Solution Manual for Advanced Mechanics of Materials and Applied Elasticity, 5th Edition Ansel C. Ugural Saul K. Fenster Sample

December 1, 2018 | Author: Nathan Lees | Category: Stress (Mechanics), Chemical Product Engineering, Continuum Mechanics, Solid Mechanics, Materials
Share Embed Donate


Short Description

Solution Manual for Advanced Mechanics of Materials and Applied Elasticity, 5th Edition Ansel C. Ugural Saul K. Fenster ...

Description

Click here to Purchase full Solution Manual at http://solutionmanuals.info

CHAPTER 3 SOLUTION (3.1) ( a ) We obtain " 4# "x 4

= !12 pxy

Thus,

" 4# "y 4

" 4# "x 2"y 2

=0

= 6 pxy

# 4 " = !12 pxy + 2(6 pxy ) = 0

and the given stress field represents a possible solution.

= pxy 3 ! 2 px 3 y

" 2# "x 2

(b)

Integrating twice

"=

px 3 y 3 6

!

px 5 y 10

+ f1 ( y ) x + f 2 ( y ) " 4 ! = 0 to obtain =0

The above is substituted into d 4 f1 ( y ) dy 4

d 4 f2 ( y )

x+

dy 4

This is possible only if d 4 f1 ( y ) dy 4

d 4 f2 ( y )

=0

dy 4

=0

We find then

f 1 = c 4 y 3 + c5 y 2 + c 6 y + c 7 f 2 = c8 y 3 + c9 y 2 + c10 y + c11

Therefore,

"= ( c ) Edge y=0:

px 3 y 3 6

!

px 5 y 10

+ ( c4 y 3 + c5 y 2 + c6 y + c7 ) x + c8 y 3 + c9 y 2 + c10 y + c11

a

a

"a a

"a a

"a

"a

4

Vx = # ! xy tdx = # ( px2 + c3 )tdx =

pa5t 5

+ 2c3 at

Py = ! # y tdx = ! (0)tdx = 0

Edge y=b:

a

Vx = " (! 32 px 2b 2 + c1b 2 + !a

= ! pa 3 (b 2 !

a2 5

px 4 2

+ c3 )tdx

)t + 2a ( c1b 2 + c3 )t

a

Py = " ( pxb3 ! 2 px 3b)tdx = 0 !a

______________________________________________________________________________________ SOLUTION (3.2) Edge

x = ±a : " xy = 0 :

" xy = 0 : Adding,

! 23 pa 2 y 2 + c1 y 2 + 12 pa 4 + c3 = 0 ! 23 pa 2 y 2 + c1 y 2 + 12 pa 4 + c3 = 0

( !3 pa 2 + 2c1 ) y 2 + pa 4 + 2c3 = 0

(CONT.) ______________________________________________________________________________________

______________________________________________________________________________________ 3.2 (CONT.)

c1 = 23 pa 2 Edge x = a : "x = 0:

c3 = ! 12 pa 4

or

or

pa 3 y ! 2c1ay + c2 y = 0

c2 = 2 pa 3

______________________________________________________________________________________ SOLUTION (3.3) ( a ) Equations (3.6) become !# x !x

+

!" xy !y

!" xy !x

=0

=0

Substituting the given stresses, we have

c 2 y ! 2 c3 y = 0

Thus

(b)

c 2 = 2 c3

c1 = arbitrary

# x = c1 y + c2 xy Assume

" xy =

c2 2

(b 2 ! y 2 )

c1 > 0 and c2 > 0 . y

" xy =

c2 2

2

2

(b ! y )

b

! x = c1 y

b

" xy =

c2 2

(b 2 ! y 2 )

x

! x = ( c1 + c2 a ) y

a ______________________________________________________________________________________ SOLUTION (3.4) Boundary conditions, Eq. (3.6): !" x !x

+

!# xy !y

=0

!# xy !x

+

!" y !y

=0

( 2ab ! 2ab) x = 0 ( !2ab + 2ab) y or are fulfilled. However, equation of compatibility: 2

( !!x 2 +

!2 !y 2

=0

)(" x + " y ) = 0 or 4ab ! 0 is not satisfied.

Thus, the stress field given does not meet requirements for solution. ______________________________________________________________________________________ SOLUTION (3.5) It is readily shown that

" 4!1 = 0 4

" !2 = 0

is satisfied is satisfied

(CONT.) ______________________________________________________________________________________

______________________________________________________________________________________ 3.5 (CONT.) We have " 2 #1

%x =

= 2 c,

"y 2

%y =

" 2 #1 "x 2

= 2a ,

Thus, stresses are uniform over the body. Similarly, for ! 2 :

# x = 2cx + 6dy

# y = 6ax + 2by

2

$ xy = ! ""x#"y1 = !b

" xy = !2bx ! 2cy

Thus, stresses vary linearly with respect to x and y over the body. ______________________________________________________________________________________ SOLUTION (3.6)

! z = 0 and ! y = 0 , we have plane stress in xy plane and plane strain

Note: Since

in xz plane, respectively. Equations of compatibility and equilibrium are satisfied by

" y = !c

" x = !" 0

"z = 0

! xy = ! yz = ! xz = 0 We have

!y = 0

(a)

(b)

Stress-strain relations become

#x =

(" x $!" y ) E

#z =

!% ($ x +$ y ) E

,

#y = ,

(" y $!" x ) E

(c)

" xy = " yz = " xz = 0

Substituting Eqs. (a,b) into Eqs. (c), and solving

! y = $"! 0 2

" x = ! (1#!0$E )

# z = " (1+E" )! 0 "y = 0

Then, Eqs. (2.3) yield, after integrating: 2

u = ! (1!# E)" 0 x

v=0

w = " (1+"E )! 0 z ______________________________________________________________________________________ SOLUTION (3.7) Equations of equilibrium, !# x !x

+

!" xy !y

= 0,

2axy + 2axy = 0

"$ xy "y

+

"# y "x

= 0,

ay 2 ! ay 2 = 0

are satisfied. Equation (3.12) gives 2

( ##x 2 +

#2 #y 2

)($ x + $ y ) = "4ay ! 0

Compatibility is violated; solution is not valid. ______________________________________________________________________________________

______________________________________________________________________________________ SOLUTION (3.8) We have " 2$ x

" 2$ y

=0

"y 2

"x 2

" 2# xy "x"y

= !2ay

= 2ay

Equation of compatibility, Eq. (3.8) is satisfied. Stresses are E 1$! 2

#x =

(" x + !" y ) =

aE 1$! 2

( x 3 + !x 2 y )

# y = 1$E! 2 (" y + !" x ) = 1$aE! 2 ( x 2 y + !x 3 )

# xy = G" xy =

aE 2 (1+! )

xy 2

Equations (3.6) become aE 1!" 2

(3x 2 + 2"xy ) + 1aE +" xy = 0

aE 1!" 2

y 2 + 1!aE" 2 x 2 = 0

These cannot be true for all values of x and y. Thus, Solution is not valid. ______________________________________________________________________________________ SOLUTION (3.9)

#x =

"u "x "u "y

# xy = Thus

= !2$cx +

"v "x

#y =

y

= 2ax

"v "y

= !2cy + 2cy = 0

% x = 1&E# 2 ($ x + #$ y ) = 0

" xy = G! xy

2a

$ y = 1!E" 2 (# y + "# x ) = 2 Ecx

O

2Eac

x

2b 2Eac

Note that this is a state of pure bending. ______________________________________________________________________________________ SOLUTION (3.10) (a)

%x =

" 2# "y 2

Note that

% y = 6 pxy

= 0,

$ xy = !3 px 2

" 4 ! = 0 is satisfied.

(b)

! y = 6 pbx y

!x = 0 b ! xy = 0

! xy = 3px 2

!x = 0 a

!y =0 ( c ) Edge

x = 0:

V y = Px = 0

Edge

x=a:

Px = 0

! xy = 3pa 2 x

! xy = 3px 2

(CONT.) ______________________________________________________________________________________

Click here to Purchase full Solution Manual at http://solutionmanuals.info

______________________________________________________________________________________ 3.10 (CONT.) b

V y = " # xy tdy = 3 pa 2 bt !

Edge

y = 0:

0

Py = 0

a

V x = " # xy tdx = pa 3t ! 0

Edge

V x = pa 3t !

y = b: a

Py = " # y tdx = 3 pa 2 bt ! 0

______________________________________________________________________________________ SOLUTION (3.11) ( a ) We have

# 4 " ! 0 is not satisfied. 2 2 % y = !!x"2 = pya 2 , %x =

p ( x 2 + xy ) a2

y

(b)

! x = p(1 + ay )

py 2 a " xy = ! 2a 2

a

" y = 0, ! xy = 0 p

Edge

x=a:

Vy = !

a py 2

2 0 2a

a

dy = 16 pat

V y = " # xy tdy =

7 6

pat !

Px = " # x tdy =

3 2

pat !

0 a

0

y = 0: Edge y = a :

Vx = 0

Edge

a

V x = " # xy tdx = 0 a

p ( 4 xy + y 2 ) 2a2

2p

!x = 0

x = 0:

$ xy = #

! xy = 2p (1 + 4 ax )

!y = p

( c ) Edge

,

! xy =

py 2a2

( 4a + y )

x

Px = 0

Py = 0 3 2

pat !

Py = " # y ptdx = pat ! 0

______________________________________________________________________________________ SOLUTION (3.12) ( a ) We have

" 4 ! = 0 is satisfied. The stresses are 2 $ x = ""y#2 = ! bpx3 (6b ! 12 y ) $y = 2

$ xy = ! ""x"#y =

6 py b3

" 2# "x 2

=0

(b ! y ) (CONT.)

______________________________________________________________________________________

______________________________________________________________________________________ 3.12 (CONT.) (b)

y

"x = !

! xy

b

! xy

pa b3

(6b ! 12 y )

x

a ______________________________________________________________________________________ SOLUTION (3.13) We have "# "y

= ! $P [tan !1 xy +

" 2# "y 2

= ! $P [ x 2 +x y 2 +

xy x2 + y2

],

"# "x

( x 2 + y 2 ) x !2 y 2 x ( x 2 + y 2 )2

= ! Py $

!y x2 + y2

]

The stresses are thus,

%x =

! 2" !y 2

= # 2$P

x3 ( x 2 + y 2 )2

%y =

! 2" !x 2

= # 2$P

xy 2 ( x 2 + y 2 )2

2

% xy = # !!x!"y = # 2$P

x2 y ( x 2 + y 2 )2

P

!x 2 P !L

! xy

L

______________________________________________________________________________________ SOLUTION (3.14)

! are: 2 3 ( y ! yh ! hy2 ),

Various derivatives of "# "x

=

" 4# "x 2"y 2

" 2# "y 2 4

! " !x 4

=

$0 4

" 2# "x"y

= 0, $0 4h

= 0,

( !2 x ! 4

! " !y 4

6 xy h

" 2# "x 2

= $40 (1 !

2y h

+ 2L +

6 Ly h2

=0 2

! 3hy2 )

)

(a)

=0

It is clear that Eqs. (a) satisfy Eq. (3.17). On the basis of Eq. (a) and (3.16), we obtain (CONT.) ______________________________________________________________________________________

______________________________________________________________________________________ 3.14 (CONT.)

"x =

#0 4h

( !2 x ! 6hxy + 2 L +

6 Ly h

),

"y =0

(b)

2

" xy = ! "40 (1 ! 2hy ! 3hy2 )

From Eqs. (b), we determine "y = Edge y = h : Edge

y = !h :

Edge

x = L:

0

! xy = ! 0

#y =0

" xy = 0 2

" xy = ! "40 (1 ! 2hy ! 3hy2 )

# x = 0,

It is observed from the above that boundary conditions are satisfied at

y = ±h ,

but not at x = L . ______________________________________________________________________________________ SOLUTION (3.15) (a)

# 4 " = 0, e = !5d and a, b, c are arbitrary.

For

" = ax 2 + bx 2 y + cy 3 + d ( y 5 ! 5 x 2 y 3 )

Thus

( b ) The stresses:

(1)

= 6cy + 10d ( 2 y 3 ! 3x 2 y )

(2)

= 2a + 2by ! 10dy 3

(3)

$ xy = ! ""x"#y = !2bx ! 30dxy 2

(4)

$x =

" 2# "y 2

$y =

2

" # "x 2 2

Boundary conditions:

# y = !p

" xy = 0

(at y=h)

(5)

Equations (3), (4), and (5) give

b = !15dh 2

!

h

"h

2a ! 40dh 3 = ! p

$ x dy = 0

!

h

"h

y$ x dy = 0

Equations (2), (4), and (7) yield Similarly

!

h

"h

# xy dy = 0

(at x=0)

c = !2dh 2

"y =0

give

(6)

(8)

! xy = 0

(at y=-h)

a = 20dh 3

(9)

Solution of Eqs. (6), (8), and (9) results in

a = ! 4p

(7)

b = ! 163ph

The stresses are therefore

c = ! 40ph

d=

p 80 h 3

e = ! 16ph3

(10)

" x = ! 320pyh + 8hp3 ( 2 y 3 ! 3x 2 y ) 3

" y = ! 2p ! 38pyh ! 8pyh3 " xy =

3 px 8h

(1 !

y2 h2

)

______________________________________________________________________________________

______________________________________________________________________________________ SOLUTION (3.16) We obtain

$x =

" 2# "y 2

=

p ( x 2 !2 y 2 ) a2

#y =

! 2" !x 2

=

py 2 a2

(a)

2

$ xy = ! ""x"#y = !

2 pxy a2

Taking higher derivatives of

! , it is seen that Eq. (3.17) is not satisfied.

Stress field along the edges of the plate, as determined from Eqs. (a), is sketched bellow. y

!y = p

! xy = 2 p ax

p

2p

! xy = 2 p ay

! xy = 0

a

2

! x = 2 p ay2

2

" x = p(1 ! 2 ay2 )

a 2

a

" y = 0, ! xy = 0

p

x

______________________________________________________________________________________ SOLUTION (3.17)

Fx = 0

The first of Eqs. (3.6) with !" xy !y

=

pxy I

! xy =

pxy 2 2I

Integrating,

+ f1 ( x )

(a)

The boundary condition,

(! xy ) y =h = 0 = gives

pxh 2 2I

+ f1 ( x )

f1 ( x ) = ! pxh 2 2 I . Equation (a) becomes " xy = ! 2pxI ( h 2 ! y 2 )

Clearly,

(b)

(" xy ) y = ! h = 0 is satisfied by Eq. (b).

Then, the second of Eqs. (3.6) with "# y "y

=

2

Fy = 0 results in

2

p(h ! y ) 2I

Integrating,

"y =

p 2I

y (h 2 !

Boundary condition, with

y2 3

) + f 2 ( x)

(c)

2

t = 3I 2h ,

(CONT.) ______________________________________________________________________________________

Click here to Purchase full Solution Manual at http://solutionmanuals.info

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF