Solution Manual Elements of Chemical Reaction Engineering, 4th Edition

April 11, 2017 | Author: Qilah Kamarudin | Category: N/A
Share Embed Donate


Short Description

Download Solution Manual Elements of Chemical Reaction Engineering, 4th Edition...

Description

~CD-ROM

~INClUDED

Brian Vicente / Max Nori / H. Scott Fogler

Soludons Manual for

Elements

of Chemical Reaction Engineering Fourth Edition ~

Prentice Hallitaternational Series in the Phys!ptl and Chemical E.ngineering Sciences

....••• •••

A Complimentary Copy from

II!I!!III

•• ••

PRENTI CE

HALL

FT Prentice Hall

www"pearsoned-asia"com

Enquiries: 3181 0368

,

,

Solutions Manual for

Elements of Chemical Reaction Engineering Fourth Edition

Brian Vicente Max Nori H. Scott Fogler

~

PRENTICE

HALL

PTR

Upper Saddle River, NT • Boston • Indianapolis • San Francisco New York· Toronto· Montreal· London· Munich· Paris· Madrid Capetown • Sydney • Tokyo • Singapore • Mexico City

The authors and publisher have taken care in the preparation of this book but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

Visit us on the Web: www.phptr.com

Copyright © 2006 Pearson Education, Inc . This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

ISBN 0-13-·186383-5 Text printed in the United States at OPM in Laflin, Pennsylvania. First printing, November 2005 ______________...________ .________ :

**** CONFIDENTIAL **** UNIVERSITY OF MICHIGAN INTERACTIVE COMPUTER MODULES FOR CHEMICAL ENGINEERING CHEMICAL REACTION ENGINEERING MODULES H. Scott Fogler, Project Director M . Nihat GUIllen, Project Manager (2002-2004) Susan Montgomery, Project Manager (1991-1993) Department of Chemical Engineering University of Michigan Ann Arbor, MI48109-2136 ©2005 Regents of the University of Michigan - All Rights Reserved -

INTERPRETATION OF PERFORMANCE NUMBERS Students should record their Performance Number for each program, along with the name of the program, and tum it in to the instructor. The Performance Number for each program is decoded as described in the following pages.

The official site for the distribution of the modules is http://www.engin.umich.edu/-cre/icm

Please report problems to [email protected].

PerfOimance NumbeI InteIpIetation: eRE modules

iii

**** CONFIDENTIAL **** ICMs with Windows® interface Module

Format

Example

Interpretation

KINETIC CHALLENGE I CzBzzAzz

Score = 1.5 * AB.C z =random numbers

Perf. No. =15.641~92 Score = 1.5 *( 62.7) =94 %

Note: 75% constitutes mastery.

KINETIC CHALLENGE II CzBzzAzz

Score = 2.0 * ARC z = random numbers Note: 75% constitutes mastery.

Perf.. No. =Q3176.167 Score = 2.0*(47.0) = 94 %

A even: Killer and victim correctly identified A odd: Killer and victim not identified z = random numbers

Perf. No. = 50132 Score: No credit

MURDER MYSTERY zzAzz

Note: An even number for the middle digit constitutes mastery.

TIC TAC TOE zDzCzBzA

Score =4.0 * AB.C z = random numbers

Perf. No. = 718Q3281 Score =4*(15 . 0) =60 configuration 7 completed

Configurations

Note: Student receives 20 points for every square answered correctly. A score of 60 is needed for mastery of this module.

GREAT RACE zzzCzABz

Score = 6.0 * AB . C z =random numbers

Perf No. = 777J.8Q18 Score = 6*(07.3) = 44

Note: A score of 40 is needed for mastery of this module. PeIformance NumbeI Interpletation: eRE modules

iv

**** CONFIDENTIAL **** ECOLOGY AzBCzaaD

z = random numbers

a =random characters

A gives info on rl\2 value of the student's linearized plot A=Y if rl\2 >= 0.9 A=A if 0.9 > rl\2 >= 0.8 A=X if 0..8> rl\2 >= 0.7 A=F if 0..7 > rl\2 A=Q if Wetland Analysis/Simulator portion has not been completed B gives info on alpha B=l to 4 => student's alpha < (simulator's alpha ± 0.5) B=5 to 9 => student's alpha> (simulator's alpha ± 0.5) B=X if Wetland Analysis/Simulator portion has not been completed C indicates number of data points deactivated during analysis C=number of deactivated data points if at least 1 point has been deactivated C=a randomly generated letter from A to Y if 0 points deactivated C=Z if Wetland Analysis/Simulator portion has not been completed D gives info on solution method used by student D=l if polynomial regression was used D=2 if differential formulas were used D=3 if graphical differentiation was used D=4 to 9 if Wetland Analysis/Simulator portion has not been completed Perf No . = A7213DF2 1) A => 0.9 > rl\2 >= 0 . 8 2) 2 => student's alpha < (simulator's alpha ± 0 . 5) 3) 1 => one data point was deactivated 4) 2 => differential formulas were used STAGING zCBzAFzED

z = random numbers

Final conversion = 2*ARC Final flow rate = 2*DE.F

Perf. No.. =

2125.:!8~913

conversion = 2*42 ..1 = 84.2 flow rate = 2*31.2 = 62.4

Please make a passlfiil criterion based on these values .

Performance Number Interpretation: eRE modules

v

**** CONFIDENTIAL **** ICMs with Dos® interface Module

Format

Interpretation

Example

A=2,3,5,7: interaction done B=2,3,5,7: intra done C=2,3,5,7: review done D denotes how much they did in the interaction:

Perf. No. = 8027435 A: Worked on interaction B: Looked at intra C: Looked at review D: found parameter values, didn't find mechanism

HETCAT zzABzCD

D 85 %

Note: Student told they have achieved mastery if their score is greater than 85% HEATFX2 zzzAzz

A even: completed interaction z = random numbers

Perf. No. = 407.2.82 Interaction not completed

Note: Performance number given only if student goes through the interaction portion of the module.

PerfclImance NumbeI InteIpretation: eRE modules

vi

Solutions for Chapter 1 - Mole Balances

Synopsis General: The goal of these problems are to reinforce the definitions and provide an understanding of the mole balances of the different types of reactors . It lays the foundation for step 1 of the algorithm in Chapter 4.,

PI-I.

This problem helps the student understand the course goals and objectives.

PI-2.

Part (d) gives hints on how to solve problems when they get stuck. Encourages students to get in the habit of writing down what they learned from each chapter. It also gives tips on problem solving.

PI-3.

Helps the student understand critical thinking and creative thinking, which are two major goals of the course.

PI-4.

Requires the student to at least look at the wide and wonderful resources available on the CD-ROM and the Web.

PI-S.

The ICMs have been found to be a great motivation for this material.

PI-6.

Uses Example 1-1 to calculate a CSTR volume. It is straight forward and gives the student an idea of things to come in terms of sizing reactors in chapter 4. An alternative to PI-IS.

PI-7.

Straight forward modification of Example 1-1.

PI-S.

Helps the student review and member assumption for each design equation.

PI-9 and PI-IO. The results of these problems will appear in later chapters. Straight forward application of chapter 1 principles. PI-II.

Straight forward modification of the mole balance. Assigned for those who emphasize bioreaction problems.,

PI-12.

Can be assigned to just be read and not necessarily to be worked, It will give students a flavor of the top selling chemicals and top chemical companies.

1·6

PI-13.

Will be useful when the table is completed and the students can refer back to it in later chapters. Answers to this problem can be found on Professor Susan Montgomery's equipment module on the CD-ROM. See PI-17.

PI-14.

Many students like this straight forward problem because they see how CRE principles can be applied to an everyday example. It is often assigned as an inclass problem where parts (a) through (0 are printed out from the web. Part (g) is usually omitted.

PI-IS.

Shows a bit of things to come in terms of reactor sizing. Can be rotated from year to year with PI-6.

PI-16.

Open-ended problem.

PI-17.

I always assign this problem so that the students will learn how to use POLYMATHIMaLab before needing it for chemical reaction engineering problems.

PI-IS.

Parts (a) and (b) are open-ended problem.

PI-19 and PI-20. Help develop critical thinking and analysis. CDPI-A

Similar to problems 3, 4, 11, and 12.

CDPI-B

Points out difference in rate per unit liquid volume and rate per reactor volume. Summary

• • •

PI--l PI-2 PI-3 PI-4 PI-5 PI-6 PI-7 PI-8 PI-9 Pl-IO Pl-11

Assigned AA I 0 0 AA AA I S S S 0

Alternates

Difficulty

1-15

SF SF SF SF SF SF SF SF SF SF FSF

1-7

Time (min) 60 30 30 30 30

15 15 15 15 15 15



PI-12 PI-13 PI-14 PI-IS PI-16 PI-17 PI-18 PI-19 PI-20 CDPI-A CDPI-B

I I 0 0 S AA S 0 0 AA I

SF SF FSF SF SF SF SF

- Read Only

FSF FSF FSF

30 1 30 60 15 60 30 30 15 30 30

Assigned

• =Always assigned, AA =Always assign one from the group of alternates,

o = Often, I = Infrequently, S = Seldom, G = Graduate level

Alternates In problems that have a dot in conjunction with AA means that one of the problem, either the problem with a dot or anyone of the alternates are always assigned. Time Approximate time in minutes it would take a B/B+ student to solve the problem. Difficulty SF =Straight forward reinforcement of principles (plug and chug) FSF = Fairly straight forward (requires some manipulation of equations or an intermediate calculation). IC =Intermediate calculation required M =More difficult OE = Some parts open-ended.

*Note the letter problems are found on the CD-ROM. For example A == CDPI-A.

Summary Table Ch-l ---------------,

Review of Definitions and Assumptions

1,5,6,7,8,9

Introduction to the CD-ROM

1,2,3,4

1-8

Make a calculation

6

Open-ended

8,16

PI-I Individualized solution. PI-2 Individualized solution. PI-3 Individualized solution. PI-4 Individualized solution. PI-5 Solution is in the decoding algorithm given with the modules . PI-6 The general equation for a CSTR is:

V

= F AO

--FA

- rA Here rA is the rate of a first order reaction given by: fA=·- kC A Given: C A= O.lCAO , k = 0.23 min-I, Vo = 10dm3 min-I, FA = 5.0 moVhr And we know that FA = CAVo andFAo = CAOVo 3 => C AO = F Aol Vo = 0.5 moVdm Substituting in the above equation we get:

v = CAOVO -CAVO = (0.5mol/dm 3 )(lOdm 3 lmin)-0.1(0.5mq!ldm 3 )(lOdm 3 I min) (0.23 min--I)(O. 1(0.5mol I dm 3 »

kC A V =391.3 dm3

PI-7 t

= INA

-~-kN

dNA

A

NAO k = 0.23 min-l

dNA

From mole balance:

-=IA' V dt 1-9

Rate law:

Combine:

at T:::: 0, N Ao = 100 mol and T:::: T, NA = (O ..01)NAo

1 (N AO J -+ t= "kIn NA 1

:::: -In(lOO) min 0.23

t = 20 min

Pl-8 a)

The assumptions made in deriving the design equation of a batch reactor are: Closed system: no streams carrying mass enter or leave the system. Well mixed, no spatial variation in system properties Constant Volume or constant pressure.

b)

The assumptions made in deriving the design equation of CSTR, are: Steady state. No spatial variation in concentration, temperature, or reaction rate throughout the vesseL

c)

The assumptions made in deriving the design equation ofPFR are: Steady state . No radial variation in properties of the system.

d)

The assumptions made in deriving the design equation of PBR are: Steady state . No radial variation in properties of the system.

e) For a reaction, A-7 B -rA is the number of moles of A reacting (disappearing) per unit time per unit volume (dm3 s) 1-10

[=J moles/

··rA' is the rate of disappearance of species A per unit mass (or area) of catalyst [=] moles/ (time. mass of catalyst).. rA' is the rate of formation (generation) of species A per unit mass (or area) of catalyst [=] moles/ (time. mass catalyst).. -rA is an intensive property, that is, it is a function of concentration, temperature, pressure, and the type of catalyst (if any), and is defined at any point (location) within the system. It is independent of amount On the other hand, an extensive property is obtained by summing up the properties of individual subsystems within the total system; in this sense, -rA is independent of the 'extent' of the system.

P 1-9 Rate of homogenous reaction rA is defined as the mole of A formed per unit volume of the reactor per second . It is an Intensive property and the concentration, temperature and hence the rate varies with spatial coordinates.

rA on the other hand is defined as g mol of A reacted per gm. of the catalyst per second.. Here mass of catalyst is the basis as this is what is important in catalyst reactions and not the reactor volume. Applying general mole balance we get:

dN. dt

--.L=F· o -F. + fr.dV J

]

J

No accumulation and no spatial variation implies

o= F·Jo -

F.] + fr J.dV Also Ij = Pb rj' and W = VPb where Pb is the bulk density of the bed. =>

f

0 = (FjO - F) + r;CPb dV )

Hence the above equation becomes

Fo-F W=_l __,_l --rj We can also just apply the general mole balance as

-dN j = (FjO dt

Fj ) + f'r/dW)

Assuming no accumulation and no spatial variation in rate, we get the same form above:

FO-F W =._1_._,_1

-rj

1-11

as

Fj

,/ i' F JO

PI-IO Mole balance on species j is:

v

Po -P + fr.dV I

I

o

I

dN.

=__ 1 dt

Let M j = molecular wt. of species j

= W jO

Then FjoM j

N jM j

= mass flow rate of j into reactor:

= m j = mass cif species j in the reactor

Multiplying the mole balance on species j by M

v

FjOM j

FjM I +M I frjdV = M j

-

o

Now M

I

dN

1

._ _

dt

is constant:

F M. -PM. + vfM rdV 10

I

I

I

I

o

I I

= d0! j N j ) = d(m1l dt

dt

v

w jO -- Wj

+

fM jrjdV =

o

PI-II Applying mole balance to Penicillin: Penicillin is produced in the cells stationary state (See Chapter 7), so there is no cell growth and the nutrients are used in making product Let's do pari c first

1-12

[In flowrate (moles/time)] penicillin + [generation rate (molesltime)]penicillin - [Out flowrate (molesltime)] penicillin =

[rate of accumulation (moles/time)]penicillin Fp,in + Gp - Fp,out =

dNp

dt ,., .,(because no penicillin inflow)

Fp,in = 0 """ ''''', ... v Gp =

fr~.dV

Therefore,

frp .dV -

dNp

v

Fp,out =

dt

Assuming steady state for the rate of production of penicillin in the cells stationary state,

dNp

--=0

dt And no variations

Or,

Similarly, fOI Corn Steep Liquor with Fe = 0

Assume RNA concentration does not change in the stationary state and no RNA is generated or destroyed.

Pl-12 (a) Ranking of 10 most produced chemicals in 1995 and 2002 are listed in table below:

.--'

Rank 2002 1 2

3

Rank 1995 I 2 4

4 5

9

6

-

3

Chemical H 2SO4 N2 C2H 4 O2 C3H 6 H2 1-13

6 NH3 10 8 Ch 9 P20S 10 C2H 2Clz -+ Cherrucals like H2 , P 20 S , C2H2Cl 2 has come III top 10 cherrucals and C3H6 has jumped to rank 5 now then rank 9 in 1995 . 7

Pl-12 (b) Ranking of top 10 chemical companies in sales in yeru 2003 and 2002: 2003 I----

1 2 3 4 5

+-. 8 9 10

Chemical Sales

Company

2002

($ million 2003)

1 2 3 4 8 5 6 7 11

9

-

Dow Chemical DuPont ExxonMobil General Electric Chevron Phillips Huntsman Corp. PPG Industries Equistar Chemicals Air Products Eastman Chemicals

32632 30249 20190 8371 7018 6990 6606 6545 6029 5800

----

--

SOllIce: Chemical and Engineering News may 17,2004

-+ We have Chevron Phillips whichjumped to 5 rank in 2003 from 8th rank in 2002 and Air Products coming to 9th rank in 2003 flom 11 th in 2001. -+Chemical sales of each company has increased compared to year 2002 from 9%(Eastman Chemical) t028.2%(Chevron Phillips) but Huntsman Corp . has a decrease by 2 . 9%.

Pl-12 (C) Sulfuric acid is prime importance in manufacturing. It is used in some phase of the manufacture of neruly all industrial products It is used in production of every other strong acid. Because of its lru·ge number of uses, it's the most produced chemicaL Sulfuric acid uses are: -+ It is consumed in production of fertilizers such as ammonium sulphate (NH4hS04 and superphosphate (Ca(H2P0 4)2) , which is formed when rock phosphate is treated with sulfUric acid . -+Used as dehydrating agent. -+Used in manufacturing of explosives, dyestuffs, other acids, pruchment paper, glue, purification of petroleum and picking of metals. -+ Used to remove oxides from iron and steel before galvanizing or electroplating. -+ Used in non-ferrous metallurgy, in production of rayon and film. -+as laboratory reagent and etchant and in storage batteries -+ It is also general purpose food additive.

Pl-12 (d) Annual Production rate of ethylene for year 2002 is 5.21x 1010 lb/yeru Annual Production rate of benzene for yeru 2002 is 1.58 x 1010 lb/year

1-14

Annual Production rate of ethylene oxide for year 2002 is 7.6 x109 lb/year

Pl-12 (e) Because the basic raw material 'coal and petroleum' for organic chemicals is very limited and their production is not increasing as production of raw material for inorganic chemicals.

1-15

Pl-13 Type

Characteristics

Phases

Usage

Advantage

Disadvantage

Batc h

All the reactants fed into the reactor. During reaction nothing is added or removed . Easy heating or cooling. Continuous flow of reactants and products . Uniform composition tluoughout

1. Liquid phase 2" Gas phase 3" Liquid Solid

1, Small scale pdn. 2. Used for lab experimentation. 3. Pharmaceuticals 4. Felmentation

1. High Operating cost 2. Variable product quality.

L Liquid phase 2. Gasliquid 3. Solid -, liquid

L Used when agitation required. 2. Series Configuration possible for different configuration streams

PFR

One long reactor or number of CSTR's in series . No radial variations . Conc. changes along the length,

1. Primarily gas Phase

1. Large Scale pdn . 2 . Fast reactions 3. Homogenous reactions 4, Heterogeneous reactions 5" Continuous pdn,

PBR

Tubular reactor that is packed with solid catalyst particles"

L Gas Phase (Solid Catalyst) 2.Gas -solid reactions.

1. Used plimarily in the heterogeneous gas phase reaction with solid catalyst e . g Fischer tropsch synthesis.

L High Conversion per unit volume. 2. Flexibility of using for multiple reactions" 3. Easy to clean 1. Continuous Operation" 2.Good Temperature Control 3 . Two phase reactions possible. 4.Good Control 5. Simplicity of construction. 6. Low operating cost 7. Easy to clean 1. High conversion per unit volume 2. Easy to maintain (No moving parts) 3 . low operating cost 4. continuous operation 1. High conversion per unit mass of catalyst 2" low operating cost 3., Continuous operation

CST R

""

_.

1·16

1. Lowest conversion per unit volume. 2. By passing possible with poor agitation. 3 High power Input reqd.

1. Undesired thelmal gradient 2. Poor temperature control 3" Shutdown and cleaning expensive" -

L Undesired thelmal gradient 2" Poor temperature control 3. Channeling 4" Cleaning .~~pensiv£:. __

Pl-14 Given

A

= 2 *1010 ft 2

TSTP

= 491.69R

T = 534 . 7°R

Po= latm

cS = 2.04 *10-10 lbm301

=0.7302 atm ft3

R

H = 2000ft

ft

lbmolR C = 4*105 cars

FS = CO in Santa Ana wind

VA

FA = CO emission from autos

ft3 = 3000-·- per car at STP hr

Pl-14 (a) Total number of Ib moles gas in the system: POV N :=-R-T

latmx(4xlO 13 ft3) N= (

3

J

= L025

X

1011 lb mol

0.73 atm·ft_ x534.69R lbmol.R

Pl-14 (b) Molar flowrate of CO into L.A. Basin by cars .

F F A -YA T -YA

VA CPo ·Rr STP

= ~~00ft3

F T

FA

hr car

= 6 . 685

X

X llbmol

x400000 cars

359 ft3

(See appendix B)

104 lb mollhr

Pl-14 (C) Wind speed through corridor is v = l.5mph W = 20 miles The volumetric flowrate in the conidor is Vo = v.W.H = (l5x5280)(20x5280)(2000) fe/ill l3 = L673 x lO fe/ill 1-17

Pl-14 (d) Molar flowrate of CO into basin from Sant Ana wind FS:= vOCS = 1.673 x 1013 ft 3fhr Fs = 3412 x 103lbmolflu

x2.04xlO- 1O Ibmolfft3

Pl-14 (e) Rate of emission of CO by cars + Rate of CO by Wind - Rate of removal of CO

=

V dC co dt

(V=constant, Nco

Pl-14 (0 t= 0 ,

Ceo

= Ccoo

Pl-14 (g) Time for concentration to reach 8 ppm,

C = 2.04 X 10-8 ~bmol C, = 3..:94 X 10-8 ~~mol coo ft3 ' co 4 ft3 From (f),

_ V In (FA +Fs--vo.CcooJ t--VO FA + Fs --VoCca

=

4ft 3

--In

1.673xlO13

t=

ft' hr

6.92 hr

Pl-14 (h) (1)

Ceo = 2.00E-1O IbmoUft3

tl = 72lus a = 3.50E+041bmoUln

v0

b

to

0 L67E+ 12 fe flu

= 3,OOE+04 IbmoUln

1-18

dN

=-

co

dt

= Cco V )

Fs

a + b

=

v = 4.0E+13

341.231bmol/hr

Sin( ~ JZ"

)

ft 3

dCco = v

+ Fs

dt

Now solving this equation using POLYMATH we get plot between Ceo vs

See Polymath program Pl-14···h·-l.pol. POLYMATH Results Calculated values of the DEQ variahles Var'iable t C

vO a b F

V

initial value 0 2.0E-10 1.67E+12 3.5E+04 3 . 0E+04 341..23 4.0E+13

minimal value

maximal value

0 2 . 0E-10 1 . 67E+12 3.5E+04 3 . 0E+04 341 . 23 4 . 0E+13

final value

72

72

2.134E-08 1 . 67E+12 3.5E+04 3 . 0E+04 341..23 4.0E+13

1.877E-08 1.67E+12 3.5E+04 3.0E+04 341.23 4.0E+13

ODE Report (RKF45) Differential equations as entered by the user [1] d(C)/d(t) = (a+b*sin(3 . 14*t/6)+F-vO*C)/V Explicit equations as entered by the user [1] vO=1 . 67*10A12 [2] a = 35000 [3] b = 30000 [4] F = 341 . 23 [5] V = 4*10A13 3.0e-8,---------------

24e··8

80

(2)

tf= 48lus

F,=O

a + bSin(

JZ"~)

Now solving this equation using POLYMATH we get plot between Ceo vs t

1·19

v dCco dt

See Polymath program P 1-14-h--2.pol. POL YMA TH Results Calculated values of the DEQ variables Variable t C

vO a b V

initial value 0 2 . 0E-I0 1 . 67E+12 3 . 5E+04 3 . 0E+04 4.0E+13

minimal value 0 2 . 0E-I0 1 . 67E+12 3 . 5E+04 3 . 0E+04 4 . 0E+13

maximal value 48 1 . 904E-08 1 . 67E+12 3 . 5E+04 3 . 0E+04 4 . 0E+13

final value 48 1 . 693E-08 1.67E+12 3 . 5E+04 3.0E+04 4.0E+13

ODE Report (RKF45) Differential equations as entered by the user t 1] d(C)/d(t) = (a+b*sin(3 . 14*t/6)-vO*C)/V Explicit equations as entered by the user [1] vO = 1.67*10A12 [2] a = 35000 [3] b = 30000 [4] V = 4*10A13 2 Oe-8

r-------- .----------,

50

(3)

Changing a

-+ Increasing 'a' reduces the amplitude of ripples in graph

It reduces the effect of the

sine function by adding to the baseline.

-+ The amplitude of ripples is directly proportional to 'b' .

Changing b

As b decreases amplitude decreases and graph becomes smooth. Changing Vo

-+ As the value of Vo is increased the graph changes to a "shifted sin-curve" And as Vo is decreased graph changes to a smooth increasing curve .

------------------ - - - - - - - - - - -

PI-IS (a) - rA =

k with k = OD5 mol/h dm3

CSTR: The general equation is 1-20

v = FAO -FA -rA 3

Here C A= D"DIC Ao , Vo = 10 dm /min, FA = 5 . 0. mollhr 3 Also we know that FA = CAVO and F Ao = CAOVo, CAO = FAoI Vo = 0..5 mol/dm Substituting the values in the above equation we get,

V =

CAOVO -CAvo

= (0.5)10-0.01(0.5)10

k

0.05

-7 V=99dm3 PFR: The general equation is

dFA dCAv O --=r =-·k A =k,NowFA=CAvoandFAo=CAovo=> dV dV Integrating the above equation we get V

CA

k

V

V

-~ JdC A = JdV

=>

0.

C AO

V =--.!l(CAG ,,- C A ) k

Hence V = 99 dm3 Volume of PFR is same as the volume for a CSTR since the rate is constant and independent of concentration.

PI-IS (b) - rA = kC A with k = 0.,,0.0.0.1 s"! CSTR: We have already derived that

V

= CAOVO -CAvo - rA

_ vo C Ao (1-0.01) kC A

k = D. DDDls"! = 0. . 0.0.0.1 x 360.0. hr"!= 0..36 hI'''!

-7

3 V = (10"dm / hr )(0.5mal / dny3 )(O.~?) (0.36hr -1 )(0.01 * 0.5mal / dm 3 )

PFR: From above we already know that for a PFR

dCAv O -rA -- kCA dV Integrating

dC f _A =- JdV V

C _VG

k Vo

k

CAO

CA

0.

In C AG =V CA

Again k = D.DDDls"! = 0..0.0.0.1 x 360.0. hI != 0..36 ru-! o

1-21

=> V

=2750 dm3

Substituing the values in above equation we get V = 127.9 dm3

PI-IS (c) - fA

= kC A2 with k = 3 dm3/moLhr

CSTR: -rA Substituting all the values we get

V = (lOdm (3dm

3

3

/

/

3

hr)(O.5mol / dm )(O.99)

hr)(O.Ol * O.5mol / dm

3

=> V = 66000 dm3

)2

PFR:

dCAv O _- r -kC 2 A A dV Integrating CA

V

--~

k

f

dC _A

C/o

CAD

=> V

vII

V

=- fdV =>~-(----)=V

=

k CA

3

10dm I hr ( 1 3 3dm lmol.hr O.OlCAO

CAO

_~_) CAO

PI-IS (d)

t-

t

. dN -- r V A

AO

WA

Constant Volume V=Vo

t=

fAO

dC A

1A -

rA

Zero order:

t

.999C Ao = -1 [CAO -O.OOlCAO ] = - - = 9.99h k

0.05

FiIst Older: 1-22

= 660 dm3

=~ln(CADJ

t

CA

k

=_I_ln(_I_) = 0.001 .001

6908s

Second order: t

=k1[1 C

A -

1]

CAD

1 ="31[ 0.0005 -

1] 0.5 = 666 h

PI-16 Individualized Solution PI·17 (a)

Initial number of rabbits, x(O) =500 Initial number of foxes, y(O) = 200 Number of days = 500

dx

dt = k1x-k2 ·xy .................................... (1)

dy 'dt

= k3 XY _. k4 y

.............. .

................ (2)

Given,

kl = 0.02day--1

= 0.00004/(dayx foxes) k3 = 0.0004/(dayx rabbits) k4 = 0.04day-1 k2

See Polymath program P 1 . 17 -a.pol. POLYMATH Results Calculated values of the DEQ variables Variable t x Y

kl k2 k3 k4

initial value 0 SOO 200 0 . 02 4 . 0E-OS 4.0E-04 0 . 04

minimal value 0 2.9626929 1.128S722 0 . 02 4.0E-OS 4.0E-04 0 . 04

maximal value SOO S19.40024 4099.S17 0 . 02 4.0E--OS 4.0E-04 0 . 04

ODE Report (RKF45) Differential equations as entered by the user [ 1 J d(x)/d(t) (k1 *x)-(k2*x*y) [ 2 J d(y)/d(t) = (k3*x*y)-(k4 *y)

=

1-23

final value SOO 4.2199691 117.62928 0.02 4.0E-OS 4.0E-04 0.04

Explicit equations as entered by the user [1] k1 = 0 . 02 [2] k2 = 0 . 00004 [.3] k3 = 0.0004 [4] k4=0 . 04 5000.------------------

4000

3000

2000

o

o

200

When, tfinal= 800 and

160

kj

t

300

400

500

= O.00004/(dayxrabbits)

320 t

480

640

800

Plotting rabbits Vs . foxes

1-24

160lli-----------------

o 378

720

1061

rabddPl

1744

2086

PI·I7 (b) POLYMATII Results

See Polymath program Pl-17-b.pol. POLYMA TH Results

NLES Solution Var~able

Value

Ini Guess

f(x)

X------- 2.3850387 --'253E-iI" 3.7970279

y

2 2

1.72E-12

NLES Report (safenewt) Nonlinear equations ( 1] f(x) = xA3*y-4*yA2+3*x-1 = 0 [ 2 1 f(y)

=6*yJ\2-9*x*y-5 =0

PI-IS (a) No preheatmg of the benzene feed wtli dlmmlsh the rate of reactIon and thus lesser converSIOns achIeved .

WIll

PI-IS (b) An lDterpolation can be done on the logarithnnc scale to find the desued values from the gIven data. Now we can lDterpolate to the get the cost at 6000 gallons and 15000 gallons Cost of 6000 gal reactor = 1 905 x lOS $ Cost of 15000 gal reactor = 5 623 X 105 $ Coat va Volume of reactor (log - log plot)

PI-IS (c) We are given C A IS 0 . 1% of minal concentration ~ CA =OOOlCAO

..

. 1

--~-

--

., 1-25

"--t---

-

--~-"

1011 volume (1I8110na)

..

••

be

Also from Example 1.3,

Substituting vo= 10 dm3/min and k = 0.23 min-! we get

v = 300dm 3 which is three times the volume of reactor used in Example 1-3.

PI-18 (d) Safety of Plant PI-19 Enrico Fermi Problem - no definite solution PI-20 Enrico Fermi Problem -- no definite solution PI-21 Individualized solution . CDPI-A (a) How many moles of A are in the reactor initially? What is the initial concentration of A? If we assume ideal gas behavior, then calculating the moles of A initially present in the reactor is quite simple. We insert our variables into the ideal gas equation:

n=

!.V =

(20~tm)(200dm3)

(lOL3~~a) = 97.5moles

3

(8.3145 kPa.dm )(500) molK

RT

latm

Knowing the mole fraction of A (y Ao) is 75%, we multiply the total number of moles (N1o) by the YA:

molesA = N Ao

= 0.75x97.5 = 73.1

The initial concentration of A (C Ao) is just the moles of A divided by the volume:

CAo

=

moles volume

= N Ao =73 .1mol~~ = 0.37 moles / dm 3 V

200dm

CDPI-A(b) Time (t) for a 1st order reaction to consume 99% of A.

dC dt

r =_-A A

OUf

first order rate law is:

-rA =kCA

1-26

mole balance: dCA =--kC dt A

-kt =

In(

-k t fdt =>

= CfA dCA CAO

o

C

A

CA ) , knowing CA=O.OI C Ao and our rate constant (k=O.1 min-I), we can solve CAO

for the time of the reaction: t

= -..!.In(O.OI) = k

4.61 1 O.lmin-

= 46. 1min

CDPI-A (c) Time for 2nd order reaction to consume 80% of A and final pressure (P) at T = 127 C.

rate law: 1 1 =>-kt=--+CA CAo

dC mole balance: :. _2. = --kC~ dt

We can solve for the time in terms of our rate constant (k = 0.7) and our initial concentration (C Ao):

-kt = _~ +_1_ CAo CAO

t=_4_= 4 ----=15.4min.Todetermine kCAo (0.7dm 3 / mol min)( 0.37moll dm 3 ) the pressure of the reactor following this reaction, we will again use the ideal gas law. First, we determine the number of moles in the reactor:

NB =Nc =0.8NAo NT = (0.25)N yo + (0.2+0.8+0.8)N Ao

= 0.25(97.6) + (1.8)(73.2) = 156.1moles

3

(156. Imole) (0.082 dm atm] (500K) N 1RT molK p =_ _ = _ .___ ---''---__ = 32atm V 200dm 3

CDPI-B Given:

Liquid phase reaction in a foam reactor, A ~B

Consider a differential element, ~ V of the reactor: By material balance

FA -(FA +~FA)=-rA(l-e)~V 1-27

Where, (1- e)~ V = fraction of reactor element which is liquid. or:

-FA

=-rA(1-e)~V

dF

=r

_A

dV

(I-e) A

Must relate (- rA) to FA ' where, FA is the total (gas +liquid) molar flow rate of A.

-rA=rate of reaction (g mol A per cubic cm. of liquid per sec . ); e flow rate of A (g mol/sec . ); V = volume of reactor

1-28

= volume fraction of gas; FA = molar

Solutions for Chapter 2 - Conversion and Reactor Sizing Synopsis General: The overall goal of these problems is to help the student realize that if they have -rA=j{X) they can "design" or size a large number of reaction systems. It sets the stage for the algorithm developed in Chapter 4"

P2-l.

This problem will keep students thinking about writing down what they learned every chapter.

P2-2.

This "forces" the students to determine their learning style so they can better use the resources in the text and on the CDROM and the web.

P2-3.

ICMs have been found to motivate the students learning.

P2-4.

Introduces one of the new concepts of the 4th edition whereby the students "play" with the example problems before going on to other solutions.

P2-S.

This is a reasonably challenging problem that reinforces Levenspiels plots.

P2-6.

Novel application of Levenspiel plots from an article by Professor Alice Gast at Massachusetts Institute of Technology in CEE.

P2-7.

Straight forward problem alternative to problems 8, 9, and 12.

P2-S.

To be used in those courses emphasizing bio reaction engineering.

P2-9.

The answer gives ridiculously large reactor volume. The point is to encourage the student to question their numerical answers.

P2-l0.

Helps the students get a feel of real reactor sizes.

P2-ll.

Great motivating problem. Students remember this problem long after the course is over.

P2-l2.

Alternative problem to P2-7 and P2-9.

CDP2-A

Similar to 2-9 2-1

CDP2-B

Good problem to get groups started working together (e.g. cooperative learning.

CDP2-C

Similar to problems 2-8, 2-9, 2-12.

CDP2-D

Similar to problems 2-8,2-9,2-12. Summary

• • • •

P2-1 P2-2 P2-3 P2-4 P2-.5 P2-6 P2-7 P2-8 P2·-9 P2-10 P2-11 P2-12 CDP2-A CDP2-B CDP2-C CDP2-D

Assigned 0 A A 0 0 S AA S AA S AA AA 0 0 0 0

Alternates

8,9,12 7,9,12

7,8,9 9,B,C,D 9,B,C,D 9,B,C,D 9,B,C,D

Difficulty

M M FSF FSF SF SF SF SF FSF FSF FSF FSF

Time (min) 15 30 30 7.5 75

60 4.5 45 45 15 1

60 5 30 30 45

Assigned • = Always assigned, AA = Always assign one from the group of alternates,

o =Often, I =Infrequently, S =Seldom, G =Graduate level

Alternates In problems that have a dot in conjunction with AA means that one of the problems, either the problem with a dot or anyone of the alternates are always assigned.

Approximate time in minutes it would take a B/B+ student to solve the problem. Difficulty SF =Straight forward reinforcement of principles (plug and chug) 2-2

FSF

= Fairly

straight forward (requires some manipulation of equations or an intermediate calculation). IC = Intermediate calculation required M = More difficult OE =Some parts open-ended.

*Note the letter problems are found on the CD-ROM. For example A == CDPI-A. Summary Table Ch-2 Straight forward

1,2,3,4,10

Fairly straight forward

7,9,12

More difficult

5,6,8

Open-ended

6

Comprehensive

4,5,6,7,8,9,12

Critical thinking

P2-9

-

P2-l Individualized solution . P2-2 Individualized solution. P2-3 Solution is in the decoding algorithm given with the modules . P2-4 (a) Example 2-1 through 2-3 If flow rate FAD is cut in half. VI = v/2, F I = FAd2 and CAD will remain same . Therefore, volume of CSTR in example 2-3,

F;.X 1 FAOX 1 VI =----=---=-6.4=3.2 - rA 2 -r A 2 If the flow rate is doubled, F2 = 2FAD and CAD will remain same, Volume ofCSTR in example 2-3, V 2 = F2X1-rA = 12 . 8 m3

P2-4 (b) Example 2-5 2-3

--

Levenspiel Plot

Faol2

45-.------------------------------------4 ~;==;==;==;===~ 35~~~

J--O+X overall

'"';- 25

o '" LL

2 15

05 o+-~~r=~~~~~T=~-=~--~

Faol2

o

02

04

06

08

Conversion

Now, F AO = 0.,4/2 = 0...2 molls,

F

New Table: Divide each term ~ in Table 2-3 by 2.

cx:= ---.--/

-- 'A

0.-·10.·-1- . - - -0..2--'--, , 0-.4- . - - ,0.-.6 0..445 TI545 0..665 1.0.25 1.77

~-rAJ(m3)

Reactor 2 3 V 2 = 1.2 m

Reactor 1

VI = 0.. 82m3 V = (FAol-IA)X

0.82 =

(_~~o J (Xl) A

XI

By trial and error we get: and X 2 = 0. . 8 Overall conversion XOver.1I = (l/2)XI + (l/2)X2 = (0..546+0.._8)/2 = 0..673 XI

= 0..546

P2-4 (C) Example 2-6 Now, F AO = 0..4/2 = 0..2 molls, Fao/2

X1

....--+X overall

Faol2

2-4

_Jj)4J.~J

_ ,/ 0.---,,-.7

~.53

k.-J

F

New Table: Divide each term ~ in Table 2-3 by 2 .

-rA

0.1

0.6 1.77

0.4 1.025

0.2 0.665

3

VI = 0.551m

V; = FAO

x dX

I--

o -rA

Plot FAof-rA versus conversion. Estimate outlet conversions by computing the integral of the plotted function.

Levenspiel Plot 45 4 3.5

...ca•

"0 ca

LL.

3 25 2 1.5 1 0.5 0

0. 2

0

06

0.4

0.8

Conversion [ XI = 0603 f~r VI = 0.551m "---X;-=-O. 89 for Vz = L614m3 Overall conversion Xo= (l/2)XI + (1I2)Xz = (0 . 603+0.89)/2 = 0.746 3

-

._----

-.~

_J

Levenspiel Plot

P2-4 (d) Example 2-7

25

(1)

2

ForPFR, ~ 15

c5

'"

IL

1 05

= 0.222m

3 0 0

0.1

02

For first CSTR,

03

04

Convelsion

2-5

05

06

07

F

X 2 = 0..6, _AO.

-rA

_

3

-1.32m ,

For second CSTR,

F 3 X3 = 0.65, -AO - = 2.0m ,

-rA

V 3-

FAO (X 3 -X 2 )

.

-rA

= 01. m3

(2) First CSTR remains unchanged ForPFR:

V=

05(F } X' f.

_AO

02

rA

Using the Levenspiel Plot

Levenspiel Plot 25 2+-----------------~---

*

15+----------------------

VPPR = 0..22

"0

.f ForCSTR,

1

o5

i=====~=iO;;;;;:~------~ +-------~----

o +---,---'-'-'--o

01

02

0.3

04

0.5

06

07

Conversion

(3) The worst arrangement is to put the PFR first, followed by the larger CSTR and finally the smaller CSTR.

'[J_O~23J)-IIT53 ~

-r)- (

Conversion Original Reactor Volumes ~ Worst Ana"itgement_,,___ Xl = 0..20 VI = 0.188 (CSTR) VI = 0..23 (PFR) X2 = 0..60 V2 = 0.,38 (PFR) V2 = 0.53 (CSTR) LX:.::.::..3_=-=0..:.:.6:.::.5_ _ _ _ _ _ _ _V.3 = 0.10 (CSTR) _____ y3 = 0.10 (CSTR)

ForPFR, Xl = 0..2

V. =

f( ~~J1X

Using trapezoidal rule, Xo = 0,1, Xl = 0.1

2-6

~ = (X~:D)[f(XD)+f(Xl)J = 0.2 [1.28+0.98]m 3

2 =0.23m 3 ForCSTR,

FAD

FAD V2 = -( X2 - ) Xl = 1.32(0.6- 0.2) = 0.53 ill3

For X 2 = 0 . 6, - - = 1.32m , 3

-rA

-rA

nd

For 2 CSTR,

FAD -rA

3

For X3 = 0.65, - - = 2m ,

P2-4 (e) Example 2-8 T Vo

= 5hrs

= 1dm3/min = 60dm3/hr CA = 2.5 mol/dm3X = 0.8

For CSTR,

T

V

= .-

Vo V= 300dm3 (1)

--r A= CAOX = 2.5xO.8 moll dm 3 hr T 5 3 = OAmol / dm hr

(2) V = 300dm3 (3)C A = CAO(1-X) = 0.5 mol/dm3

P2-5

m3 )

0

0.1

0..2

0.8 9

1.0 8

13 3

-

OA

0.6

0..7

O.

2. 0 5

3.5

5.0 6

8 8.. 0 ._.

4

Levenspiel plot

_

..............- .... _.. ... _._......_..- .... _"

P2-5 (a) Two CSTRs in series For first CSTR, V = (FAd-rAXl) XI =>Xl =OA4 For second CSTR, V = (FAd-rAX2) (X2 ·- XI) => X2 = 0.67

~5~----------·-------------------~L----.~

g

~4~--------------------

01

02

03

05

04

x

06

07

08

09

P2-5 (b) Two PFRs in series 4

v~ 1( ~~:}x +)( ~~:}X By extrapolating and solving, we get Xl = 0..50. X 2 = 0.74

P2-5 (C)

3

----f--------~

+------------

F"o -rA 2 (m') 1+-----------~~----------------~ .....-

Two CSTRs in parallel with the feed, F AO, divided equally between two reactors, FANEW/IAXI = o.5FAd-IAXI V = (o..5FAd-rAXI) Xl Solving we get, X out =0.,,60.

----_ ..

--_.._....

..

o +------,-----.------.------.----~ 0,,8 o 0,2 0,4 0.6 1 X

P2-5 (d) Two PFRs in parallel with the feed equally divided between the two reactors, FANEW/-rAXI = o.5FAOI-rAXI By extrapolating and solving as part (b), we get

X out = 0..74

P2-5 (e) A CSTR and a PFR are in parallel with flow equally divided Since the flow is divided equally between the two reactors, the overall conversion is the average of the CSTR conversion (part C) and the PFR conversion (part D)

Xo = (0.,60. + 0.,74) 12 = 0.,67

P2-5 (0 A PFR followed by a CSTR, X PFR = 0...50. (using palt(b» V = (FAd-rA-XCSTR) (XcSTR - X PFR ) Solving we get, X CSTR = 0.,70.

P2-5 (g) A CSTR followed by a PFR, X CS1R = 0.,44 (using part(a»

2-8

V

=

X pFR

f

F -.MLdX

X CSTR -rA

XPFR = 0. . 72

By extrapolating and solving, we get

P2-5 (h) A 1 m3 PFR followed by two 0.5 m3 CSTRs,

ForPFR, XPFR = 0..50. (using part(b» 3 CSTR 1: V = (FAd-rA-XCSTR) (X CSTR - XPFR) = 0..5 m XCSTR = 0..63 3 CSTR2: V = (FAd-rA-XCSTR2) (XCSTR2 - XCSTRI) = 0..5 m X CSTR2 =0..72

P2-6 (a) Individualized Solution P2-6 (b) 1) In order to find the age of the baby hippo, we need to know the volume of the stomach.

The metabolic rate,-rA, is the same for mother and baby, so if the baby hippo eats one half of what the mother eats then Fao (baby) = Y2 Fao (mother). The Levenspiel Plot is drawn for the baby hippo below .

Autocatalytic Reaction 5

-

.•....................................... __ ..._•....•.•. .....••.•............................,

4~------------------~--4 35~r----------------~----4

i

e

-.l.

o

~

3 -l-\---------------+------1-'-------:-:--::-~ 2 5 t-~~--------------j~----I

2t\-~~---------~~-.I_~r~--~-~ 1.5 t=~==~S;;;;;;;;o.."","'--~_r-----;

05

02

04

06

08

Conversion

2-9

Since the volume of the stomach is proportional to the age of the baby hippo, and the volume of the baby's stomach is half of an adult, then the baby hippo is half the age of a full grown hippo.

Age =

4 ..5 years 2

= 2 .25. years

2) IfVmax and mao are both one halfofthe mother's then

Catalytic Reaction

and since 2

then

1 -vrnaxCA

..=2:....-.._ _

-rAM2

KM

bllby

+C

A

mAo (

-rAM2

J baby

1

=- - r .

2

o

AM2mothef

1 '-m 2 Ao ----1 - 2 rAM2

Conversion

mAo

=

JS= 0.4

(

-

rAM

~

J mother

mother

m -rAM2

~ will be identical for both the baby and mother

Assuming that like the stomach the intestine volume is proportional to age then the volume of the intestine would be 0.75 m3 and the final conversion would be 040

P2-6 (C) VSlomach = 0.2 m

3

From the web module we see that if a polynomial is fit to the autocatalytic reaction we get:

m

- - AO

= 127X4 _ 172.J6X3 + 100.l8X2 - 28354X + 4.499

-rAMI

2·10

· r.n AO And smce Vstomach = - - - X, 5

solve V= 127X Xstomach = . 067.

-

-rAMI 4

2

172.36X + 1OG.18X3 - 28..354X + 4 . 499X = 0.2 m

3

For the intestine: The Levenspiel plot for the intestine is shown below. The outlet conversion is 0 . 178 Since the hippo needs 30% conversion to survive but only achieves 17.8%, the hippo cannot survive . Autocatalytic Reaction

Catalyti c Reaction

5 45

+--------

4+\---35~--------------+_

i

----+---·l

3-··

n:t

!!: 25 fil E 2

-f-..'~-----------j'-------i

2

1.5 1-·······----

I

t - - - - - - - . - - - -.. - - -

05

o

-----,-----r-------.,..------/

o

X~0067

02

04

06

o

08

Conversion

X=0178 Con v er·si on

P2-6 (d) PFR~ CSTR PFR: Outlet conversion of PFR = 0 . 111 Autocatalytic Reaction

Catalytic Readion 5 45 4 3.5

,...

..

:E ca

2

-.!. 2.5 0

ca

E

2 1.5

05

o

X= 0.111 Conversion

0 0

0.2

0.4

Conversion

CSTR: 2-11

0.6

08

We must solve

v = 0..46 = (X-QJ 1l)(127X4 -

172.36X3 + 100. J 8X2 - 28,354X + 4.499)

X=O,42 Since the hippo gets a conversion over 30.% it will survive"

P2-7 Exothermic reaction: A ~ B + C 3

r(mol/dm ,min

X

1/-r(dm 3.min/mol) 1 0.,,6 0..2 0.,,2 0..2 0..2 0. . 8 1.1

) 0. 0. . 20. 0..40. 0..45 0..50. 0..60. 0..80. 0..90.

1 1.67 5 5 5 5 1 . 25 0..91

P2-7 (a) To solve this problem, first plot 1/-rA vs" X hom the chart above. Second, use mole balance as given below,

CSTR:

Mole balance:

= FAo

V CSTR

!

= (300mollmin)(0.4) => 3

(Smol / dm .min)

- 'A

=>V CSTR = 24 dm 3 PFR:

x dX

VpFR = F AO Mole balance:

f--r

0

A

0.4

= 3QQ(area under the curve)

0.6

X

V PFR = 72 dm3

P2-7 (b) 2-12

For a feed stream that enters the reaction with a previous conversion of DAD and leaves at any conversion up to 0. . 60., the volumes of the PFR and CSTR will be identical because of the rate is constant over this conversion range.

0040

CSTR

0.60

P2-' (C) 3

V CSTR = 105 dm

Mole balance:

FAOX VCSlR = - -rA

x ._. fA

105dm 3 - - - . = O.35dm 3 mini mol 300mollmin

Use trial and error to find maximum conversion.. At X= 0..70.,

1/-fA = 0..5, and X/-rA = 0..35 dm3 . minlmol

Maximum conversion = 0..70.

.

P2-' (d) From part (a) we know that Xl = DAn.

".

1

Xl PFR

II

1

Use trial and error to find X 2 .

X2

CSTR

2-13

--

.....

-

Reananging, we get

X 2 - 0040 - rAlx2

At X 2 = 0.64,

= ~ = 0.008 FAD

X 2 -OAO - rA

I

= 0.008

X 2

Conversion = 0.64

P2-7 (e)

From part (a), we know that Xl = OAO. Use trial and error to find X2

Mole balance: VPFR

= 72 = FAO

dX f --.r = 300 f-r

X2

dX

040 -

A

X2

040 -

At X 2 = 0 . 908, V = 300 x (area under the curve) => V = 300(024) = 72dm3 Conversion = 0..908 .

P2-7 (£) See Polymath program P2·7fpoL

2-14

A

-lIrA

0.65

6.0 5. 0

052

Q

0.39·

GJ

·to 3.0

0.26 2.0 0.13

1.0

0.00 0

20

40

V

60

0. 0

100

80

0

17

33

50

V

67

83

100

P2-8 (a) FsoX

V=---rs Fso = 1000 glhr

1

At a conversion of 40% - -

-rs

Therefore

V

3

dm hr = 0.15··--g

= (0.15)(1000)(0.40) = 60dm 3

P2-8 (b) 1 _. rs

At a conversion of 80%, - -

3

dm hr = 0.8----g

Fso = 1000 glhr Therefore

V

= (0.8)(1000)(0.80) = 640dm 3

P2-8 (C) x dX

VPFR = Fso

f--

o -rs

From the plot of 1/-rs Calculate the area under the curve such that the area is equal to VIPso = 80/ 1000 = 0..08 X= 12%

For the 80 dm3 CSTR,

F X V = 80 dm 3 =~­ -f

s

XI-rs = 0.08.. From guess and check we get X = 55%

2-15

P2-8 (d) To achieve 80% conversion with a CSTR followed by a CSTR, the optimum arrangement is to have a CSTR with a volume to achieve a conversion of about 45%, or the conversion that corresponds to the minimum value of 1I-rs Next is a PFR with the necessary volume to achieve the 80% conversion following the CSTR. This arrangement has the smallest reactor volume to achieve 80% conversion For two CSTR's in series, the optimum arrangement would still include a CSTR with the volume to achieve a conversion of about 45%, or the conversion that cOllesponds to the minimum value of 1I-rs, first. A second CSTR with a volume sufficient to reach 80% would follow the first CSTR

_ kC s (O.l[C so - C s ]+ 0.001)

-r

l

KM

+ Cs

Let us first consider when Cs is small Cso is a constant and if we group together the constants and simplify

since Cs < KM

1

-

KM

klC~ + k 2 Cs

r,

which is consistent with the shape of the graph when X is large (if Cs is small X is

large and as Cs grows X decreases), Now consider when Cs is large (X is small) As Cs gets larger Cc appwaches 0:

kCsCc 1 then - KM + Cs r, As Cs grows large!, Cs » KM

=

If - r

l

KM + C s = ---''-'---

kCsC c

2-16

And since Cc is becoming very small and approaching 0 at X = 0, 1/-1s should be increasing with Cs (or decreasing X)., This is what is observed at small values of X_ At intermediate levels of Cs and X, these driving forces are competing and why the curve of 1/-rs has a minimum.

P2-9 Irreversible gas phase reaction 2A+B ~2C

See Polymath program P2"-9.poJ.

P2-9 (a) PFR volume necessary to achieve 50% conversion Mole Balance

V=FAO

X2

dX

Xl

(-rA )

f---

Volume = Geometric area under the curve of (FAoI-rA) vsX)

V V

= GX400000XO.5) + (100000 X0.5)

= 150000 m3 x

P2-9 (b) CSTR Volume to achieve 50% conversion Mole Balance

V=!AO~_ (-rA ) V = 0.5 X 100000 V = 50000m3

-I- -+"o.s 0

J."~X.:;;;; 20.281.9 s o ""fA

80% conversion in PFR: fA

is not known for X>O.60 - can not do.

CDP2-D (e)

50 % in CSTR: 't' :::;

X

C Ao ~- :::; 30,422.9 s - fA.

V:::; v 0"' ;;;; (30,422.9 s { \

I

~~:~ Y.2 m>Imin)-;;;:: 1014.1 m 3

DOS

J

CDP2-D (1) 50 to 60% conversion in CSTR:

C.\o(X) -Xl) :::::: 8112.8 .

t -;;;:: --.:...--.....:::."".....- fAl

V = v.' = (8112.8S{To':-}2 m'/min)= 270.4 m' CDP2-D (g)

2-31

Rate of Reaction vs. VolUl:oe IOE,05 ,"-""'.'--"---

5 OE

'--1

I

061 .._, ---, --

2 SE 06

O.OEtOO

06

I

I ... --- "--, -,--

7 5E 06

?

.,

Conversion vs. Volurne

0.4 0.2

~

-, - -

L__,_._"~ ____ ,_~_,,,_J o

400

200

600

~--~-

0,

800

o

200

3 Volnme(m )

400

Volume (m

600 3 )

CDP2-D (h) Critique Answers are Valid: 1. Constant Temperature and Pressure No heat effects No pressure drop 2. Single interpolation to X .. :;;; 0.15, 030,0,45, and 0.50 allowable 3. tiuge volume (the size of the LA Basin)! Raise T? Raise P?

CDP2-E For the CSTR : VI

F X

=: , . ",::'l£, . .L ::;;;; .,['....

F...o ( Area) ]

Alea == VI == 1200 drri A ----

From the graph we can see thaI Xl :: 0.,60

4000

For the PFR:

Fio

XI) == FAo (Area und.er curve) V7. :::: .F"o(Xl ---,"._,

orA

''''''rA

We

2000 1000

J

Area under curve == V, == 600 dm From the graph

3000

can see that X z ::;;;; 0. . 80

2-32

poiu:::t

800

CDP2-F (a) Find the conversion for the CSTR and PFR connected in series ·,rA X 0 0.2 0.1 0.0167 0.00488 0.4 0.7 0.00286 0.9 0.00204

400 L CSTR and 100 L PFR

lI(-rA) 5 59.9 204.9 349.65 490.19

Feed is 41 % A, 41 % B, and 18% L

T :::;:; 2270 C = 500 K

P ;:: 10 attn

10 atm = ..-P ;;;:;.--..' .,...----.-...... ,-----...--",.,.".,--- = 0_244 mollL.

C

RT

' To

(0.082 I.. . atmfmol "K)( 500 K)

CA. ;;:: OAlC,o;:: 0.41(0.244 maUL)::::: 0.1 mol/I..

FAo

:;;; t)OC AO :::::

1 Us(O.l moUL)::::: 0.1 molls::: 6 mol/min

There are tv.'o possible arrangements of the system: 1. CSTR followed by the PFR 2. PFR followed by the CSTR Case 1: CSTR -.,. PFR

CSTR:

VI = F. . )Area) V

400

Area =: """,l". = '.... , ,:;;:;: 66.67 FA., 6 From the graph PFR :

V1

:;;:;:

~

XI = 0.36

FA., (Area under curve) V,

100

Area under curve:;: ,-- ;;: -""".,.,:;:; 16.667 F:. .., 6 From the graph .. X~ = 0.445

-

....... '.' ..~' ...... '.~-'- . ~-..-.,...-"."..,.,..-~--........

Case 1:

CSTR ••> PFR

Case 2;

500r-----~-------.,,~_,



..

-~ ~-

PFR --> CSTR

500~-------------r~

400 ~

.

400 ,.: :3 00 ,+.••,..."...",...

.

300

;;::; 200

::::; lQO +." .."-",,.,

100

100

o 0,0 0.2

o 0.4

0.6 X

C = 12.4 KJ/mol and a = 0..32 Using these values, and .1HR = - 6 kcaUmol, we get E = 10.48 KJ/mol

CDP3-C (a) A-7B Rate law at low temperature: -

rA = kC A

The rate law t higher temperature must: 1) Satis(y thermodynamics relationships at equilibrium, and 2) Reduce to irleversible rate law when the concentration of one or more of the reaction products is zero. Also, We know,

KC

__CBe -

CAe

Reauanging, we get

C

Ae

- C Be =0 K

c 3-25

So, lets assume rate law as

- rA

=kA(C ~:J A -

Also when CB = 0, it satisfies the given rate law, Hence the proposed rate law is conect.

CDP3-C (b) A+2B72D

- rA =kC A

Rate law at low temperature:

1/2

CB

Here,

But it does not satisfy the irreversible late law at low temperatures" Hence it is not COlrect So, taking square root of Kc

fj{

-V 1\' C = -

C De

C

112' CAe C Be

112 C

Ae

(c

- rA = k A

_ CDe = 0 ~Kc

Be

De Ae 1I2CBe - ~CK C

J

Which satisfies the irreversible rate law, Hence it is the required rate law.,

CDP3-C (C) A+B-7C+D

.

, k P A PB = ...::::--1 + KAPA + KBPB PCPD PCPD Kp = or PBPA -· =0 Kp PBPA

IrreversIble rate law: -, r A

We know,

Hence assume rate law as:

PCPDJ k PP -'--. K ( A B p - rA = . ."----1 + KAPA + KBPB + KcPc + KDPD Which satisfies both the above mentioned conditions,

3-26

CDP3-D y a)

- 0.15

A$$umi~1

C

b)

NlIJ • O

-

eo

CNH

ideal gas law

~Q

...

Va

3 ,.0

~

8.2 Itra ' .. 0.2 ,mol/l · OKCSOOK) 0.082 latln . ,:no 1

.. -

H:ro

.. y~ r_~ ~ (0.15)(0.2 ,mol/1) .. 0.03 gmol/1 ........3.0 '"""I ..

c)

Compound.

S:r=bol

~!p. ...

J.

;)

Il1it.i .. l

Chan,,,

0.15

-O.lS:.t 5

Find

0.15(1-X)

°l

B

0.18

- 4 1:kCAO =

ForPFR,

X 2 = O.~ =1.111 (I-X) 0.6

1:=-1-1 dX 2 kCAO 0 (1- X)

=_1_~ kCAO 1- X

=> X =1- _ _ 1_.=1-_1_=.526

1+1:kCAO

2.111

So, while calculating PFR conversion they considered reaction to be 1st order. But actually it is a second order reaction.

P4-8 (d) A graph between conversion and particle size is as follows: Originally we are at point A in graph, when particle size is decreased by 15%, we move to point B, which have same conversion as particle size at A. But when we decrease the particle size by 20%, we reach at point C, so a decrease in conversion is noticed" Also when we increase the particle size from position A, we reach at point D, again there is a decrease in the conversion,

1 x

A

n

dp

P4-9 AB Kco (300K)= 3.0 V = lOOOgal = 3785.4 dm3 Mole balance:

V =!.AO X - rA

4-21

Rate law: StOIchIometry:

Now using:

v =(-Z) Z

where

X

[(I-X)'

=>

_of]

K C

R To

(Z) __-.!___ Z

[

X2] (1-X)2 -'K c

z=.!. = exp(E[J_ . _!]) ko

f (X) = 0 =V _

and

T.

= K co exp(MI~[_!._!..]) R T T o

Solving usmg polymath to get a table of values of X Vs T..

See Polymath program P4-9 po] POLYMA TH Results

NLE Solution variable X To T z V E R Y Kco Hrx Kc

Value

0.422~453

f(x) 3.638E··12

Ini Guess . O.S

300 305.5 2902.2 3785.4 1.SE+04 2 1.5684405 3 ·-2 SE+04 1 4169064

NLE Report (safenewt)

043

Nonlinear equations ( 1 J f(X) = (z/y)*x/«1-X)"2 - X"21Kc) .. V = 0

042+---

- ..... - -..' •.' -..

---------.-.---~

,

--------,

i

---+--.-------~

041

x

04 - - 0.39 038

4-22

- - - - - - -..- - - - -.. -----.-----

0.37

o36

-··---~--~I------_.,_-·-·__r_-~--

Explicit equations [1] To = 300 [2] T =305.5 [ 3] z =2902.2 [4] V =3785..4 [5] E = 15000 [6] R=2 Y = exp(E/R*(1rro-1rr)) [8] Kco=3 [ 9 ] Hrx = -25000 [10] Kc = Kco*exp(HrxlR*(1rro-1rr)) [7]

----

T(in K)

X

300

0.40

301

0.4075

303 304 f--

305

--

0.4182

---

-._--

--

0.4213 0.4228

305.5

0.4229

305.9

0.4227

307

0.421

310

0..4072

315

0.3635

~.

--

_._------- _._-----_._We get maximum X = 0.4229 at T = 305.5 K.

P4-10 (a) For substrate:

4-23

Fso - Fs + rs V = 0 (Cso - Cs)vo = rg VY S1C =

VYSIC[ ,urn.xCS Cc ] KM +CS

P4-10 (b)

= YC/s [C so -

Cc

Cs ]

(C so - Cs )Vo - VYS1C [,uMAXCS Cc ] KM+Cs

=

°

(C so ---Cs )Vo - VYCIS [,uMAXCS ]( Cso - Cs ) = KM+Cs

=>

°

(30--C s )5_25XO.Sx[O.5XCs ](30-Cs ) = 0 5+Cs

Solving we get Cs = 5.0 g1dm or 30 g/dm if C s = C so no reaction has occurred so the only valid answer is C s = 0.5 g1dm3• 3

3

P4-10 (C) Cc = Y ClS(C SO - C s) = 0..8(30 - 5.0)g1dm3 = 20 g1dm3

.

P4-10 (d) 3 V new = vJ2 = 25 dm /h

3

3

Using equation trom above, we get C s = 167 g/dm and Cc = 22 . 67 g1dm

P4-10 (e) 3

V new = V J3 = 25/3 dm Using equation from above, we get C s = 1.0 g1dm3 and Cc = 216 g/dm 3

P4-10 (f) For batch reactor: C so = 30 g/dm3 Ceo = OJ g/dm 3 Cc = Cco + Y ClS(C SO - C s) V = lOdm3

See Polymath program P4-1O-f.pol. POLYMA T!lRe§ults Calculated values of the DEQ variables Variable t Cs Cso Yes KIn

Umax Ceo Ce

initial value

o

minimal value

o

maximal value 15 30 30

final value 15 0.0382152 30 0.8

30 30

0 . 0382152 30

0. 8 5 o. 5

0. 8 5

0.8 5

0. 5

0.5

0. 1 0. 1

0. 1

0.1

o. 1

0.1

24.069428

24.069428

4-24

5

0.5

rg rs negative_

0.0428571 -0.0535714 0.0535714

0.0912841 -0.1141052 0.1141052

5.4444349 -0.0535714 6.8055436

0.0428571 -6.8055436 0.0535714

ODE Report (RKF45) Differential equations as entered by the user [1] d(Cs)/d(t) = rs

Explicit equations as entered by the user [1] Cso = 30 [2] Ycs=0.8 [3] Km=5 [4] Umax = 0.5 [5] Cco =0.1 [6 J Cc = Cco+Ycs*(Cso-Cs) [7] rg = (Umax*Cs/(Km+Cs»*Cc [8J rs=-(1IYcs)*rg [ 9 ] negative_rs = ·'rs 30.0r---==:=::;:;;::::::--·-------1

7.0 . . . . - - - - - - - - - - - - - - - - - - ,

24.0 .

5.6

-] c:: "

18.0 .

4.2

12.0

2.8

6,,0 .

1.4

0,,0

0.0 0.00

3.00

6.00 t

9.00

12,00

15,,00

tU

"~!O

'-="""'"'~==

0,00

3.00

__ ____ ___.!J ~

~

6.00 t

9,00

1200

15,00

P4-10 (g) Graphs should look the same as part (f) since reactor volume is not in the design equations for a constant volume batch reactor.

P4-11 Gaseous reactant in a tubular reactor: A

~

B

-rA =kCA k = 0.0015 min-l at 80 P 0

E

= 25 , OOO~gmol

X

=0.90

M B

=1000~ hr

lb MWA =MWB =58--lbmol

Dt =1 inch (I.D.)

L = 10ft

P = 132 psig = 146.7 psia

T = 260° F = 720° R

nt = number of tubes

4-25

1721lbmol F = FB = ' hr = 19 .1 1b mol AO X 0.9 hr

1000!! FB = hr =17.21Ibmol 58 lb hr lbmol For a plug flow reactor:

V

2

= nt 1lDt L = F °f·9 dX AO

4

° -fA

6=1-1=0

c

= PA AO

(E(

1-1 k2 =k1 exp - R ~ T2

RT

=~ RT

)J =0.0015exp (25000( . - - - -1- - -1)) - =53.6mm 540 720 1.104

k2 = 53.6min-- 1 = 3219hr-1 19.11bmol)(10.73 it3 psia )(720 R) V = FAORT In 10 = . hr lb mo~~_R_____ In 10 1 kP (3219hr- )(146.7psia) 0

(

V

= 0.72ft'

V

= !!L,!Dt L

2

4 4V 4(0.72/t n =--=-_. t

1£D2L t



3 )

(112ftJ2 (10ft)

13.2

Therefore 14 pipes are necessary..

P4-12 A

--4

BI2

4-26

-1

Stoichiometry 1

(5

2

!/AO

1 2

1

FAU

FAO +Pno+ ,--

IE

11 AO()

1 2

-

1/4

_v .. v

.1 X

V p I;' R

-

FAO

o

dX ---7'11

Rate Law (elementary reaction) .M._. ____ .................

....

_~

.....

~._

.• .,.¥ .. _" ...

~._

..••.. "._._..

¥ ............... " . _ . _

_.,.~,

_ _ . ••

(for the int.egratitJll, refer Appendix A) from the Idea.l (jus assumption,

= YAoCm 0.8 (),nd E ~1/4 to Eq. (4) CAO

Substituting

Eq.(5)~

X

yields~

VPFRky~oC~O = 2(--1 / 4) (1-1/ 4) In(1- 0.8) + (-1/ 4) 2 0.8 + (1-1/ 4)20.8 = 2.9, ... ".. .. ,(6) FAO 1-0.8

--'-'-'~"""---':..:;:.,-

1\1oh\1' flow 1a to of A cut iu haH,

F.~1.0

-

.F~~to

1! ~'1A_O

c' lihHll

IF' 2,., .-'10

F~~. :~""FBU"':f~ Fc;;'; ~

-

Y~1UJ =1/6

Eq. (4),

FAO i{

2E/(1 -+ t')ln(l

4-27

1

:3

VPFR ky ,2AD C'2TO_ F'2AD

1" I/G)2 X'

2( --'-1/6)(1 - 1/6)ln(l -- X') + ( l/fi) 2 X'

Polymath ='fol1-Liw:cll' Eqnation Solver, X f

I

XI

:.::c

(}.758

P4-13 Given: The metal catalyzed isomerization

CB-rA = kl ( CA - Keq

A q B , liquid phase reaction

J.

WIth Keq = 5.8

For a plug flow reactor with YA = LO, Xl = 0.55 Casel: an identical plug flow reactor connected in series with the original reactor.

Since YA = 10,

e = 0 . For a liquid phase reaction e A = e AO (1- X) and e = e AOX B

B

-r, = kCAo((l- X)-

i::J

For the first reactor,

~ =F

AO

Xl

dX

o

-fA

dX

Xl

f-. "= F f kC ((1- X)-~.----"-J" AO

0

AO

or

K

eq

4-28

\

In[I-(1 +_I_JX 1 ] = -0.853In(.355) =0.883

1+Keq

Keq

Take advantage of the fact that two PFR' s in series is the same as one PFR with the volume of the two combined.

~CAOVF._ = X F AO

dX

Jl-(l+_l_Jx

0

o

Keq

kCAOVF = 2 kCAOl-i FAO FAO

=

1+~1+++:JX2] Keq

2

.

kCAO l-i =2(0.883)=1.766 FAO

1.766 =.

.)X

11 In[I-(I+_1 1+--. 5.8 5.8

2]

X2 = 0..74 Case 2: Products from 1st reactor are separated and pure A is fed to the second reactor,

The analysis for the fIrst reactor is the same as for case 1. 4-29

kC AO

F

l+_l_ln 1- 1+ Keq1 JXI ]

v; -

1

AO

[(

Keq By performing a material balance on the separator, F AO ,2 = FAO(l-X I )

Since pure A enters both the first and second reactor CAO ,2 = C AO , CBO,2 = 0, 9B =

C A=CAO (1 - X) X2

V2

= FAo,2

dX

0

CB =C AOX for the second reactor.

f- =

FAO (1- X)

Xl

kCAO

0

o -rA

dX

f (l-X)-X Keq

and since VI = V2

V

kC AO 2 _ _kCAOV;

FAO

FAO

or

---.!-1 In[l--(l +-}-Jx 1+eq

l]

K

~

=-

1- ~l In[l-(l +_1 JX2] 1+Keq K ~

1-(1+;~ Jx, +-(1+ ;Jx,t' X

1- 1- ( [ _ 2 -

1 J ]l-~l l+K. Xl q

1+_1_

1

= 1- (0.356)045 = 0.766 1.174

Keq Overall conversion for this scheme:

.- _ FAO - FAO ,2 (1 - X 2) _ FAO -- FAO (1 _. Xl) (1 - X 2) _ ( )( ) X - - - - F- - - -1- I-Xl I-X2 AO

FAO

X =0.895

P4-14 4-30

Given: Ortho- to meta- and para- isomerization of xylene.

M M

>P >0

kj k2

o

>P(neglect)

Pressure = 300 psig T = 750°F V = 1000 cat.

fe

Assume that the reactions are irreversible and rust order. Then:

--rM = kjCM + k 2CM = kCM k = kl +k2

£=0 Check to see what type of reactor is being used . Case 1: Vo

= 2500 gal hr

X = 0.37

Case 2: V

o

=1667 gal hr

X =0.50

Assume plug flow reactor conditions:

FMOdX =--rMdV or dX J-o

x

V=FMO V=

-rM

Xc

f

"0

d x MOVO X =vo f-'~.-'= VO• In (I-X) -rM 0 k(I-X) k

C MO , k, and V should be the same for Case 1 and Case 2. Therefore,

(kV)casel = -( Vo )casel In (1- X casej ) = -2500 ~:IIn [1-0.37] = 1155 ~~ (kV)case2 = -( vO)caSel in (1- Xcase2) = -1667 ~~ In [1-0.50] = 1155 ~~~ The reactor appears to be plug flow since (kVkase 1 = (kV)Case 2 As a check, assume the reactor is a CSTR

FMOX

= CMOVOX =-rMV 4-31

vX

kV=_oI-X

or

-rM

Again kV should be the same for both Case I and Case 2.

( kV)

( kV)

=(

V )

X

0 Casel

Casel

=

I-X Casel

Casel

=

(V ) 0 Case2

X Case2

1-· X Case 2

Case2

gal ( 0.37 ) 25001 hr = 1468 ga 1-037 hr •

gal ( 0.50 ) 16671 = hr = 1667 ga 1---050 hr •

kV is not the same for Case 1 and Case 2 using the CSTR assumption, therefore the reactor must be modeled as a plug flow reactor .

kV =1155 gal hr 1155 gal k= hr _=1.55 gal 1000 ft3 cat. hr It 3 cat For the new plant, with vo =5500 gal / hr, XF = 046, the required catalyst volume is:

-5500 gal_ h

-v

V = _ 0 In (1- X F) = ~ In (1--0.46) = 2931ft3 cat k 1.155--.-K~ hr ft cat This assumes that the same hydrodynamic conditions are present in the new reactor as in the old .

P4-15 A-4 B in a tubular reactor

Tube dimensions: L = 40 ft, D = 0 ..75 in. n t =50 2

V

= nt 1[D 4

2

(50)n- 0.75

L=

(

4

12

)

40 = 6. 14ft3 4-32

500~

F =~= AO MWA 73

hr =6.861bmol lb hr lbmol

x dX V=FAofo -rA

-r = kCAo (I-X).=kC (I-X) A 1+8X AO V = FAO SdX.= FAO S dX. o-rA okCAo (I-·X) . P YAOP wIth CAO = - = - RT RT V = FAORT kyAOP

In (_1_)

or

k

=

FAO In(_I_) kCAO I-X

I n (_1_) VYAOP

= FAOR~

1- X

1- X

Assume An'henius equation applies to the rate constant. -E o

At T J = 600 R, kJ = 0.00152

= Ae

R1 ;

-E

At T2 = 760 oR, k2 = 0 . 0740

= Ae RT2

~ =ex+~If(:' -t)] In ~ = -:(k- n= !T~;; E = TrT2 ._ In k2 =(660)(760) In 0.740 =19,500oR R Tr - T2 kl 100 0.00152 A = kl exp

'0

[~-] RTr

k=k\ex

p[ -

!u -n]

From above we have

k

= .FAoRT Vy. AO P

so

In (_1_) l--X

FAoR~P In (_1)= kl exp [- E (~-~J] VYAO

I-X

R T

Tr

Dividing both sides by T gives: 4-33

(

6.S61bmal)(10.73 psiaft3 ) hr lb maze R

-In 5 =

sec)( 6.14ft3 )(114.7 psia) ( .00152-)(3600 sec hr Evaluating and simplifying gives:

exp [-19500 (! - _1_)] T 660 R T 0

0.030So R-1 =

Solving for T gives:

P4-16 Reversible isomerization reaction m-Xylene -> p-Xylene Xe is the equilibrium conversion., Rate law:

-rm

= k(Cm _ Ck p ) e

At equilibrium,

C

p C=m ke

-rm = 0 =>

K=~e

l--X e

1+ _1_ = (1 + 1- Xe ) = Xe + 1- Xe Ke

-rm

Xe

Xe

= _I_ Xe

= kCAD (1-~-) X e

P4-16 (a) 4-34

ex [-19500(!- 1 )] P T 660 R 0

T

For batch reactor,

dX

Mole balance:

= -rmV = kCAO

dt T=X e1n ( k

N mO

Xe Xe --X

CAO

(1- XeXJ

J

ForPFR,

V =FAO = va

k

fdX

f

dX

1-(1+ :JX 1

TpFR

-rm

=-;;

f

dX

( 1J 1- 1+- X Ke

= Xe

T

k

PFR

In--~ X-X e

P4-16 (b) ForCSTR,

V= Fma X -rm X

T CSlR

=

~k[;::-1--(-:-1' +-K-1e-J-X-=]

Putting the value of Ke,

TCSIR

X( XeXe-X J =k

P4-16 (C) Xe

In(.

Xe . )

In(-~-) X --X

vOlumeefficieney~qV=T::~ ~(; )=(~)=('x }{X,~£) T,

k

k

X -X

X e --X

4-35

X e -X

X -X

X

1] v

=

1-(~)

1 X

Xe In

X

1--· Xe

Xe

Following is the plot of volume efficiency as a function of the ratio (x/Xe),

See Polymath program P4-16-c.pol. 1.0 , ; : : : - - - - - - - - - - - - - - ,

Efficiency

0.8 0.6 04 0.2 0.0

0.010

- - - - - "- OA06v.\.1.604 0.802 1.000

0. 208

P4-16 (d) Efficiency = VPFR I VCSTR = 1 from problem statement, which is not possible because conversion will not be the same for the CSTR' s in series as for the PFR

-------_.

P4-17 (a) A--7Y2B E

= -1/2, X = 0.3, W = 1 kg, Yexit = 0..25

ForPBR,

C =Co (l-X)y A (1+ eX)

and

dX

rA

dW

FAO

dX

(1-x)2l

dW

(1+eX)2

--=z

kC o (l-

XY y2

let

vJl+eXY and

kC Ao

Z =---Vo

dy =-!:'.(l+eX) dW 2y

Solving for z by trial and error in Polymath to match x and y at exit, Yo = 1 and Yf = 5/20 = 0..25 X = 0.3 we get: a = 1.043 kg- l and z = 0.7 kg'l

See Polymath program P4-I7-al.pol. POLYMA TH Results 4-36

Calculated values of the DEQ variables variable

initial value 0 0

W

x

1

Y

esp alfa

-0.5 1.043 0.7

Z

minimal value 0 0 0 . 2521521 -0 . 5 1.043 0.7

maximal value 1

0.302004 1 -0.5 1.043 0.7

Differential equations as entered by the user [1] d(x)/d(W) = Z*«1-x)*y/(1+esp*x»)A2 [2) d(y)/d(W) =·alfa*(1+esp*x)/(2*y) Explicit equations as entered by the user [1] esp = -0.5 [2] alfa = 1.043 [3] Z=.7

Now for CSTR:

_ FoX _ X(l+cXY W -----_._--T

z(l-XY

A

Solving we get for W = lkg and z = 0..7 kg·' X=OAO

See Polymath program P4·17-a2.pol. POLYMA TH . . Results

NLE Solution Variable

x W esp Z

Value 0.396566 1 -0 . 5 0.7

fix)

-1.142E-13

Ini Guess 0.5

NLE Report (fastnewt) Nonlinear equations [1 J f(x) = W*Z*«1-x)/(1 +esp*x)}A2-x = 0 Explicit equations [1] W = 1 [ 2 J esp = -0 . 5 [3J Z = 0.7

P4-17 (b) For turbulent flow:

G2

a=(constant)Dp

4-37

final value 1 0.302004 0 . 2521521 -0.5 1.043 0. 7

= _a = 0.0326 j

a

=>:. Z2

and

32

2

= 4xO.7 = 2.8

Now solving using polymath:

See Polymath program P4-17-b.poI. POLYMATH Results Calculated values of the DEQ variables Variable w x

minimal value 0 0 0,9887079 -0.5 0 . 0326 2. 8

initial value 0 0 1

Y

esp alfa

-0 . 5 0.0326 2 "8

z

maximal value 1 0.8619056 1 -0.5 0.0326 2.8

ODE Report (STIFF) Differential equations as entered by the user [1 J d(x)/d(w) = Z*((1-x)*y/(1 +esp*x))"2 [2 J d(y)/d(w) = -alfa*(1 +esp*x)/(2*y) Explicit equations as entered by the user [ 1] esp = -0,,5 [2] alfa = 0,,0326 [3]

Z = 2.8

So, convelsion in PBR, X = 0,,862

P4-17 (C) Individualized solution P4-17 (d) Individualized solution P4-18 Given a Fluidized Bed ('SIR

w=

F[~&X

'fA

0= 0'

E =0,

thcll PA

=

p J'\o(t- X) p n

No pressure drop ill the CSTR

PA == l\o(I . . . X)

'vV =f"AO)l: kPAO(IX) ,

4-38

final value 1 0.8619056 0 . 9887079 -0.5 0 . 0326 2.8

k & F A(} unknmvl1 .. group into a constant, use values from 1st case,

~o C~x,) PA:\V ~j~20(150) =

~o ~t;1~~~)~~t ==

=

Put PFR downstream" less \Nasted volume

a)

'IS

P4-18 (b) b) PBR;

.,~~ dW

=

tAo:i~" == --r,~ = kPJ\o(l·- X)~)::;: kPAO(1-· X)(l ,,--nW)1l2(since e =0) P~Qk (I _ X)(l- aW)li2 FAO

PAOk rW ( . )112 l·-uW dW F;\0 ()

X z dX JxII····· X

·----"=--'JI

When X :;:: XI , \V.:::: 0

In } .- ~L .1 ",., X 2

=_~_I~.Ao. (~_?_ )[ I .m (I ' ', u W) 3/ 2 ]

1"",0. 5 1

F\o

3a

In [ l"::x-~. ""'atmkg 20dtm lO3

'."

2

3("0.oi8)""

[ '.' 1~ 1-,,(I-.O.018kg )Okg)

k(yb X2

=0.756 4-39

3{2]

P4-18 (c) C)

P == PO(!··' (lVV')

I·) ito

(

;=

1

.')t(Z

20 aIm J" 0018kg- (50kg) , = 63 alm

P4-18 (d) For turbulent flow

(~J2 = 0.0142kg-l l Dpz J2 (Ac.lAc2 J2 =(0.018kg- l )(,,~)2 1 1.5

a 2 = a (D Pl

P exit = P o(1- UW)05 = (20atm)(1-0.0142kg·!(50kg»1!2 = 10 ..7 atm 3

In[1-0.5]= 10-. 1-X2

atmkg

)][1-(1-0.0142kg - l (50kg l 3 0.0142kg-

20atm( (

2

)t2]

X 2 = 0.,77

P4-19 Production of phosgene in a microreactor . CO + Cl 2 -> COCl2 (Gas phase reaction) A+B ->C

See Polymath program P4·19.pol. .POLX,MA I!lResults Calculated values of the DEQ variables Variable W X

Y

e FAO FBO Fa Fb vO v Fe Ca Cb a k

rA Ce

initial value 0 0 1 -0.5 2"OE-05 2,OE-05 2.0E-05 2"OE-05 2,,83E-07 2,,83E-07 0 70,,671378 70,,671378 3.55E+05 0,,004 -19.977775 0

minimal value 0 0 0.3649802 -0,,5 2"OE-05 2"OE-05 4.32E-06 4,,32E-06 2,83E-07 2" 444E-·07 0 9,1638708 9.1638708 3,,55E+05 0,,004 -19,,977775 0

maximal value 3,,5E-06 0,,7839904 1 ··0" 5 2.0E-05 2.0E-05 2,OE-05 2"OE-05 2,,83E-07 4,,714E-07 1,,568E-05 70.671378 70,,671378 3.55E+05 0.004 -0.3359061 53,532416

ODE Report (RKF45) Differential equations as entered by the user [1] d(X)/d(W) = -rA/FAQ r2 J d(y)/d(W) = -a*(1 +e*X)/(2*y) Explicit equations as entered by the user

4-40

final value 3.5E-06 0.7839904 0,,3649802 -0.,5 2"OE-05 2.0E-05 4,32E-06 4 ,. 32E--06 2,.83E-07 4,. 714E-07 1" 568E--05 9,,1638708 9.1638708 3,,55E+05 0.004 -0.3359061 33,,259571

[1]

e

=-.5 =

FAO = 2e-5 Fa = FAO*(1-X) [6] vO = 2 . 83e-7 [8] Fe FAO*X [ 10] Cb Fblv [2] [4]

[3] FBO FAO [5] Fb = FBO-FAO*X [7] V vO*(1 +e*X)/y [9] Ca Fa/v [11] a = 3.55e5 [13] rA = -k*Ca*Cb

= =

= =

[12] [14]

k=.004 Ce

= Fe/v

P4-19 (a) 0 . 0 ..- - - - - - - - . - - - - - - - - - ,

1.0

0.0

0.8

0.0

0.6

[j Fa. - Fb - Fe

0.0

0.4

0.2

0.0

0.0

...--------------_=____,

IL--_ _ _ _ _

OOe+O

7.0('·· '7

~

__

~

_ _ _ ____l

lAe-6 W 2.1e-6

2.8e-6

0.0

.3.5l'-6

L -_ _ _ _ __

O.Oe+O

7.0l'-7

1.4e-6\V2.1e-6

2.8e-6

P4-19 (b) The outlet conversion of the reactor is 0 . 784 The yield is then MW*FA *X = 99 g/mol * 2 e-5 molls * 0 . 784 = .001.55 g/s = 48 . 9.5 g/ year. Therefore 10,000 kg/year / 48 . 95 kg/ year = 204 reactors are needed.

P4-19 (C) Assuming laminar flow, a - D p ·2, therefore

a z = a1 .D~1 = (3 ..55x105kg -1) 4 = 14.2x105kg- 1 DP2

4-41

3.5e-6

-5.---------------,

2.0 ...

16...-5

10 . - - - - - - - - - - - - - - - - ,

0.8

lj

1.2\'-5

80\'-6

"F:l •. lih

0.6 .

- Fe

OA

~." W

':'()e-':'

OOHO

l..4e-6 W2.1e-6

2.8e-6

0. 01'+0

_

_

'

_

~

_

-

0.0

3.5('-(;

L

O.OHOIL-----~-----·----l

I

02 _ _ _ _ _ _ _ _ _ __ _ l

':'.Oe-':'

1.41'-6 ",,2 ..1e-6

2.8e-6

3 . 5e-6

P4-19 (d) A lower conversion is reached due to equilibrium, Also, the reverse reaction begins to overtake the forward reaction near' the exit of the reactor"

P4-19 (e) Individualized solution P4-19 (f) Individualized solution P4-19 (g) Individualized solution

P4-20 (a) Mole Balance

_4~ =z lA' IF ... dW . . .o Rate Law

k k[!:r(

k' :.:;;; 11 ;;;;

t!>

com t!> ""'1)J

':' c Dp

4-42

k' '''''-'''''~'--'''''-''''-~'---- i1 - 1 k' = Tl k, k = -11 1.0·H;:::::::::::;1..-.._

Largen..

cD p

~

Increasing Particle Size

Then

3 . "" 11 == 3 :;;:: -_ ~-,

cDp



when Dp::: 2 mm, k' ::: 0.06, 11:::;:

{,= :~6,:::;; 0.02

3

0.02=: c(2)

,:=75

[~_~J~ For turbulent flow:

2{3 " PoAop(l- fjJ)

a =-

constant =>a=-----Dp

a

aoDpo Dpl

=--"-----.:..:..

P4-20 (b) See Polymath program P420"b.pol.

4-43

k'

= -1 = k" = 3

3.0

2.4

Q

1.8

1.2 0.6

0.0

0.0

04

0.8

16

Dp 12

2.0

P4-20 (C) Gas, £=0, C A =C"Q(l-X)y

~~. iy' whele a~a{~;) Ct,

~ pJi~)p,.~ =2oru;;;6---Jl%:~"s'i:~!ki:S2d;;;'r 708 x 10' kg' and

?Y

;:;;;

dW

a 2)'

See Polymath program P4 . 20·e.pol. POLYMA TH Results Calculated values of the DEQ variables Variable w X

Y

Dp Q Fao

initial value 0 0 1 0 . 0075 0.5625 5

minimal value 0 0 O. 2366432 0 . 0075 0 . 5625 5

maximal value 100 0 . 5707526

4-44

1

0 . 0075 0 . 5625 5

final value 100 0 . 5707526 0 . 2366432 0 . 0075 0 . 5625 5

alpha Cao kprime

0 . 00944 0.207 2.9385672 -0.1259147

ra

0 . 00944 0.207 2 . 9385672 -0.1259147

0 . 00944 0.207 2 . 9385672 -0.0012992

0.00944 0 . 207 2.9385672 -0 . 0012992

ODE Report (RKF45) 0.90

Differential equations as entered by the user [1] d(X)/d(w) = -ra/Fao [2] d(y)/d(w) = -alpha/21y

0.72

Explicit equations as entered by the user [lJ Dp = . 0075 [2J Q 75*Dp [3J Fao 5 [ 4 J alpha = .0000708/Dp [5J Cao .207 [ 6 J kprime = 3*(3/QA2)*(Q*coth(Q)-1) [7 J ra = -kprime*(Cao*(1·X)*y)A2

=

0.54

= =

036

0.J8

0.00 0.0

0.1

0.2

Dp 03

0.4

0.5

P4-20 (d) Individualized solution P4-20 (e) Individualized solution P4-20 (1) Individualized solution P4-20 (g) Individualized solution P4-20 (h) Individualized solution P4-21 (a) Assume constant volume batch reactor Mole balance:

dX CAD -

dt

= -rA

Rate law and stoichiometry: - rA

= kCA = kCAD (1- X)

Specific reaction rate: k ( 25° C) = 0.0022 weeks- l Combine:

dX --1 f----·= --In (1- X) kC (1- X) k

x

t=

CAD

D

AD

--}

52.2 weeks = 1 In (1- X) 0.0022 weeksX =0.108

CA = CAD (1-·· X) but since volume and molecular weight are constant the equation can be written as: m A = mAD (1- X) 4-45

6500IU mAO

= mAO (1-0.108)

= 7287IU

%OU = CAO -CA *100 = 7287 -6500 *100 = 12.1 % CA 6500

P4-21 (b)

10,000,000 lbs/yr = 458 * 109 glyr of cereal Serving size = 30g Number of servings per year = 458 * 109 /30 =1.51 * 109 servings/)'1 Each serving uses an excess of787 IU = 4 . 62 * 10-4 = 1.02 * 1O-6 1b Total excess per year = (L51 * 108 servings/yr) * (102 * 1O-6 Ibs/serving) = 154111b/yr Total overuse cost = $100/lb * 154.1 Ilb/yr = $15411 /)'1. (trivial cost)

P4-21 (C) If the nutrients are too expensive, it could be more economical to store the cereal at lower temperatures where nutrients degrade more slowly, therefore lowering the amount of overuse . The cost of this storage could prove to be the more expensive alternative. A cost analysis needs to be done to determine which situation would be optimaL

P4-21 (d) k ( 40° C) = 0.0048 weeks -)

6 months = 26 weeks

-1 fo kCAOdX(1- X )= -In (1- X ) k

x

t = CAO

-1 26weeks =-)In(1- X) 0.0048 weeksX =0.12 CA = CAO (1 - X) but since volume and molecular weight are constant the equation can be written as: m A =mAo(1-X) 6500IU =mAo(1-0.12) mAO

= 7386IU

%OU = CAO -CA *100= 7386-6500_*100=l3.6% CA 6500

P4-22 No solution necessary P4-23 CH20HCH2CI + NaHC0 3

-7

(CH2 0Hh + NaCI + CO 2

4-46

A FAa

+

c

B

= 0.1 mol/min = 6 mol/hI'

+ D

+ E

P4-23 (a) Mole balance:

dC A dt

= r + Vo (C V

!:!CB = r

dt

- C ) AO

+ V0

V r A = -kCACB

Rate law:

A

(_

C )

dCc dt

B

= -r + Vo (-- C V

V =Vo +Vot

See Polymath program P4-23-a.pol. POLYMA ~H Results Calculated values of the DEQ variables Variable t Ca Cb Cc Faa Caa k

Va va V r Xb Nc

initial value 0 0 0.75 0 6 1.5 5.1 1500 4 1500 0 0 0

minimal value 0 0 1. 395E-13 0 6 1.5 5.1 1500 4 1500 -0.0039398 0 0

maximal value 250 0.15 0.75 0.829586 6 1.5 5.1 1500 4 2500 0 1 2073.9649

ODE Report (RKF45) Differential equations as entered by the user [1] d(Ca)/d(t) = r+(voN)*(Cao-Ca) [2] d(Cb)/d(t) = r+(voN)*(-Cb) [3 J d(Cc)/d(t) = -r+(voN)*Cc Explicit equations as entered by the user [1] Fao =6 [2J Cao = 1..5 [3 J k = 5.1 [4] Vo = 1500 [5] vo = Fao/Cao [6] V=Vo+vo*t [7] r = -k*Ca*Cb [8] Xb = 1-Cb*V/(O.75*1500) [9] Nc = Cc*V

4-47

final value 250 0.15 1.395E-13 0.829586 6 1.5 5.1 1500 4 2500 -·1.067E-13 1 2073.9649

) C

LO

O,Oe+O"-j-----------~>

....-----------~

D

0. 8

-8.0e-4

0.6

-1.6e-3

04

-2 Ae-·31

/I

II

II

l I !

".

/

/

/

"P,""";'#'/

-3.2e-3 \

1

/

~/~

1" ¢~,#,,r 1 _-I.Oe_3l.!s:::..,"-~--~--~--- __- - : ' ,

0.0

0

50

100 t

150

200

,/.i'

o

250

50

100 t

150

200

250

3000.---------------,

0.90....------· - Ca

2400

0.72 ' 054'

036 600

1118 o,ool.::------------~~;...

o

50

100 t

150

200

250

o I)

50

100 t

150

200

P4-23 (b) Taking average time for activities like charging, heating, cleaning = 4..5 hr So, if there is one batch per day, the time for reaction = 24-4.5 hr = 19.5 hr Since at the temperature at which we are operating the reactor no side reactions occur, the quickest way to run the reaction will be at the highest flow rate of A (2 mol/min or 120 mol/hour) But at 19.5 hours and a flow rate of 120 mol/hr, 1560 dm3 would be added to the reactor.. Because the volume of the reactor is 2500 dm3 , and there is already 1500 dm3 of B in the reactor, the reaction cannot not run for 19.5 hours at a flow rate of 120 mol/hr (2 mol/min) Also, because there is 1500 dm3 ofB at a concentration of 0.75 M, there are only 1125 moles ofB to react. This means about 750 dm3 of 15 M A is all that can be reacted. More A may be added to the reactor to keep the reaction rate high as the concentration of B drops, but adding twice the necessary volume would be a waste of time and material (on top of being physically impossible !).. To add 1125 moles of A at a rate of 120 mol/min takes 9375 hours. Using the Polymath code from part (a) and changing Fao to 120 and the time to 9375 gives 1107 moles of C. Allowing the reaction to go for 9.5 hours results in 1115 moles of C and a reaction time of 10 hours gives 1124 moles of C. Now consider multiple batches per day.. If two batches are run, then there will be 9 hours of downtime, meaning that the time for the reaction will be 15 hours - split between the two batches, with a maximum

4-48

batch time of 10 hours., The following table shows the tluee possible times for reactions and the moles of C that are formed from the two batches. Maximum Batch Time (hr) 10 9

Total Moles of C Formed 1723 1790 1795 ..-

8

So the best setup will be to run 2 batches per day. One batch will run for 8 hours and the second batch for 7 hours. Both will be run with a flow rate of 2 mol/min of A. (If tlu'ee batches are run there will be 135 hows of downtime and only 105 hours for the reaction. A maximum of 1257 moles of C can be formed if the time is split evenly for each batch (3.5 hows).)

See the Polymath code from part (a) and vary time and flow rate.

P4-23 (C) F AO = 0.15 mol/min = 9 mol flu vo = FaofCa = 9 molJlu f 1.5 mol/dm3 = 6 dm3flu 3

1000 dm3 is needed to fill the reactor. At 6 dm flu it will take 166.67 hows

Now solving using the code from part (a) with the changed equations:

See Polymath program P4-23-e.pol. 1.0 , - - - - - - - . - - - - ,

0.8 0.6 0.4

66

t

99

132

165

P4-23 (d) Individualized solution P4-24 NaOH + CH3 COOC2 H s ------t CH 3 COO- Na+ + C2 H sOH A+B~C+D

4·49

Mole balance:

dec =-r+ va dt V

(-c) C

Rate law:

V=Va+Va t k =koex p (

!Uo -nJ

To produce 200 moles of D, 200 moles of A and 200 moles of B are needed. Because the concentration of A must be kept low, it makes sense to add A slowly to a large amount of R Therefore, we will start with pure B in the reactor. To get 200 moles of B, we need to fill the reactor with at least 800 dm3 of pure R Assume it will take 6 hours to fill, heat, etc . the reactor. That leaves 18 hours to cany out the reaction. We will need to add 1000 dm3 of A to get 200 moles in the reactor. We need to check to make sure the reactor can handle this volume if only 1 batch per day is to be used . Since we add 1800 dm3 or 18 m3 and the reactor has a volume of 4.42 m3 we can safely carry out a single batch per day and achieve the necessary output of ethanol. Now vary the initial amount of B in the reactor, the flow rate of A, and the temperature to find a solution that satisfies all the constraints . The program below shows one possible solution .

See Polymath program P4--24.pol. POLY1VIA TH Results Calculated values of the DEQ variables Variable t Ca

Cb Cc Cd ko

Fao Cao Vo vo

initial value

o o

0 . 25

minimal value

o o

0 . 0068364

o o

o o

5.2E-05 0.04

5 . 2E-05 0 . 04 0.2 1200

0. 2

1200 0.2 308 1.224E-04

ra

o

308 1..224E-04

V Nc

1200

1200

o

o

T k

maximal value 6 . 5E+04 0.1688083 0 . 25 0 . 0151725 0 . 0151725 5.2E-05 0 . 04 0.2

1200 0. 2 308 1 . 224E-04 1.397E--06 1 . 42E+04 202 . 92284

0.2

o

ODE Report (RKF45) Differential equations as entered by the user [11 d(Ca)/d(t) = -ra+(vo/V)*(Cao-Ca) [2] d(Cb)/d(t) = -ra-(vo/V)*Cb [3] d(Cc)/d(t) = ra-(vo/V)*Cc [ 4] d(Cd)/d(t) = ra-(voN)*Cd Explicit equations as entered by the user

4-50

final value 6.5E+04 0 . 1688083 0 . 0068364 0.0142903 0 . 0142903 5.2E-05 0 . 04 0. 2 1200 0.2 308 1 . 224E-04 1.. 412E-07 1 . 42E+04 202 . 92284

[ 1] ko == 5 . 2e-5 [2] Fao == .04 [3] Cao ==.2 [4] Vo == 1200 [5] vo == Fao/Cao [ 6] T == 35+273 [7] k == ko*exp«42810/8.3144)*(1/293-1fT)) [8] ra == k*Ca*Cb [9] V == Vo+vo*t [10] Nc == Cc*V

P4-25 (a) A ~ B + 2C To plot the flow rates down the reactor we need the differential mole balance for the three species, noting that BOTH A and B diffuse through the membrane

dFA =r -·R dV A A dFB =r -R dV B B dFc --=r. dV c Next we express the rate law: First-order reversible reaction

Transport out the sides of the reactor:

kACroF

A RA =kAC A = -.!.!......!..!!.-!.!.. FI

kBCroF Fr

B RB = kB CB = --"'--'-""--':::.. Stoichiometery:

Combine and solve in Polymath code:

See Polymath program P4-25-·a.pol. POLYMA TH Results Calculated values of the DEQ variables 4-51

Variable v Fa Fb Fe Ke Ft Co K Kb ra Ka Ra Rb Fao

initial value 0 100 0 0 0.01 100 1 10 40 -10 1 1 0 100 0

X

final value 20 57.210025 1. 935926 61.. 916043 0.01 121.06199 1 10 40 -0.542836 1 0 . 472568 0.6396478 100 0.4278998

maximal value 20 100 9.0599877 61.916043 0.01 122.2435 1 10 40 -0.542836 1 1 2.9904791 100 0.4278998

minimal value 0 57 . 210025 0 0 0.01 100 1 10 40 -10 1 0 . 472568 0 100 0

ODE Rel!ort {RKF4S1 Differential equations as entered by the user [1 ] d(Fa)/d(v) ra .. Ra [2] d(Fb)/d(v) ··ra .. Rb [3 ] d(Fe)/d(v) -2*ra

= = =

Explicit equations as entered by the user [1] Ke = 0..Q1 [2 J Ft = Fa+ Fb+ Fe [3 ] Co = 1 [4] [5] [6] [7 ] [8 ] [9]

3

K= 10 Kb = 40 ra = - (K*Co/Ft)*(Fa- CoI\2*Fb*FeI\2/(Ke*FtI\2)) Ka = 1 Ra = Ka*Co*Fa/Ft Rb = Kb*Co*Fb/Ft

r-...,....,---------.-----

100

2

80

2

60

1

40

~---

1

0

0

..j

8

~.~ 16 20

v

20 ..., ..........--.-~-.......... (I

12

o

4

8

y

12

16

P4-25 (b) The setup is the same as in part (a) except there is no transport out the sides of the reactor .

See Polymath program P4-25-b.pol. POL YMAIH Results 4-52

20

Calculated values of the DEQ variables Variable v Fa Fb Fc Kc Ft Co K ra Fao X

initial value 0 100 0 0 0.01 100 1 10 -10 100 0

final value 20 84.652698 15.347302 30.694604 0.01 130 . 6946 1 10 -3.598E--09 100 0.153473

maximal value 20 100 15.347302 30 . 694604 0.01 130.6946 1 10 -3.598E-09 100 0.153473

minimal value 0 84.652698 0 0 0.01 100 1 10 -10 100 0

ODE Report (RKF45) Differential equations as entered by the user [1] d(Fa)/d(v)::: ra [2] d(Fb)/d(v) ::: -ra [3] d(Fc)/d(v) = -2*ra Explicit equations as entered by the user [1] Kc = 0.01 [2] Ft = Fa+ Fb+ Fc [3] Co=1 [4] K=10 [5] ra = - (K*Co/Ft)*(Fa- CoA2*Fb*Fc"'2/(Kc*FtA2»

-------------------

0.50 0 . 45 0.40 0.35 0.30

[ --] - X PFR

0.25

... X l\fembmn.

0.20

-.---..----.-

............

0 . 15

~------

............-.--.-...

--.. .....--_........_---_... ""

0.10 0 . 05 0 . 00

t -_ _ _ _ _ _ _ _ .. ________

0

2

4

6

8

~

10

___

V 12

14

16

P4-25 (C) Conversion would be greater ifC were diffusing out P4-25 (d) Individualized solution 4-53

18

20

P4-26

co

+ H20 ...... CO2 + H2 A+B ...... C +D Assuming catalyst distributed uniformly over the whole volume

dF

dF

Mole balance:

A =r ._-

Rate law:

r = rA = rB=C -.y'

dW

RH2

=

KH2

dF

B =r --

dF dW

e = -r --

dW

- -D= - r - R

dW

= -1D = -k

[c

H2

C _ CeC AB K D] eq

CD

Stoichiometry:

FD CD=C ro FT FT

= FA + FB

+ Fe + FD

Solving in polymath:

See Polymath program P4-26.pol. POLYMA TH Results Calculated values of the DEQ variables variable ---W

Fa Fb Fe Fd Keq Ft Cto Ca Cb Kh Ce Cd Rh k r

initial value 0 2 2 0 0 1,,44 4 0,,4 0,,2 0.2 0,,1 0

°°

1.. 37 -0,,0548

minimal value

maximal value

0 0,,7750721 0,,7750721 0 0 1.44 3.3287437 0.4 0.0931369 0.0931369 0.1 0 0 0 1.. 37 -0,,0548

100 2 2 1,,2249279 0.7429617 1,,44 4 0.4 0.2 0.2 0.1 0.147194 0,,0796999 0,,00797 1..37 -0,,002567

ODE Report (RKF45) Differential equations as entered by the user [ 1 J d{Fa)/d{W) = r [2 J d{Fb)/d{W) = r [ 3 J d{Fc)/d{W) = -r [ 4 J d{Fd)/d{W) =- r -Rh Explicit equations as entered by the user [1] Keq = 1..44 [ 2] Ft = Fa+Fb+Fc+Fd [3] Cto = 0.4

4-54

final value 100 0.7750721 0,7750721 1.2249279 0,5536716 1. 44 3,,3287437 0,,4 0" 0931369 0,,0931369

°"

1 0,,147194 0.0665322 0.0066532 1..37 -0,,002567

[4] Ca = Cto*FalFt [ 5] Cb =Cto*Fb/Ft [6] Kh=O,,1 [ 7] Cc = Cto*Fc/Ft [ 8] Cd = Cto*Fd/Ft [9] Rh = Kh*Cd [10] k= 1 . 37 [11] r -k*(Ca*Cb-Cc*Cd/Keq)

=

For 85% conversion, W

= weight of catalyst = 430 kg

In a PFR no hydrogen escapes and the equilibrium conversion is reached.

= CeCD = C~OX2

K eq

CACB

=_

C~o(1 __ X)2

X_2_ = 1.44

(l_X)2

solve this for X, X= 5454 This is the maximum conversion that can be achieved in a normal PFR.

If feed rate is doubled, then the initial values of Fa and Fb are doubled. This results in a conversion of 459 2 . 0 r;;----;::====;_

1.6

_..,,,.,---_.....

1.2

--

...

0.8

04

20

·40

W 60

80

100

P4-27 Individualized solution P4-28 (a) Assume isothermal and £=0

therefore,

P=Po(l-aWl5

1=10 (1-.01 glW).5

W=99g

P4-28 (b) 4-55

dX -rA dW= FAO .!..=(l-Wa)-' Po

-rA =kCA CA ==CAo(l-X) PlPo

CA =CAo(1 -X) (1 - 0.01 W).5

Integrate from X=O to X=.9

ax = kCAO (1-X) (l-.01W).5

dW

FAo

W=59.88g

Fust 5% conversion integrate from X=O to X=.OS W=1.31 g

Last 5% conversion integrate from X==.85 to X=.90 W:alO.85 g

P4-29 Individualized solution P4-30 (a) First order gas phase reaction, C6HjCH(CH3h -7 C6~ + C3~ YAO = 1, g = 1 ~ [; = 1

P

kC

Y = - , a = -AO -

Po

FAO

For aPBR:

dX dW

a(1-X)

= (1 +

iT

dy

(I+X)

dW

2y

-=

y ........................ (1)

a" ....................... (2)

X = 0.064 and y = 0 . 123, Solving (1) and (2) by trial and enOl on polymath we get, a = 0.000948 (kg of catalystr1 a = 0.000101 dm- 3

4-56

Now solve for a fluidized bed with 8000 kg of catalyst. FAOX

Mole balance: W = - -rA Rate law: -fA = kCA

I-X I+cX

Stoichiometry: CA = CAO - - Combine: W

= X (I + eX) = 8000 = ___. X (I + X) a(1-X) O.OOOlOI(I-X)

X =0.37

P4-30 (b) ForaPBR:

dX _ a(1-X) dW - (I+XfY dy _ (I+X) ---- - ' - " - - a

dW

2y

where

a = kCAO FAO

From chapter 12 we see that k will increase as Dp decreases_ We also know that for turbulent flow

I a-· - .. This means that there are competing fOIces on conversion when Dp is changed . Dp We also know that alpha is dependant on the cross-sectional area of the pipe:

I

a - ._--

Ac

But alpha is also a function of superficial mass velocity (G). If the entering mass flow rate is held constant, then increasing pipe diameter (or cross-sectional area) will result in lower superficial mass velocity . The relationship is the following for turbulent flow:

I 2 G - - and a-G

Ac

I

therefOIe, a _. -'2 .

~

If we combine both effects on alpha we get the following:

I

I

a--Ac~ I

a-~ So increasing pipe diameter will lower alpha and increase conversion and lower pressure drop .

4·57

For Laminar flow:

1

a-·D2 p

so decreasing the particle diameter has a larger effect on alpha and will increase pressure drop resulting in a lower conversion

1

For Laminar flow a·- G and so a .-. -2 .

A;

This means increasing pipe diameter will have the same trends for pressure drop and conversion but will result in smaller changes.

P4-30 (c) Individualized Solution P4-31 (a) K = 0. . 0.5

= 0..33(1-3) =-0..666 P AO = 0..333*10 F Ao = 13.33 Mole balance: dXldW = -ralFao rA = -KPB Rate law: P A= P AO(l - X)/(l - o..666X) Pc = P AoXl(l - o. . 666X) For a = 0., Y= l(no pressure dlOp) I>

10..---------------#_-

0. 00

8

-0.08

6

-0.16

.-----------.--$-.__---:=

1

4

-0.24

2

-032/

o I)

-040

20

·to

W 60

80

/

L -_ _

o

100

~

_____

20

40

~_.

\V 60

See Polymath program P4-31-a . pol. POL):''l~'IA!!1

Results Calculated values of the DEQ variables Variable

initial value -------

X

o

K

0.05 3 . 33 3 . 33 6 . 66

0 . 05 3 . 33 0.0406732 0 . 0813464

Pao Pa

Pb Pc Fao ra

o

minimal value

o o

W

o

13 . 33 -0 ...333

o

13 . 33 -0.333

maximal value 100 0.995887 0 . 05 3.33 3 . 33 6 . 66 9.8482838 13 . 33 -0 . 0040673

4·58

final value 100 0.995887 0 . 05 3 . 33 0 . 0406732 0.0813464 9.8482838 13.33 -0 . 0040673

_ _ _....J

80

100

esp

-0.666

-0 . 666

-0 . 666

-0 . 666

ODE Report (RKF45) Differential equations as entered by the user [1 j d(X)/d(W) = -ra/Fao Explicit equations as entered by the user [1] K = 0.05 [2] Pao = 0 . 333*10 [3] Pa = Pao*(1 - X)/(1 - 0 . 666*X) [4] Pb = 2*Pa [5] Pc = Pao*XI(1 - 0 . 666*X) [6] Fao = 13 . 33 [7] ra = -K*Pb [8] esp = -0.666

For first 5% conversion weight required = WI = 2 kg For last 5% conversion weight required = W 2 = 38 kg Ratio = Wi WI = 19 Polymath solution (4-34 a)

P4-31 (b) For a = 0 . 027 kg· l , Polymath code with pressure drop equation:

See Polymath program P4·31-b.pol. POLYMA TH Results Calculated values of the DEQ variables Variable w

X Y K

Pao Pa Pb Pc Pao ra esp alfa

initial value 0 0 1 0.05 3 . 33 3.33 6 . 66 0 13.33 -0.333 -0.666 0 . 027

minimal value 0 0 0.1896048 0.05 3 . 33 0.4867002 0.9734003 0 13 . 33 -0 . 333 -0.666 0.027

maximal value 30 0.4711039 1 0.05 3.33 3.33 6 . 66 1.0583913 13.33 -0.04867 -0.666 0.027

final value

~----

0.4711039 0.1896048 0.05 3.33 0.4867002 0.9734003 0.4335164 13 . 33 -0 . 04867 -0 . 666 0.027

ODE Report (STIFF) Differential equations as entered by the user [1] d(X)/d(w) = ·ra/Fao [2] d(y)/d(w) = -alfa*(1 - esp*X)/(2*y) Explicit equations as entered by the user [1] K=0 . 05 [2] Pao = 0.333*10 [3] Pa = Pao*(1 - X)*y/(1 - 0 . 666*X) [4] Pb = 2*Pa [5 J Pc = Pao*X*y/(1 - 0.666*X) [6] Fao=13.33

7.0

5.6

42 2.8 14

4-59 0.0 OC""""-~---'---~--~---'30 6

12

W 18

24

ra = -K*Pb esp -0.666 alfa = 0,,027

[7

=

[8 [9

0.00,---------------,

1.0 . . . . . , . . . - - - - - - . - - - - - - - - ,

0.8 0.6

0.4 0.2 -040~-~--~--~-----~

o

6

12

W 18

2-t

0.0

L -_ _ _ _ _

o

30

6

~

_ _ _ _ _ _ _- - '

12

W 18

2·4

30

P4-31 (C) 1) For laminar flow: Diameter of pipe = D and diameter of particle = Dp Now DIlDo = 3/2 so G I = 4/9Go a = (constant)(GID/)(lIAc) So a = ao(G/Go)(Dpof Dpl)2(DofDI)2 = ao(4/9)(2/3)2(2/3)2 = 0 . 00237 kg· 1 Less pressure drop and more conversion for same weight of catalyst as in part (b). 2) For turbulent flow: ~

G2IDp a = (constant)(G2IDp)(lIAc) So, a = ao(G I/Go)2(Dpof D pl )(DofDl)2 = ao(4/9)2(2/3)(2/3)2 = 0.0016 kg·! Again less pressure drop and more conversion for the same catalyst weight eX)

It is better to have a larger diameter pipe and a shorter reactor, assuming the flow remains the same as through the smaller pipe.

P4-32 (a) At equilibrium, r = 0 =>

cAeB

4-60

1.O,-:::::==========; 0.8

0.6

04

0.2

OO~~~------~----------~

0081:0

=>

CAO (l-X(CBO ~t-C V AO o

AO => t= VOC [X2

VOC BO ,Kc(l'-X)

+

1 0..1:5 t 1 56E5

5.181:4

2.07E5

2591:5

xJ= (CAOXY K

C

x]

Now solving In polymath.

See Polymath program P4-32-,a.pol.

P4-32 (b) See Polymath program P4-32-b.pol. POLYMATH Results Calculated values of the DEQ variables Var~able

t

Ca Cb Cc Cd Kc k

ra va Va V X

initial value 0 7.72 10.93 0 0 1.08 9.0E-Os -0.0075942 0.05 200 200 0

minimal value 0 0 2074331 7.6422086 0 0 1. 08 9 OE-05 --0.0075942 0.05 200 200 0

---

maximal value 1.SE+04 772 10.93 3.2877914 3.2877914 1 08 9.0E-OS ··1.006E-Os 0.05 200 950 0.9731304

final value '-L5E+O-40.2074331 9.51217 1.41783 1. 41783 1 08 9.0E-Os -·1.006E-OS 0.05 200 950

0.9731304

1.0e+o ,

8.0e--l

ODE Report (RKF4S) Differential equations as entered by the user

6.0e-l

..,.' . /',;',."

..

.,.~ ~,,,"~ ~~

.........

-.--

~-"

..

~ ... ~- . . .

¥ ...

~~

[oJ --_ ..

I

f

".

!

-,

..

I

I

40e--l 2.0e--l

4-61

O.Oe+o 0

2976

5952t

8928

11904 14880

[1 [2

[3 [4

d(Ca)/d(t) = ra - Ca*voN d(Cb )/d(t) = ra - voN*(Cb- 10 . 93) d(Cc)/d(t) = ora - vo*CcN d(Cd)/d(t) = ora - vo*CdN

Explicit equations as entered by the user [1 J Kc = 1.08 [2] k = 0,00009 [3] ra = -k*(Ca*Cb - Cc*Cd/Kc) [4] vo = 0,05 [5] Vo = 200 [ 6] V =Vo + vo*t [7] X = 1 - Ca/7.72 2(le+l . . . . - - - - - - - - - - - - . , -1.6e-3

.' c;:J< • ell

1.6e+1

D

-3.2e-3

.~-n

L2e+l

I\'-_--------l

-4.8e-3

8.Ue+O

·6 ...:/e-3 '

'.O'ffi~

-8.0e-3

Lo 2976

5952

t

8928

t),Ue+O

1190-1 1,4880

o

2976

5952

t

8928

11904 1-1880

Polymath solution

P4-32 (c) Change the value of Vo and CAO in the Polymath program to see the changes

1 II , - - - - - - - .

08

P4-32 (d) As ethanol evaporates as fast as it forms: Now using part (b) remaining equations, Polymath code:

CD=O 11,6

04

See Polymath program P4·32··d.po!. POLYMATH Results Calculated values of the DEQ variables

11 . 2

Variable initial value minimal value maximal value final value t 0 o 7.72 0.0519348 Ca 10.,93 6.9932872 Cb

0.0

k

ra va Va

9.,OE-05 --0" 0075942 0,,05 200

9,OE-05 -0,0075942 0,,05 200

'----~---------~----'

I)

6000 7 . 72 10,,93 9"OE-05 -3,,69E-05 0.05 200

4-62

1189

2378

t

3567

6000 0,,0519348 7.8939348 9"OE-05 -3 .. 69E-05 0.05 200

4756

5945

V X

200

200 0

500 0_9932727

500 0_9932727

o

ODE Report (RKF45) Differential equations as entered by the user [1] d(Ca)/d(t) = ra - Ca*voN [2] d(Cb)/d(t) ra - voN*(Cb- 10.93)

=

Explicit equations as entered by the user

=

[1 J k 0.00009 [2] ra = -k*Ca*Cb [3] vo = 0.05

[4J Vo = 200 [5] V [6] X

=Vo + vo*t = 1 - Cal7. 72 ------.-------

20

O.Oe+O~-----

16

12

8

""'--.".,,~.....

--

-... ..-.... "

.........................--.'.........,._..... .,..

4

-8.0e-.3 0

{I

-~---~::-::--~-------

1189

2378

t .3567

4756

5945

o

P4-32 (e) Individualized solution P4-32 (0 Individualized solution P4-33 (a) Mole balance on reactor 1:

- dNAl CAlv-rAlV - - dt C dN -.AQ. v -C v - r V=--..A!... 2 0 Ai Al dt CAOV AO -

.

with

1 2

_ V AO - - Vo

Liquid phase reaction so V and v are constant CAO

CAl

2r

r

--- - ---- - r Al

_ dCAl

- -----

dt

Mole balance on reactor 2:

4-63

--~-:----....::::::::::::::;:====~

1189

2378 t

3567

____--!

4756

5945

CAl C A2 , _ dCA2 ------r --

T

T

dt

A2

Mole balance for reactor 3 is similar to reactor 2:

, _ dN C A2V O - CA3VO -rA3V - - -A3dt C

C

_ dC

A3 - A2 - - - -A3- r - - -

T

T

A3

dt

Rate law:

--rAi

=kCAiCBi

Stoichiometry For parts a, b, and c C Ai = CBi so that -rAi

= kC~i

See Polymath program P4-33"pol. POL YMA TH Results Calculated values of the DEQ variables Variable t Cal Ca2 Ca3 k

Cao tau X

initial value 0 0 0 0 0" 025 2 10 1

minimal value 0 0 0 0 0,,025 2 10 0,3890413

maximal value 100 0,8284264 0,,7043757 0.6109587 0.025 2 10 1

ODE Report (RKF45) Differential equations as entered by the user

4-64

final value 100 0.8284264 0.7043757 0.6109587 0.025 2 10 0" 3890413

d(Ca1)/d(t) = (Cao/2 -Ca1)/tau -k*Ca1A2 [2] d(Ca2)/d(t) = (Ca1 - Ca2)/tau -k*Ca2A2 [3] d(Ca3)/d(t) (Ca2 - Ca3)/tau -k*Ca3A2 [1]

=

Explicit equations as entered by the user [1] k = 0,,025 [2] Cao=2 [3] tau 10 [4] X = 1 - 2*Ca3/Cao

=

From Polymath, the steady state conversion of A is approximately 0.39

P4-33 (b) 99% of the steady state concentration of A (the concentration of A leaving the third reactor) is: (0.99)(0.611) = 0.605 This occurs at t =

P4-33 (C) The plot was generated from the Polymath program given above. 0.90 r - - - - - - - - - - - - - - - - - - ,

0.72

0.54

- Cal 0.18

- Ca2 - (:a3

o00 ~:....--........---~-----'------'.------I .

0

20

40

t

60

80

100

P4-33 (d) We must reexamine the mole balance used in parts a-c. The flow rates have changed and so the mole balance on species A will change slightly. Because species B is added to two different reactors we will also need a mole balance for species B . Mole balance on reactor 1 species A: CAOVAO -CAlv-rAIV

dNAI

.

= - - - wIth

dt dN AI -_·v -C v-r V=---

VAO

2

200

3

15

=--Vo and Vo = - -

2CAO

3

0

Al

M

~

Liquid phase reaction so V and v are constant

4-65

CAO - - -CAl - - r =dCAI -27: 7: Al dt

Mole balance on reactor 1 species B: , _ dN BI CBOV BO -CBIV-yBIV - - - and

dt

Stoichiometry has not changed so that -rAi = --lBi and it is a liquid phase reaction with V and v constant CBO C , _ dC BI - - - - -BI- Y - - 37: 7: Al dt

Mole balance on reactor 2 species A: We are adding more of the feed of species B into this reactor such that V2 = Vo + VBO = 20

CA2V 2 -

CAlVO -

dNA2

rA2 V

=--

dt

Mole balance for reactor 3 species A:

-rA3V

C A2 V 2 - CA3 V 2

C

C

7: 2

3

, _ dCA3

A2- - -A3- Y --

7: 2

dNA =dt

A3

---

dt

Mole balance for reactor 3 species B: C

, _ dN B3 V --C V --,Y V B2 2 B3 2 A3

dt

C B2 C , _ dCB3 -· - - -B3- Y -A3

7:2

7:2

dt

Rate law:

4-66

See Polymath program P4-J3-d.po1. POLYMA TH Results Calculated vaiues of the DEQ variables Variable t Cal Ca2 Ca3 Cb1 Cb2 Cb3 k Cao tau X

tau2 V

vbo

initial value

o o

o o o

minimal value

o

o o o o

o o

o o

0 . 025 2 13.333333 1 10 200 5

0.025 2 13.333333 0.3721856 10 200 5

maximal value 100 1.1484734 0.7281523 0 . 6278144 0.4843801 0.7349863 0.6390576 0.025 2 13.333333 1

10 200 5

ODE Report (RKF45) Differential equations as entered by the user [1 J d(Ca1 )/d(t) = (2*Cao/3 -Ca1 )/tau -k*Ca1 *Cb1 [2 J d(Ca2)/d(t) = Ca1/tau - Ca2/tau2 -k*Ca2*Cb2 [3 J d(Ca3)/d(t) = (Ca2 - Ca3)/tau2 -k*Ca3*Cb3 [4] d(Cb1 )/d(t) = (1 *Cao/3-Cb1 )/tau-k*Ca1 *Cb1 [5] d(Cb2)/d(t) = Cb1/tau+Cao*vboN-Cb2/tau2-k*Ca2*Cb2 [6 J d(Cb3)/d(t) = (Cb2-Cb3)/tau2-k*Ca3*Cb3 Explicit equations as entered by the user [1] k=0.025 [2J Cao =2 [ 3 1 tau = 200/15 [ 4 J X = 1 - 2*Ca3/Cao [5] tau2 = 10 [6] V = 200 [7] vbo = 5

Equilibrium conversion is 0.372 . This conversion is reached at t = 85.3 minutes .

4-67

final value 100 1.1484734 0 . 7281523 0.6278144 0_4821755 0.7291677 0.6309679 0.025 2 13.333333 0.3721856 10 200 5

2.0 . - - - - - - - - - - - - - - - - - - , - Cd

1.6

- Cal

1.2

0.8

---,_."._" ......"" . ".,,---1

0.4

0.0

"""""=--~---'-----~--~----'

o

P4-33 (e)

20

40

60

80

100

Individualized solution

CDP4-A CH3I + AgCl04 0.7 molll CE31 0.5 moli1 AgCI0

V '" 30 dm o

;=

4

~

CH3Cl04 + AgI

CBO ~

CAD

3

3/2

C tCH 1 ~ -k C;CH IAgCI0 3 4 S k ~ 0.00042 (dm 3!mol)3!2(sec)-1 T=298 K I "" 0.93 Integration for! "" 0.98, solved lll!lllerically 1 . t =

~---.- ••.• ~

(24.18)

0.00042 (O.5)3fb t "

v = Vo

CDP4-B a)

4-68

1.628:t10

5

sec '" 4S.:2 hr

d=". -"-'=1:"' dt - -

dr

dX

= -FAO -

4-76

dr

X) = CAO (1- X)

= rA (2mh)

J(21lkC

=

2 AO

)rdr

FAO

Ro

x

By Integration we get: - - -

I-X

b) Now, with the pressure drop, C A= CB = CAO(l-X)y Hence,

-rA =kCA0 20-X)2y2

dX _ 2mhkCAO dr Where

2

0_ -

y = (1- aW)1I2

2

X) Y

"",,----_._-----------, ..,......

=>

1~"

2

G"phTItl.

tJ2&3

and

W = PbJZ"(r 2 - RO 2 )h Using polymath, following graph is obtained: Differential equations d(X)/d(r) =2*3 . 1416*h*k*Ca0"2/Fao*(1-X)1\2*yI\2*r y = (1-alfa*W)"O . 5 W = density*3_1416*h*(rI\2- 1'0"2) ro 0,,1 density = 2 Cao = 0.1 Fao 10 k=0,,6 h=O.4 alfa = 0 . 07 variable name: r initial value: 0.1

oro.

'--""'---_~---'-_~

~

~

~

~

~

_ _ _ _. ~

,

~

~

m

=

=

c) Increasing the value of k increases conversion while decreasing it decreases the conversion" Increasing FAO will decrease the conversion and decreasing it will increase the conversion. Increasing C AO causes a dramatic increase of conversion.. Similarly, decreasing CAoresults in a large decrease in conversion. Increasing the height will only slightly increase the conversion and decreasing the height causes a real small decrease in the conversion. Increasing Ro decreases the volume ofthe reactor and hence decreases the conversion. Increasing RL will increase the conversion as volume increases .

4-77

CDP4-H Liquid phase rexrion A+B--rC

vellmixed no inflov or outtloll BATCH

L Mole balance on batch reactor

2. Ratelaw -1'A "'" Ie eACa

3. SroichiCll:!l!'!try liquid phase

V "" V" (batCh) (if flow u

=u",]

4. C.ommne

4-78

Table of reaction imegrals can be found in Appendix A-lO. a)

I. Niok baIa...,ce on CSTR

2. RateLaw

3. Stoichiometry liquid phase

u ::::: U o

4, Combine:

5. Parameter evaluation 10 moUmin (0.9) V=: - - - - - - - . ..._--

(o,m d:a:J!l/mol min) (2 lllOvd,m3f(1-0.9)2

b)

V"", 22500 4m3

1. Mole bala.'1ce onPFR FAO JiX.::::: 'dV

-fA

if!lQ pressure OJ.' phase change (liquid phase) therefore

r

V=F~o ~~ 2. Ratelaw

4-79

5, P = = evaluation

C:A

~

:;=

fM ~l·:~~., = (~AD Cl--A)

U

___ :-QQ.rooVrrrin}· ___ (01 cio:r'Jmol min)(2 rnolJdm'J

F,,,,,ieR_hX\

:: __:...~.:__.,.....1t., ....~_;;:; (:AD (I···X)

C::s ::::

e)

"rA=kfcACS··~ t

KcJ

Arequilibrium

Kc - _Cce ....

(A

V""rAO

I

;j.~: .

li·X)'-

10

=

- CAe CJl"

""

x

~=4

_X,.= X. KCN)

X2-2.25X-t 1=0

PFR .dX.",.::!A.""kC rC (1-X'I1.X.j""kC2 0 [(lXf·,:;. X ..J dV FAG AOl AO I Kc A \ KcCAol

f6 .-. . ."...")-''''X",.,",....X'_. £.,i o 1·· • • JA,

+, •

V", 250 ~.[~O).,. 4~, 15) -+ l~ ,3) + 4~,45) .. i\ 6}]::::

150

Q'j 5[11 4{ 141)t 2(241).· 4{5.26) +100J

V", 250 ~[r{O) + 4~.,15) + 2~,.3)+4ft.45)+ ~6)J

.:;: 250 llir ;~11.411 +-li2Al) + 4{5 26) +100J 3 c1., "'\ • '" 1656 c:n'

CDP4-I (a)

4-80

,·,,,,=0

,.,.CAolL.= __ ..,..x._.._ CAd)-Xf

C'idl-xf

KCAo=l~. 1 .,. 2X +- X2

V", 250

.

d) Solution si::::ni1:at· to part (a) ro (e)

-UO

'J

·····,i·f1g·

v = .....

DO

4

Benzene is A -rA =k A (C A2

for equilibrium - rA

=0

C CBC K ) c

_

:.

4Kc:{1-Xc'f =Xc

2

2

4Kc - SKcXc: + 4KcXc = Xc

2

0.2X2 - 2.4Xc: + 1.2 = 0 Xc: =0.52

CDP4-I (b) PFR

Design Equation:

V = FAD

I -rA dX

-rA =k A (C 2A

RateLaw:

_

C CBC K ) C

Stoichiometry :

C Ao

=~ = RT

C

,,= CAD (1 - X)

CB

=C 2 X Ao

C

c

5 atm = 0.OO371bmol (0.73 ·atm K1859.67-R)· ft3 lbmol·- R )

fe

4-81

=C ADX 2

Combine:

v=

FAo

kC!c,

r[O-Xy _ X dX

2

]

4K,

V_

rX

(IOlbmoUminXlminl60s)

dX

- (ISOOfellbmol.sXO.OO37Y Jo [(I-XY -O.S33X 1 ]

v - 6 76ft 3rX -.

dX

Jo &-2X+O.167X z]

1 In[O.523(X-11.45)~) - . \. (O.617X11.45-0.523) 11.45 X-O.523 U

v- 671

v =13.5fe CDP4-I (c) CSTR

Design Equation:

RateLaw: Stoichiometry: Combine:

V=

V = FAOX -rA

-r.

=k.(

C! _

CA =CAo(l-X) V=

C~~c ) Ca

FAo

=C~X

X

k.C~[(l-X)'-(

(lOXO.51X1l60) .

(1800XO.oo37)'[(l-0.51)' -(

Cc

=C~X

!:J

4~~))]

= 147.73ft 3

CDP4-1 (d) Amount processed in CSTR ; (10 IbmoVminX60 minlhr X24 hrlday)= 14,400 IbmoVday

4-82

Batch

t-C -

Ao

Jd.X - kCC J -::;-A

Ao 2

[

Ao

d.X

2

X ] (l-xf-4Kc

1 In[0.s23(X-l1.45)~) - kC Ao (O.167Xl1.45-0.523) 11.45 x -0.523 U

t __ I (

=

t 0.30s Taking into account the time it takes to clean the reactor and other down time assume that the total time per run is 4 hours. Assuming that the reactor can be used twenty-four hours a day there can be 6 runs per day.

14,400 Ibmollday =2400 Ibmollrun 6 runs/day

= N Ao V

f -rA dX

V - N Ao

1 (

t

- t kC!o

:.

J

V = N Ao dX t -rA

In)

1 In[0.523 (X -11.45 (0.167Xl1.45-0.523) 11.45 X-O.S23 U

2400 ( 1 1 [O.523(X-ll.45)~) - (4X1800XO.0037Y (O.l67XU.45-0.523) n 11.45 X-O.S23 U

v-

V = 48,690fe

CDP4-1 (e) E

=30,202 btullbmol

for X =0,

-rA =kC!o

- rA(800) k800C!o k800 - rA(l400) = k'400 C!o = k l400

E( 1

=exp R .

1)

T2 - Tl

-

- rA (800) = ex 30,202 btu/lbmol ( 1 _ 1 ) -tA(I400) P 1.987btullbmol·-R 1259..6rR 185?67·R

-r

A(800)

= 49

- r A (1400)

4-83

CDP4-J PBR

?vfB:

Combine:

ME:

w ::::;~~Q.>!:­ -fA

Combine:

X W r; .•..f'...o ---. .... _ ...... _ . kC llo (1 . . . . X) 1000::;:: ---

1

X (I- X)

X =.18 b) We know, s = 0, so

P = Po (1- aW)l!2

=>

1 = 20(1-- aW)l!2

4

=> a = 9.98 x 10. c) For conversion to be maximum, a should be minimum 2

G

Also, we know that a is proportional to - - - - = AcDp

G

And it is proportional to - - - 2 - = AcDp

1 6

2 for turbulent flow

D pipe Dp

1 4

2 for laminar flow

D pipe Dp

Hence for minimum a, Dp and D pipe should be increased" d) Yes, we can increase Dp and decrease D pipe (or vice versa) according to the above equation to get the same value of a.e) For assumed turbulent flow,a is proportional to .-

1

6

D pipe Dp

4-84

2

Now,

6

al

2

_ Dpipe2 Dp2

-

6

a2

-1

2-

D pipe! D pI

Dpipel ---''---=--4

and Dp1 = 0.5 cm

6

Dpipe2

=>D p2 = 0.044 em

.

1

t) We're gIven, k ~ Dp

k2

Hence -

kl

Dpl

=> k2 = kl - Dp2

0.5

= - - - = 11.4 0.044 rA

g) Rate law: -

Stoichiometry:

= kCA

CA = CAO (1 -, X) Y dX ·-r

Mole balance: -

...

dW dX

Combining:--

=_-A FAO

=

k C 2(1_ X)(l-a W)1I2 2

k2 _

-

- 11.4 and

2

AO

dW

,- (forE = 0)

FAO CAOkl

= 2 X 10

--4

..

..

Integratmg WIth hrruts: (X -70 to X; W -7 0 to 1000) => X

FAO

kl

CDP4-K 1.

Mole Balance: dz

2,

Rate Law :

lA

FM

;;:;-·k'C:\pc (1--

CA = CB Hence, rate law becomes -rA = kC~C; = kC~2+n) Observation table 2: for

C AO

=0.01 and CBO = 0..1

C A (molJdm3) 1.0 '(J.278 . 0.95. r-.---0.816 1.389 0.707 2.78 -0.50 8.33 -0.37 16.66 t (h) 0

t

1 C(l-C2+n)) = ___ AO k

C(l-C2+n)) _ _ 1 (O.l)C-l-n) A

(1-(2+n))

k

C C- 1- n ) A

(-I-n))

5-8

See Polymath program P5-7-a--2.pol. POL YMA TH Results Nonlinear regression (L-M) Model: t

= (1"(-·1-·n)··Ca"(--1-·n))/(k*(--1-n)) Ini guess 3 2

Variable n

k

Value 0.8319298 0.1695108

95% confidence 0.0913065 0.0092096

Nonlinear regression settings Max # iterations 64

=

Precision R"2 R"2adj = Rmsd Variance =

= 0.9999078 0.9998848

= 0,,0233151

0,,0048923

Therefore, n = 0,,8 Hence rate law is:

__ r = 0 • 17 CA2 CBO.8 mol 3 A dmh

P5-7 (b) Individualized solution P5-8 (a) At t = 0, theIe is only (CH3hO. At t = 00, there is no(CH3hO. Since for every mole of (CH3hO consumed there are 3 moles of gas produced, the final pressure should be 3 times that of the initial pressure"

P(oo) = 3Po 931 = 3Po Po :::o31OmmHg

P5-8 (b) Constant volume reactor at T

=.504°C =777 K hase: "] 1195

562

(CH 3 h O ~ CH 4 + H2 + CO YAO

=1

£5=3-1=2

e=£5y. AO =2 V

=Vo( ; ) (1- eX) =Va

because the volume is constant.

P=Po(1+eX) at t = 00, X = X AF = 1

5-9

1 dNA N AO dX ---=-----=r V dt Vo dt A st Assume -rA = kCA (i . e . 1 order)

CA = CAO (1- X) (V is constant) dX =kCAO (1- X) dt po_oR

Then: CAO and X

=

0

cPo dX 1 dP Therefore: =- - dt cPo dt _1 :!P = k[l- P-Po]

cPo dt or dP

dt

cPo

=~([l+e]Pa -p) cPo·

= k ([1 + e] Po - p)

dP f-----= fkdt [l+e]Po--P

P

t

R

0

o

Integrating gives:

In [ ( cPo ) - ] 1+ e Po --- P

Therefore, if a plot of In

= In [2Po] = In [624 ] = kt 3Pa - P

936 - P _

624 vel sus time is linear, the reaction is first order. From the figure below, 936-P

we can see that the plot is linear with a slope of 0.00048. Therefore the rate law is:

---"y_=_0_.0_0_0_48_X_-_O_.O_29_0_7_~~/ j ~

1.6 1.2

+ -__

...

0.8

+---------7"'''---------------1

0.4

0+£-------------------1 -~4

I

o P5-8 (c)

1000

2000

3000

Individualized solution

5-10

4000

P5-8 (d) The rate constant would increase with an increase in temperatme, This would result in the pressure increasing faster and less time would be need to reach the end of the reaction, The opposite is true fro colder temperatures,

P5-9 Photochemical decay of bromine in bright sunlight: t (min) CA (ppm)

20 1.7 4

10 2..4 5

30 1.2 3

40 0.8 8

50 0.6 2

60 0,,4 4

P5-9 (a) Mole balance: constant V

dCA =r =-kC a dt A A

Differentiation T (min) ~t (min) CA (ppm) ~CA (ppm)

10

20 10

2,45

.L\CA ( pp.m ) L\t mIll

30

40

10 1.74

50

10

10 0.88

1.23

0,,62

·0.51

-0..35

-0.26

-0.18

-0,071

-0,,051

-0,,035

-0.026

-0.018

.:,:,::~

0.,1)4

0 .. 01

.,

10

.,..,---,_._. )0

40

5·11

50

.._'••"__-.1.-.;),

50

10 0..44

-071

0,,06

.t

60 10

-}.a

-4.0

3.£

After piI ' an oUmg -dCA/dt In( -dCA/dt) InCA

1

erentIatmg by equa area 0.061 0.082 -2.501 -2.797 0.896 0.554 .-

0.042 -3.170 0.207

0.030 ··3.507 -0.128

1.0

0.014 -4.269 -0.821

0.0215 -3.840 ··0.478

-

Using linear regression: a = 1.0 in k = -3.3864 k = 0 ..0344 min- l

P5-9 (b) !!NA=Vr =F lit A B rA = FB =

·-0.0344 p~m -0.0344 lmm m~ . mm (25000 gal) (0.0344 lmm m~ J(60 min_)(_lL'J(3.?~51lJ( IlbS_J hr 1000mg 19a1 453.6g =

at CA= 1 ppm

P5-9 (C) Individualized solution P5-10 (a) Gas phase decomposition A7B+2C Determine the reaction order and specific reaction rate for the reaction

dC A dt

-kCA

Assume the rate law as: - - =

Integrating:

t = __ 1- [

k(n-l) C

1n A

-1

-

n

C

1n

AO

--1

J 5-12

=

0.426

lbs hr

n 1

-lJ

=>In(tl/2) = In 2 ( (n -l)k + (1- n)In(CAO)

Run #

CAO (gmolllt) 0.025 0.0133 0.01 0.05 0.075

1 _. 2 3 4 5

t (min.) - ~.1 7.7 9.8 1.96 1.3

See Polymath program P5··10··a.pol. POLYMATH Results Linear Regression Report Model: Int = aO + a1*lnCaO

a:o--

Var'iable

Value -2:"'3528748

a1

-1.0128699

95% confidence

0.1831062 0.0492329

General Regression including free parameter Number of observations = 5 Statistics RJ\2 = RJ\2adj = Rmsd= Variance =

0.9993004 0 . 9990673 0 . 0091483 6 . 974E-04

3.0 - - . - - - - - - - - - - - - - .

24 1.8 1.2

0.6 0. 0

L - ._ _ _ _ _

-4 . 61

-4.20

~

__

~_.

-3 . 80 In(dojO

-2 . 99

-2.59

From linearization, n = 1- slope = 2 ..103;:::;; 2

(2 a - 1 _l)e-interLePI it k=-· . =10 ..52 - - - a··-l gmol.min

5-13

-

In t 1.410987 2.0412203 2.2823824 0.67294447 0.26236426

InC Ao -3.6888795 -4.3199912 -4.6051702 -2.9957323 -2.5902672

_ dCA =1O.5C/gmolllt.rnin dt

.c'"

i:.

\1 ~

C aO

See Polymath program P5-· lO··a,pol. POLYMA TH Results Nonlinear regression (L-M) Model: t = ((2J\(a·1 ))··1 )/(k*(a··1 ))*(1/CaOJ\(a·· 1)) variable a

Ini guess 2 10.52

k

Value 1. 9772287 8.9909041

95% confidence 0.093057 3 . 9974498

Precision R"2 = 0 . 9986943 R A 2adj 0.9982591 Rrnsd 0 . 0531391 Variance = 0.0235313

= =

dCA = -----

Rate law:

dt

9 .OC 2 gmol 11' t.mm A

PS-IO (b) We know,

( 2 a--l

-

1) (

1

k = t1l2 (a·- i) C AO a-I

J

Solving for k at 110° C

k'= (2(2-1) -1)( __1_)=20 it 2(2-1) 0.025(2-1) gmol.rnin

Rln k2 From these values, E = kl

U-;J

(8.314 =

J mol.K

)In. 20 10.5 = 76 ..5 kJ/mol

(37~K - 38~K) 5-14

~,

ij ~

P5-11 0 3 + wall ~ loss of 0 3 0 3 + alkene ~ products Rate law:

-~

0

3

dCo3 =kJ = __

.

kJ k2

C Coz

+k2~

dt

Using polymath nonlinear regression we can find the values of kl and k2 ozone rate (mol/s.dm3) Ozra

Run #

Ozone concentration (mol/s.dm3) C03

le-12 le-ll

0.01 0.02 0.015 0 . 005 0.001 O..oIS

1.5e-7 3.2e-7 3.5e-7 5.0e-7 S.Se-7 4.7e-7

1 2 3 4 5 6

Butene concentration (mol/s.dm3) Cbu

le-lO le-09 Ie-OS le-09

See Polymath program PS· 1 l.pol. POLYMA TH Results Nonlinear regression (L-M) Model: Ozra

= k1 +k2*Cbu/C03 lni guess 2.0E-07 0.1

Variable

k"l-k2

Value 3 . 546E-07 0.0528758

95% confidence 4.872E-ll 1.193E-·05

Nonlinear regression settings Max # iterations 300

=

Precision R"2 R"2adj Rrnsd Variance ==

= 0.7572693 = 0.6965866 = 4.531E-08 1 .848E-14

Rate law:

-ro,

= (3.5xlO-7 )+(O.05) ~BU mol/dm 3 .s 03

P5-12 Given: Plot of percent decomposition of N0 2 vs VIFAO

X= % Decomposition of N0 2 100 Assume that -rA

= kC~ 5-15

ForaCSTR

or

F X

V =~ -rA

x x v --=--=-FAD

kC~

-rA

V

withn=O, X =k-FAD

V

X has a linear relationship with - - as FAD

shown in the figure . Therefore the reaction is zero order .

P5-13 Si02 + 6HF ~ H 2 SiF6 + 2H 2 0 N s = moles of Si0 2 = AcPsD MWs

Ac = cross···sectional area Ps = silicon dioxide density MWs = molecular weight of silicon dioxide = 60.0 o= depth of Si

N F = molesofHF=

wpV lOOMWF

w = weight percentage of HF in solution P = density of solution V = volume of solution MWF = molecular weight ofHF = 20 . 0 Assume the rate law is

dN

Mole balance: _ _S

dt

-rs = kC;

= rs V

_ l\;Ps do _ k( wV MWs dt lOOV MWF __ do dt

]a V

= _ kMWs __ (~]a Vw lOOa !\Ps

MWF

- do = fJwa where fJ = ~MWs dt

a _(--.£ __ ]a V MW

lOOa !\Ps

F

In(- ~~) = InfJ + aln w

5-16

In(- ~~)

-16,629

In w

-15.425 2,,996

2.079

where (-

dJ) dt

is in

-1432 3.497

-13.816

-13.479 3.871

3689

~ rom

FlOm linear regression between

In (- ~~) and In w we have:

slope = a = 1.775 intercept = In ~ = -20,462 or ~ = 1.2986 * 10-9

~13 .,..------:-""'-----------------,

-:g -Il,}

"a "C

2.5

..14

3.5

3

y ;: 1.7746x - 2Q.461

-15

t

c: ..16 ·17 In w kMWs

(p

fJ = 1001775 AcpsMW:;-

Jl775 V

Ac = (10 *10-6 m) (lOm)( 2 sides )( 1000 wafers) = 0.2 m 2 g

MWs =60-gmol

Ps

= 2.32 L = 2.32 *106 -.1] ml

m

(Handbook of Chemistry and Physics, 57 th ed, p"B-155)

pzl-~=106L3 ml m g

MWF =20--

gmol

= 0.5 dm 3 = 0.0005 m 3 fJ = 1.2986 *10-9

V

5-17

1.775 106~

1.2986 *10-

9

= _--.!!L g 20--

gmol 3

k =3.224*10-'7 ~ ( gmol Final concentration of HF

J0775

=

min-I

5-2.316 (0.2) = 0.107 5

weight fraction = 10.7% weight fraction = 20%

Initial concentration of HW = 0.2 (given)

Mole balance for

_

=

pV .dw 100MWF dt

f

_lO 7_

dw

WI

775

20

dN

dN

dt

dt

F HF: - = 6--s

6k( 100wpMW Ja V F

=6k('_~J0775 tfdt 100MW ° F

_1_( __1_) 10.7 0.775

W0

775

where u = 1.775

= 6(3.224*10-7 ) (

20

__~_,( 1 _1_) = 2 0.775 10.7°775 t=331 min

20°775

o775 6 10 J . t 20*100

389*1O-4t .

P 5-14 (a) A + 3B -7 C + 2D + E Observation table for differential reactor Cone., Of Temperature(K) A(molJdm3)

rm-

SQ,--

c--.

Cone, Of B(molJdm3) 0.10 0.10 0.10

0.10 333 343 -,- 0.05 0.10 353 ,-- ~~--,0.01 0.20 363 0.01 0.01 363 Space time for differential reactor = 2 min

V= F;, = VoCp --rp

-rp

5-18

-

Cone., Of C(molJdm3) 0.002 0.006 0.008 0.02 0.02 0.01

--

Rate (mol/dm3 .min) 0.001 0.003 0.004 ,-0.01 0.01 -,0.005

--

r, p

= Cp = CCzH4

r

2

Rate law:

rc =AJ-BIT)C:C~ Cc =Ae(-BIT)CC 2 A B Where, A is Arrhenius constant B = activation energy/R x is the order of reaction WIt A Y is order of reaction WIt B CA is the concentration of C2H 4Br CB is the concentration of KI Now using data for temperature 323K, 333K, and 363K, for finding the approximate value of B because, at these temperature, the concentration of A and B are the same. Using polymath, the rough value of B = 55o.o.K While using polymath for solving the rate law apart from guessing the initial values of n, m, and A , we change the value of B in the model to get the optimum solution . So after trial and enOf we got B = 65o.o.K

See Polymath program P5-14-a.pol. POLYMAI!!. Results Nonlinear regression (L-M) Model: r = A*exp(··6500/T)*GaA x*CbA y variable Ini guess Value A---3 . 6E+05 3 . 649E+06 x 0.25 0.2508555 Y 0.2 0 . 2963283 Precision R"2 = 0,,9323139 R"2adj = 0.8871898 Rmsd = 3 . 615E-04 Variance 1.568E-06

95% confidence 2.928E+04 0.0032606 0.0020764

=

Hence, by nonlinear regression using polymath A = 3649E+o.6(mole/dm3 2 6(1/s) E = 65o.o.R = 54,,0.15 KJ/mol x = 0..25 y= 0..30. hence,

r

rc = 3.64E + 06e(-54015 / RT)C~25 C~30 mole/dm3.min

P 5-14 (b) Individualized solution

P5-15 (a) 5-19

Modell: Monod equation

dCc = r = JlmaxCsCc --

----'=='---"--~

dt

Ks + C s

g

See Polymath program P5-15··a.pol. POL YMA TH Results Nonlinear regression (L-M)

=

Model: rg (umax)*Cs*Cc/(Ks+Cs) variable lni guess Value umax 1 0 . 3284383 Ks 1 1.694347 Precision R"2 = 0.9999439 R"2adj = 0.9999327 Rmsd = 0.0038534 Variance 1A55E-04

95% confidence 0 . 00686 2.2930643

=

P5-15 (b) Model 2: Tessier Equation Tg

=tL={I-ex

p( - ;

J]Cc

See Polymath program P5···15-b.pol. POLYMATH Results Nonlinear regression (L-M) Model: rg = umax*(1··exp(-Cs/k))*Cc

Variable umax

lni guess 0.5 100

k

Precision R"2 RA2adj Rmsd Variance

Tg

= = = =

Value 0.3258202 20.407487

95% confidence 0.0034969 5.7120407

0 . 9999454 0 . 9999345 0 . 0038004 1.415E-04

=0.33[I-ex{ ;~~ J]CC

Wdm'h

P5-15 (C) Model 3: Moser Equation

=

r g

f.1rruJ.x Cc 1+ kC --Y S

See Polymath program P5··1Sc.pol. POLYMATH Results Nonlinear regression (L-M)

5-20

Model: rg = umax*Cc/(1+k*CsJ\(-y» Variable umax

k

y Precision RA2 RA2adj

Rmsd Variance

Ini guess 0.3 1.6 1

Value 0 . 3265614 162,,599 2,,0892232

95% confidence 6.984E-04 34.273983 0.0461489

= 0 . 9999447 = 0 . 999917 = 0.0038269

= 1.794E-04

O.33C 1 + 162.6Cs (-2.1)

c ---...:::.....,--gldm3 .h

P5-16 Thermal decomposition of isopropyl isocynate in a differential reactor .

Run 1 2 3 4 5 6

--r------

Rate (mol/s.dm3) 4.9 x 10-4 1.1 X 10-4 2.4 x 10-32.2 X 10-2 1.18 x 10- 1 1.82 x 10-2

Rate law:

--rA -- A e(-EIRT)CAn Where, A is Arrhenius constant E is the activation energy n is the order of reaction C A is the concentration of isopropyl isocynate

See Polymath program P5···16 . pol.. POLYMATH Results Nonlinear regression (L-M) Model: rA = A*exp(-E/(8 . 314*T»*(CA)An var'iable A E

Ini guess 100--1000

n

1

Value 1.01E+04 5.805E+04 1.7305416

95% confidence 327.35758 237.32096 0 . 0134196

Nonlinear regression settings Max # iterations = 64 Precision RA2 RA2adj

= 0 . 6690419 = 0.4484032

Rmsd

:::: 0 . 0097848

--

Concentration Temperatwe (mol/dm3) -(K) 0.2 700 0.02 750 1-------0.05 800 0.08 850 0.1 900 -0.06 950

5-21

Variance = 0.,0011489

Hence, by nonlinear regression using polymath A = 10100 (mole/dm3 2 6(1/S) E = 58000 J/mol n = 1.7 therefore,

r

-YA =lOlOOexp ( -6:76)C~7

mole/dm3 s

CDP5-A Given the reaction P + NH;PH -? NHzOHP where P is Penicillin and NH10HP is hydroxylamine acid (denoted by subscript HA) Let A """ Absorbency, then CHA, ::; KA where K is some constant. Cp

"""

C HA

Cp., (1,,,· X) (s = 0 for liquid phase reaction.)

=Cp"X "'" KA

Att=-

A



KA .', X= ~- when X C v"

=1 and

A = A..

C

-

=,.......l:2. K

- rp' := kC;

Assume reaction is irreversible:

:=

1 dN

kC;" (1- X)*'

-~

For a batch. constant volume reactor:

Vdt

dC? =-,= To dt

l."

or

,~~e.=Cl''''~''''''

or

'~'=k(~~rl(A_'A)"=K(A_.'Ar, WhereK-k(~:r-l

dt

dt

dA"",.-kC;o(l-X)"=,-kC;"(l-A/A_)"

A_ dt

Try integral analysis first. Assume that reaction is zero Older:

Then

,~~;;;;;: K dt

or

rdA = A = Kt

Jo

a plot of A vs. t should be linear if

reaction is zero order. FlOm the plot below, it is evident that the reaction is not zero order; 06

05 4) (,,)

c

4-

0.4 '

«I

...

..Q (:)

03"

.-

II)

..Q

<

::L_o

10

20

30

40

Time

5-22

50

Next, assume that the reaction is first order;

dA - :;:: K( A_ - A) or dt

J(A. ..ciA_. A) :;: JKdt ::: In (A. -A-A) == - Kt ... A

t

0

0

. A plot of (A_ - A)

VS. t

on semi -log paper should be linear. -.. ---...-..-, •.•....-..-.-. ..'-•...... .............. .~:- .....w... .......-2C--.. - ..... 30-............. --.40-............. *--_.. _. . . . . . _................_..................._. . . . . . . . . . . . . . . . . . . . . . . . --.. ••••• _ •• _ ...... _ _ .. _ _

-

~._

.. -.. ....."- ..

Time

A

0

0

10 t-20"-

A.,.-A

-0.348

0.433 0.495 0.539 0.561 0.685

0.252 0.190 0.146 0.124 0

30 40 50

"'"

.

0.685

"'om

~

-

.

•• _ .................. _ . . . . . . . _ _ _ _ _ _ •• _

•• _ .

.......• -,....

~

or _... •.!. ..-.-

(A_-A)

o

--1'0· ·'-20

o

1.460 "-'2.967 . . 68--

0.33'1" 0..

_,

A_

A.. .. A

1 .. A plot of-----vs. t should be linear

(A_-A)

s ........__. -.. -.. _........................................... 8



7

30



'"40 0.539 50

0.56 f

_ _

,-

0.1 ................- .. - .....- ,-. ,..................................................- ..,..... .."..........................._"' ......-

: : : ...!_. +- Kt

A

~

-.-.--~.-.-

..

It is evident from the plot that the reaction is not first order. Try second order:

dt

•• _ ••••••••• _ . . . . . . . . .

. Time

?A "" K(A_ .. Al

"W'

-8])65 2

o o

10

20

Time 30

4U

50

From the plot, it is evedent that linear relationship exists between (VAx, - A) and time; Therefore the reaction is second order .

CDP5-B Determine the reaction order and specific rate constant for the isomerization reaction: A7B Rate law:

a dC A -rA=kCA =-_.dt

5-23

..--.:r;-...-..- . -..----.--..-.-......--..-.....- .....- ...-.--.--.---....... . -f,.CA/f,.t .-dCA/dt........____ .._

Iime_(min) .._ _ _. C A (mol/dm) o 4

0 . 39 0.37

2.89

3

035 0.32

225

5

0..30

0 . 267 1.45

8

0.25 0.225

to

0 . 21 0\75

12

065

0.15 0.133

0.25

15

0.1

0.072

17.5

0.07

0 . 06

Plot of log --dCA/dt vs log C A shows a. "" 0.5

de.,

kA

=···~iitM.;:; O~~S019·d;:11~1:

CDP5-C Ethane hydrolysis over a commercial nickel catalyst in a stirred contained solid reactor.

H2 + C2H6 -7 2CH4

PA = CART =CAoRTCl- X) =PAoCl- X) PB =CBRT=CAORTCBB -X)=PAoCBB -X) X =!SFTO =~= Yp Cl+BB) 2FAO 2YAO 2 I

I

FAOX

Fp

-r A =-r B=- W--'--2W = .- r'A

Y pFAO 2W

= kPA a pB P

InC-r'A) = Ink + aInPA + fJInPB y = Ao

+ Al Xl + A2 X 2

FTo(gmollh)

PAO(atm)

PBO(atm)

1.7

0 ..5

05

1.2

05

05

0.6

0.5

0.5

0.3 0.75

04 0. 6

06 0.6

2.75 0.6 0.4 POLYMATH Results Nonlinear regression {L.M}

YCH4

0.0 5 0.0 7 0.1 6 01 6 0.1 0.0 6

X

0. 0 5 0. 0 7 01 6 0.2 0.1 0.0 5

Q

PA(atm)

PB(atm)

-rA(gmollkg . h)

0.475

0.475

1.0625

0.465

0465

L05

1

042

042

L2

L5 1 0.6 7

032 0.54

0..52 0 ..54

0.6 0 . 9375

057

0.37

20625

1

Model: ra = k*(PaAalfa)*(PbAbeta)

Variable

lni guess

- -Value --_.

95% confidence

5-24

0.1

k

alfa beta Precision

0 . 1124446 0.152574 0 . 1668241

0.5068635 0.9828027 -1. 9669749

1 1

:::: 0.999213 :::: 0.9986883

R"2 R"2adj

RInsd :::: 0.0051228 Variance :::: 3.149E-04

k = 0.5 atm gmollhr kg; hence, the rate law is:

a == 1;

P == -2

-r~ = 0.5 ~ gmol / kg .hr B

CDP5-D Since oxygen is found in excess, we assume that.-r·1iO is dependent only on ~. This gives us a rate law of the form:

- rHO

=kC:.o

.

we

From the units of the specific reaction [ate, assume that ex == 3. Now, using equation (5-18) from chapter S, we can solve for the desired balf-.Jives.

(a)

For ~ == 3000ppm:

t",

(b)

~ 2\iA"iO}""".'I~(3000~)' )= 119.05_

For C"'No

t",

=1 ppm:

=2\1.4,,10. 3pp;;;:>J;;;i~{(1~y L071x 10' mID

)=

CDP5-E Given the data.. postulate a rate law.

=kc:.

·rA Then write the design equation in tenns of the data given, in this case volume and time. CA=NAV

NA =N"o(l-X) V=

Yo(l + EX)

V-· V. X=·· . ···. . _J1.

Vue

V-v. =__ . Yoe

1-·_··· ........2..

C "

V

.5-2.5

Plug that into the design equation:

de

--2..=kC: dt A

5-26

The following grapb is made.

Once that is dorie it is ready to be graphed. The following graph is the natUral log the derivitive ofthc volunle function against the natUral 10 . of the volume function.

From the graph we see that ex. is 2. We can also find k: 9 k == :9 =.018 J

5

N .. 0

303.39*.2 020 1 =YAO NTO =. 85* 8.314*313 =. rna es

k' .018 k =. -N-a - I = M!, •.9 .v...

.40

The following rate law is found: 2

-r:A - .9*cA

Now, to decennine the volume of the CSTR. we must use the design equation and stoichiometry:

,

V;: F,..oX. -rA

CA

:;:

CAo(l- X)

C"o =!MJ

RTa

~o ;: Y"ofQ =.6 * 1013.25kPa == 607.95 Combining these with the rate law just determined. the followinl! volume is found.

5-27

CDP5-F Asr't, '" U

"riP. dZ

Z

P

0

129

1.5 2,5

70 50

45.3 28,,63 19.4

:l.O

30

9.5

6.5

18

L3

9.0

16

(1.7)

_de. AsHi "'" 3.0

AsHi = 3.0

Z

P

dZ

0

129

1..5

45

90 34.0

2.5 4.0

22

15.4

10

2.0

_df.

Z

P

dZ

0

129

1.5

95

17.4 15 . 0

PFR A ... B ::C

-8

I

1.5 2.0

I

)

6

9

,

I 4

PM PAl.

Task I, Re\\l'I'ite the design equation (i.e.. mole balance) in. te:rms of me measurement variables. Recall V ::: Ac Z. then

ax. = :r,,& dZ

FAo

5-28

For iSOthe."!I1ai operation and no pressure drop. X) rr:.. eX)' (l ..

CA =

CAO

CA

'=

P,JRT

(1. X)

= PA 0(1 +"e;C)

PA

(I + EX)

PA = PAO (1 - X)

Now we have the differential. mole balance in terms of the measured variables PA and

Z.

Posrulate -tA '=

k[PA ~ -~~j

Task 2. Look for simplifications. A) Sc:e if volume change can be neglected.

a therefore neglect volume change.

E ::

forr..:ns 1 and 3 where PAsH} "" 1.5 and 3.0 torr. respectively. [har most of tht E!;In is consumed. indicating the equilibrium is reasonably fJr to the ri giu. Conse:quen ely. the reverse reaction is negligible in the fU"St pan of the

B) \Ve see

L1:U

reactor. i.e.

C)

\'v:: ::lise

see i..l-tat for nlnS 1 and 3 that B is in excess and that far excess B II

5-29

-r,

• ,,,,\

:::::

k

,

R pi-' DO.. 80 .. A

=

lK' pet ~ r\

Algorlcnm Task -' Co1=ul>te (0

~;) Jnd plot vs Z to find (0 ~)

. dP

Plod ~ dZ-'\) vs (PA) on log-log paper to find alph3..

Task 4.

T~e

Task 5.

Ev:uua~e k" wd K?

r:ldo of inidal races at PAsH]

=:

3.0 torr and PA1l:1J

=:

L5 corr

From AjHl of 3,,0 corr we see equilibrium is reached at P Ae :=:.0 { PC For PFR, Mole balance: - - = - dX -YA

~V

= lOxO.162x

dX

0.99

f

2

1/2

074 (k 1C A

+k2 C A +k3 C A )

= 92.8dm

3

P6-6 (f) If we notice that E2 is the smallest of the activation energies, we get a higher selectivity at lower temperatures. However, the tradeoff is that the reaction rate of species B, and therefore production of B, decrease as temperature drops . So we have to compromise between high selectivity and production . To do this we need expressions for k[, k2, and k3 in terms of temperature. From the given data we know:

ki =

A exp(I:~~~ )

Since we have the constants given at T = 300 K, we can solve for Ai'

.004

" = - - - - - - - = 1.4ge12

--20000

exp ( 1.98 (300)

~ = ___ . 3 ··-10000

exp ( 1.98 (300)

J

=5.7ge6

J

6-13

(.25 )~1.798e21 -30000

A, ~

exp 1.98(300) Now we use a mole balance on species A

V= FAO -FA -rA

V

v( CAO -CA)

=---'-----=-::..::.-.-:.:.:...

A mole balance on the other species gives us:

F; =vC =ljV j

Ci =7lj Using these equations we can make a Polymath program and by varying the temperature, we can find a maximum value for CB at T = 306 K. At this temperature the selectivity is only 5"9,, This may result in too much of X and Y, but we know that the optimal temperature is not above 306 K. The optimal temperature will depend on the price ofB and the cost of removing X and Y, but without actual data, we can only state for certain that the optimal temperature will be equal to or less than 306 K.

See Polymath program P6-6-f.pol. POLYMA TIl Results NLE Solution Variable Ca T R

k1 k2 Cao Cb k3

tau Cx Cy Sbxy

Value 0.01.70239 306 1. 987 0.0077215 0.4168076 0.1 0.070957 0,,6707505 10 0,,0100747 0,,0019439 5,,9039386

f(x)

3.663E-10

Ini Guess 0.05

NLE Report (safenewt) Nonlinear equations [1] f(Ca} = (Cao-Ca}/(k1 *CaA ,,5+k2*Ca+k3*CaA 2}-1 0 = 0 Explicit equations T=306 [2] R= 1.987 [3] k1 = 1.4ge12*exp(-20000/Rff) [ 4] k2 = 5790000*exp( -1 OOOO/Rff} [5] Cao =.1 [1]

6-14

6] Cb = 10*k2*Ca 71 k3 = 1.798e21*exp(-30000IRfT) 8] tau = 10 9] Cx = tau*k1 *Ca/\5 lO} Cy = tau*k3*Ca"2 11] Sbxy = Cb/(Cx+Cy)

P6-6 (g) Concenttation is proportional to pressure in a gas-phase system Therefore:

S B / XY

~

~

p

Vp+p2

which would suggest that a low pressure would be ideal. But as before the ttadeoff is

lower production of B. A moderate pressure would pIObably be best

P6-7 US legal limit: 0 8 gil Sweden legal limit: 0.5 gil A~B k2 >C Where A is alcohol in the gastrointestinal tract and B is alcohol in the blood stteam

dCA =-kC dt ) A dCB =kC -k dt ) A 2 k)

= lOhr- 1 g

2.0

k2 =0.J92-L hr Two tall martinis = 80 g of ethanol Body fluid = 40 L

C AD

16

1.2

= 80g =2 g

40L

----------.-------

L

Now we can put the equations into Polymath

0.8

See Polymath program P67 .poL 04 PO'LY~fAT!LReslilts

Calculated values of the DEO variables 0 . 0 0'---2----,--4~·

Vaziable initial value minimal value maximal value final value ----

t O O 2 7 .131E-44

Ca Cb

o

o

kl

10

k2

0 . 192

10 0.192

ODE Report (RKF45) Differential equations as entered by the user [1] d(Ca)/d(t) = ··k1 *Ca

6-15

6

10

10

2 1 . 8901533 10 0.192

0.08 10 0 . 192

7 131E-44

8

10

[2]

d(Cb)/d(t)

=-k2+k1 *Ca

Explicit equations as entered by the user [1] k1 = 10 [2] k2 =0 . 192

P6-7 (a) In the US the legal limit it 0.8 gIL. This occurs at t = 6.3 hours ..

P6-7 (b) In Sweden C B

= 0.5 gil , t = 7.8 hrs.

P6-7 (C) In Russia CB = 0 . 0 gil, t = 10.5 hrs P6-7 (d) For this situation we will use the original Polymath code and change the initial concentration of A to 1 gIL . Then run the Program for 0.5 hours. This will give us the concentration of A and B at the time the second martini is ingested . This means that 1 gil will be added to the final concentration of A after a half an hour. At a half an hour CA = 0.00674 gIL and CB = 0.897 gIL . The Polymath code for after the second drink is shown below.

See Polymath program P6·7··d.pol. POLYMATH Results Calculated values of the DEQ variables Variable t Ca Cb k1 k2

initial - - - -value --0.5 1.0067379 0.8972621 10 0 . 192

minimal value 0.5 5 . 394E-42 0.08 10 0.192

maximal value 10 1.0067379 1. 8069769 10 0.192

final value 10 5.394E-42 0 . 08 10 0.192

ODE Report (RKF45) Differential equations as entered by the user [1] d(Ca)/d(t) =-k1 *Ca [2] d(Cb)/d(t) = ··k2+k1*Ca Explicit equations as entered by the user [1] k1 = 10 [2] k2 = 0.192

for the US t = 62 hours Sweden: t = 7 . 8 hours Russia: t =10.3 hours .

P6-7 (e) The mole balance on A changes if the drinks are consumed at a continuous rate for the first hour.. 80 g of ethanol are consumed in an hour so the mass flow rate in is 80 glhr·. Since volume is not changing the rate of change in concentration due to the incoming ethanol is 2 gIL/hr. For the first hour the differential equation for CA becomes:

6-16

dC A = -kl CA + 2t after that it reverts back to the original equations . dt See Polymath program P6-7 -e . pol. POLYMATH Results Calculated values of the DEQ variables initial value

Variable t Ca

°

°10°0.192

Cb k1 k2

minimal value

°

°

-1.1120027 10 0 . 192

maximal value 11 0.1785514 0 . 7458176 10 0.192

final value 11 6.217E-45 -1.1120027 10 0 . 192

ODE Report (RKF45) Differential equations as entered by the user [1] d(Ca)/d(t) if(t Q..OOICD then,

- 45399.9CAC B -2.7CD

S DIU

-

49.7CACB

45399 -913

_ - -

49.7

Here we need a high temperature for a lower reverse reaction of D and lower formation of U Also we need to remove D as soon as it is formed so as to avoid the decomposition.

P6-9 (I) A + B --7 D

S

and

-'iA = 10exp(-8000K IT)CACB

A ---7 U

and

-'2A = 26 exp(-IO, 800K IT)CA

U ---7 A

and

-r3U =1000exp(-1.5,000K IT)Cu

- rD

DIU -

-_____ lOexp(-8000K IT)CACB ru - 26exp(-'}0,800K IT)CA-1000exp( -15,000K IT)Cu

6-22

We want high concentrations ofB and U in the reactor. Also low temperatures will help keep the selectivity high. If we use pseudo equilibrium and set -rA = 0 .

r-

-rA =lOexp ( -SOOO) CACB + 26exp (-lOS00) T CA-1000exp (-15000) T Cu =0

C, _ lOex p ( -8~OO

)C + 26exp ( -1~OO) 8

lOooex p ( -1~OO)

Cu -

CA =_1_ exp (7000)C Cu 100 T B

+~exp(4200) 1000

P6-9 (g) A+B--7D

and

T

-·liA =SOOexp(-SOOOK IT)C~5CB

A+B---tU1

and

--r2B = 10exp(-300K IT)CACB

D+B--7U 2

and

-13D

= 106 exp(-SOOOK IT)CDCB

(1)

SOOexp( -SOOOIT) C~5CB . SO exp ( -SOOOIT) SDlU = lOexp(-300IT)CACB - = exp( -300IT)C~5 j

AtT = 300

S

DIU

2.09S *10- 10

j

=----0.36SC~5

At T = 1000

= ____ 29.43

S DlU

0.740SC~5

j

To keep this selectivity high, low concentrations of A, and high temperatures should be used.

S

DlU2

=

SOO exp ( -SOOO IT) C~5 CB SOOC~5 =106 exp(-SOOOIT) CDCB 106 CD

To keep this selectivity high, high concentrations of A and low concentrations of D should be used. Try to remove D with a membrane reactor or reactive distillation . The selectivity is not dependant on temperature . To keep optimize the reaction, run it at a low temperature to maximized allows only D to diffuse out. (2)

SOOexp(-SOOOIT)C~5CB

_

SDIUIU2 -

(

) 6 (._--) lOexp -3001T CACB + 10 exp -SOOOIT CDCB

SOO exp ( -SOOO IT) C~5

SDlU1U2

= lOexp-300lT ( )C

6 ---'--'--(...:..:........_-)-

A +10 exp -BOOOIT CD

At T = 300

6-23

SDiUl

in a membrane reactor that

S

DIV1U2

2.09 *10-9 COS A::::O 3.67 CA+ 2.62 *10-6 CD

=

At T = 1000 and very low concentrations of D

=

S DIU1U2

0.268C~s 7.408CA+335CD

.03617 C~5

If temperatme is the only parameter that can be varied, then the highest temperatme possible will result in the highest selectivity. Also removing D will help keep selectivity high.

P6-9 (h) No solution will be given P6-9 (i) exp(-7000K IT)CA1I2 -r 1OC/ 2 rD

v

dF - -A= r dV A dFv --=r. dV v

dF dV

B

dF dV

D

+R

B _.-=r,

B

- -D= r

R = FAO B

v:

T

A+B~D

liA = --1Oexp(-8000K IT)CACB

A+B~U

r2A = -1OOexp(-1OOOK IT)CA1I2C/12

rA = rB = liA + r2A

FA

C A =Cro -FI

mol CIO =0.4--3 dm FAo = Crovo

s

These equations are entered into Polymath and the plots below are for the membrane reactor . The code can be modified to compare with the PFR results.

See Polymath program P6··9i.poJ. POL YMA TH Results Calculated values. of the DEQ variables Variable V

Fa Fb Fd Fu Cto

initial value

o

4

minimal value

o

0.5141833

o o

o

o o o

0.4 600 4

Cb

o

0.4 600 4

Ca

0.4

0.0241566

T

Ft

maximal value 10 4

4.5141833 3.034E-06 .3.4858137 0 .. 4 600 8.5141833 0.2120783 0.4

o

6-24

final value 10 0.5141833 4.51418.33 3 . 034E-06 3.4858137 0.4 600 8.5141833 0.2120783 0 . 0241566

0 4,S7SE-07 0 0 0 0 ,4461944 S 4 0.8 S '. 423E+OS

-4.S7SE-07 0 -0.4461944 -0.4461948 -0.4461948 0 S 4 0.8 2.894E-07

0 0 0 0 0 0 S 4

rIa rd r2a ra rb ru Vt Fao Rb Sdu

o '. 8 S . 423E+OS

-8 . 297E-08 8.297E-08 -0.2867066 -0.2867066 -0.2867066 0,.2867066 S 4 0.8 2.894E-07

ODE Report (RKF45) Differential equations as entered by the user [1] d(Fa)/d(V) = ra [2] d(Fb )/d(V) = rb+Rb [3] d(Fd)/d(V) = rd [4) d(Fu)/d(V) = ru Explicit equations as entered by the user [1] Cto =..4 [2) T=600 [3) Ft = Fa+Fb+Fd+Fu [4) Cb = Cto*Fb/Ft [5) Ca = Cto*FalFt [ 6] r1 a = -1 O*exp( -8000IT)*Ca*Cb [7) rd= -r1a [8) r2a = -1 OO*exp( -1 OOOIT)*CaA 5*CbI\1 ,,5 [ 9) ra = r1 a+r2a [10] rb = ra [ 11] ru = -r2a [12] Vt=5 [1.3] Fao = 4 [14] Rb = FaolVt [IS] Sdu = exp(-7000IT)*CaA ,5/(10*Cbl\,,5+,,00000000001)

5

6.0e+5

4

48e+5

3

3,6e+5

2

2 -Ie+5

1

1.2e+5

2

.:I

V

6

8

10

O,Oe+O

P6-9 (j) No solution will be given P6-9 (k) No solution will be given P6-9 (I) No solution will be given

6-25

0

.-.......--.. 2

---.--.-~-

.:I

V 6

. ---.-. s 10

P6-10 (a) Spectl00 and k2

: :; ; k3 Cg

X3

-ra ""'-rsl 'r fC + I'D::::: - k t CA + leI CB +- k::3 Cs . ~~ ::: -ki CA.O

e-lc,t ....

(k2 + k3) CB

~oodCB . ::::: -{0.01)(O.2) e·~·Olt + (0. 003 d!

::d~B. == -0.002 (1



0.0(2) CB

- c·.o Oll} + 0.005 Cs

Using a Runge.,Kut:u Gill numerical so1.unon. we find that. for t::::: 2 min;: 120 s. CB:::

O. I 36 gmolJdm3.. (c)

!!;:.

= 'c = x, C. ;

£~. = k, C.

; C"

="

L

c. dl

From the solunon in patt (b). we have values of C:s at intervals as small as 5 sec, so we can use Simpson's rule to obcain t ""

(:'c:

1 min =: 60 sec.

Cc "" 0.003 Pf)[O + 4(0.0449) + 2(0.0782) + 4{O.102j + 0.1183] Cc =0.0129 gmolJdm3

6-73

t

= 2 min == 120 sec

Cc:= 0.003 (3f)(0 + 4(0.0782)'1- 2{0.1l83) + 4(0.134) + 0.1355]

Cc == 0.0366 gmol/dm3 T 0 20

(d)

I

40 60 KO

C",

CB

0.2 0.164 0.134

0

a.lOK

0.01:199 0.0736 0.0602

100 120 140

0.0572 0.0950 0.118 0.131

0.136 0.135 0.131

24(

0.0493 0.0404 0.0331 0.0271 0.0222 0.0181

260 280

0.0149 0·9122

JUU

--0:00.)(:\ 0.00996 0.0082 0.0566 0.0067 0.0499

160

lsu

2()(

I

22!

:320 340

I

0.125 O.lib

0.107 0.0982 0.0890 ---o.()~Ol 0.0717

Cc 0

Co

(J.(J()1~

0~12

0.()()65 O.OLlY

O,t.J(J43 0.0081)

0.0205 0.0285 0.0366 0.0447 0.0523

O.Oij{) 0.O19()

u.u~95

U.0392 0.0442 0.041:12 0.0520

0

0.0244 0.029g u.~~

O~Q§g

0.0724 0,r}}7,! 0.Q~~9

U~5~ O·tl,:s~

0.U1:I74 0.U914

O.()bU':/

0.0949 0.0632 0.0979 .-1~_. 0.0635'-·

020 •

o.ts

012

FAo -, FA +fAV =0 1,)

,..

CAO - 1.) CA - kl CA V ::::: 0

CAO -

CA ~

CAO -

CA (l -+- kl

CA CA.O

:::::

kl

CA 1: ::; 0

---1__, __ (1 +

ki

t)

1:) ;;:: 0

FBO -

FB

+ fa V ::::: 0

·u CB + (kl CA " kl CH - k3 C:a) V::::: 0 ,CHi-' kl C A t .. k2 Cg

1: -

k3 CB 1: == 0

Cg (1 + kz t + k3 "t) ;;;; kl t C A

CA =~a

Cso = Cs =

=>

DMAJ(

--·k

Cc = 0

In(I--~)

=,urnax (1-

,urnax

e-Csolk)=

Ihr- I (I- e-20gldm3 ISgldm#

Cs=-kln(l-

DCc=DYm(Cso-C s ) DCc = DYos ( C so

+k+- ,u:-)J 7-38

)= O.918hr-

.u:-)

1

7.0

Now

For

d(DC c )

Dmaxprod '

Dmax

prod =

dD

:::

0

0,628 hr-!

P7-17 (a) Individualized solution P7 -17 (b) Individualized solution P7-18 (a) rg = JlC c

Jl::: Jlmax CS KM +C s

ForCSTR,

DCc:::rg

D(Cso-Cs):::-rs

-rs:::YsICrg

s

C :::Cso (1-X):::lOg/dm 3(1-0.9)=lg/dm 3 Cc ::: YCIS (c so - C s )::: 0.5(10 -l)g / dm 3

:::

D=

v;{

4.5g / dm 3

DC ::: r ::: JlmaxCsCc c g K M +C s Vo

=>

= 0.8hr- 1 xlg / dm 3 x4.5g / dm 3

4.5g / dm3

(4+1)g/dm 3

V V ::: 6250dm 1

P7-18 (b) Flow of cells out = Flow of cells in

Fc ::: VoCc Cell Balance:

dC Fc + r~ V - Fc ::: V· __cdt

dCc=r __ dt g dC

Substrate Balance: _2_::: voCso

dt

r g

- voCs - Ys/ r~ /lC

= JlmaxCsCC

~=----"---"'-

KM +Cs

This would result in the Cell concentration growing exponentially., This is not realistic as at some point there will be too many cells to fit into a finite sized reactor., Either a cell death rate must be included or the cells cannot be recycled"

P7-18 (C) TwoCSTR's For 1sl CSTR, V = 5000dm3 ,

DCc

= rg

D(C-C so s )=-rs

7-39

POLYMA TH Results NLES Solution Variable Ce Cs urnax KIn

Csoo Cso Yse rg r's V vo D X

Ceo

fIx) 9 . 878E-12 1.976E-ll

Value 4.3333333 1. 3333333 0.8 4 10 10 2 0.8666667 -1.7333333 5000 1000 0.2 0 . 8666667 4 . 33

Ini Guess 4

5

NLES Report (safenewt) Nonlinear equations f(Cc) = D*(Cc)-rg = 0 f(Cs) = D*(Cso-Cs)+rs = 0

[1) [2)

Explicit equations [1) umax = 0.8 [2) Km=4 [3) Csoo = 10

Cso = 10 Ysc = 2 (6) rg = umax*Cs*Cc/(Km+Cs) [7) rs=-Ysc*rg [8) V = 5000 (9) vo = 1000 [10) D=voN [ 11) X = 1-Cs/Csoo [12] Ceo = 4 . 33 (4) (5)

x = 0 . 867

Ccl = 4.33 g/dm3 3 CSt = 1.33 g/dm

CPt

= YP/CCCt =0 . 866 g/dm3

nd

D(CC2 -CCI)= rg See Polymath program P7-18·. c-2cstr..pol.

For2 CSTR,

POL YMATH Results NLES Solution Variable Ce Cs urnax KIn

Csoo Cs1

Value 4.9334151 0 . 1261699 O. B 4 10

fIx) 3 . 004E-I0 6.00BE-10

Ini Guess 4 5

1.333

7-40

2 0.120683 -0.241366 5000 1000 0. 2 0.987383 4.33

Yse rg

rs

v

vo D X

eel

NLES Report (safenewt) Nonlinear equations [1] [2]

f(Cc) = O*(Cc-Cc1 )-rg = 0 f(Cs) = O*(Cs1-Cs)+rs = 0

Explicit equations [ 1] [2] [3] [4]

[51 [6] [7] [8] [9]

umax = 0.8 Km=4 Csoo = 10 Cs1=1.333 Ysc=2 rg = umax*Cs*Cc/(Km+Cs) rs = -Ysc*rg V = 5000 vo = 1000

[10] 0 [ 11]

=voN

X = 1-Cs/Csoo

[121 Cc1 = 4 . 33

CC2 = 4.933 g/dm 3 C S2 = 126 g/dm

3

X= 0.987 C P1 = YP/CCCl =0 . 9866 g/dm3

P7-18 (d) For washout dilution rate, Cc = 0

=

D

max

DMAXPROD

= Jimax

[

1-

JimaxCso KM

+ C so

~--]

~

-KM +C so

Production rate = Ccvo(24hr)

3 1 J!.:_8hr- x 109 / dm 4g/dm 3 +lOg/dm 3

= O. 8hr

=4 . 85

= O.57hr-1

-I[1-- ~·-·4g/dm3

._-] 4g/dm +lOg/dm 3

3

---·---3

3

g / dm xlOOOdm Jlnx24hr = 116472.56g/day

P7-18 (e) For batch reactor,

dC c_=r __ dt

g

= 0.37hr

dCs

---=r dt s

Ceo = 0.5 g/dm3 C so = 109/dm}

ro = .J!:max CS C o

See Polymath program P7-18e.pol. POL Y1\1ATH Results

7-41

K

M

+C S

C

-I

Calculated values of the DED variables Variable t Cc Cs Km Ysc umax rg

rs

initial value

o

0.5 10 4 2 0.8 0.2857143 -·0.5714286

minimal value

o 0 .. 5 0.1417155 4 2 0.8 0.1486135 -2.8064061

maximal value 6 5.4291422 10 4 2 0.8 1. 403203 -0.2972271

final value 6 5.4291422 0.14171.55 4 2 0.8 0.1486135 -0.2972271

ODE Report (RKF45) Differential equations as entered by the user [1] d(Cc)/d(t) = rg [2] d(Cs)/d(t) = rs Explicit equations as entered by the user [1] Km=4 [2] Ysc=2 [ 3 1 umax = 0.8 [4] rg = umax*Cs*Cc/(Km+Cs) [5] rs = -Ysc*rg

For t =6hrs, C c =5.43g1dm3• So we will have 3 cycle of (6+2)hrs each in 2 batch reactors of V =500dm3 . Product rate =Cc x no. of cycle x no. of reactors x V =5.43 gldm3 x 3 x 2 x 500dm3 = 16290glday.

P7 -18 (g) Individualized solution P7 -18 (f) Individualized solution

7-42

Fogler 7 -19 Solution Problem Statement: Lactic acid is produced by a Lactobacillus species cultured in a CSTR. To increase the cell concentration and production rate, most of the cells in the reactor outlet are recycled to the CSTR, such that the cell concentration in the product stream is 10 % of cell concentration in the reactor. Find the optimum dilution rate that will maximize the rate of lactic acid production in the reactor. How does this optimum dilution rate change if the exit cell concentration fraction is changed? [rp = (a /-l + ~)Cc J /-lmax = 0.5 h-1, ~ = O.lg/g..h,

Ks =2.0 giL, Y x/s = 0.2 gig,

a

=0.2 gig,

Yp/ s =

Cs,o= 50 gIL

0.3 gig

Solution:

CS,o = 50 IL 0.1 Cc

CS,Cc

A steady state material balance on the Bioreactor (including the recycle device) gives: Accumulation =

outlet +

inlet

Cells:

o

=

Substrate:

o

= D *Cs o

Product:

o

=

o

- D*O.l * Cc + -D

* Cs

o

/-l*Cc

(7 ..19.1)

-/-l*Cc/Yx/s -- r p /Y p/s(7.19.2)

+ 7- 43

generation

(7..19.3)

From equation (7.19.1) :

C

s

= 0.1 * D* Ks /I rmax

.

Fromeq uatlOn(7.19.2):Cc ,

D*(Cso-Cs )

=(- - +

J=(

J1

aJ1 + fl

YX1S

YPIS

I

(7.19.4)

-0.1 *D

D*(Cso-Cs ) 0.1 * D a * 0.1 * D + flJ' + --------"'YXIS Y P1S

,

(7.19.5) Rate of production

rp = (a Jl + B)Cc =

(a*O.l*D+jJ)*D*(C s,o- O.l*D*:s) J1max -0.1 D

(7.19.6)

(9.1Y * D + a * 0.1Yp/s* D + flJ XIS

Differentiating equation (7.19.6) w.r.t. the dilution rate D, one can determine the optimum dilution rate that will maximize the rate of production. For the given parameter values in the problem statement, the substrate and cell concentrations and the rate of lactic acid production can be calculated from the above equations and plotted versus the dilution rate. The optimum dilution rate = 3.76.5 In,-I. -_._-------------------------

Recycle CSTR - Fogler 7-19 ----------_._--_._--_._----------

80 70

-----------

60

~'7_"""--'----

50

40 30

20 10

-

=EUbstrate cone Cell Cone ------

J

-"'- Rate of Production

--------1-

------

_~_._._

o ~---~=--='-:-::..-:-~========~~======~====::= - - , - · - - - - - , - 1 ..--.---'L, o 1 2 3 4 5 Dilution Rate, 1/h ----------

7-43a

P7-20 (a) XI + S -.-> More XI + PI X 2 + XI -> More X 2 + P2

ForCSTR,

dCs - -_ D (C50 dt

-

. C S ) - Ys I x rgX I

I

dC x? =D-'C ( ) +r ._-dt Xl gX 2 r gX,

= Jil C XI

See Polymath program P7-20-a.pol. POLYMATH Results Calculated values of the DEQ variables Variable

initial value

minimal value

maximal value

t O O

1

7-44

final value 1

Cs Cx1 Cx2 Km1 Km2 u1max u2max rgx1 rgx2 Yx1s Ysx1 Yx2x1 Yx1x2 Cso D

10 25 7 10 10 0.5 0 . 11 6.25 0.55 0.14 7.1428571 0.5 2 250 0.04

1. 2366496 25 7 10 10 0.5 0.11 1 . 4008218 0.55 0.14 7.1428571 0. 5 2 250 0.04

10 25.791753 7.2791882 10 10 0.5 0.11 6.25 0.5748833 0.14 7.1428571 0. 5 2 250 0.04

1.2366496 25.456756 7.2791882 10 1.0 0. 5 0.11 1.4008218 0.5748833 0.14 7.1428571 0.5 2 250 0.04

ODE Report (RKF45) Differential equations as entered by the user [1] d(Cs)/d(t) = D*(Cso-Cs)-Ysx1 *rgx1 [2] d(Cx1 )/d(t) = D*(-·Cx1 )+rgx1-Yx1 x2*rgx2 [3] d(Cx2)/d(t) = D*(-Cx2)+rgx2 Explicit equations as entered by the user [1] Km1=10 [2] Km2 = 10 [3] u1max = 0.5 [ 4] u2max = 0.11 [5] rgx1 = u1 max*Cs*Cx1/(Km1+Cs) [ 6] rgx2 = u2max*Cx1 *Cx2/(Km2+Cx1) [7] Yx1s = 0.14 [8] Ysx1=1lYx1s [9] Yx2x1 = 0 . 5 [101 Yx1x2 = 11Yx2x1 [11] Cso = 250 [12] D = 0 . 04

8.2 6.4 4. 6 2. 8

10

0.0

0.2

04

t

0.6

0.8

10

7.30,---

7.24

~J

718 712 7.06 25.00'---~-.

0.0

0.2

_ _ _ _ _ _ _ ._ _ _...J 04 t 0.6 0.8 10

7.00

IL--_~. _

0.0

7-45

Q2

_~_

Q4 t

Q6

0.8

10

0..580 r - - - - - - - - - - - - - - - - - - , 7.0 0.574 0.568 . 0562 0.556 0.550 t-~

j for X"

W J YS.

080

0.50 -,

I;

005~ 0,00

t,._"~~,...;-:..=..::"~~:::;=_ _ _""..""'' .. ' ' ' ' ' _.

o Pj

20 ;::::

40

j

80

60

100

M,,(l . p)Zpjl =M o (1' p)2p9

Use the above equation to generate a graph of P IO V$, p:

°

D2

0.1.

P

0,6

0,8

{c)

Use these equations to generate graphs of Yj and

Wj VS,

W j

VS.

j. j for p :::;; 0.80, 0.90, 0.95

0,,07 -r--·~"···"···"·-·-·--·'·'·---·'-·'·"'---"--· 0,,06 OSo. ;------1'=o,90

..-'-'" ."""'' ----,

+=---p:::; l i\"

0.05 i

~

i

004

I i

O.oJ

"

\"

,."

p =0.95 .. , ----,

',",."'-'"

\

t! /"'\,:" "

!

:: t~s::~~: ~-'~: ;~J OO'J-i.

o

7-62

\"

20

40

60

80

100

We must find the value of p.

ill

~ =(~~:~,"nex{=~~) -I]; -0.067

wf = 2.803 I2 :::;:

12o cxp( -kat):::;: (O.OOl)exp[( -L4 X 10,3)(14,400)1 == 2.794x 10 . 9 k~M

P == fJ =: - - - - - - - -....- ..- ...- - - - - . . . . kpM + kmM + kee + ksS + ~2ktkof(IJ

. = 0.99991

This can then be used to calculate the desired values:

_.104 __ . 6 NI ::;:: .-_._--._ . . _. . . . . . . . :: l.b) x 10 Jl

1.- 0.99991

(e) Mole fraction of polystyrene of chain length 10 (y 10)'

Use the above equations t.o plot Yo VS.t::

7-63

y 10

VS.

t

o° ~: r------'--------------------'.--,.'----·------------------l

O

0.03

I

O.O!)

-

I

;'002

\

0.,015

~

I

O.Ol 0005

.

..:::::::~

2

________ .. _,J1

t (hr)

5

3

CDP7-K Reaction

R.} + I . .", . &i", PJ (a) and (b)

...;;-' r.:;:; L}

r r +- R' (k l"l+ k S S + k rt.[') , m

.. [

_

l

l

X +~ +~. tk;h+ k,,~r ~ (1~rr0 + N

(c)

k,

+

From the above derivation we know that

rp

Neglecting the solvent term and rearranging yields: 1

:::::

i .\,·t

-1M

Substituting in for

-'1 M

and Ii and simplifying:

7-64

{:}1+ kk:fi

knI z)!?vf(-r =1. . . _- .2k,J(I . . . . _ . . _-_ . . . . _. . . .M_,) + .krn- + _.,.-

XN'

k!(2kof(IzJlkl)

kp

kpM

---

. k m ..,.,.., --,_ krjI..... 1 _ .....kJ-r;.t) -:;'."" "'--...,.... XN k;(lVl) kp kpM To determine rate law parameters experimentally from a CSTR both the [mal XI'! value and the final concentrations of wI and I must be recorded. l11ese data can be ~-

(d)

..;,.,-

..

used in the above equation to frnd values for the parameters.

An increase in temperature would cause an increase in all three primary steps of

(e)

free-radical polymerization (initiation. propagation, and termination). By looking at the overall rate law:

l2k:(I,W

r . ;;;:;; k M (._-_._.::_. M

?~.

k~

it can be seem that the greatest effect of temperature would be on propagation. Overall, there would be an increase in monomer disappearance and an increase in pol ymerization.

CDP7-L PFR:

a)

_dlvl .._-:::::: r dr »',1 )"-~.--.-

12koL,f

riM : : : -kp~M ~~;;. Plug those into POLYMATH to get this graph. §~ati2E:!':' dIm) Id(tau);rm

!£!i t. i~!

d(i) /d(cau}=:·:.

n .01

kp=lG ko""Je- :)

t.au

~~S!.!1..V~!.~ 0

~~~. :;:!!s~

=; . t:.au

n

kp"m·sqrt(2*ko~i"f/ktl

:; {)t

~b~~ ... :!~:·u~

~'in4-l

VAll.].f~

7'99$

,999~

'.1'H~

l

r:i;;-.. ko*i.

Y~±.:±~

:3

2 'S'!J.2"J.

0.0:

.J 01

S. %! ::. .. ·",8

S .06~:';,,,, .. Ja

:~

t·t-

10

0 OUl

14 0.001

0.5

{)

s,,·n7

$e+0 1

Se·,;].";

··t.e··05

•. :5

~:.@,

,,1

7-65

j4J)~~~ ..

i)$

~

-- -

C S

5 Ofjl.'1l~···41.

.. < 99lSa,,·23

-.



'4 iTO

!400.

1400.

1400.[400.

is ,!k

iO.133

10.0651696

,0.133

6 IvO 17

20. '0.2

1

[kr

!

:0.0651696

,~

1"

:5.

18 IUarho

i20. 10.0622149 ,5.

,;20.10.0622149 ,

20.

t

iO.2

1

,~5.

!323.

15. ]"323.

11.013E+06

I~.,013E+06

1304.6819

" 1304.6819

,1304.6819

1304.6819

/304.6819

'292.8948

!304.6819

1292.8948

10

0

117.40323

!17.40323

14IC6

10

0

;17.40323

117.40323

15frA '.

'-40.52269 !

-40.52269

1-0.2446624

1-0.2446624

19

IT~

b23. ··11.013E+06

10jPO

llicAO 12ICA 13 Icc

T

!

,

;

~

~

:323.

~

Differential equations i d(X)jd(W) = -rA j vO j CAO

8-75

J1.013E+06

~j d(T)/d(W)

= (Uarho * (Ta - T) + rA * 20000) / vO / CAO /

40

Explicit equations

= 400 k = 0.133 * exp(31400 / 8.314 * (1 / TO - 1/ T)) vO = 20 kr = 0.2 * exp(51400 / 8.314 * (1/ TO - 1/ T)) Uarho = 5 ;§;:Ta = 323 TO

PO = 1013250

= PO /8.314/ TO CA = CAO * (1 - X) / (1 + X) * TO / T $~l CC = CAO * X / (1 + X) * TO / T CB = CAO * X / (1 + X) * TO / T rA = -(k * CA - kr * CB * CC) CAO

400

0.060

394

Q

388 382 376

0012

---~-- ...

0. 000

....J.-~---.I-_

0

10

20

W 30

:;0

40

370

0

10

20

W 30

---.--,

40

50

P8-23 First note that ~Cp = 0 for both reactions. This means that MIRx(T) = ~HRx 0 for both reactions. Now strut with the differential energy balance for a PFR; dT _ Ua(Ta - T)+ dV -

,L lij (-MiRxij) _ Ua(Ta -T)+ 'i.c (-MiRxIC) + r2D (_.Mi Rx2D)

,LFjCpj

-

,LFjCpj If we evaluate this differential equation at its maximum we get dT --- = 0 and therefore, Ua(~ - T) -- 'i.c Mi RxIC -- r2D Mi Rx2D = 0 dV We can then solve for rIC from this information.

8-76

MI RxIC 'ic

=

10(325 - 500) - 0.4 (0.2) (0.5) (5000) -50000

=0.039

'ic = 0.039 = klCCA CB = klC (0.1)( 0.2) klC =1.95

~C(500) = ~C( ~= R E

lr o.22 ( 0.91-9· 025 }_ 0,0025 1 1-0.05:>(0.05) (1-0.05fK~J = k{t) [0.848 -

Q.Q~~O~l

(4)

8-98

Energy balance:

FAO (l:9i c;,i + X .6.C p) Tlr - FAo (Lei Cpi + .6.Cp X) Tlr+Ar + rA ~W(AHR) - (2) (AA) U(r) (T-T A) = 0

or: FAO (re j Cp; + x ACp) Tlr - FAO (rej CPi + ACp

x) Tlr+Ar

. + rA 2raIhp (.1HR) 1M - (2) (2xr tu) U(r} (T-T.J =0 Taking the limit as tu -+ 0:

FAO (rei ~ + x ~Cp) ~ = -U(r) 4m (T-TA) + (-.rA) (-MIR) 2xrhp Rearranging:

dI.

=-U{r) 4m- (T-TA) + (-rA) (-AHR) 27trhp

dr

(5)

FAO(:r9i CPi +X~Cp)

-U(r) 1h.(T- TA ) + (-rAl (-~HR)

or: .dI.. dW

=------p~------'!""--

(6)

FAO{:rei CPi + X acp)

Assume that: U(r) = U(ro) (.It.)1f2 ; ~



Therefore: U(r) = U(ro}

l) = l)1-ro (1 +£X)J.. ~o

(!f-)l'\f.yn {I - O.055XA)1f2

From example 8-10. we have:

K.p =exp (42R~ 1 _ 11.24] (Kp in ann- 1f2 • T in OR) k = exp [

(1)

T - 110.1 In T + 912.84]

-176008

(8)

MiRm = -42,471 - (1.563)(T - 1260) + (1.36 x

1O-3)(T2 - i26(2)

- (2 459 x lO-7){T3 - 126(3) where AliR in Btu . 3 l~le

8-99

(9)

l:8i Cy. = 57.23 + 0.014T - 1.788 x 1()-6 T2

(10)

Since equations (1) to (10) must be solved together as two pairs of coupled differential equations. they must be solved on a computer. employing numerical methods such as Runge-Kuaa. The results follow:

i

T

I

_ - - -~ 1.,0".

,;'-

....---.·.-/·. .- - - - - -.. .E: 8

12

16

zo

24

n

'8

y"",.

T

---~~~--------------i~

--'

.-'

.'

.4

~

________________ •

I:

"

.0.24

12

%I

.,

,- /----------

0." ------------~O

16

~

...

U

48

"

60

(I~'I

i

I AGO

T

t

X

1"0_

t

12110

lOGO .,;' --~

eoo

0

(J..:

I

a

:go

---

.

r.i.

.'

0 ..

'

I

~t.

I

:

"

4

a

12

16

:0

44

:t

n

16

.a

oM

41

~

." l....j

l71

P8-30 (d) 8-100

U

60

;

1I

.~~ = ::2m-~£t~.~4). }~o

dr

~rA ={qB~f~ J c = c =C A

B

.'10

(1'"- X'l_!Q. 'T

TO

Cc =2CAO XT

dT _ U(r)47rr(TA -T)+(--rA)(-LlliRJ dr FAO ( CpA + CPB )

u=u(ro)(;

)"(;,r

Now put these equations into Polymath to generate the plots. See Polymath program P8 . 30·d.pol. POL YMA TH Results Calculated values of the DEQ variables Variable -r X

T Ta dHrx Fao Cpa Cpb h

ro To E R

Cao U

k

Ca ra

initial value 0. 5 0 350 373 -2.0E+04 1200 25 15 0.5 0.5 350 7.0E+04 8 . 314 0. 1 33.3 30 . 955933 0. 1 -3 . 0955933

minimal value 0.5 0 350 373 -2.0E+04 1200 25 15 0. 5 0. 5 350 7 . 0E+04 8 . 314 0.1 0 . 769425 30.955933 -2 . 608E-10 -3.0955933

maximal - - -value -1000 1 493.0235 373 -2 . 0E+04 1200 25 15 0.5 0. 5 350 7 . 0E+04 8 . 314 1 33.3 3 . 398E+04 0. 1 2.09E-06

°.

ODE Report (RKF45) Differential equations as entered by the user [ 1] d(X)/d(r) = -2*3 . 1416*h*ra/Fao [2] d(T)/d(r) = (U*4*3 . 1415*r*(Ta-T)+(-ra)*(-dHrx))/(Fao*(Cpa+Cpb)) Explicit equations as entered by the user [1] Ta = 373 [2] dHrx = ··20000 [ 3 ] Fao = 1200 [4] Cpa = 25 [5] Cpb = 15

8-101

final value 1000 1

373 373 -·2 . OE+04 1200 25 15 0. 5 0. 5 350 7 . 0E+04 8 . 314 0.1 0.769425 136.44189 -3 . 125E-17 4 . 264E-15

(6) h =.5 (7) ro =.5

To=350 (9) E = 70000 (10) R=8.314 (11) Cao =.1 (12) U = 33.3*(ro/r)I\.5*(TfTo)I\.5 [13] k 035*exp«E/R)*(1/273-1fT)) [14] Ca = Cao*(1-X)/(1+X)*(TofT) [15] ra = -k*Ca (8)

=.

P8-31 (a)

Mole balances:

v = F.4.0 - I:.. -rA V=Fs=Fc rB re

rate laws:

= ","CA rB =k.CA -~CB rc = k"CB -rA

Stoichiometry:

c.=F;I.. I

Va

To

Fa =10Fe .5 = .05-~

0.5

F;. = .025 11Fe

=.025

Fe =.023

FB =.023

From this we can use two of the mole balances to solve for T

8"·102

~o-~

1G~ 1 A1e- E1 KI

F;

=-

~Fs 0.1

-

~e-EI KI

T=269°F P8-31 (b)

Knowing the temperature we can then solve for the Volume:

P8-31 (c) We then need the energy balance:

UA(~ - T)- ~oCJHl(T - Yo)+ v[(MfR1)('iA) + MfR2 ('iB)] = 0 Solve for A and we get: A = 399 ft2

P8-31 (d) In order to get multiple steady-states, the kappa, tau and feed temperature had to be changed. l( == 0.1, 't == 0.0005 and To would be changed around. Tlus first graph is G(T), R(T) vs T at To == 2000 of 20000 " ,--,-,,----"""'-,,---.--..,------. 15000 10000 5000 "

-5000

1000

15 0

-,10000 .....- - - , . - - , - " -- - - - - - -.......

As can be seen there are three steady-states.

8-103

Ts vs To 1200 . 1000 800

~600

•• • • •• • • • •• • •

400 4 200 .... 0

10000

5000

0

To

P8-32 (a) Energy balance

.!L= Ual PII(r. -T)+(-rAX-AHR(~)] ~o(L8iCpi+XACp)

dW

tIT _

Ual P.(7;, - T)+(-rAX-MIR(TR))

dW

I:..oC,..

dX

Mole balance: dW

-r =-4. ~o

Pressure drop: dy =~1i(l+X) dW 2y T Rate law:

Stoichiometry: CA =

CAo(lXXI..} l+X To

Evaluating the parameters:

(-1-_1.)1 =ex]3776.7J'2... _1.)1 T J ,. \. 450 T J

k = ex] E ~R 450

Plugging these equations into POLYMAlH we get the following plots. See Polymath program P8·32··a.pol. OL YMATH Results Calculated values of the DEQ variables 8-104

initial value 0 1 450 0 5 0.007 450 300 -2 . 0E+04 5 40 1 0.25 0 . 25 -0 . 25

},:ariable W Y

T X U

a To Ta dHrx Fao Cpa k

Cao Ca ra

minimal value 0 0 . 6823861 310 . 69106 0 5 0.007 450 300 -2 . 0E+04 5 40 0 . 0232094 0.25 0 . 0825702 -0 . 25

maximal value 50 1

450 0 . 175758 5 0.007 450 300 -2.0E+04 5 40 1 0 . 25 0 . 25 -0.0019164

final value 50 0 . 6823861 310 . 69106 0 . 175758 5 0.007 450 300 -2.0E+04 5 40 0.0232094 0 . 25 0.0825702 -0.0019164

ODE Report (RKF45) Differential equations as entered by the user [1] d(y)/d(W) = -a/(2*y)*(TofT)*(1 +X) [2 J d(T)/d(W) = (U*(Ta-T)-ra*dHrx)/Fao/Gpa [3] d(X)/d(W) = -ra/Fao Explicit equations as entered by the user [IJ U = 5 [2] a = . 007 [3J To=450 [4] Ta = 300 [ 5 J dHrx = -20000 [6J Fao = 5 [7J Cpa = 40 [S J k = exp(3776 . 76*(1/450-1fT)) [9J Cao = . 25 [101 Ca = Cao*((1-X)/(1-+X))*(T/450)*y [111 ra = -k*Ca 1.0

...-.=-------- -----..,

50U r - - - - - - - - - - - -

460

0. 8

IT] - v

0.6

420

- X

380

0.4

0.2

.

---"-~

............. " ..."'" ... " ......................... ~ .... '~ .................. ~ ... ~ ..... """

340

~--.-..,.--10

20

W 30

40

50

300

(I

10

20

W 30

40

50

P8-32 (b) From the Polymath summaty table, it is appatent that the maximum value for -rA occurs at the beginning of the reactor.

P8-32 (c) 8-105

The maximum value for the temperature also occurs at the beginning of the reactor.

P8-32 (d) Doubling the heat-transfer coefficient causes a decrease in the temperature, the conversion, and the pressure drop. Halving the heat transfer coefficient casuses all three to increase.

P8-33 Mole balances V = vo(C AO -CAl -rA

Rate laws: -rA

=k1CA +k2 CS

-rs =k1CA +k2C S Energy balance:

ru =k2CS

-FAO[c;,A(T -TAO) +CpB(T - TBO)] + V(rAIX.MiR1(TR}+ 6Cp1 (T - TR») + V(rA2XllliR2(TR)+6Cp2(T - TR})

Evaluating the parameters: T=400K kl =1000exp(- 2~)=6.73

t..C p1 =50-20-30=0

k2 =2000exp( -

3~OO)=1.11

t..C p2 =40-30-20=-10

FAo 60 dm 3 vo =-=-=6000Coo =C AO C AO .01 min Simplifying: C A = 't "rA +CAO C s = 't "rs +C so Co = 't" ro

C u = 't It ru

171000 V=-------20190· CA."!" 6660· C~

We can plug those into POLYMATH and find the exit concentrations of U and D and find the volume of the CSTR. See Polymath program P833.pol. POLYMA TH Results

NLES Solution

8-106

variable Ca Cb Cd Cu V

Cao Cbo vo

k1 k2 tau rd ru ra rb

Value 0.0016782 0.0016782 0 . 0071436 0.0011782 3794.94 0 . 01 0.01 6000 6.73 1.11 0.63249 0.0112944 0.0018628 -0 . 0131572 -0 . 0131572

f{x)

-1. 472E-16 -1.472E-16 -1.154E-16 -2 . 017E-17 1. 018E-09

Ini Guess 0 . 0017 0 . 0017 0.0072 0 . 0012 3794

NLES Report (safenewt) Nonlinear equations [ 1] f(Ca) = tau*ra+Cao-Ca = 0

f(Cb) = tau*rb+Cbo-Cb = 0 f(Cd) = Cd-tau*rd = 0 f(Cu) = Cu··tau*ru = 0 [ 5] f(V) = 171 000/(20190*Ca+6660*Cb)- V = 0 [2]

[3] [4)

Explicit equations [1] Cao = . 01 [2] Cbo = . 01 [3] vo = 6000 [4J k1 = 6..73 [5] k2=1..11 [6) tau = Vivo [7J rd=k1*Ca [ 8] ru = k2*Cb [9] ra = -k1 *Ca-k2*Cb [10] rb=ra

P8-33 (a) Cu = .0012 Co = .0072

P8-33 (b)

V=3794dm3 P8-33 (c) Individualized solution

8-107

Solutions for Chapter 9 - Unsteady State Nonisothermal Reactor Design P9-1 Individualized solution P9-2 (a) Example 9·1 The new TO of 20 of (497 OR) gives a new AHRn and T. With T=497+89 . 8X the polymath program of example 9-1 gives t= 8920 s for 90 % conversion.

P9-2 (b)

Example 9·2

To show that no explosion occurred without cooling failure . Isothermal operation throughout (T 17S0C)

=

~:laximum

cooling rate:

Qr == UAI448-· 298] == 142 * 150

::: 21300 BTU/min Maximum Qg at t == 0 (maximum concentration and reaction rate)

Qg := k _liclQ1!!.!.Q. V2 * V(··MI R~ ) == O.OOO1l67[.?.~'~~~J2..34 *' 10 6 . 5J 19 . ::: 15914.2 BTU/min For all t:

Qg < Or

No explosion

9-1

To show Ll}at no explosion occurs with cooling shllt down for 10 mi after 12 P..IS Isothermal operation for 12 hrs (at T:::: 175°C)

t ==

[~~-Ie~~::2}n~(i:::~~)

') x__ == 1 276 __e,,· iL-=:: 8 s (l·-x) 3 64--2x == 1276*3.64(1····· x) x:::: 0..38

Qg at

t :::;

12 hrs .

Qg "" k.~~JL '-" 0..000

. X.llVzo{~l!.:_~.:l(._AH ) V &

11671··~:O~~{1.:~:~~X~..!:::_~*:~?112..34 '* 106 "

= 77844

5..119

.

BTU/min..

Adiabatic operation for 10 min. UA:::: 0. After 10. minutes

x == 0.385, T == 184"C Qg :::: 10000 BTU/min. When we restart the cooling flow rate Q,I"",. == 21,30.0 BTlJlrnin. Temperature will dIop to 175"C NQ~~lQ:iiQ11

P9-2 (c) Example 9-3 Decreasing the electric heating rate (Tedot in polymath program from example 9-3) by a factor of 10 gives a conversion of 9.72 % at the onset temperature . For a decrease by a factor 10 the conversion is 2,49 %. The higher conversion of a lower heating rate is logical since the time it takes to reach the onset temperature is longer and the reactants have a longer time to react. P9-2 (d) Example 9-4 Decreasing the coolant rate to 10 kg/s gives a weak cooling effect and the maximum temperature in the reactor becomes 315 K. An increase of the coolant rate to 1000 kg/s gives aT max of 312 K. A big change to the coolant rate has, in this case, only a small effect on the temperature, and because the temperature does not change significantly the conversion will be kept about the same.

P9-2 (e) Example 9-5 Using the same code as seen in Example 9",4, we were able to change the various parameters. The two graphs we have show To;::: 70 and 120°C, T i :;;;; 160 and

40°C, and Caj

=:: .. 1 and ,,2. Each set of parameters had a Temperature time trajectory and a teIuperature- 0,4'

c::: g

0,.3

--

0.2

..

0.1

0""------"'"---,---··.,.-----·,.,...·,,--,·---,.-··..-,,-·,,,····,,,. · · · · · . . ·. . ·"....""""'t----·. . . T···"·" .. ·~··

66

68

70

72

'74

To

9-4

76

78

80

82

_

..... ...........

_-_ _-_._-_ _ ..

............

................

_._..........__....__--_...................................................._._-------..

x vs coolant flow

1 ...-...._ _................-._...............- .....--.

------.----~

0.9 0.8 .

c 0:7 .E 0.6 ....coQ,) 0.5 c> 0.4 o

o

--_._-___ __ _--

0.3 .

•.

..

0,2 .

0.1

. . . . .-r------r,..-.. . . . . -----1

o -!---.----,------......,...,--, o

2000

..

..

6000

4000

8000

10000

Coolant flow, mollh

180

...-_ ..•..-

T vs. coolant flow ---"' ...................._............................... __.,-------------

160 .

u.. 140

....c) 120 .

.aa:s

100··

~

80·

--_._-_ __ _---_._-....

M

....

E 60 Q,) • i-

40 20·

o ..-.. . . . . . . . . . . .--.,.....--_. _. . . . . · · ·. . . . · · . r······_·_··. ······. •·....·---r-·_-'--.,.....--- . . . ._ . . o

2000

------_

...

__._---"

6000

4000

8000

10000

Coolant flow mol/h ........................

P9-2 (g) Example 9-7 The temperature trajectory changes significantly., Instead of a maximum in temperature, there is now a minimum. The concentration profiles also change. CB no longer goes through a maximum and Cc does not rise above 0 . It also appears that there is no maximum for C A .. It appears that because the reactor is kept much cooler with the increase heat transfer and lower coolant temperature the second reaction does not occur .

P9-2 (h) Example RE9-1 Using the code from Example RE9·1 • we can determine the value of k. for which the reacwi""willtall to the lower steady··state and when it becomes unstable. The following two graphs show those points when ~;; ..2 and 24 respectively. The third graph shows what happens when To;; 65. It becomes unstable ata much lower temperature. 9-5

t 1"" •

KEY:

--T

,

.:J-co-'-

1 i

1 ~c",~cO;-·

t

T 0=65,

IntE'gr al

1
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF