July 30, 2017 | Author: cpramkrishna | Category: N/A
Reso IIT JEE TEST SOLUTIONS PHYSICS SHEMISTRY MATHS...
CUMULATIVE TEST-2 (CT-2) (JEE ADVANCE PATTERN)
TARGET : JEE (MAIN+ADVANCED) 2015
COURSE : VIJETA (JP)
DATE : 06-07-2014
HINTS & SOLUTIONS ¼la d sr ,oagy ½ g (f (x)) . f(x) = 1 g (f (x)) =
Paper-1 Part-I Mathematics 1.
g (f (x)) =
Which of the following ……………….
1 x .(1 n x)
fuEufy f[kr Q y uksad s;qXeksa……………….
1
g(x)
and f(x) = g(x)
g (x) =
fod Yi (B) esa, f rFkk g d k izkUr l eku gSA
x
g (f(g(x))) =
Sol. In (B) option, Domain of f and g is same
1 f (x)
g(x)
.(1 n(g(x)))
1 x (1 ng(x))
vkSj f(x) = g(x) 2.
5.
The value of tan 100º + 4 sin ………………. tan 100º + 4 sin 100º
d k ……………….
Sol. tan 100º + 4 sin 100º
a11 a12 ;fn vkO;wg a21 a22 a31 a32
sin100 2 sin 200 = cos100 =
sin100 sin200 sin 200 cos100
3.
a23 =
cos 50 cos 70 2 sin 60.sin10 = =– sin10 sin10
J s.kh 1 +
3 5 7 + + 3 + . .. .... .. ... .... .. . . 2 5 5 5
Sol . S n = 1 +
3 5 7 (2n – 1) + + 3 + .. .. .. + 5 52 5 5n–1
cofactor of (3, 2)th entry of given matrix |A|
–
4 2 2 2 (2n – 1) Sn = 1 + + 2 +…. .+ n–1 – 5 5 5 5 5n
3 (4n 3) – 2 2.5n
Let f(x) = xx ; x (1, ) and g(x) be inverse ……………….
a23 =
1 1 0
1
10
Alternate solution
10 a23 = –1
fod Yi gy %
1 2 1 1 0 0 0 2 1 0 1 0 0 0 5 0 0 1
1 1 3 5 (2n – 3) (2n – 1) Sn = + + 3 +.. .. . + + 5 5 52 5 5n–1 5n Subtrac ting ?kVkus ij
4.
a13 a23 ………………. a33
(3, 2)okavo; o d k lg[k.M |A|
3
3 5 The s um of t he s eries 1 + + + ………………. 5 52
=
a13 a23 is the inverse ………………. a33
Sol. |A| = 10
2 sin150 cos 50 sin 20 = cos100 =
a11 a12 If matrix a21 a22 a31 a32
~
0 1 2 1 1 0 0 1 1/ 2 0 1/ 2 0 0 0 1 0 0 1/ 5
1/ 5 1 2 0 1 0 ~ 0 1 0 0 1/ 2 1/10 0 0 1 0 0 1/ 5
ekuk f(x) = xx ; x (1, ) rFkk……………………………….... Sol. we have fn;k x;k gS f(g(x)) = g(x) g(x) = x
10a23 = – 1
u% g (f (x) ) = x also iq Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website : www.resonance.ac.in | E-mail :
[email protected] Toll Free : 1800 200 2244 | 1800 258 5555
JPCT2060714C0-1
6.
If (tan–1x)2 + (cot –1x)2 ……………….
;fn (tan–1x)2 + (cot –1x)2 =
52 , rc ………………. 8
5 2 –1 Sol. (tan x + cot x) – 2tan x – tan x = 8 2 –1
2
–1
10.
If the product (sin1º) (sin3º) (sin5º) (sin7º)...........(sin89º) ……………….
;fn xq.kuQ y (sin1º) (sin3º) (sin5º) ……………….
–1
Sol.
(sin1º) (sin3º) (sin5º) (sin7º)...........(sin89º) =
3 2 tan–1(x) – =0 8 2
[sin = cos(90 – )]
2(tan–1x)2 – 2
tan–1x = –
1 2n
1
(cos1º) (cos3º) (cos5º) ...........(cos89º) =
4
cos1º cos 2º cos 3º........cos 88º cos89º cos 2º cos 4º cos 6º........cos88º
x=–1
2n
7.
If the function f : [1, ) [1, ) is defined ……………….
(2cos1º sin1º )(2cos 2º sin2º )........(2cos 44º sin 44º )
;fn d ksbZQ y u f : [1, ) [1, ) bl izd kj ……………….
244 cos 2º cos 4º cos 6º........cos88º
y = f(x) = 2x(x – 1)
Sol.
x(x – 1) = log2y
1 sin2º sin 4º........sin88º × sin 45º 44 2 2 cos 2º cos 4º........cos88º
x2 – x – log2 y = 0 x=
1 1 4log2 y
1
2
2
x1 x=
1 1 4log2 y
f–1(x) =
1
1
1/ 2
2
89 / 2
2
n =
89 2
The curve y exy + x = 0 has a vertical ……………….
11.
2
2
1 ×
44
fuEu esalsft l fcUnqij oØ y exy + x = 0 d s……….
1 (1 1 4log2 x ) 2
Sol. y exy + x = 0
{k vod y u y d slkis
Differentiating w.r.t. to y
8.
The value of k for which roots ………………. k d seku ft ud sfy , l ehd j.k ………………. Sol. Let ekuk f(x) = 4x2 – 4kx + k2 + 3k – 66 (i) f(2) > 0 k2 – 5k – 50 > 0 (k + 5) (k – 10) > 0 k (– , –5) (10, )
1 – exy
d jusij
dx dx 0 . y x dy dy
dx =0 dy 1 – xexy = 0 xexy = 1
x=1,y=0
Point is fcUnq (1, 0) (ii)
–
(–4k) >2 k>4 2(4) 2
12.
If
3 2 3 2 3 2 lim a(2x – x ) b(x 5x – 1) – c(3x x ) ….
x
2
(iii) D 0 16k – 4.4 (k + 3k – 66) 0 – 16.3 (k – 22) 0 k 22 Hence vr% k (10, 22]
a(5x 4 – x) – bx 4 c (4x 4 1) 2x2 5x
;fn lim ………………………….. x
Sol. For limit to exist and equal to 1 coefficient of x4 in denominator = 0
Number of values of x ………………. lehd j.k |2x – 3| + ………………. Sol. Let ekuk f(x) = |2x – 3| + |2x + 3| g(x) = – |x| + 6 9.
r
r
(as degree of x in D > N ) Now degree of x in Dr is 2 and degree of x in Nr is 3. coefficient of x3 in Nr = 0 otherwise L 1 and will be infinity and
coefficient of x 2 in Nr coefficient of x 2 in Dr 4
=1
r
Now coefficient of x in D = 5a – b + 4c = 0 .........(1) 3
r
coefficient of x in N = 2a + b – 3c = 0 Only one solution at x = 0
d soy ,d gy x = 0 ij
.........(2)
–a 5b – c = 1 ; a - 5b + c + 2 = 0 ..........(3) 2
On solving (1), (2) and (3)
Corporate Office (New Campus): CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005 Website : www.resonance.ac.in | E-mail :
[email protected] Toll Free : 1800 200 2244 | 1800 258 5555
JPCT2060714C0-2
–2 46 14 ,b= and c = 109 109 109
a=
2 tan
=
58 p a+b+c= = p + q = 167 109 q
.
2n = tan tan
2n tan
lhek d sfo|eku gksusrFkk bld k eku 1 gksusd sfy ,
Hindi.
f(n,) =
gj esax4 d k xq.kkad = 0 (pawfd va'k esax d h ?kkr > Nr) vc gj es ax d h ?kkr 2 gSrFkk va'k esax d h ?kkr 3 gSA.
va'k esax 2 d k xq.kkad gj esax 2 d k xq.kkad
=1 The locus of point of intersection ……………….
15.
y2 = 4x
3
va'k esax d k xq.kkad = 2a + b – 3c = 0 .........(2)
Sol.
–a 5b – c = 1 ; a - 5b + c + 2 = 0 ..........(3) 2 (1), (2) rFkk (3) gy d jusij
d h mu Li'kZjs [kkvksad sizfrPNsn ……………….
m2 2 m1
a=
tan > as 0
0
vc gj es ax4 d k xq.kkad = 5a – b + 4c = 0 .........(1)
as n
lim = 0 asD;ksafd tan
va'k esax3 d k xq.kkad = 0 vU;Fkk L 1 rFkk vuUr gksxkA
rFkk
2 tan 3 2 tan n 2 ..... 2 22 . tan 2 tan n–1 tan 2 2 2
2 tan
2 tan
–2 46 14 ,b= rFkk c = 109 109 109
y = mx +
1 m
k = mh +
1 m
km = m2h + 1
58 p a+b+c= = p + q = 167 109 q
m1 2
m h – km + 1 = 0
m2 13. The coordinates of the feet of ……………….
fcUnq(14, 7) lsy2 – 16x – 8y = 0 ………………. 2
Sol. Given curve is y – 16x – 8y = 0
...(1)
Let P (14, 7)
m1m2 =
Equation (1) is (y – 4)2 = 16(x + 1) Equation of normal at (–1 + 4t2, 4 + 8t) is tx + y – 4t3 – 7t – 4 = 0 passes through, (14, 7)
3 1 , foot are (0, 0) (3, – 4) (8, 16) 2 2 fn;k x;k oØ y2 – 16x – 8y = 0 ...(1)
2m12 2 k2
ekukP (14, 7)
9h
lehd j.k(1) gS(y – 4)2 = 16(x + 1) (–1 + 4t2, 4 + 8t) ij
vfHky Ec d h lehd j.ktx + y – 4t3 – 7t – 4
3 1 , ikn gksxs(0, 0) (3, – 4) (8, 16) 2 2
t = –1,
n
14.
If f(n,) =
1– tan r 1
2
then the value ……………. 2r
16.
Sol.
r 1
2
1 h
If pth, qth, rth terms of an A.P. ……………….
Sol. Givenfn;k x;k gS, k =
2r
a (q 1)d a (r 1)d = a (p 1)d a (q 1)d
=
a (q 1) d a (r 1)d a (p 1)d a (q 1)d
=
(q r)d (q r) = (p q)d p q
1– tan
;fn fd lh l ekUrj Js