Solution Manual for Advanced Mechanics of Materials and Applied Elasticity, 5th Edition Ansel C. Ugural Saul K. Fenster Sample
Short Description
Solution Manual for Advanced Mechanics of Materials and Applied Elasticity, 5th Edition Ansel C. Ugural Saul K. Fenster ...
Description
Click here to Purchase full Solution Manual at http://solutionmanuals.info
CHAPTER 3 SOLUTION (3.1) ( a ) We obtain " 4# "x 4
= !12 pxy
Thus,
" 4# "y 4
" 4# "x 2"y 2
=0
= 6 pxy
# 4 " = !12 pxy + 2(6 pxy ) = 0
and the given stress field represents a possible solution.
= pxy 3 ! 2 px 3 y
" 2# "x 2
(b)
Integrating twice
"=
px 3 y 3 6
!
px 5 y 10
+ f1 ( y ) x + f 2 ( y ) " 4 ! = 0 to obtain =0
The above is substituted into d 4 f1 ( y ) dy 4
d 4 f2 ( y )
x+
dy 4
This is possible only if d 4 f1 ( y ) dy 4
d 4 f2 ( y )
=0
dy 4
=0
We find then
f 1 = c 4 y 3 + c5 y 2 + c 6 y + c 7 f 2 = c8 y 3 + c9 y 2 + c10 y + c11
Therefore,
"= ( c ) Edge y=0:
px 3 y 3 6
!
px 5 y 10
+ ( c4 y 3 + c5 y 2 + c6 y + c7 ) x + c8 y 3 + c9 y 2 + c10 y + c11
a
a
"a a
"a a
"a
"a
4
Vx = # ! xy tdx = # ( px2 + c3 )tdx =
pa5t 5
+ 2c3 at
Py = ! # y tdx = ! (0)tdx = 0
Edge y=b:
a
Vx = " (! 32 px 2b 2 + c1b 2 + !a
= ! pa 3 (b 2 !
a2 5
px 4 2
+ c3 )tdx
)t + 2a ( c1b 2 + c3 )t
a
Py = " ( pxb3 ! 2 px 3b)tdx = 0 !a
______________________________________________________________________________________ SOLUTION (3.2) Edge
x = ±a : " xy = 0 :
" xy = 0 : Adding,
! 23 pa 2 y 2 + c1 y 2 + 12 pa 4 + c3 = 0 ! 23 pa 2 y 2 + c1 y 2 + 12 pa 4 + c3 = 0
( !3 pa 2 + 2c1 ) y 2 + pa 4 + 2c3 = 0
(CONT.) ______________________________________________________________________________________
______________________________________________________________________________________ 3.2 (CONT.)
c1 = 23 pa 2 Edge x = a : "x = 0:
c3 = ! 12 pa 4
or
or
pa 3 y ! 2c1ay + c2 y = 0
c2 = 2 pa 3
______________________________________________________________________________________ SOLUTION (3.3) ( a ) Equations (3.6) become !# x !x
+
!" xy !y
!" xy !x
=0
=0
Substituting the given stresses, we have
c 2 y ! 2 c3 y = 0
Thus
(b)
c 2 = 2 c3
c1 = arbitrary
# x = c1 y + c2 xy Assume
" xy =
c2 2
(b 2 ! y 2 )
c1 > 0 and c2 > 0 . y
" xy =
c2 2
2
2
(b ! y )
b
! x = c1 y
b
" xy =
c2 2
(b 2 ! y 2 )
x
! x = ( c1 + c2 a ) y
a ______________________________________________________________________________________ SOLUTION (3.4) Boundary conditions, Eq. (3.6): !" x !x
+
!# xy !y
=0
!# xy !x
+
!" y !y
=0
( 2ab ! 2ab) x = 0 ( !2ab + 2ab) y or are fulfilled. However, equation of compatibility: 2
( !!x 2 +
!2 !y 2
=0
)(" x + " y ) = 0 or 4ab ! 0 is not satisfied.
Thus, the stress field given does not meet requirements for solution. ______________________________________________________________________________________ SOLUTION (3.5) It is readily shown that
" 4!1 = 0 4
" !2 = 0
is satisfied is satisfied
(CONT.) ______________________________________________________________________________________
______________________________________________________________________________________ 3.5 (CONT.) We have " 2 #1
%x =
= 2 c,
"y 2
%y =
" 2 #1 "x 2
= 2a ,
Thus, stresses are uniform over the body. Similarly, for ! 2 :
# x = 2cx + 6dy
# y = 6ax + 2by
2
$ xy = ! ""x#"y1 = !b
" xy = !2bx ! 2cy
Thus, stresses vary linearly with respect to x and y over the body. ______________________________________________________________________________________ SOLUTION (3.6)
! z = 0 and ! y = 0 , we have plane stress in xy plane and plane strain
Note: Since
in xz plane, respectively. Equations of compatibility and equilibrium are satisfied by
" y = !c
" x = !" 0
"z = 0
! xy = ! yz = ! xz = 0 We have
!y = 0
(a)
(b)
Stress-strain relations become
#x =
(" x $!" y ) E
#z =
!% ($ x +$ y ) E
,
#y = ,
(" y $!" x ) E
(c)
" xy = " yz = " xz = 0
Substituting Eqs. (a,b) into Eqs. (c), and solving
! y = $"! 0 2
" x = ! (1#!0$E )
# z = " (1+E" )! 0 "y = 0
Then, Eqs. (2.3) yield, after integrating: 2
u = ! (1!# E)" 0 x
v=0
w = " (1+"E )! 0 z ______________________________________________________________________________________ SOLUTION (3.7) Equations of equilibrium, !# x !x
+
!" xy !y
= 0,
2axy + 2axy = 0
"$ xy "y
+
"# y "x
= 0,
ay 2 ! ay 2 = 0
are satisfied. Equation (3.12) gives 2
( ##x 2 +
#2 #y 2
)($ x + $ y ) = "4ay ! 0
Compatibility is violated; solution is not valid. ______________________________________________________________________________________
______________________________________________________________________________________ SOLUTION (3.8) We have " 2$ x
" 2$ y
=0
"y 2
"x 2
" 2# xy "x"y
= !2ay
= 2ay
Equation of compatibility, Eq. (3.8) is satisfied. Stresses are E 1$! 2
#x =
(" x + !" y ) =
aE 1$! 2
( x 3 + !x 2 y )
# y = 1$E! 2 (" y + !" x ) = 1$aE! 2 ( x 2 y + !x 3 )
# xy = G" xy =
aE 2 (1+! )
xy 2
Equations (3.6) become aE 1!" 2
(3x 2 + 2"xy ) + 1aE +" xy = 0
aE 1!" 2
y 2 + 1!aE" 2 x 2 = 0
These cannot be true for all values of x and y. Thus, Solution is not valid. ______________________________________________________________________________________ SOLUTION (3.9)
#x =
"u "x "u "y
# xy = Thus
= !2$cx +
"v "x
#y =
y
= 2ax
"v "y
= !2cy + 2cy = 0
% x = 1&E# 2 ($ x + #$ y ) = 0
" xy = G! xy
2a
$ y = 1!E" 2 (# y + "# x ) = 2 Ecx
O
2Eac
x
2b 2Eac
Note that this is a state of pure bending. ______________________________________________________________________________________ SOLUTION (3.10) (a)
%x =
" 2# "y 2
Note that
% y = 6 pxy
= 0,
$ xy = !3 px 2
" 4 ! = 0 is satisfied.
(b)
! y = 6 pbx y
!x = 0 b ! xy = 0
! xy = 3px 2
!x = 0 a
!y =0 ( c ) Edge
x = 0:
V y = Px = 0
Edge
x=a:
Px = 0
! xy = 3pa 2 x
! xy = 3px 2
(CONT.) ______________________________________________________________________________________
Click here to Purchase full Solution Manual at http://solutionmanuals.info
______________________________________________________________________________________ 3.10 (CONT.) b
V y = " # xy tdy = 3 pa 2 bt !
Edge
y = 0:
0
Py = 0
a
V x = " # xy tdx = pa 3t ! 0
Edge
V x = pa 3t !
y = b: a
Py = " # y tdx = 3 pa 2 bt ! 0
______________________________________________________________________________________ SOLUTION (3.11) ( a ) We have
# 4 " ! 0 is not satisfied. 2 2 % y = !!x"2 = pya 2 , %x =
p ( x 2 + xy ) a2
y
(b)
! x = p(1 + ay )
py 2 a " xy = ! 2a 2
a
" y = 0, ! xy = 0 p
Edge
x=a:
Vy = !
a py 2
2 0 2a
a
dy = 16 pat
V y = " # xy tdy =
7 6
pat !
Px = " # x tdy =
3 2
pat !
0 a
0
y = 0: Edge y = a :
Vx = 0
Edge
a
V x = " # xy tdx = 0 a
p ( 4 xy + y 2 ) 2a2
2p
!x = 0
x = 0:
$ xy = #
! xy = 2p (1 + 4 ax )
!y = p
( c ) Edge
,
! xy =
py 2a2
( 4a + y )
x
Px = 0
Py = 0 3 2
pat !
Py = " # y ptdx = pat ! 0
______________________________________________________________________________________ SOLUTION (3.12) ( a ) We have
" 4 ! = 0 is satisfied. The stresses are 2 $ x = ""y#2 = ! bpx3 (6b ! 12 y ) $y = 2
$ xy = ! ""x"#y =
6 py b3
" 2# "x 2
=0
(b ! y ) (CONT.)
______________________________________________________________________________________
______________________________________________________________________________________ 3.12 (CONT.) (b)
y
"x = !
! xy
b
! xy
pa b3
(6b ! 12 y )
x
a ______________________________________________________________________________________ SOLUTION (3.13) We have "# "y
= ! $P [tan !1 xy +
" 2# "y 2
= ! $P [ x 2 +x y 2 +
xy x2 + y2
],
"# "x
( x 2 + y 2 ) x !2 y 2 x ( x 2 + y 2 )2
= ! Py $
!y x2 + y2
]
The stresses are thus,
%x =
! 2" !y 2
= # 2$P
x3 ( x 2 + y 2 )2
%y =
! 2" !x 2
= # 2$P
xy 2 ( x 2 + y 2 )2
2
% xy = # !!x!"y = # 2$P
x2 y ( x 2 + y 2 )2
P
!x 2 P !L
! xy
L
______________________________________________________________________________________ SOLUTION (3.14)
! are: 2 3 ( y ! yh ! hy2 ),
Various derivatives of "# "x
=
" 4# "x 2"y 2
" 2# "y 2 4
! " !x 4
=
$0 4
" 2# "x"y
= 0, $0 4h
= 0,
( !2 x ! 4
! " !y 4
6 xy h
" 2# "x 2
= $40 (1 !
2y h
+ 2L +
6 Ly h2
=0 2
! 3hy2 )
)
(a)
=0
It is clear that Eqs. (a) satisfy Eq. (3.17). On the basis of Eq. (a) and (3.16), we obtain (CONT.) ______________________________________________________________________________________
______________________________________________________________________________________ 3.14 (CONT.)
"x =
#0 4h
( !2 x ! 6hxy + 2 L +
6 Ly h
),
"y =0
(b)
2
" xy = ! "40 (1 ! 2hy ! 3hy2 )
From Eqs. (b), we determine "y = Edge y = h : Edge
y = !h :
Edge
x = L:
0
! xy = ! 0
#y =0
" xy = 0 2
" xy = ! "40 (1 ! 2hy ! 3hy2 )
# x = 0,
It is observed from the above that boundary conditions are satisfied at
y = ±h ,
but not at x = L . ______________________________________________________________________________________ SOLUTION (3.15) (a)
# 4 " = 0, e = !5d and a, b, c are arbitrary.
For
" = ax 2 + bx 2 y + cy 3 + d ( y 5 ! 5 x 2 y 3 )
Thus
( b ) The stresses:
(1)
= 6cy + 10d ( 2 y 3 ! 3x 2 y )
(2)
= 2a + 2by ! 10dy 3
(3)
$ xy = ! ""x"#y = !2bx ! 30dxy 2
(4)
$x =
" 2# "y 2
$y =
2
" # "x 2 2
Boundary conditions:
# y = !p
" xy = 0
(at y=h)
(5)
Equations (3), (4), and (5) give
b = !15dh 2
!
h
"h
2a ! 40dh 3 = ! p
$ x dy = 0
!
h
"h
y$ x dy = 0
Equations (2), (4), and (7) yield Similarly
!
h
"h
# xy dy = 0
(at x=0)
c = !2dh 2
"y =0
give
(6)
(8)
! xy = 0
(at y=-h)
a = 20dh 3
(9)
Solution of Eqs. (6), (8), and (9) results in
a = ! 4p
(7)
b = ! 163ph
The stresses are therefore
c = ! 40ph
d=
p 80 h 3
e = ! 16ph3
(10)
" x = ! 320pyh + 8hp3 ( 2 y 3 ! 3x 2 y ) 3
" y = ! 2p ! 38pyh ! 8pyh3 " xy =
3 px 8h
(1 !
y2 h2
)
______________________________________________________________________________________
______________________________________________________________________________________ SOLUTION (3.16) We obtain
$x =
" 2# "y 2
=
p ( x 2 !2 y 2 ) a2
#y =
! 2" !x 2
=
py 2 a2
(a)
2
$ xy = ! ""x"#y = !
2 pxy a2
Taking higher derivatives of
! , it is seen that Eq. (3.17) is not satisfied.
Stress field along the edges of the plate, as determined from Eqs. (a), is sketched bellow. y
!y = p
! xy = 2 p ax
p
2p
! xy = 2 p ay
! xy = 0
a
2
! x = 2 p ay2
2
" x = p(1 ! 2 ay2 )
a 2
a
" y = 0, ! xy = 0
p
x
______________________________________________________________________________________ SOLUTION (3.17)
Fx = 0
The first of Eqs. (3.6) with !" xy !y
=
pxy I
! xy =
pxy 2 2I
Integrating,
+ f1 ( x )
(a)
The boundary condition,
(! xy ) y =h = 0 = gives
pxh 2 2I
+ f1 ( x )
f1 ( x ) = ! pxh 2 2 I . Equation (a) becomes " xy = ! 2pxI ( h 2 ! y 2 )
Clearly,
(b)
(" xy ) y = ! h = 0 is satisfied by Eq. (b).
Then, the second of Eqs. (3.6) with "# y "y
=
2
Fy = 0 results in
2
p(h ! y ) 2I
Integrating,
"y =
p 2I
y (h 2 !
Boundary condition, with
y2 3
) + f 2 ( x)
(c)
2
t = 3I 2h ,
(CONT.) ______________________________________________________________________________________
Click here to Purchase full Solution Manual at http://solutionmanuals.info
View more...
Comments