective stress = 33 – – 9.8 = 42.8 kPa
4.5 Before pumping a)
top of clay
b) middle
Graham Barnes 2010
1.0 × 16.5 + 3.0 × 18 – 3 × 9.8 = 41.1 kPa 1.0 × 16.5 + 3.0 × 18 + 2.5 × 21 – 5.5 × 9.8 = 69.1 kPa
7
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution c)
bottom of clay
1.0 × 16.5 + 3.0 × 18 + 5.0 × 21 – 8 × 9.8 = 97.1 kPa
Immediately after pumping a) top of clay 3.0 × 16.5 + 1.0 × 18 – 1.0 × 9.8 = 57.7 kPa b) middle
69.1 kPa (no change)
c) bottom of clay
97.1 kPa (no change)
Long-term a)
top of clay
57.7 kPa
b) middle
3 × 16.5 + 1 × 18 + 2.5 × 21 – 3.5 × 9.8 = 85.7 kPa
c)
3 × 16.5 + 1 × 18 + 5 × 21 – 6 × 9.8 = 113.7 kPa
bottom of clay
Note: change in effective stress = 16.6 kPa throughout = 2 × 9.8 – 2 × (18 – 16.5) = 19.6 – 3 = 16.6 kPa
4.6
Change in effective stress = 2 × 9.8 = 19.6 kPa
At 2 m Present σv´ = 2 × 19.5 = 39.0 kPa
Past maximum σv´ = 2 × 19.5 = 39.0 kPa
OCR = 39.0 = 1.0 39.0 At 6 m Present σv´ = 6 × 19.5 – 4 × 9.8 = 77.8 kPa
4.7
Past maximum σv´ = 6 × 19.5 = 117.0 kPa
OCR = 117.0 = 1.50 77.8 At 20 m Present σv´ = 20 × 19.5 – 18 × 9.8 = 213.6 kPa Past maximum σv´ = 20 × 19.5 – 14 × 9.8 = 252.8 kPa OCR = 252.8 = 1.18 213.6
4.8
Vertical effective stress σV´ = 6 × 20.5 – 4.5 × 9.8 = 78.9 kPa Horizontal effective stress σH´ = 120 – 4.5 × 9.8 = 75.9 kPa K0 = 75.9 = 0.96 78.9 For normally consolidated clay K0≈1 – sinφ´ = 1 – sin25o = 0.577
Graham Barnes 2010
8
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution ∴ clay is overconsolidated
Cell pressure kPa 0 50 50 100 100 150 150 200 200 300 300 400
4.9
– 40
– 90
– 140
– 190
– 290
–
σ1 – σ3 0 68 117 146 171 190 198
4.10
Chapter 5
Back pressure kPa 0
Pore pressure kPa –5 12 38 67 89 126 140 184 190 285 290 388
∆u
∆σ3
B
–
–
–
17
50
0.34
–
–
–
29
50
0.58
–
–
–
37
50
0.74
–
–
–
44
50
0.88
–
–
–
95
100
0.95
–
–
–
98
100
0.98
∆u 0 15 19 12 1 –13 –25
u 300 315 319 312 301 287 275
∆σ1 – ∆σ3 0 68 117 146 171 190 198
A 0 0.22 0.16 0.08 0.01 –0.07 –0.13
Contact Pressure and Stress Distribution From middle load
σv =
3Pz 3 2πR 5
z = R = 2.0 m
5.1
σv = 3 × 500 × 2.03 = 59.7 kPa 2 × π × 2.05
from side loads z = 2.0 m
R2 = 2.02 + 4.02 = 20
R = 4.47 m
σv = 3 × 500 × 2.03 = 1.1 kPa 2 × π × 4.475
Stress beneath middle load = 59.7 + 1.1 + 1.1 = 61.8 kPa, say 62 kPa
Graham Barnes 2010
9
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
From middle load
z = R = 2.0 m
5.2
σv =
2Pz 3
πR 4
σv = 2 × 500 × 2.03 = 159.2 kPa π × 2.04
from side loads z = 2.0 m
σv = 2 × 500 × 2.03 = 6.4 kPa π × 4.474
R = 4.47 m (from 5.1)
Stress beneath middle load = 159.2 + 6.4 + 6.4 = 172 kPa
Beneath centre ½α = tan–1(4/5) = 38.7o
α = 77.3o = 1.349 radians
β = –½α = – 38.7o σv = 80/π [1.349 + sin77.3 × cos0] = 59.2 kPa Beneath edge β = 0 α = tan–1(8/5) = 58.0o = 1.012 radians
σv = 80/π [1.012 + sin58 × cos58] = 37.2 kPa
5.3 4m from edge β = tan–1(4/5) = 38.66o
ω = tan–1(12/5) = 67.38o α = 67.38 – 38.66 = 28.72o = 0.501 radians σv = 80/π [0.501 + sin28.72 × cos(28.72 + 2 × 38.66)] = 9.4 kPa
Beneath centre z = 6.0 m
B = 3.0 m
L = 6.0 m
L/B = 2
z/B = 2
I = 0.12
L = 12.0 m
L/B = 2
z/B = 1
I = 0.20
σv´ = 0.12 × 105 × 4 = 50.4 kPa
5.4 Beneath corner z = 6.0 m
B = 6.0 m
σv´ = 0.20 × 105 = 21.0 kPa
5.5 At A Stress at corner of 3No. 10 × 10 m
z/B = 8/10 = 0.8 L/B = 1 I = 0.197 (Giroud)
σv = 80 × 0.197 × 3 = 47.3 kPa, say 48 kPa
Graham Barnes 2010
10
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
At B Stress at corner of 2No. 10 × 20 m minus 1No. 10 × 10 m
σv = 80 × (2 × 0.217 – 0.197) = 19 kPa
z/B = 8/10 = 0.8 L/B = 2 I = 0.217
At centre z = 6.0 m
B = 3.0 m
z/h = 6/12 = 0.5 L/B = 6/3 = 2 From Figure 5.10
5.6
L = 6.0 m
h = 12 m
h/B = 12/3 = 4
I = 0.136 by interpolation
σv = 0.136 × 105 × 4 = 57.1 kPa, say 57 kPa At corner z = 6.0 m
B = 6.0 m
L = 12.0 m
h = 12.0 m
L/B = 2
z/h = 6/12 = 0.5 h/B = 12/6 = 2
I = 0.223
σv´ = 0.223 × 105 = 23.4 kPa, say 23 kPa
At centre z = 6.0 m
B = 6.0 m
L = 12.0 m
L/B = 2
z/B = 6/6 = 1
5.7 From Figure 5.12 I = 0.43
σv´ = 0.43 × 105 = 45.2 kPa, say 45 kPa
Chapter 6
Compressibility and Consolidation Final void ratio ef = 0.273 × 2.70 = 0.737
∆e =
6.1
∆H ( 1 + e) H
Pressure kPa 0 25 50 100 200 400 800
Graham Barnes 2010
Thickness mm 19.0 18.959 18.918 18.836 18.457 17.946 17.444
11
∆H mm
∆e
ef
–
–
0.041 0.082 0.164 0.543 1.054 1.556
0.004 0.008 0.016 0.053 0.103 0.152
0.856 0.852 0.848 0.840 0.803 0.753 0.704
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution 200 25 0
17.526 17.669 17.782
1.474 1.331 1.218
6.1
pc´≈125 kPa
6.2
p0´= 5 × (21.2 – 9.8) = 57 kPa
OCR = 125 = 2.2 56
Graham Barnes 2010
12
0.144 0.130 0.119
0.712 0.726 0.737
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Pressure increment kPa 0 – 25 25 – 50 50 – 100 100 – 200 200 – 400 400 – 800
6.3
∆H
Hi
∆σ
mv m2/MN
0.041 0.041 0.082 0.379 0.511 0.502
19.0 18.959 18.918 18.836 18.457 17.916
25 25 50 100 200 400
0.086 0.087 0.087 0.201 0.138 0.070
From the graph At p0´ = 57 kPa
e = 0.847
At σv´ = 107 kPa
e = 0.839
At σv´ = 157 kPa
e = 0.820
For increment p0´ + 50
mv = 0.847 – 0.839 × 1 × 1000 = 0.087 m2/MN 1.847 50
For increment p0´ + 100
mv = 0.847 – 0.820 × 1 × 1000 = 0.146 m2/MN 1.847 100
At σv´ = 200 kPa
e = 0.803
At σv´ = 400 kPa
e = 0.753
At σv´ = 800 kPa
e = 0.704 Pressure increment kPa
Compression index Cc
200 – 400
Cc = 0.803 – 0.753 = 0.166 log10(400/200)
400 – 800
Cc = 0.753 – 0.704 = 0.163 log10(800/400)
200 – 800
Cc = 0.803 – 0.704 = 0.164 log10(800/200)
6.4
∴ say Cc = 0.164
6.5
Graham Barnes 2010
13
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
H0 = 18.50 mm Hf = 17.76 mm
d=
H=
18.50 + 17.76 = 18.13mm 2
18.13 = 9.065mm 2
t 90 = 3.35
t90 = 11.22 mins
cv = 0.848 × 9.0652 × 60 × 24 × 365 = 3.26 m2/yr, say 3.3 m2/yr 11.22 1000 × 1000 mv = (18.50 – 17.76) × 1 × 1000 = 0.20 m2/MN 18.50 200 k = cv mv γw =
3.26 365 × 24 × 60 × 60
× 0.20 × 9.8 = 2.0 × 10–10 m/s 1000
Split the clay into 2 m thick sub-layers mv = 0.24 – 0.02z
∆σ = 2.5 × 20 = 50 kPa Depth m 1 3 5 7 9
6.6
a) Tv = cv t = 12 × 6 = 0.67 d2 32 × 12
δH = mv × ∆σ × H
mv
δH
0.22 0.18 0.14 0.1 0.06
22 18 14 10 6 Σ = 70 mm
From Figure 6.15
Z=1
Initial excess pore pressure = 50 kPa Remaining pore pressure = 50 × (1 – 0.76) = 12 kPa
6.7 b)
Tv = 12 × 6 = 0.167 62 × 12
Z=1
Uv = 0.173
Remaining pore pressure = 50 × (1 – 0.173) = 41.4 kPa, say 42 kPa
Graham Barnes 2010
14
Uv = 0.755, say 0.76
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution ∆σv = 3 × 9.8 = 29.4 kPa
δH = 0.45 × 29.4 × 5 = 66.1 mm
d = 5/2 = 2.5 m
time t = 6/2 + 20 = 23 weeks Tv = 5.5 × 23 = 0.389 2.52 × 52
6.8
0.389 = π U v 4
2
Uv > 60%∴use log10 (100
U v = 0.704
(
0.389 = 1.781 − 0.933log10 100 − Uv
– Uv) = 1.781 – 0.389 = 1.492
)
U = 69%
0.933 ∴ settlement = 0.69 × 66 = 46 mm
U = 90%
6.9
∴Tv = 0.848
0.848 = 5.5 × t 2.52
t = 0.848 × 2.52 = 0.96 years = 50.1 weeks 5.5 ∴ time from start of pumping = 50.1 + 6/2 = 53.1 weeks
For 1-dimensional consolidation alone d = 10/2 = 5.0 m 0.071 = cv t d2
6.10
∴Tv = 0.071
Uv = 30% ∴ cv t = 0.071 × 52
∴cH t = 3.5 × 0.071 × 52
Tr = cH t = 3.5 × 0.071 × 52 = 0.399 4R2 4 × (0.564 × 3.5)2 r = 0.10 m
n = 0.564 × 3.5 = 19.74 0.10
∴Ur = 0.755
1 – Uoverall = (1 – Uv )(1 – Ur) = (1 – 0.3) (1 – 0.755) = 0.172
Graham Barnes 2010
15
∴Uoverall = 0.828, or 83%
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Height of embankment = 6 + δH Consolidation settlement = δH = 0.30 × (6 + δH) × 20.5 × 13 = 0.080 × (6 + δH) 1000
δH = 0.48/0.92 = 0.521 m check: = 0.30
× 6.521 × 20.5 × 13 = 521 mm
required Uoverall = 521 – 50 = 0.904 521 time required = ½ + 2 = 2.5 months Tv = 2.5 × 2.5 = 0.0123 6.52 × 12
6.11
∴Uv =
4Tv = 0.125 π 2πrw = 2
R = 0.525s
n = R = 0.525s = 21.15s rw 0.0248
(1 – 0.904) = (1 – 0.125) (1 – Ur) ∴Ur = 0.890
× (70 + 8) ∴s=
rw = 24.8 mm
n 21.15
1.323 Tr = cH t = 7.0 × 2.5 =∴ 1.323 s= 2 2 2 Tr 4R 4× (0525s) × 12 s 1.323 Tr
n
Tr
15 20 25 30 40
0.547 0.626 0.687 0.737 0.817
n 21.15 0.709 0.946 1.182 1.418 1.891
1.555 1.454 1.388 1.34 1.273
From graph s = 1.36 m, say 1.35 m
Chapter 7
Shear Strength Peak strength τf = cp´ + σN´ tanφp´
= 5 + (185 – 90) × tan 29o = 57.7 kPa
Residual strength τf = cr´ + σN´ tanφr´
= 0 + (185 – 90) × tan 12o = 20.2 kPa
7.1
7.2
σv´ = 122 – 32 = 93 kPa
σH´ = 97 – 32 = 65 kPa
Apex of Mohr circle
τ = σv´ – σH´ = 93 – 65 = 14 kPa
Graham Barnes 2010
16
∴s =
1.323 Tr
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution 2
2
σv´ + σH´ = 93 + 65 = 79 kPa 2 2
at the normal stress of
at failure τf = c´ + σN´ tanφ´
= 8 + 79 tan 28o = 50 kPa
50 >>14 ∴soil is not at failure
σf´ = 93 + σ3f´ + (93 – σ3f´) cos (90 + 28) 2 2 = 46.5 + 0.5σ3f´ – 21.8 + 0.235σ3f´ = 24.7 + 0.735σ3f´ 8 + (24.7 + 0.735σ3f´) tan28o = (93
– σ3f´ ) sin (90 + 28) = 41.1 + 0.441σ3f´ 2
7.3
21.1 + 0.391σ3f´ = 41.1 – 0.441σ3f´ OR σ3f´ = Kaσv´ – 2c´√Ka
σ3f´ = 20.0 = 24.0 kPa 0.832
Ka = 1 – sin28o = 0.361 1+ sin28o
σ3f´ = 0.361 × 93 – 2 × 8 × √0.361 = 24 kPa
7.4
σ3´ = σ3 – u = 450 – u
σ1´ = σ1´ – σ3´ + σ3´
s = σ1´ + σ3´ 2
t = σ1´ – σ3´ ´2
p´ = σ1´
u
σ1
σ 1´
σ3´
0 68 117 146 171 190 198
300 315 319 312 301 287 275
450 518 567 596 621 640 648
150 203 248 284 320 353 373
150 135 131 138 149 163 175
Maximum sinφ´ with maximum σ1´/σ3´ = 2.17
Graham Barnes 2010
17
q = σ1´ – σ3
3
σ1 – σ3
M = (q/p´)max = 198 = 0.822 241
+ 2σ3´
σ1´ σ3 ´ 1.00 1.50 1.89 2.06 2.15 2.17 2.13
s´
t´
p´
q
150 169 190 211 235 258 274
0 34 59 73 86 95 99
150 158 170 187 206 226 241
0 68 117 146 171 190 198
∴sin φ´ = 95 = 0.368 258
φ´ = 21.6o
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
7.5
7.6
at σN´ = 100 kPa
τ = 15 + 100 tan39 = 96 kPa
ε = ∆l = ∆l l0 76
A0 = π × 382 = 1134.1 mm2 4
A = A0 (1 – ε)
σ1 – σ3 = F A
7.7
Cell pressure
kPa 100 200 400
σ3 350 400 500
∆l mm
Force N
ε %
Area mm2
11.4 9.6 8.5
331 309 312
15.0 12.6 11.2
1334.2 1297.6 1277.1
σ1 – σ3 143 208 312
σ1 493 608 812
u 326 354 418
7.8
Graham Barnes 2010
τ = 64 kPa
18
σ1´ 167 254 394
∴F = 96 = 1.50 64
σ1 – σ3 kPa 248.1 238.1 244.3
σ 3´ 24 46 82
s´ 96 150 238
cu kPa 124 119 122
t´ 72 104 156
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution σ3 100 200 300
σ1 344 644 940
σ1 – σ3 244 444 640
t´ 122 222 320
7.9
1.75 = N – λln150 = N – λ × 5.011
7.10
1.65 = N – λln300 = N – λ × 5.704
0.10 = λ × (5.704 – 5.011)
λ = 0.10 = 0.144, say 0.14 0.693
qf´ = 368 kPa
7.11
N = 1.75 + 0.144 ln150 = 2.47
σ1´ = 368 + 300 = 668 kPa
pf´ = 1/3(668 + 2 × 300) = 422.7 kPa M = 368 = 0.87 422.7
7.12
σ3´ = 150 kPa
M = 0.87
qf´ = Mpf´
σ1´ – 150 = 0.87 × 1/3 (σ1´ + 2 × 150) = 0.29 σ1´ + 87 σ1´ = 237 = 333.8 kPa 0.71
Graham Barnes 2010
σ1´ – σ3´ = 333.8 – 150 = 183.8 kPa
19
s´ 222 422 620
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution OR ∴pf´ = 450 = 211.3 kPa 2.13
qf´ = 3 = 0.87 pf´ pf´ – p0´ pf´ – 150
σ3´= 150 kPa
7.13
pf´ = 211.3 kPa
v = 2.37 – 0.144 × ln211.3 = 1.599
σ3´= 300 kPa
∴e = 0.599, say 0.60
pf´ = 422.7 kPa
v = 2.37 – 0.144 × ln422.7 = 1.499
7.14
∴qf´ 0.87 × 211.3 = 183.8 kPa
∴e = 0.499, say 0.50
σ3´= 150 kPa vf = v0 = 1.75
vf = Γ + λ ln pf´ (on CSL)
ln pf´ = 2.37 – 1.75 = 4.306 0.144
pf´ = 74.1 kPa
qf´ = M qf´ = 0.87 × 74.1 = 64.5 kPa, say 65 kPa
σ1´ – σ3´ = 64.5 kPa
1/3σ1´ + 2/3σ3´ = 74.1 kPa
σ1´ = 64.5 + σ3´ kPa
1/3(σ3´+ 64.5) + 2/3σ3´ = 74.1 kPa
σ3´ = 74.1 – 64.5 = 52.6 kPa 3
u =σ3
– σ3´ = 150 – 52.6 = 97.4 kPa
u = pf
– pf´ = 171.5 – 74.1 = 97.4 kPa
OR pf = p0´ + 1/3qf = 150 + 64.5 = 171.5 kPa 3
σ3´= 300 kPa
vf = v0 = 1.65
vf = Γ + λ ln pf´ (on CSL)
ln pf´ = 2.37 – 1.65 = 5.000 0.144
pf´ = 148.4 kPa
qf = M pf´ = 0.87 × 148.4 = 129.1 kPa, say 129 kPa
σ1´ – σ3´ = 129.1 kPa σ1´ = 129.1 + σ3´ kPa
pf´ = 1/3(σ3´+ 129.1) + 2/3σ3´ = 148.4 kPa
σ3´ = 148.4 – 129.1 = 105.4 kPa 3
uf =σ3
OR pf = p0´ + 1/3 qf =300 + 1/3 × 129.1 = 343.0 kPa
Graham Barnes 2010
20
– σ3´ = 300 – 105.4 = 194.6 kPa, say 195 kPa
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution u = pf
Chapter 9
9.1
– pf´ = 343.0 – 148.4 = 194.6 kPa
Shallow Foundations - Stability Net Rd = cukNcsc sc = 1.2 A´ γcu Combination 1 Rd = 3.52 × 95 × 5.14 × 1.2 = 7178 kN 1.0
Nc= 5.14 Combination 2 Rd = 3.52 × 95 × 5.14 × 1.2 = 5127.2 kN 1.4
Combination 1 Net Ed = 1.35 × 2925 + 1.5 × 1225 + q – q = 5786.25 kN Ed < Rd (5786.3 < 7178)
9.2
Combination 2 Net Ed = 1.0 × 2925 + 1.3 × 1225 + q – q = 4517.5 kN Ed < Rd (4517.5 < 5127.2) ∴ ULS is verified
Combination 1 5786 = B2 × 95 × 5.14 × 1.2 1.0
Combination 2 4517.2 = B2 × 95 × 5.14 × 1.2 1.4
B2 = 9.87
B2 = 10.79
9.3 B = 3.14 m
B = 3.29 m
Combination 2 B = 3.29 m, say 3.3 m
9.4 Combination 1 φ´ = 25o
Nc = 20.7
sq = 1 + sin 25o = 1.423
Nq = 10.7
Nγ = 9.1
sγ = 0.7
sc = (1.423 × 10.7 – 1) = 1.467 (10.7 – 1)
Net Rd = c´ Nc sc + q´ Nq sq + 0.5γ´ B´ Nγ sγ + γw hw A´ q´ = 1.5 × 20.5 – 1.0 × 9.8 = 20.95 kPa
–q γ´ = 20.5 – 9.8 = 10.7 kN/m3
Net Rd = 4 × 20.7 × 1.467 + 20.95 × 10.7 × 1.423 + 0.5 × 10.7 × 3.3 × 9.1 × 0.7 + 1.0 × 9.8 – 1.5 × 20.5 iiiiiiA´ 1.0
= 121.5 + 319.0 + 112.5 + 9.8 – 30.75 = 532.0 kPa Net Rd = 532.0 × 3.32 = 5794.0 kN
5786 < 5794 ∴ULS verified, but see below Combination 2
Graham Barnes 2010
21
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution tan25o/1.25 = 0.373 φd = 20.46o
Nc = 15.3
Nq = 6.7
sq = 1 + sin 20.46o = 1.35
sγ = 0.7
sc = (1.35 × 6.7 – 1) = 1.41 (6.7 – 1)
Nγ = 4.3
Net Rd = 4 × 15.3 × 1.41 + 20.95 × 6.7 × 1.35 + 0.5 × 10.7 × 3.3 × 4.3 × 0.7 + 1.0 × 9.8 – 1.5 × 20.5 iiiiiiA´ 1.25
= 69.0 + 189.5 + 53.1 + 9.8 – 30.75 = 290.65 kPa Net Rd = 290.65 × 3.32 = 3165.2 kN
4517.5 > 3165.2 ∴ULS not verified q´ = 1.5 × 20.5 = 30.75 kPa
γ´ = 20.5 kN/m3
Combination 1 Net Rd = 4 × 20.7 × 1.467 + 30.75 × 10.7 × 1.423 + 0.5 × 20.5 × 3.3 × 9.1 × 0.7 – 1.5 × 20.5 iiiiiiA´ 1.0
= 121.5 + 468.2 + 215.5 – 30.75 = 774.45 kPa Net Rd = 774.45 × 3.32 = 8433.8 kN
9.5
5786 < 8434 ∴ULS verified Combination 2 Net Rd = 4 × 15.3 × 1.41 + 30.75 × 6.7 × 1.35 + 0.5 × 20.5 × 3.3 × 4.3 × 0.7 – 1.5 × 20.5 iiiiiiA´ 1.25
= 69.0 + 278.1 + 101.8 – 30.75 = 418.15 kPa Net Rd = 418.15 × 3.32 = 4553.7 kN
4517.5 < 4553.7 ∴ULS verified
Graham Barnes 2010
22
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Combination 1 γφ = 1.0
φ´ = 38o
Nq = 48.9
q´ = 2.0 × 19.5 – 1.5 × 9.8 = 24.3 kPa sq = 1 + 3.0 sin 38o = 1.41 4.5
Nγ = 74.9
γ´ = 19.5 – 9.8 = 9.7 kN/m3
sγ = 1
– 0.3 ×3.0 = 0.80 4.5
Net Rd = 24.3 × 48.9 × 1.41 + 0.5 × 9.7 × 3.0 × 74.9 × 0.8 + 1.5 × 9.8 – 2.0 × 19.5 iiiiiiA´
9.6
= 1675.5 + 871.8 + 14.7 – 39.0 = 2523.0 kPa Combination 2 γφ = 1.25
φd = 32.0o
tan38o/1.25 = 0.625
sq = 1 + 3.0 sin 32o = 1.353 4.5
sγ = 1
Nq = 23.2
Nγ = 27.7
– 0.3 ×3.0 = 0.80 4.5
Net Rd = 24.3 × 23.2 × 1.353 + 0.5 × 9.7 × 3.0 × 27.7 × 0.8 + 1.5 × 9.8 – 2.0 × 19.5 iiiiiiA´ = 762.8 + 322.4 + 14.7 – 39.0 = 1060.9 kPa
Combination 1 Ed = 1.35 × 2150 + 1.5 × 350 = 3427.5 kN Net Rd = 2523.0 × 3.0 × 4.5 = 34060.5 kN
γR = Rd = 34060.5 = 9.94 Ed 3427.5
9.7 Combination 2 Ed = 1.0 × 2150 + 1.3 × 350 = 2605.0 kN Net Rd = 1060.9 × 3.0 × 4.5 = 14322.2 kN
γR = Rd = 14322.2 = 5.50 Ed 2605.0 WF = 2.5 × 0.5 × 25 WB1 = 1.55 × 1.0 × 21 WB2 = 0.65 × 1.0 × 21
9.8
= 31.25 kN = 32.55 kN = 13.65 kN 77.45 kN
Combination 1 Design vertical load =125 × 1.35 + 45 × 1.5 = 236.25 kN Total vertical load = 77.45 + 236.25 = 313.7 kN 313.7 × e = 236.25 × 0.45 + 13.65 × 0.925 – 32.55 × 0.475 = 103.48 kNm
Graham Barnes 2010
23
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution e = 103.48 = 0.330 m 313.7 B´ = 2.5 – 2 × 0.33 = 1.84 m
sc = sq = sγ = 1.0
q = q´ = 1.5 × 22 = 33 kPa
γ´ = 22 – 9.8 = 12.2 kN/m3
γc = γφ = 1.0
Nc = 18.1
φ´ = 23o
Nq = 8.7
Nγ = 6.5
Net Rd = 4 × 18.1 + 33 × 8.7 + 0.5 ×12.2 × 1.84 × 6.5 – 33 = 399.46 kPa iiiiiiA´ 1.0 Rd = 399.46 ×1.84 = 735.0 kN Net design load = 313.7 –1.84 × 22 = 273.2 kN 273.2 < 735.0 ∴ULS verified Combination 2 Design vertical load =125 × 1.0 + 45 × 1.3 = 183.5 kN Total vertical load = 77.45 + 183.5 = 260.95 kN 260.95 × e = 183.5 × 0.45 + 13.65 × 0.925 – 32.55 × 0.475 = 79.74 kNm e = 79.74 = 0.306 m 260.95
9.8
γc = γφ = 1.25
B´ = 2.5 – 2 × 0.306 = 1.89 m
sc = sq = sγ = 1.0
φd = 18.76o Nc = 13.7 Nq = 5.7
tan23o/1.25 = 0.340
Net Rd = 4 × 13.7 + 33 × 5.7 + 0.5 ×12.2 × 1.89 × 3.2 – 33 = 235.83 kPa iiiiiiA´ 1.25 Rd = 235.83 ×1.89 = 445.7 kN Net design load = 260.95 – 1.89 × 22 = 219.4 kN 219.4 < 445.7 ∴ULS verified
9.9
WF = 3.3 × 3.8 × 0.6 × 25 = 188.10 kN WB = 3.3 × 3.8 ×1.2 × 20 = 300.96 kN 489.06 kN Combination 1 Design vertical load = 2925 × 1.35 + 1225 × 1.5 = 5786.25 kN Design horizontal load = 150 × 1.35 + 50 × 1.5 = 277.50 kN Total vertical load = 489.06 + 5786.25 = 6275.31 kN e = 277.50 × 3.3 = 0.146 m 6275.31
Graham Barnes 2010
24
Nγ = 3.2
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution L´ = 3.8 – 2 × 0.146 = 3.51 m
B´ = 3.30 m
sc = 1 + 0.2 × 3.30 = 1.188 3.51
Net vertical load = 6275.31 – 3.3 ×3.51 × 21.5 = 6026.3 kN 277.50 i c = 0.5+ 0.5 1− = 0.932 3.3×3.51×95
Net Rd = 95 × 5.14 × 1.188 ×0.932 = 540.65 kPa iA´ 1.0
iiiii
Rd = 540.65 ×3.3 ×3.51 = 6262.35 kN 6026.3 < 6262.35 ∴ULS verified Combination 2 Design vertical load = 2925 × 1.0 + 1225 × 1.3 = 4517.50 kN Design horizontal load = 150 × 1.0 + 50 × 1.3 = 215.0 kN Total vertical load = 489.06 + 4517.50 = 5006.56 kN e = 215.0 × 3.3 = 0.142 m 5006.56 L´ = 3.8 – 2 × 0.142 = 3.52 m
B´ = 3.30 m
sc = 1 + 0.2 × 3.30 = 1.188 3.52
Net vertical load = 5006.56 – 3.3 ×3.52 × 21.5 = 4756.8 kN 215.0 i c = 0.5 + 0.5 1− = 0.949 3.3 × 3.52 × 95 Net Rd = 95 × 5.14 × 1.188 × 0.949 = 393.2 kPa iA´ 1.4
iiiii
Rd = 393.2 × 3.3 × 3.52 = 4567.4 kN 4756.8 > 4567.4 ∴ULS not verified
9.10 Combination 2 Design vertical load = 2925 × 1.0 + 1225 × 1.3 = 4517.50 kN Design horizontal load = 150 × 1.0 + 0 × 1.3 = 150.0 kN Total vertical load = 489.06 + 4517.50 = 5006.56 kN e = 150.0 × 3.3 = 0.099 m 5006.56 L´ = 3.8 – 2 × 0.099 = 3.60 m
B´ = 3.30 m
sc = 1 + 0.2 × 3.30 = 1.183 3.60
Net vertical load = 5006.56 – 3.3 × 3.6 × 21.5 = 4751.1 kN
Graham Barnes 2010
25
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
150.0 i c = 0.5 + 0.5 1− = 0.966 3.3 × 3.6 × 95 Net Rd = 95 × 5.14 × 1.183 ×0.966 = 398.6 kPa iA´ 1.4
iiiii
Rd = 398.6 × 3.3 × 3.6 = 4735.4 kN 4751.1 > 4735.4 ∴ULS still not verified; change size of foundation (width or length)
Combination 1 Design horizontal load = 277.50 kN Design resistance = A´ cud = 3.3 × 3.51 × 95 = 1100.4 kN 1.0 277.50 < 1100.4 ∴ULS verified
9.11 Combination 2 Design horizontal load = 215.0 kN Design resistance = A´ cud = 3.3 × 3.52 × 95 = 788.2 kN 1.4 215.0 < 788.2 ∴ULS verified
Chapter 10
Shallow foundations - Settlements
For centre L/B = 10/5 = 2
H/B = 20/2.5 = 8
From Figure 10.1
I = 0.465
B = 2.5 m
ρi = s0 = 120 × 2.5 × 0.465 × 4 × 1000 = 27.9 mm, say 28 mm 20 × 1000
10.1 For corner L/B = 2
H/B = 20/5 = 4
From Figure 10.1
B=5m
I = 0.375
ρi = s0 = 120 × 5 × 0.375 × 1000 = 11.25 mm, say 11 mm 20 × 1000
10.2 For centre L/B = 2
H/B = 5/2.5 = 2
B = 2.5 m
H/B = 20/2.5 = 8
Graham Barnes 2010
I = 0.230 I = 0.465
26
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution ρi = s0 = 120 × 2.5 × (0.465 – 0.230) × 4 × 1000 = 14.1 mm, say 14 mm 20 × 1000
For corner L/B = 2
H/B = 5/5 = 1
B=5m
I = 0.085
H/B = 20/5 = 4
I = 0.375
ρi = s0 = 120 × 5 × (0.375 – 0.085) × 1000 = 8.7 mm, say 9 mm 20 × 1000 ∴differential settlement of pipe = 14 – 9 = 5 mm From Table 10.2 for L/B = 2 µr ≈0.75
ρrigid = 0.75 × 27.9 = 20.9 mm, say 21 mm
10.3
For average settlement for L/B = 2 H/B = 20/5 = 4 From Figure 10.4 µ1 = 0.76 µ0 = 1.0
ρaverage = 1.0 × 0.76 × 120 × 5 × 1000 = 22.8 mm, say 23 mm 20 × 1000
For centre
L/B = 2
k = 30 – 10 × 2.5 = 0.25 10 20
H/B = 20/2.5 = 8 From Figure 10.5
B = 2.5 m I = 0.35
ρi = s0 = 120 × 5 × 0.35 × 4 × 1000 = 42.0 mm 10 × 1000
10.4 For corner
L/B = 2
H/B = 20/5 = 4
k = 30 – 10 × 5 = 0.50 From Figure 10.5 10 20
B=5m
I = 0.20
ρi = s0 = 120 × 5 × 0.20 × 1000 = 12.0 mm 10 × 1000
10.5 a)
elastic
L/B = 2
H/B = 16/2 = 8
B=2m
ρi = s0 = 40 × 2 × 0.465 × 4 × 1000 = 18.6 mm, say 19 mm 8 × 1000
Graham Barnes 2010
27
From Figure 10.1, I = 0.465
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution b) with yield From Figure 10.7, F = 3
fy = 1.5
ρy = 1.5 × 18.6 = 27.9 mm, say 28 mm
Assume 2 m thick layers Layer 1 2 3 4
10.6
Depth m 1 3 5 7
p0´
∆σ
P
w0
e0
∆e
δH
18.5 55.5 82.7 100.1
70 40 25 15
0.680 0.236 0.115 0.061
40 35 31 28
1.080 0.945 0.837 0.756
0.102 0.035 0.017 0.009 Σ
98.0 36.4 18.7 10.4 163.5
Say 164 mm
Layer 1 2 3 4
10.7
Depth m 1 3 5 7
∆σ
mv
δH
70 40 25 15
0.76 0.68 0.60 0.52
106.4 54.4 30.0 15.6 206.4
Σ 206.4 × 0.8 = 165.1 mm, say 165 mm
Graham Barnes 2010
28
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Ef = 4 + 4 × (28 – 4) = 8 MPa 24 For centre L/B = 2
H/B = 20/4 × 1.2 = 6
k = 28 – 8 × 4 = 0.50 8 20
B = 2.5 m
From Figure 10.13
I = 0.33
D/B = 4/8 = 0.50 From Figure 10.13 FD = 0.93 H/B = 20/8 = 2.5 From Figure 10.14 FB = 0.96
10.8
ρT = s1 = 70 × 4 × 0.33 × 0.93 × 0.96 × 4 × 1000 = 41.2 mm, say 41 mm 8 × 1000 For corner L/B = 2
H/B = 20/8 × 1.2 = 3
k = 28 – 8 × 8 = 1.00 8 20
B = 2.5 m
From Figure 10.13
I = 0.225
D/B = 4/8 = 0.50 From Figure 10.13 FD = 0.93 H/B = 20/8 = 2.5 From Figure 10.14 FB = 0.96
ρT = s1 = 70 × 8 × 0.225 × 0.93 × 0.96 × 1000 = 14.1 mm, say 14 mm 8 × 1000
First 5 years
ρs = s2 = 8 × 1000 × 1.5 × log10 (5/1) = 83.9 mm, say 84 mm 100
After 30 years
ρs = s2 = 8 × 1000 × 1.5 × log10 (30/1) = 177.3 mm, say 177 mm 100
10.9
Graham Barnes 2010
29
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Schertmann
Immediate
p0´ = 2 × 19.5 = 39 kPa
∆p = p – p0´ = 90 – 39 = 51 kPa
σv´ = 7 × 19.5 – 3 × 9.8 = 107.1 kPa
10.10
C1 = 1 – 0.5 × 39 = 0.918 51
C2 = 1.0 (short-term)
Izmax = 0.5 + 0.1 (51/107.1)0.5 = 0.569
qc = constant
ΣIz ∆z = 0.569 × 1.5 × B × ½ + (0.569 – 0.1) × 0.5 × B × ½ + 0.1 × 0.5 × B = 0.594B = 0.594 × 10 = 5.94 m ρi = 0.618 × 1.0 × 51 × 5.94 × 1000 = 18.7 mm, say 19 mm 2.5 4 × 1000 long-term C2 = 1 + 0.2 log10 (10 × 30) = 1.495
ρT = 1.495 × 18.7 = 28.0 mm
Burland and Burbridge ZI = 5.8 m
10.11
Hs > ZI ∴fs = 1.0
q´ = 90 kPa
Ic = 1.71 = 0.068 101.4 Immediate
ρi = 1.0 × 1.0 × (90 – 2/3 × 39) × 100.7 × 0.068 = 21.8 mm, say 22 mm
Long-term
ft = 1 + 0.3 + 0.2log10 (30/3) = 1.5
ρT = 1.5 × 21.8 = 32.7 mm, say 33 mm
Chapter 11
Pile Foundations Rb;k = π × 0.752 × 9 × 1.0 × 120 = 477.1 kN 4
11.1
σv0´ = 2 × 19.5 = 39 kPa
Rs;1,k = π × 0.75 × 7.0 × 1.0 × 50
= 824.7 kN
Rs;2,k = π × 0.75 × 4.0 × 0.5 × 120 = 565.5 kN ΣRs;k = 1390.2 kN
Graham Barnes 2010
30
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Combination 1 Fd = 1250 × 1.35 + 215 × 1.50 = 2010.0 kN Alternative 1 From the UK National Annex for n = 4 ξ3 = 1.38 ξ4 = 1.29 Rc;dmean = 477.1× 134 × 1.1 + 824.7 × 63 × 1.1 + π × 0.75 × L × 0.5 × 134 × 1.1 120 1.38 50 1.38 1.38 = 424.7 + 828.3 + 125.8L Rc;dmin = 477.1× 103 × 1.1 + 824.7 × 42 × 1.1 + π × 0.75 × L × 0.5 × 103 × 1.1 120 1.29 50 1.29 1.29 = 349.2 + 590.7 + 103.5L use the minimum values 103.5L = 2010.0 – 349.2 – 590.7 L = 10.34 m, say 10.35 m Alternative 2
11.2
Rc;d =
Model factor = 1.4
477.1 + 824.7 + π × 0.75 × L × 0.5 × 120 1.4 × 1.0 1.4 × 1.0 1.4 × 1.0
101.0L = 2010.0 – 340.8 – 589.1
≤ 2010.1
∴L = 10.7 m
Combination 2 Fd = 1250 × 1.0 + 215 × 1.30 = 1529.5 kN Alternative 1 use the minimum values Rc;dmin = 349.2 + 590.7 + 103.5L 2.0 1.6 1.6 64.7L = 1529.5 – 174.6 – 369.2 Alternative 2 Rc;d =
≤ 1529.5 ∴L > 15.23 m, say 15.25 m
Model factor = 1.4
477.1 + 824.7 + π × 0.75 × L × 0.5 × 120 1.4 × 2.0 1.4 × 1.6 1.4 × 1.6
170.4 + 368.2 + 63.1L < 1529.5
≤ 2010.1
∴L ≥15.7 m
(Rc;m)mean = (2160 + 2040 + 2280 + 2310 + 2450)/5 = 2248 kN (Rc;m)min = 2040 kN
11.3
Rc;k = lowest of 2248 × 1.1 and 2040 × 1.1 = 1831.7 and 2077.8 kN 1.35 1.08 Rc;k = 1831.7 kN
Graham Barnes 2010
31
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Operative shaft length L = 18 – 2 = 16 m Characteristic cuk at base = 75 + 4 × 18 = 147 kPa Characteristic base resistance = 9 × 147 × 0.352 = 162.1 kN
11.4
Characteristic shaft resistance = 1831.7 – 162.1 = 1669.6 kN Average cuk at mid-length of shaft = 75 + 4 × 10 = 115 kPa
α × 115 × 16 × 4 × 0.35 = 1669.6
α = 0.648, say 0.65
Minimum strength cuz = 68 + 2.5z Mean strength cuz = 88 + 5z
At 1 m bgl At 8 m bgl At 15 m bgl
Characteristic cuk kPa 75 + 4 = 79 75 + 8 × 4 = 107 75 + 15 × 4 = 135
Minimum cuk kPa 68 + 2.5 = 70.5 68 + 8 × 2.5 = 88.0 68 + 15 × 2.5 = 105.5
Mean cuk kPa 88 + 5 = 93.0 88 + 8 × 5 = 128.0 88 + 15 × 5 = 163.0
Alternative 1
11.5
Rc;dmean = 163.0 × 9 × π × 0.452 + 128.0 × 0.65 × 14 × π × 0.45 = 117.0 + 952.4 = 1069.4 kN 1.33 × 1.5 × 4 1.33 × 1.3 Rc;dmin = 105.5 × 9 × π × 0.452 + 88.0 × 0.65 × 14 × π × 0.45 = 83.9 + 725.7 = 809.6 kN 1.20 × 1.5 × 4 1.20 × 1.3 Alternative 2
model factor = 1.2
Rc;d = 135 × 9 × π × 0.452 + 107 × 0.65 × 14 × π × 0.45 = 107.4 + 882.4 = 989.8 kN 1.20 × 1.5 × 4 1.2 × 1.3 Rc;d = 809.6 kN
Graham Barnes 2010
32
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution σv´ at 1.5 m = 1.5 × 19.5 = 29.25 kPa For zc/d φ´after = 3/4 φ´ + 10 = 3/4 × 34 + 10 = 35.5o
zc/d = 11.3
zc = 11.3 × 0.45 = 5.1 m σv´ at 5.1 m = 5.1 × 19.5 – 3.5 × 9.8 = 64.2 kPa kstanδ = 0.60
For Nq φ´after = 34 + 40 = 37o 2
Rb;k = 110 × 64.2 × π 4
11.6
Nq = 110
× 0.452 = 1123.2 kN
0 to 1.5 m bgl Rs,1,k = 29.25
× 0.5 × 1.5 × π × 0.45 × 0.60
= 18.6 kN
1.5 to 5.1 m bgl Rs,2,k = (64.2 + 29.25) × 0.5 × 3.6 × π × 0.45 × 0.60 = 142.7 kN 5.1 to 15 m bgl Rs,3,k = 64.2
× 9.9 × π × 0.45 × 0.60
= 539.1 kN Rs,k = 700.4 kN
Combination 1 Rc;d = 1123.2 + 700.4 = 1823.6 kN, say 1824 kN 1.0 1.0 Combination 2 Rc;d =
1123.2 + 700.4 = 471.9 + 333.5 = 805.4 kN, say 805 kN 1.4 × 1.7 1.4 × 1.5
11.7 Combination 1 Fd = 450 × 1.35 + 120 × 1.5 = 787.5 κΝ for the downdrag load Dd = 233.9 × 1.0 ∴for the ultimate limit state Fd + Dd ≤Rc;d Rc;d = Rc;k = 1044.8 = 1044.8 kN γt 1.0 787.5 + 233.9 = 1021.4 kN
1021.4 < 1044.8 ∴ULS verified, but see below
Combination 2 Fd = 450 × 1.0 + 120 × 1.3 = 606.0 κΝ for the downdrag load Dd = 233.9 × 1.25 = 292.4 kN ∴for the ultimate limit state Fd + Dd ≤Rc;d Rc;d = Rc;k = 1044.8 = 522.4 kN γt 2.0
Graham Barnes 2010
33
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution 606.0 + 292.4 = 898.4 kN
Chapter 12
898.4 > 522.4 ∴ULS not verified
Lateral Earth Pressures and Retaining Structures
Combination 1
Combination 2
γG = 1.35 γφ = 1.0 γR = 1.0
γG = 1.0 γφ = 1.25 γR = 1.0
∴ φd = φk = 36o
∴ tanφd = tan36o = 0.581 φd = 30.17o 1.25
Ka = 1– sin36 = 0.260 1+ sin36
Ka = 1– sin30.17 = 0.331 1+ sin30.17
12.1 Assume water table is the characteristic Assume water table is the characteristic
Total thrust = 9.88 + 29.64 + 11.94 + 44.1 = 95.56 kN, say 95.6 kN moment = 9.88 × 3.67 + 29.64 × 1.5 + 11.94 × 1.0 + 44.1 × 1.0 = 136.76 kNm point of application = 136.76 = 1.43 m 95.56
Total thrust = 12.58 + 37.74 + 15.20 + 44.1 = 109.62 kN, say 109.6 kN moment = 12.58 × 3.67 + 37.74 × 1.5 + 15.20 44.1 × 1.0 = 162.08 kNm
point of application = 162.08 = 1.48 m 109.62
Combination 1
Combination 1
Kp = 1 + sin36 = 3.852 1 – sin36
Kp = 1 + sin30.17 = 3.021 1 – sin30.17
12.2
Graham Barnes 2010
34
× 1.0 +
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Total thrust
Total thrust
= 146.38 + 439.14 + 176.81 + 44.1 = 806.43 kN, say 806.4 kN
= 114.80 + 344.40 + 138.66 + 44.1 = 641.96kN, say 642 kN
moment
moment
= 146.38 × 3.67 + 439.14 × 1.5 + 176.81 × 1.0 + 44.1 × 1.0 = 1416.83 kNm
= 114.80 × 3.67 + 344.40 × 1.5 + 138.66 × 1.0 + 44.1 × 1.0 = 1120.68 kNm
point of application = 1416.83 = 1.76 m 806.43
point of application = 1120.68 = 1.75 m 641.96
12.2
Combination 1 as before because c´ and φ´ are unfactored Combination 2 Sand
tanφd = tan36o = 0.581 φd = 30.17o 1.25
Ka = 0.331
Clay
tanφd = tan26o = 0.390 φd = 21.32o 1.25
Ka = 0.467
cd = 12 = 9.6 kPa 1.25
12.3
point of application = 107.66 = 1.07 m 100.66
12.4 Combination 2
φd = 30.17o
δ/φ = 0.66
Ka = 0.285
Total thrust = 100.50 kN
Moment = 10.83 × 3.67 + 32.49 × 1.50 + 13.08 × 1.0 + 44.1 × 1.0 = 145.66 kNm
Graham Barnes 2010
35
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Point of application = 145.66 = 1.45 m 100.5 Shear force = (10.83 + 32.49 + 13.08) × tan(30.17 × 2/3) = 20.65 kN
Combination 1
γG = 1.35 γQ = 1.5 unfavourable
design surcharge = 10 × 15 = 15 kPa behind line
γG = 1.0 γQ = 0 favourable design surcharge = 10 × 0 = 0 kPa behind wall γφ = 1.0 Weight Base Stem Backfill
12.5
1.0 × 3.8 × 25 0.8 × 5.0 × 25 1.5 × 5.0 × 21
95.0 100.0 157.5
Distance from O 1.90 1.90 3.05
Moment 180.5 190.0 480.4
Overturning
Total horizontal thrust = 17.1 + 71.82 = 88.9 kN Shear force = 88.9 × tan37 = 67.0 kN Shear force moment = 67.0 × 3.8 = 254.6 kNm
Overturning moment = 17.1 × 3.0 + 71.8 × 2.0 = 194.9 kNm Resisting moments = 180.5 + 190.0 + 480.4 + 254.6 = 1105.5 kNm 194.9 < 1105.5 ∴ ULS verified Sliding Total V = 95.0 + 100.0 + 157.5 + 67.0 = 419.5 kN Resisting force = 419.5 × tan25 = 195.6 kN 88.9 kN < 195.6 kN ∴ ULS verified Bearing pressure (including surcharge) Moment from surcharge = 10 × 1.5 × 1.5 × 3.05 = 68.6 kNm Total V = 419.5 + 10 × 1.5 × 1.5 = 442.0 kN Resultant moment = 180.5 + 190.0 + 480.4 + 254.6 + 68.6 – 194.9 = 979.2 kNm Distance of V from O = 979.2 = 2.215 m
Graham Barnes 2010
36
Eccentricity e = 2.215 – 1.9 = 0.315 m
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution 442.0 qmax = 442.0 × (1 + 6 × 0.315) = 174.2 kPa 1 × 3.8 3.8 B´ = 3.8 – 2 × 0.315 = 3.17 m
qmin = 442.0 × (1 – 6 × 0.315) = 58.5 kPa 1 × 3.8 3.8
qmean = 442.0 = 139.4 kPa 3.17
Combination 2
γG = 1.0
12.5
γQ = 1.3
γφ = 1.25
unfavourable
φk = 37o
tan37o = 0.603 1.25
φd = 31.08o
δk = 25o
tan25o = 0.373 1.25
φd = 20.46o
Ka = 0.26
δ = 31.08o
Overturning
Total horizontal thrust = 20.28 + 98.28 = 118.56 kN Shear force = 118.56 × tan31.08 = 71.46 kN Shear force moment = 71.46 × 3.8 = 271.56 kNm Overturning moment = 20.28 × 3.0 + 98.28 × 2.0 = 257.4 kNm Resisting moments = 180.5 + 190.0 + 480.4 + 271.6 = 1122.5 kNm 257.4 kNm < 1122.5 kNm ∴ ULS verified Sliding Total V = 95.0 + 100.0 + 157.5 + 71.5 = 424.0 kN Resisting force = 424.0 × tan20.46 = 158.2 kN 118.6 kN < 158.2 kN ∴ ULS verified Bearing pressure (including surcharge) Moment from surcharge = 10 × 1.3 × 1.5 × 3.05 = 59.5 kNm Total V = 424.0 + 10 × 1.3 × 1.5 = 443.5 kN Resultant moment = 180.5 + 190.0 + 480.4 + 271.6 + 59.5 – 257.4 = 924.6 kNm Distance of V from O = 924.6 = 2.085 m 443.5 Eccentricity e = 2.085 – 1.9 = 0.185 m
Graham Barnes 2010
37
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution qmax = 443.5 × (1 + 6 × 0.185) = 150.8 kPa 1 × 3.8 3.8
qmin = 443.5 × (1 – 6 × 0.185) = 82.6 kPa 1 × 3.8 3.8
B´ = 3.8 – 2 × 0.185 = 3.43 m qmean = 443.5 = 129.3 kPa 3.43
Fφ = 1.2 (CIRIA 104, Table 5) worst credible parameters, permanent works Design tanφ = tan27o = 0.425 1.2 Table 12.1
δ /φ active = 2/3
Figure 12.11
Ka = 0.38
design φ = 23.0o
δ /φ passive = 0.50 Kp = 3.0
12.6
Zone
Force kN
Lever arm from anchor m
Moment kNm
Active 1 0 – 2.0 m 2 2.0m – toe 3 2.0m – toe
4 water
Passive 5 soil 6 water
2 × 20 × 0.38 × 2.0× ½ = 15.20
0.33
5.06
40.0 × 0.38 × (4.0 + d) = 60.8 + 15.2 d [20 × (6.0 + d) – (4.0 + d) × 9.8] × 0.38 – 4.0 × 0.38 = 15.50 + 3.88d force (15.50 + 3.88d) × (4.0 + d) ½ = 31.0 + 1.94d2 + 15.51d (4.0 + d) × 9.8 × (4.0 + d) ½ = 78.4 + 39.2d + 4.9d2
½ (4.0 + d) + 1.0 = 3.0 + 0.5d 2/3 (4.0 + d) + 1.0 =3.67 + 0.67d
182.4 + 7.6d2 + 76.0d
2/3 (4.0 + d) + 1.0 = 3.67 + 0.67d
(78.4 + 39.2d + 4.9d2) × (3.67 + 0.67d) = 287.73 + 196.39d + 44.24d2 + 3.28d3
10.2d × 3.0 × d × ½ = 15.3d2
2/3d + 5.0 = 0.67d + 5.0
10.25d3 + 76.5d2
9.8 × d × d × ½ = 4.9d2
0.67d + 5.0
3.28d3 + 24.5d2
(31.0 + 1.94d2 + 15.51d) × (3.67 + 0.67d) = 113.77 + 77.69d + 17.51d2 + 1.30d3
ΣMoments Force
Graham Barnes 2010
0
d
38
d2
d3
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution 1 2 3 4 5 6 totals
5.06 182.40 113.77 287.73 588.96
76.0 77.69 196.39 350.08d
7.60 17.51 44.24 – 76.5 – 24.5 – 31.65d2
65.81 + 39.12d – 3.54d2 – d3 = 0 by trial d = 5.58 m, say 5.6 m Check: Force kN 15.2 145.62 177.86 449.70 476.39 152.57
No. 1 2 3 4 5 6
Lever arm m 0.33 5.79 7.39 7.39 8.72 8.72
12.6
Moment kNm 5.06 843.14 1314.39 3323.28 – 4154.12 – 1330.41 Σ = 1.34 ∴OK
Total thrust Pa = 1 + 2 + 3 + 4 = 15.2 + 145.6 + 177.9 + 449.7 = 788.4 kN Total thrust Pp = 5 + 6 = 476.4 + 152.6 = 629.0 kN Anchor force T = (788.4 – 629.0)
12.7 Design tensile strength = 300 1.1 fn = 1.1
× 2.5 = 398.5 kN, say 399 kN
× 60 × 3 = 49.09 kN 1000
TDj = 49.09 = 44.63 kN fn 1.1
fms = 1.0 ∴φd = φp = 37o
length of reinforecement in active zone = (7.0
– 0.7) × tan(45 – 37/2) = 3.14 m
Lej = 8.0 – 3.14 = 4.86 m tanδ = 0.6 × tan37o = 0.452 equation 12.68
TAj = 4.86 × 2 1.3
δ = 24.3o, say 25o
× 0.06 × [tan25 × 1.0 × 19.0 × 0.7] = 2.78kN 1.0
for inextensible reinforcement – coherent gravity method equation 12.74 K0 = 1 – sinφ = 1
– sin37o = 0.398
Ka = 1 – sin37o = 0.249 1 + sin37o at 0.7 m
Graham Barnes 2010
K = 0.398 – 0.7 × (0.398 – 0.249) = 0.381 6.0
39
1.30 3.28 – 10.25 – 3.28 – 8.95d3 =0
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution equation 12.76 Tj = 0.381 × 0.7 × 19 × 0.6 = 3.04 kN 3.04 kN > 2.78 kN ∴state is breached by pull-out determine required length of reinforcement TAj = Tj Lej
× 2 × 0.06 × (tan25 × 1.0 × 19 × 0.7) = 3.04 1.3
Lej = 5.31 m
1.0
length of reinforecement = 5.31 + 3.14 = 8.45 m, say 8.5 m
Chapter 13
Slope Stability
With hw = 0
F = c´ + tanφ´cos2β γsub z γ z sinβ cosβ
At 2.0 m
F = 5 + tan 26o × cos214o × 9.2 × 2.0 = 1.51 19 × 2.0 × sin14o cos14o
At 4.0 m
F = 5 + tan 26o × cos214o × 9.2 × 4.0 = 1.23 19 × 4.0 × sin14o cos14o
At 6.0 m
F = 5 + tan 26o × cos214o × 9.2 × 6.0 = 1.13 19 × 6.0 × sin14o cos14o
13.1
At 2.0 m γod = 1.51 = 1.21 1.25
13.2
At 4.0 m γod = 1.23 = 0.98 1.25 At 6.0 m γod = 1.13 = 0.90 1.25
Graham Barnes 2010
40
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution At 2.0 m with seepage through the suction zone F = c´ + tanφ´cos2β (γz +γwhs) γ z sinβ cosβ F = 5 + tan 26o cos214o × (19 × 2.0 + 9.8 × 2.0) = 3.53 19 × 2.0 × sin14o cos14o At 4.0 m ‘dry’ slope with z = hw
13.3
F = c´ + tanφ´cos2β γz γ z sinβ cosβ F = 5 + tan 26o × cos214o × 19 × 4.0 = 2.24 19 × 4.0 × sin14o cos14o At 6.0 m wet slope with hw = 4.0 m F = 5 + tan 26o × cos214o × (19 × 6.0 – 9.8 × 6.0 + 9.8 × 4.0) = 1.81 19 × 6.0 × sin14o cos14o 1.0 = 0 + tan φr´ cos210o × (21 × 2.5 – 9.8 × 2.5 + 9.8 × 0.5) = 3.554 tan φr 21 × 2.5 × sin10o cos10o
13.4 tan φr´ = 1.0 = 0.281 3.554
Graham Barnes 2010
φr´ = 15.7o
41
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
13.5 Slice 1 2 3 4 5 6 7 8 9 10 11
b m 0.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
F = cu × Σ bsecα ΣW sinα
h m 0.14 1.05 2.55 3.70 4.60 5.50 5.90 5.80 4.85 3.50 1.50
W kN 1.3 29.1 70.8 102.7 127.6 152.6 163.7 161.0 134.6 97.1 41.6
cumin = 0.157 × 1.0 × 18.5 × 6.0 = 17.4 kPa, say 17 kPa
Graham Barnes 2010
bsecα
Wsinα
-25 -20 -12 -4 +4 11.5 19 28 37 47 60.5 Σ
0.55 1.60 1.53 1.50 1.50 1.53 1.59 1.70 1.88 2.22 3.05 18.65
-0.55 -9.95 -14.7 -7.2 8.9 30.4 53.3 75.6 81.0 71.0 36.2 324.0
cu = F × ΣW sinα = 1.0 × 324.0 = 17.4 kPa, say 17 kPa Σ bsecα 18.65
From Taylor’s curves Ns = 0.157
13.6
αο
42
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
Slice 1 2 3 4 5 6 7 8 9 10
13.7
b m 2.3 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0
h m 0.85 2.60 4.20 5.50 6.50 7.15 7.45 7.4 6.8 4.9
W kN 39.1 104.0 168.0 220.0 260.0 286.0 296.0 296.0 272.0 196.0
αο
bsec α
-33 -23 -13 -5 +5 13 23 33 44 59
2.74 2.17 2.05 2.01 2.01 2.05 2.17 2.38 2.78 3.88 24.24
Σ Pw = ½ γw zc 2 = ½ × 9.8 × 3.02 = 44.1 kN at yc = 2.0 + 2.0 = 4.0 m Radius R = 13.0 m F=
13.0 × 35 × 24.24 = 11029 = 1.378, say 1.38 13.0 × 601.9 + 44.1 × 4.0 8001
β = 21.8o
13.8
13.9
D = 14/7 = 2.0
Ns = 0.165
γod =
cuk = 55 = 1.79 Ns γcu γk H 0.165 × 1.4 × 19 × 7.0
Nsd =
38 = 0.162 1.4 × 21 × 8
From chart slope angle = 30o
13.10
A = c´b + (W – ub) tanφ B=
secα 1 + tanα tanφ F
F = A × Bccc ΣWsinα
Graham Barnes 2010
43
Wsin α -21.3 -40.6 -37.8 -19.2 22.7 64.3 115.7 161.2 188.9 168.0 601.9
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution
F = 1.30 Slice
b
h
W
α
1 2 3 4 5 6 7 8 9 10 11
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.45
0.4 1.55 2.85 3.90 4.55 49.5 5.05 4.70 3.87 2.52 0.85
26.6 103.2 189.8 259.7 303.0 329.7 336.3 311.7 257.7 167.8 56.6
-14.8 -8.8 -2.9 +2.9 8.8 14.8 20.9 27.3 34.1 41.5 47.8
Σ
Wsin α -6.8 -15.8 -9.6 +13.1 46.4 84.2 120.0 143.0 144.5 111.2 41.9 672.1
Initial F = 1.30
F = 889.7 = 1.324 672.1
Initial F = 1.40
F = 898.7 = 1.337 say F = 1.33 672.1
u
A
B
A×B
B
A×B
3.9 13.8 23.7 30.6 34.4 35.5 33.3 27.2 15.9 0 0
16.3 39.1 66.8 87.9 106.4 117.9 124.3 122.0 111.4 90.8 32.0
1.15 1.07 1.02 0.98 0.96 0.94 0.94 0.94 0.96 1.00 1.05
18.8 41.8 68.1 86.1 102.1 110.8 116.9 114.7 106.9 90.8 33.6 889.7
1.14 1.07 1.02 0.98 0.96 0.95 0.95 0.95 0.98 1.02 1.07
18.6 41.8 68.1 86.1 102.1 112.0 118.1 115.9 109.2 92.6 34.2 898.7
Σ
c´ = 3 = 0.015 γH 22.2 × 9
hw = 2.7 = 0.30 H 9.0
c´ = 0.005 γH
a = 0.07
b = 2.31
F = 0.07 + 2.31 × tan26o = 1.20
c´ = 0.025 γH
a = 0.25
b = 2.35
F = 0.25 + 2.35 × tan26o = 1.40
13.11
For c´ = 0.015 γH
Graham Barnes 2010
F = 1.20 + 0.01 (1.40 – 1.20) = 1.30 0.02
44
F = 1.40
Σ
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution γc = γφ = 1.25
γG = 1.0 γγ = 1.0
let C = 3.0 × b + tan26o (W – ub) and D = secα 1.25 1.25 1 + tanα tanφ γφ Slice
b
h
W
α
1 2 3 4 5 6 7 8 9 10 11
3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 1.45
0.4 1.55 2.85 3.90 4.55 49.5 5.05 4.70 3.87 2.52 0.85
26.6 103.2 189.8 259.7 303.0 329.7 336.3 311.7 257.7 167.8 56.6
-14.8 -8.8 -2.9 +2.9 8.8 14.8 20.9 27.3 34.1 41.5 47.8
13.12
Σ
Wsin α -6.8 -15.8 -9.6 +13.1 46.4 84.2 120.0 143.0 144.5 111.2 41.9 672.1
u
C
D
3.9 13.8 23.7 30.6 34.4 35.5 33.3 27.2 15.9 0 0
13.0 31.3 53.5 72.7 85.2 94.3 99.4 97.0 89.1 72.7 14.2
1.153 1.077 1.021 0.982 0.954 0.937 0.932 0.937 0.955 0.993 1.041
Σ
C× D 15.0 33.7 54.6 74.0 81.3 88.4 92.6 90.9 85.1 72.2 14.8 687.8
γod = 687.8 = 1.023 672.1
F = 1.20 Slice
b
h
W
α
1 2 3 4 5 6
8.0 8.0 8.0 8.0 8.0 6.0
2.03 5.04 6.70 7.00 5.75 2.35
308.6 766.1 1018.4 1064.0 874.0 267.9
-12.0 -2.4 7.2 16.9 27.2 37.1
Wsin α -64.2 -32.1 127.6 309.3 399.5 161.6
Σ
901.7
13.13 Initial F = 1.20
F = 1205.1 = 1.34 901.7
Initial F = 1.30
F = 1209.6 = 1.34 901.7
For γM = γc = γφ = = 1.25 γ1 = 1.34 = 1.072 1.25
Chapter 14
Earthworks and Soil compaction
Graham Barnes 2010
45
F = 1.30
u
A
B
A×B
B
A×B
19.9 49.4 65.7 63.7 41.7 3.4
103.4 197.4 249.2 275.3 269.4 135.1
1.105 1.016 0.965 0.944 0.951 0.989
114.3 200.6 240.5 259.9 256.2 133.6
1.099 1.002 0.968 0.951 0.963 1.005
Σ
1205.1
Σ
113.6 197.8 241.2 261.8 259.4 135.8 1209. 6
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution Number of blows 1 2 3 4 6 8 12 16 24 32 48 64 96 128
Penetration mm 43.0 56.0 63.0 68.0 75.0 80.5 87.0 91.0 95.5 98.5 100.5 101.5 102.0 102.0
Change n to 4n 25.0 24.5 24.0 23.0 20.5 18.0 13.5 10.5 6.5 3.5 1.5 0.5
14.1
At 5 mm
Number of blows = 27.5
MCV = 10
× log10 27.5 = 14.4
a = 31.6, say 32 b = 5/6.4 = 0.78
14.2
Graham Barnes 2010
Table 14.4 sensitivity is moderate
46
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Solution a) shrinkage factor SF = γb = 1.86 = 0.94 or 94% γc 1.98 required volume of cutting = 15450 = 16447 m3 0.94 b)
14.3
load factor LF = γm = 1.67 = 0.898 γb 1.86 machine load in bank m3 = 15 × 0.898 = 13.47 m3 total number of loads = 16447 = 1221 13.47
c)
Hourly production = 13.47 × 4 × 60 × 0.75 = 303.1 bankm3/hour 8 Total time required = 16447 = 54.3 hours 303.1
14.4
w%
ρb Mg/m3 ρd Mg/m3
14.3
15.8
17.7
19.2
20.9
22.6
1.967
2.008
2.065
2.088
2.077
2.072
1.721
1.734
1.754
1.752
1.718
1.690
ρdmax = 1.76 Mg/m3
wopt = 18.5 %
ρb = ρd (1 + w) = 1.76 × 1.185 = 2.086 Mg/m3 2.086 = 2.72 × (1 + 0.185) 1+e
e = 0.545
14.5 n=
0.545 = 0.353 1 + 0.545
Sr = w Gs × 100 = 0.185 × 2.72 × 100 = 92.3 % e 0.545
Av = 0.353 × (1 – 0.923) × 100 = 2.7 %
Graham Barnes 2010
47
Soil Mechanics Principles and Practice Third Edition
Graham Barnes
Exercis e
Graham Barnes 2010
Solution
48
View more...
Comments