Solution Part1
July 19, 2018 | Author: Valeri Suarez | Category: N/A
Short Description
Download Solution Part1...
Description
Problem
3.1.11
a) Dete
in
th
func functi ti
f(t)
wh se Fourie urie tran transf sf
is sh
in figu figu
-3.l -3.l.a .a
Dete
in
th
func functio tio
f(t)
wh se Fourie urie tran transf sf
is sh wn in figu figu
-3.l -3.l.b .b
c) Sk tc
(t
and
near
th
waveform? IF(w)1
IG(w)1
-w
-w
e,(w)
eg(w) 11"/2
-11"/2
(b
Solution:
Th
functi functi
f(t)
an
Figu Figu
9:
-3.1 -3.1.1 .1
tain tain
fr
F(w)
doin
an inve inve se Fourie urie
tran transf sf
i.e.,
(t
y-l{F(w)}
F(w)ejwtdt
(75)
a) f(
-w
27
(76)
rr
b) f(t)
-w
re
11
/2
eJwtdw
7re-
11
/2
eJwtdw
1-
W--:----:-(Wt)
iv
ir ti
tran tran fo
Problem
is
3.1.21
im in
an
ti
F(w)
Y{f(t)},
(77)
in
io ti
th fu ctio ctio
then
a) f(t)dt;
F(O)
24
(78)
0.8
0.6
0.4
0.2
-0.2
- --- -
igur igur
-' --
10 Th fu ctio ctio
L _
_ _
f(t)
sin(Wt)/t
for
1, even even symm symmet etry ry
0.8
0.6
0.4
0.2
-0.2
-0.4
-0.6
-0.8 -30
igur igur
-20
11 Th func functi tion on f(t)
-10
[1
cos(Wt)]/t
25
for
1, od
symm symmet etry ry
0.8
0.6
0.4
0.2
-0.2
- --- -
igur igur
-' --
10 Th fu ctio ctio
L _
_ _
f(t)
sin(Wt)/t
for
1, even even symm symmet etry ry
0.8
0.6
0.4
0.2
-0.2
-0.4
-0.6
-0.8 -30
igur igur
-20
11 Th func functi tion on f(t)
-10
[1
cos(Wt)]/t
25
for
1, od
symm symmet etry ry
b) IF(w)1
(79)
If(t)ldt;
(80)
i:i:i:
f(
r)e-
iW
(81)
2rrF(0).
drdwdt
Solution:
a) (82) sing sing th
tria triang ng
IBI,
in qual qualit ity, y,
(83) 1.
le-iwtl
Note tha
(84)
F(w)eiwtdwl
that that
(85) th n,
have have
Problem
3.2.11
a) Fi
th
Fo ie tran transf sf
(t
fo
th
aise aise
cosi
ulse ulse sign signal al
fine fine
co nt
(87)
elsewhere ss se quat quatio io
sw .1
in
Sa
(equat quatio io
se ie co ffic fficie ient nt fo th
fo
y:
).
3.15 3.15 is as fo
wing wing pe iodi iodi
s:
pu se trai trai
F(nwo)/T) fo th
case case
to find find th
xp nent nentia ia
Fourie urie
2.
(X
kT) k=-(X)
(88)
Fourie
se ie co fficient
di ct
usin
ul 's id ntities.
Solution:
a) -jwtdt
F(w)
(W-7r)tdt
2Sa(w)
Sa(w
(w+7r)tdt 7r
te that
e-Jwtdt
Sa(w)
(89) 27r/T
In this case
7r th
ab ve we get, {2Sa[n7r] Sinc
Sa(k7r
Sa[(n fo
0, it fo
(90)
1)7r]}
that
(91)
F-1 Fo
(92)
1,
and,
(93)
1.
(94) 1.
Fl
Problem 3.2.21
tr
sity
th
ti
f(t)
(95)
exp(at) and sp
to th
fo
in
ha t:
f(t)
27
-a
pa ticu ar
it
1.6
1.4 1.2
0.8 0.6 0.4
Figu
Solution:
a)
ie
sf
F(w) Fr
th
12 Rais
ca
ab ve xp ssio
it
tx
be(a-jw)tdt we
cosine pu se
s:
ae-(a+jw)tdt
tain th
fo
(b
a)
(96)
wing cases:
a2
if
(97)
F(w) -j2wa Th se conc usions ar consistent an
to th
Problelll 3.2.31 in th
th
char
iv
ab
it
co
sp ndin
to th
fi st
second
f(t)
pu se signal desc ib ti
ti pa
Fo ie
xp (-altl)rect(t/T)
is
peate
pe iodicall
tain th
Solution:
a) Fo
ie
in in
th th
ie transf
(-aim
ies. your answ itio
to
th
-b
T.
with pe io
us
it
if
with pr ca
.7. atio
.1 (e
ti
.1
fo
s:
~F(nwo))
Fourie se ie co fficients? ne pu se (fr
tab
3.1
(98)
Using
3.15:
quatio
F(w)
2a/T /T2)
(99)
_!_F(w) But, pr
(100)
2.7.1 gives:
le
e-acos7l'n)
a(l-
(101)
a2 (100) is inde
Relationship
th
te
th
ie
ie
tati
th
io ic fu
se tati
th
io ic
while (101)
(-altl) ie
ie
ti
tain
atin
th
f(t)
fu ctio
xp (-altl)rect(t/T).
f(t), pe iodic signal
f(t)
is ze
the fo
L:~-oo
tsid
ar th
ti
igin
ig al
ve th
th
F(w)
In ca ying
urie
su ting pe iodi
ti
inte va
th
fo
fficie ts
th
f(t)
co fficie ts in
ig
L:~-oo
signal na
0' 21
ut your so utio
athe atical
ie
is qual
T.
it
th sa
to th
th
in have th
iv
th
f(t) Fourie transf
~F(nwo)
inte al T.
do no have ve ap an to th
ul
u2
il
he pful to co
J~oo
te
i. ., th
0'
aussia
e-
functi
du is it
in
ponents, co pl te
y'iF. Note tha
f(t)
and
Fourie transf
!So uti n:
(102) Le
(t
j0'2w)/V2;
then,
(103)
!P
3. .2
ho
that
gene al stat
nt
arseva 's th
fo fo
ne gy signal
(3.21) is f(t)g*(t)dt
271'
29
F(w)G*(w)dw.
(104)
Solution:
00f(t)g*(t)dt in
an inte change in th
- 0 0 f (t )g * (t )d t in
th
Problem
b)
dx/(a
),
c)
dx/(a
)2
kn
co
F(w)G*(x)
s:
(106)
e-j(x-w)tdwdxdt.
is
G*
3.4.3! Evaluate th [sin x/x]2dx,
21l'
integration, this
(21l'F
21l'
a)
!S ution:
de
te
f(t)g*(t)dt
F(w)ejwtdw]
21l'
fo
in
21l'
definite integral
usin
F(w)G*(w)dw.
(107)
arseva 's th
that
a) rect(t/2)
View more...
Comments