Solutions Manual Trigonometry 4th Edition Mark Dugopolski

November 5, 2017 | Author: solutionsteam | Category: Sine, Trigonometric Functions, Triangle, Combinatorics, Elementary Geometry
Share Embed Donate


Short Description

Solutions Manual Trigonometry 4th Edition Mark Dugopolskitrigonometry dugopolski 4th edition rent dugopolski trigonomet...

Description

Instant download and all chappters Solutions Manual Trigonometry 4th Edition Mark Dugopolski https://testbankdata.com/download/solutions-manual-trigonometry-4th-edition-mark -dugopolski/ 3.1 Basic Identities

131

For Thought

12.

1. False, for example sin 0 = 0 but cos 0 = 1.

13. 1 − sin2 α = cos2 α

2. True, since 3. True, since

sin(x) cos(x) · = 1. cos(x) sin(x) 2 sin(x) cos(x) = 2 cos(x). sin(x)

4. False, since (sin x + cos x)2 = 1 + 2 sin(x) cos(x) 6= 1 = sin2 x + cos2 x. 5. False, since tan 1 =

p

7. False, since cos(−9) = cos(9) implies cos3 (−9) = cos3 (9). 8. True, since sin(x) csc(x) = 1. 9. False, since sin2 (x) + cos2 (x) = 1. 10. True, since (1 − sin x)(1 + sin x) = (1 − sin2 x).

3.1 Exercises

cot2 x



15. (sin β + 1)(sin β − 1) = sin2 β − 1 = − cos2 β 16. (1 + cos β)(1 − cos β) = 1 − cos2 β = sin2 β 17.

sin α 1 · cos α sin α = 1 + 1 = 2 sin α 1/ sin α 1/ sin α

1 + cos α ·

18.

(sin α + 1)(sin α − 1) sin2 α − 1 = = cos2 α cos2 α − cos2 α = −1 cos2 α

19. Since cot2 x = csc2 x − 1, we get √ cot x = ± csc2 x − 1. 20. Since sec2 (x) = tan2 (x) + 1, we have q

sec(x) = ± tan2 (x) + 1.

1. Pythagorean 2. even

21. sin(x) =

1 1 = q csc(x) ± 1 + cot2 (x)

22. cos(x) =

1 1 = q sec(x) ± tan2 (x) + 1

3. odd 4. identity 5. odd 6. even 7. reciprocal 8. sine, cosine 9.

1/ cos(x) 1 cos(x) = · = sin(x)/ cos(x) cos(x) sin(x) 1 = csc(x) sin(x)

=1

14. sec2 α − 1 = tan2 α

sec2 (1) − 1.

6. False, since sin2 (−6) = (− sin(6))2 = sin2 (6).

csc2 x

23. Since cot2 (x) = csc2 (x) − 1, we obtain 1 1 tan(x) = = p 2 cot(x) ± csc (x) − 1 24. cot(x) =

1 1 = p 2 tan(x) ± sec (x) − 1

cos(x)/ sin(x) cos(x) sin(x) = · = cos(x) 1/ sin(x) sin(x) 1

√ 5 25. Since sec α = 1 + = , we get 2 s √   2 2 5 2 2 cos α = √ = , sin α = 1 − √ = 5 √5 5 √ 1 5 √ or sin α = , csc α = 5, and cot α = 2. 5 5

sin(x) cos(x) + = sin2 (x) + cos2 (x) = 1 1/ sin(x) 1/ cos(x)

26. Since α is s in Quadrant II, we get √  2 3 7 cos α = − 1 − =− , 4 4

10.

11.

s

 2

1 2

132

Chapter 3

√ 4 4 7 sec α = − √ or sec α = − , 7 7 √ 3/4 3 3 7 tan α = √ = − √ or tan α = − , 7 − 7/4 7 √ 7 4 cot α = − , and csc α = . 3 3 v u u 27. Since sin α = −t1 −

√ !2 3 − = 5

√ 3 22 − 1− =− , we find 25 5 r

√ 5 5 22 csc α = − √ or csc α = − , 22 22 √ 5 5 3 sec α = − √ = − , 3 3 √ √ √ − 22/5 22 66 tan α = √ = √ = , and 3 − 3/5 3 √ √ 3 66 cot α = √ = . 22 22 √ √ √ 5 5 5 5 5 √ ·√ =− 28. cos α = =− , 20 4 −4 5 5 v √ !2 √ u u 5 11 t sin α = 1 − − = 4 4 √ √ √ 11/4 11 55 Also, tan α = √ =−√ =− , 5 − 5/4 5 √ 5 55 cot α = − √ = − , and 11 55 √ 4 4 11 csc α = √ = . 11 11 29. Since α is in Quadrant IV, we get s √   1 2 10 csc α = − 1 + − =− , 3 3 √ 3 3 10 sin α = − √ = − , 10 10 s

2

3 1 − −√ = 10 √ r 9 1 10 1− =√ = , 10 10 10 √ sec α = 10, and tan α = −3. 

Trigonometric Identities

√ 1 3 30. Since sin α = √ = , we obtain 3 3 s √ √   1 2 2 6 cos(α) = 1 − √ =√ = , 3 3 3 √ √ 3 6 sec(α) = √ = , 2 2 √ √ 1/ 3 1 2 tan(α) = √ √ = √ = , 2 2/ 3 2 √ and cot(α) = 2. 31. (− sin x) · (− cot x) = sin(x) · 32. sec x−sec x = 0

33.

cos x = cos(x) sin x

sin(y)+(− sin(y)) = 0

34. cos y + cos y = 2 cos y 35.

sin(x) − sin(x) + =0 cos(x) cos(x)

36.

cos(x) cos(x) − = −2 cot(x) − sin(x) sin(x)

37. (1 + sin α)(1 − sin α) = 1 − sin2 α = cos2 α 38. (1 − cos α)(1 + cos α) = 1 − cos2 α = sin2 α 39. (− sin β)(cos β)(1/ sin β) = − cos β 1 40. (− tan β) − sin β 



cos β = tan β cot β = 1

41. Odd, since sin(−y) = − sin(y) for any y, even if y = 2x. 42. Even, since cos(−y) = cos(y) for any y, even if y = 2x. 43. Neither, since f (−π/6) 6= f (π/6) and f (−π/6) 6= −f (π/6). 44. Odd, f (−x) = 2 sin(−x) cos(−x) = 2(− sin(x)) cos(x) = −f (x). 45. Even, since sec2 (−t) − 1 = sec2 (t) − 1. 46. Neither, since f (−π/6) 6= f (π/6) and f (−π/6) 6= −f (π/6).

cos α =

47. Even, f (−α) = 1 + sec(−α) = 1 + sec(α) = f (α) 48. Neither, since f (−π/6) 6= f (π/6) and f (−π/6) 6= −f (π/6).

3.1 Basic Identities

49. Even, f (−x) =

133

sin(−x) − sin(x) = = f (x) −x −x

50. Odd, f (−x) = (−x) cos(−x) = −x cos(x) = −f (x) 51. Odd, f (−x) = −x + sin(−x) = −x − sin(x) = −f (x) 52. Even, f (−x) = csc((−x)2 ) = csc(x2 ) = f (x) 53. If γ = π/3, then (sin(π/3) + cos(π/3))2 = !2 √ √ √ 3 1 ( 3 + 1)2 4+2 3 + = = 6= 1 2 2 4 4 while sin2 (π/3) + cos2 (π/3) = 1. Thus, it is not an identity. 2 54. If x = π/4, then tan −1 = 1−1 = 0 √ (π/4) 2 while sec (π/4) = ( 2)2 = 2. Thus, it is not an identity.

55. If β = π/6, then 1 (1 + sin(π/6)) = 1 + 2 2



2

 2

=

3 2

=

1 59. If y = π/6, then sin(π/6) = while 2 1 sin(−π/6) = − . Thus, it is not an identity. 2 1 60. If y = π/3, then cos(−π/3) = and 2 1 − cos(π/3) = − . Thus, it is not an identity. 2 61. If y = π/6, then cos2 (π/6) − sin2 (π/6) = √ !2  2 3 1 3 1 1 − = − = and 2 2 4 4 2 √ 3 sin(2 · π/6) = sin(π/3) = . 2 Thus, it is not an identity. 1 62. If x = π/6, then cos(2 · π/6) = cos(π/3) = 2 and √ !  √ 3 1 3 2 cos(π/6) sin(π/6) = 2 = . 2 2 2

9 4

Thus, it is not an identity. 63. 1 −

and 1 + sin2 (π/6) = 1 +

 2

1 2

5 = . 4

64.

56. If α = π/6, then √ sin(2π/6) = sin(π/3) =

3 2

65.

−(tan2 t + 1) − sec2 t = = −1 sec2 t sec2 t

66.

cos w(sin2 w + cos2 w) cos(w) · 1 = = cos2 w sec w sec w

67.

(1 − cos2 α) − cos2 α 1 − 2 cos2 α = =1 1 − 2 cos2 α 1 − 2 cos2 α

68.

− sin3 θ − sin2 θ = = tan2 θ (− cos2 θ) sin θ(sin2 θ − 1)

69.

tan x(tan2 x − sec2 x) tan x(−1) = = tan2 x − cot x − cot x

70.

sin2 x + cos2 x 1 = = csc x sin x sin x

and √



1 3 3 · = . 2 2 4

So, it is not an identity. 57. If α = 7π/6, then sin(7π/6) = − s

1−

cos2



7π 6

1 while 2



is a positive number.

Thus, it is not an identity. 58. If α = 3π/4, then tan(3π/4) = −1 while p

sin2 x(sin2 x − 1) = sin2 x(− cos2 x) · cos x = 1/ cos x − sin2 (x) cos3 (x)

Thus, it is not an identity.

sin(π/6) cos(π/6) =

1 = 1 − sec2 (x) = − tan2 (x) cos2 (x)

sec2 (3π/4) − 1 is a positive number. Then it is not an identity.

71.

1 cos2 (x)/ sin2 (x) 1 cos2 (x) − = − = sin x sin3 x sin3 x sin3 x 1 − cos2 x sin2 x 1 = = = csc x 3 3 sin x sin x sin x

134

72.

Chapter 3

1/ cos2 x 1 cos2 x 1− = 1 − · = cos2 x sin2 x sin2 x/ cos2 x 1 1− = 1 − csc2 x = − cot2 x sin2 x

73. (sin2 x − cos2 x)(sin2 x + cos2 x) = (sin2 x − cos2 x)(1) = sin2 x − cos2 x 74. (csc2 x + cot2 x)(csc2 x − cot2 x) = (csc2 x + cot2 x)(1) = csc2 x + cot2 x 75. Let b be the hypotenuse of the smaller right triangle shown below. Let a be the side opposite the head angle θ. Then a + b = r, the radius of the wheel.

R 900

80. a) 225◦ ·

π 5π = ◦ 180 4

b) −210◦ · c) 270◦ ·

π 7π =− ◦ 180 6

π 3π = 180◦ 2

81. A = θr2 /2 = 15◦ ·

82. ω =

Trigonometric Identities

π 62 3π 2 · = ft 180◦ 2 2

180 radians/hr = 1/4

180 radians/min = 12 radians/min 60/4 √

b 83. a) 0 d) 0

a

2 2 √ 2 3 e) 3 b)

c) Undefined f) 1

√ g)

Θ T

3 3

h) − 1

84. Hypotenuse

The two right triangles are similar triangles. Applying right triangle trigonometry, b=

R . cos θ

Consequently,



52 + 8 2 =

√ 89 ≈ 9.4 m, and

5 acute angles are arcsin √ 89   8 ◦ arcsin √ ≈ 58.0 89 



≈ 32.0◦ and

85. Let x be the number of ants. Then

R a=r−b=r− . cos θ

x = 10a + 6 = 7b + 2 = 11c + 2 = 13d + 2

Thus, R r − cos a θ = . tan θ tan θ r cos θ − R Simplifying, we obtain T = . sin θ

T =

for some positive integers a, b, c, d. The smallest positive x satisfying the system of equations is x = 4006 ants.

76. In Exercise 75, let R = 3, r = 13.5, and T = 4.9. Then 4.9 =

13.5 cos θ − 3 sin θ

Using a calculator, we find θ ≈ 58.0◦ . 79. 360◦ − 35◦ = 325◦

86. We study a general case of three tangent circles with radii r < x < y that are tangent to the right most line, as shown below. The angle α is formed from the middle line to the right most line.

3.1 Basic Identities

135

y 4 = 542 (16y) y 3 = 542 (16) y = 36.

y



p

Thus, x = 16y = 16(36) = 24. Hence, the radii are x = 24 in. and y = 36 in. x

3.1 Pop Quiz r

1.

Α

cos x 1 1 · = = csc x sin x cos x sin x

2. Since α is in Quadrant I, we get x r

=

x + r + r csc α r csc α

x r

=

x+r +1 r csc α

(1)

x(csc α − 1) = r(1 + csc α) csc α − 1 r = 1 + csc α x y + 2x + r + r csc α . r csc α

(2)

=

(3)

3.1 Linking Concepts

y+x r csc α

(y − x) csc α = y + x y·

(csc α − 1) 1 + csc α

= x

r x

= x



By (2)

√ yr = x

(4)

In particular, assume r = 16 in. and there is another circle of radius 54 in. that is tangent to the circle of radius y and tangent to the left and right most lines. Applying (4), we find √ p y = 54x and x = 16y Solve for y as follows: y =

q

p

54 16y

4. 2 cos2 α + 2 sin2 α = 2(cos2 α + sin2 α) = 2 5. No, for if x = π/2 then sin(2x) = sin π = 0 and 2 sin x = 2 sin(π/2) = 2.

If we subtract (1) from (3), we obtain y−x r

r

f (−x) = cos(3(−x)) = cos(−(3x)) = cos(3x).

Likewise, by similar triangles we have =

 2 1

3. Even, since

x csc α = x + r + r csc α

y r

√ 8 2 2 cos α = 1 − = = , and 3 9 3 √ √ cos α 2 2/3 cot α = = = 2 2. sin α 1/3 s

Using similar triangles, we find

a) Since x = 100(4) cos 60◦ = 200 and √ y = −16(4)2 + 100(4) sin 60◦ = 200 3 − 256, after t = √ 4 the coordinates are (200, 200 3 − 256) ≈ (200, 90.4). √ b) Note, y = −16t2 +100t sin 60◦ = −16t2 +50 3t. Set y = 0. √ −t(16t − 50 3) = 0 √ 50 3 t = 0, 16 √ 25 3 t = 0, 8 √ 25 3 The projectile is in the air for seconds. 8 c) Using the answer from part b), we get √ ! 25 3 x = 100t cos 60◦ = 50t = 50 ≈ 270.6. 8 The projectile lands 270.6 feet from the gun.

136

Chapter 3

√ d) The vertex of the function y = −16t2 + 50 3t

For Thought

(given by the height) can be shown 1. True,

to be

! √ 25 3 1875 , ≈ (2.7, 117.2). 16 16

sin x sin x = sin x · = sin2 x. 1/ sin x 1

2. False, if x = π/3 then

e) If A is the time in the air which is the same as the number of seconds before the projectile lands, then

3. True,

1/ cos x 1 sin x sin x = · = = tan x. 1/ sin x cos x 1 cos x

−16A2 + vo A sin θ = 0 4. True, sin x ·

−A(16A − vo sin θ) = 0. vo sin θ . 16

5. True,

ymax

√ √ 1 + sin(π/4) cos(π/4) 1 + ( 2/2)( 2/2) √ = = cos(π/4) 2/2

vo sin θ + vo sin(θ) 32 

v 2 sin2 θ vo2 sin2 θ = − o + 64 32 ymax =

vo2 sin2 θ 64

h) Since x = vo t cos θ, we find t =

x . Then vo cos θ

y = −16t2 + vo t sin θ  2   x x = −16 + vo sin θ vo cos θ vo cos θ y = −

16 sec2 θ 2 x + x tan θ. vo2

sin(π/4) √ = 2+1 cos(π/4)

and

1 + (1/2) 3 2 3 √ = ·√ =√ . 2 2/2 2 2

g) The t-coordinate of the vertex of y = −16t2 + vo sin(θ)t is −b −vo sin θ vo sin θ = = . The maximum 2a −32 32 height, ymax , is given by 2

cos x sin x + = 1 + tan x. cos x cos x

sec(π/4) +

d = x = vo t cos θ = vo A cos θ =   vo sin θ v2 vo cos θ = o sin θ cos θ, 16 16 2 v i.e., d = o sin θ cos θ. 16

vo sin θ = −16 32

1 sin x = = tan x . cos x cos x

6. False, if x = π/4 then

f ) The distance d from the gun to the point where the projectile lands is given by



cot(π/3) = tan(π/3)

√ √ 3/3 1 √ = and tan2 (π/3) = ( 3)2 = 3. 3 3

The maximum height is 117.2 feet.

Then A =

Trigonometric Identities

1 + sin x 1 + sin x = = 2 (1 − sin x)(1 + sin x) 1 − sin x 1 . 1 − sin x

7. True, 

8. True, since tan x · cot x = tan x ·

1 = 1. tan x

9. False, if x = π/3 then (1 − cos(π/3))2 = 2 = 1/4 and (1 − 1/2)2 = (1/2) √ 2 sin (π/3) = ( 3/2)2 = 3/4. 10. False, if x = π/6 then (1 − csc(π/6))(1 + csc(π/6)) √ 2 = (1 − 2)(1 + 2) = 2 −3 and cot (π/6) = ( 3) = 3.

3.2 Exercises 1. complicated 2. sines, cosines

3.2 Verifying Identities

137

3. numerator, denominator

29. (tan α − 4) (tan α − 2)

4. identity

30. (2 cot α + 3) (cot α − 1)

5. D, since cos x tan x = cos x ·

sin x = sin x. cos x

6. I, since

31. (2 sec β + 1)2

32.

(3 csc θ − 2)2

33. (tan α − sec β) (tan α + sec β) 34. sin2 y − cos2 x sin2 y + cos2 x =  (sin y − cos x) (sin y + cos x) sin2 y + cos2 x 

sec x cot x =

1 cos x 1 · = = csc x. cos x sin x sin x



7. A, since csc2 x − cot2 x = 1.

35. cos β sin2 β + sin β − 2 = cos β (sin β + 2) (sin β − 1)

sin x cos x 8. J, since + = 1 + cot x. sin x sin x

36. tan θ cos2 θ − 2 cos θ − 3 = tan θ (cos θ − 3) (cos θ + 1)

9. B, for 1 − sec2 x = − tan2 x.

37. 2 sec2 x − 1

10. C, for csc2 x − 1 = cot2 x.

38. cos2 x − 1 = [(cos x − 1)(cos x + 1)]2 = (cos x − 1)2 (cos x + 1)2



2

2

csc x sin x − = 1 − sin2 x = cos2 x. csc x csc x cos x sec x 12. E, for − = cos2 x − 1 = − sin2 x. sec x sec x 11. H, since

13. G, for csc2 x = 1 + cot2 x. 14. F, since



sin2 x + cos2 x 1 = . cos x sin x cos x sin x

39. cos α(sin α + 1) + (sin α + 1) = (cos α + 1) (sin α + 1) 40. sin θ (2 sin θ + 1) − cos θ (2 sin θ + 1) = (sin θ − cos θ) (2 sin θ + 1) 41. Rewrite the left side of the equation.

15. sin2 (α) − 1 = − cos2 α

sin(x) cot(x) =

16. tan2 (α) − 4 17.

2 cos2 β

sin(x) ·

− cos β − 1

cos(x) sin(x)

=

cos x

18. 2 csc2 β − 7 csc β + 3 42. Rewrite the left side of the equation. 19. csc2 x+2 csc x sin x+sin2 x = csc2 x+2+sin2 x 20.

4 cos2 x 4 cos2 x

− 4 cos x sec x + − 4 + sec2 x

21. 4 sin2 θ − 1

22.

sec2 x

cos2 (x) tan2 (x) =

= cos2 (x) ·

9 sec2 θ − 4

2

23. 9 sin θ+12 sin θ+4 24.

sin2 (x) cos2 (x)

=

sin2 (x)

9 cos2 θ−12 cos θ+4

25. 4 sin4 y − 4 sin2 y csc2 y + csc4 y = 4 sin4 y − 4 + csc4 y 26. tan4 y + 2 tan2 y cot2 y + cot4 y = tan4 y + 2 + cot4 y

43. Rewrite the left side of the equation. 1 − sec(x) cos3 (x) = 1−

1 · cos3 (x) = cos(x)

27. (2 sin γ + 1) (sin γ − 3)

1 − cos2 (x) =

28. (cos γ − 3) (cos γ + 2)

sin2 (x)

138

Chapter 3

44. Rewrite the left side of the equation.

48.

3

1 − csc(x) sin (x) = 1−

Trigonometric Identities

1 · sin3 (x) = sin(x)

cos(x) sin2 (x) + cos3 (x) sin(x)

=

cos(x)[sin2 (x) + cos2 (x)] sin(x)

=

cos(x)[1] sin(x)

=

1 − sin2 (x) = 2

cos (x)

cot(x) 45. 49. 1 + sec2 (x) sin2 (x) = 1 sin2 (x) = 1+ cos2 (x) sin2 (x) 1+ cos2 (x)

sin(x) cos(x) + csc(x) sec(x)

=

sin(x) cos(x) + 1/ sin(x) 1/ cos(x)

=

= sin2 (x) + cos2 (x) =

1 + tan2 (x) =

1

2

sec (x)

50. sin3 (x) csc(x) + cos3 (x) sec(x) =

46.

sin3 (x)

1 + csc2 (x) cos2 (x) = 1+

1 1 + cos3 (x) sin(x) cos(x)

1 cos2 (x) = sin (x)

sin2 (x) + cos2 (x) =

2

cos2 (x) 1+ sin2 (x)

=

1 = 51. Rewrite the left side of the equation.

1 + cot2 (x) =

tan(x) cos(x) + csc(x) sin2 (x) = sin x + sin x =

csc2 (x)

2 sin x 47.

52. sin3 (x) + sin(x) cos2 (x) cos(x)

=

sin(x)[sin2 (x) + cos2 (x)] cos(x)

=

sin(x)[1] cos(x)

=

cot(x) sin(x) − cos2 (x) sec(x) = cos x − cos x = 0 53. (1 + sin α)2 + cos2 α = 1 + 2 sin α + sin2 α + cos2 α =

tan(x) Copyright 2015 Pearson Education, Inc.

2 + 2 sin α

3.2 Verifying Identities

139

54.

59. (1 + cot α)2 − 2 cot α = 

2



1 + 2 cot α + cot α − 2 cot α = 1 + cot2 α = csc2 α = 1 = sin2 α 1 = 1 − cos2 α 1 (1 − cos α)(1 + cos α)

sec(x) tan(x) − tan(x) sec(x)

=

sec2 (x) − tan2 (x) tan(x) sec(x)

=

1 tan(x) sec(x)

=

cot(x) cos(x) 60. 1 − sin2 x 1 − sin x

=

(1 − sin x)(1 + sin x) 1 − sin x

=

55. 2 − csc(β) sin(β) = 2−1 =

1 + sin(x) =

1 =

csc x 1 + csc x csc x csc x + 1 csc x

sin2 (β) + cos2 (β) 56. 



1 + sin2 β



=



cos2 (β) 2 − cos2 (β)



=

1 − sin2 β

61. Rewrite the right side of the equation.

2 cos2 β − cos4 β 57.

= tan x + cot x = sin x cos x + = cos x sin x sin2 x + cos2 x sin(x) cos(x)

=

1 sin(x) cos(x)

=

= =

csc x csc x − sin x csc x sin x · csc x − sin x sin x 1 1 − sin2 x 1 cos2 x

= sec2 x 62. Rewrite the right side of the equation.

sec(x) csc(x) 58. csc x cot x − cot x csc x

=

=

csc2 x − cot2 x cot(x) csc(x)

=

=

1 cot(x) csc(x)

=

=

tan x csc x

=

=

csc x − 1 cot2 x csc x − 1 csc2 x − 1 csc x − 1 (csc x − 1)(csc x + 1) 1 sin x · csc x + 1 sin x sin x sin x + 1

140

63.

Chapter 3

64.

(− cos θ)(sin θ + 1) − cos2 θ

Rewrite the right side of the equation. cos(−x) − csc(−x) cos x cos x + csc x = cos x cos x csc x = + cos x cos x = 1 + csc x sec x

sin(−x) sin x − sin x (− tan(x))2 − sin x

67.

Rewrite the right side of the equation.

= =

68.

sec x

sin θ(1 + cos θ) sin2 θ 1 + cos θ sin θ

1 + sin(y) csc(y) · 1 − sin(y) csc(y)

=

csc(y) + 1 csc(y) − 1

sin y + cos y sin y − cos y · sin y − cos y sin y − cos y

=

sin2 y − cos2 y sin2 y − 2 sin y cos y + cos2 y

=

=

(1 − cos2 y) − cos2 y 1 − 2 sin y cos y

=

=

1 − 2 cos2 y 1 − 2 cos y sin y

=

=

69.

Rewrite the left side of the equation.

=

cot x + tan x csc x

=

=

cos x sin x + sin x cos x 1 sin x

=

cos2 x + sin2 x sin x cos x 1 sin x

=

=

66. −1 tan θ − sec θ −1 cos θ · tan θ − sec θ cos θ

=

= Rewrite the left side of the equation.

sin θ(1 + cos θ) 1 − cos2 θ

1 + sin(y) 1 − sin(y)

sin y + cos y sin y − cos y

2

1 csc θ − cot θ 1 sin θ · csc θ − cot θ sin θ sin θ 1 − cos θ sin θ 1 + cos θ · 1 − cos θ 1 + cos θ

=

Rewrite the right side of the equation.

tan2 x + 1 =

65.

=

1 + sin(θ) cos θ

Rewrite the left side of the equation. tan2 (−x) −

Trigonometric Identities

=

− cos(θ) sin θ + 1 · sin(θ) − 1 sin θ + 1

=

1 sin x cos x 1 sin x

(− cos θ)(sin θ + 1) sin2 θ − 1

=

1 cos x

=

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF