Solution Manual - COUGHANOWR Es
July 13, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Solution Manual - COUGHANOWR Es...
Description
@k t 3 :,0 n (t) 3 2.0u (t) - 2,0 u (t - :) + (t - 6) u (t - 7)
n (:,0) 3 2,0u (t) - 2,0 u (t - :)
n (:,0) 3 2,0 - 2.0 3 2 @k t 3 6
n (6) 3 2,0 - 2,0+ (6 - 6) 3 2
W@VRP@VUJ E@ PK RWAC@W R@EAED VAVU@CJV
0.: Pk t`rcöc`trd qu` ta`k` ukj fdkstjkt` e` ta`cpd
e` 2,7 cak s` fdidfj `k uk
t`cp`rjturj e`i gjúd y e`spuás e` qu` `i t`rcöc`trd ii`hj ji `quaiagrad fdk `i gjúd, ij t`cp`rjturj e`i gjúd juc`ktj iak`jic`kt` fdk `i ta`cpd j ukj tjsj e` A ² F / cak ´fuêi `s ij ean`r`kfaj `ktr` `i akeafjed t`cp`rjturj y t`cp`rjturj e`i gjúd (j) 2,: cak (g) :2. cak e`spuás e` qu` fdca`kf` `i fjcgad e` t`cp`rjturj.
© ´fuêi `s ij e`svajfaök cêxacj `ktr` ij t`cp`rjturj w akeafjej y ij t`cp`rjturj e`i gjúd y fuêked dfurr`4 (e) trjf` ij nukfaök e` ndrzjca`ktd y ij r`spu`stj `k `i cascd hrênafd. E`spuás e`i ta`cpd sunafa`kt`, fdcpr` fuêktds cakutds tjrej ij r`spu`stj `k ij `ktrjej.
Fdksae`r` qu` `i t`rcöc`trd `s ij
`k `quaiagrad
t`cp`rjturj ]s
] (t) 3 ]
: ² / c) t, t; 2
V+(
yj qu` s` ej qu` ij t`cp`rjturj vjrãj iak`jic`kt` ] (t) -]s 3 t V`j ] (t) 3 ] (t) - ]s 3 t
fdk
t`cp`rjturj
gjúd `k
Q (s) 3 H (s) .] (s)
Q (s)
3::3 :+ υ :+ υ ss ss 7
J + +
jkt`s e` Frastd
:+ :+ υ υ sss sss 7
J 3 υ 7 G 3 - υ F 3 :
Q (s) 3
υ : -+ :+ υ :+ υ s s ss 7 υ7
Q (t) 3 υ ca ca - t // υ υ - υ + t
(j) ij ean`r`kfaj `ktr` ij t`cp`rjturj akeafjej y ij t`cp`rjturj e`i gjúd `k t 3 2.: cak 3 ] (2.:) T Q (2.:)
3 2,: - (2,7`- 2,: / 2,7 - 2.7 + 2.:) yj qu` U 3 2.7 ejed 3 2.28=8 hrjeds F
(g) t 3 :.2 cak ] (:) - Q (:) 3 :- (2.7`- :/2. 7 - 2,7 +:) 3 2,:1=> (f) E`svajfaök E 3 -Q (t) + ] (t) 3 - υ ca- t / U + U 3 υ (- ca- t / U + :)
Rjrj vjidr cêxacd eE / eU 3 υ (- ca- t / U + (T- : / U) 3 2 - `- t / 3 2 fdcd t ta`ke` ji aknakatavd E 3 υ (- ca- t / U + (T- : / U) 3 υ 3 2,7 hrjeds F
0.7 Pk guigd e` t`rcöc`trd e` c`rfurad `k ³ puih. e` ijrhd pdr :/= e` eaêc`trd. @i sdgr` e` frastji `s cuy nakd. Fjifui` ij fdkstjkt` e` ta`cpd `k `i jhuj qu` niuy` j :2 pa`s / s`h j ukj t`cp`rjturj e` :22 hrjeds N.@k su sdiufaök, prdpdrfadk` uk r`suc`k qu` akfiuyj
(j) Vupu`stds utaiazjeds. (g) Nu`kt` e` ejtds (f) W`suitjeds
( ϊ JI) JI) F pjh
U 3 cFp / mJ 3 m (J + ς EI) EI)
Fjifuid e`
mE 3
KP e 3
FW c`trd ` ( Rr)
L
W` r` 3
kdrt`
Ev ϊ Ev ϊ ( :/= :/= * 7,05 * :2 - 7) ( :2 * 2,625=) :2 6 3 ° :2 6
3 1>88.5
F pjh °
Rr 3
3 5,7 LO / LhL
L Nu`kt` e` ejtds? W`fa`kt`c`kt`, _ muljusljs mj ejed f, c, λ, k vjidr`s.
Rjrj W` 3 1>8825 F 3 2,7> y c 3 2,> Ku E 3 mE / L 3 2,:16 (1>88,5) * (>,885]:2- 6) 3 :62 . m 3 706=2
0.6 Ejed uk sast`cj fdk ij nukfaök e` trjksn`r`kfaj Q (s) / ] (s) 3 (U : s + :) / (U 7 s + :). @kfu`ktr` Q (t) sa ] (t) `s ukj nukfaök e` pjsd ukatjrad. Va t : / U 7 3 s. Vlt`fm Q (t) ^`rsus t / U 7. Cu`strj ids vjidr`s kucárafds e` ids vjidr`s cãkacd, cêxacd y ÿitacd qu` pu`e`k dfurrar eurjkt` `i trjksatdrad. ^`ranaqu` `stds usjked `i vjidr akafaji y t`dr`cjs e`i vjidr nakji e`i fjpãtuid 5.
Q (s) 3 : +
Us: U 7 s +:
] (s) 3 nukfaök e` pjsd ukatjrad 3 : ] (s) 3 : / s
U:s + : 3
Q (s) 3
J +
V t 7 s :) +
s`huked
s`ktjr 77 s
J 3 : G 3 U : - U 7
: fufmjrjej - U 7 :
Q (s) 3
Q (t)
+ s :+ U 7 s
U - U 7 ca - t / U
7
3 :+ :
U 7
Va t : / U 7 3 s `ktdkf`s
Q (t) 3 :+ 5` - t / U
7
V`j t / U 7 3 x `ktdkf`s Q (t) 3 :+ 5` - ]
Psjked `i t`dr`cj e`i vjidr akafaji y `i t`dr`cj e`i vjidr nakji
IacQ (U) 3 IacsQ (s) V↗∛
U↗2
3
Iac V↗∛
U : s +: 3 yd Us:
U : +
IacQ (U) IacsQ 3 (s) 3 Iac U↗2
Nahurj?
V↗∛
s 3 U : 3 0
Ic V↗∛
U 7+
7+
U s :+ : V↗2
:
U 7 s +:
: fufmjrjej 7
s
3:
0.5 Pk t`rcöc`trd qu` ta`k` ukj eakêcafj e` prac`r dre`k fdk ukj fdkstjkt` e` ta`cpd e` : cak s` fdidfj `k uk gjúd e` t`cp`rjturj j :22 hrjeds N.E`spuás e` qu` `i t`rcöc`trd jifjkzj `i `stjed `stjgi`, s` fdidfj r`p`ktakjc`kt` `k uk gjúd j :22 hrjeds N `k t 3 2 y s` e`oj jiiã eurjkt` : cakutd e`spuás e` id fuji s` e`vu`iv` akc`eajtjc`kt` ji gjúd j :22 hrjeds N.
(j) eaguo` uk eaguod qu` cu`str` ij vjrajfaök e` ij i`fturj e`i t`rcöc`trd fdk `i ta`cpd. (g) fjifui` ij i`fturj e`i t`rcöc`trd `k t 3 2.0 cak y `k t 3 7.2 cak Q (s) 3 : ( υ 3 : cakutd)
] (s) s +:
( s) 3 :2 • •
•:
ca - s •
• s
s•
•
3• Q (s) :2
• : - - sca• •
Q (s) 3 :2 •
•
s•
:
• - ca - s •
• s (s +:) s (s +:) •
•
Q (t) 3 :2 (: - ca - t) t 9:
Q (t) 3 :2 ((: - ca - t) - ( : - ca - ( t - :))) t ≠ : @k t 3 2,0 U 3 :26,16 @k 3 7 U 3 :27,670
0.0 W`patj `i prdgi`cj 0.5 sa `i t`rcöc`trd `stê j ::2 hrjeds N eurjkt` sdid :2 s`hukeds.
Va `i t`rcöc`trd `stê `k uk gjúd e` ::2 hrjeds N eurjkt` sdid :2 s`hukeds
U 3 ::2 - :2` - t / >2
2 9t 9:2 s`hukeds y U 3 >2 s`hukeds U (t 3 :2 s`hukeds) 3 :2:.060
U 3 :22 + :.060` - ( t - :2) / >2 t; :2 s`hukeds U (t 3 62 s`hukeds) 3 :2:.211 hrjeds N
U (t 3 :72 s`hukeds) 3 :22,750 hrjeds N
0.> Pk t`rcöc`trd e` c`rfurad qu` mj `stjed sdgr` ukj c`sj pdr jihÿk ta`cpd, r`hastrj ij t`cp`rjturj jcga`kt`, 80= hrjeds N. E` r`p`kt`, s` fdidfj `k uk gjúd e` jf`at` j 522 hrjeds N. Ids sahua`kt`s ejtds s` dgta`k`k pjrj ij r`spu`stj e`i t`rcöc`trd
Ua`cpd (s`h)
U`cp`rjturj, hrjeds N
2
80
:
:28
7.0
:52
0
720
=
755
:2
7=7
:0
67=
62
6=0
Ej eds `stacjfadk`s ake`p`kea`kt`s e` ij fdkstjkt` e` ta`cpd e`i t`rcöc`trd.
t
υ 3 •
670 •
`k •
•
• 522 - U • J pjrtar e` ids ejtds, `i prdc`ead prdc`ead e` 1.>58,::.7,1.8==,:2.1,1.=8,1.10 1.>58,::.7,1.8==,:2.1,1.=8,1.10 y 1.80 `s :2.:> s`h.
0.8 W``sfragj ij r`spu`stj sakusdaeji e`i sast`cj e` prac`r dre`k (`fujfaök 0.75) `k tárcakds e` ukj dkej fds`kdaeji. ^u`ivj j `xpr`sjr ij `fujfaök e` ij nukfaök e` ndrzjca`ktd (`fujfaök 0.:1) fdcd ukj dkej e` fds`kd y fjifui` ij ean`r`kfaj e` njs` `ktr` ijs dkejs e` fds`kd e` `ktrjej y sjiaej.
Q (s) 3
• :• ••
:
υ s s +:
•υ•
PKJ ρ
(s) 3
s 7 + ρ 77
:
s +
υ eavaear `k nrjffadk`s pjrfaji`s y iu`hd fdkv`rtar j trjksndrcjejs e` Ijpijf`
κρυ PKJ
Q (t) 3
-
ca t // υ υ
PKJ
+
υ 7 ρ 77 + :
p`fjed( ρ t t + ώ)
υ 7 ρ 77 + :
eöke` ώ 3 grdkf`jrs`- : ( ρυ)
Fdcd t ↗ ∓
Q (t) s
3
PKJ
p`fjed ρ(t+
υ 7 ρ 7 7 + :
υ 7 ρ 7 7 + :
Q (t) 3 Jsak ( ρ ( ρ t t + ώ) + ώ) 3 Jfds 3 Jfds •
• ς •
Q () t 3
••• Jfds • ρ tt •
PKJ
ώ 3 )
7
- ρ •t • •
ς•
7•
ς • ς •
Ij ean`r`kfaj e` njs` 3 ώ • • •∗ • 3 ώ 3 ώ
7•7•
ς
fdstdρ• • • • ώ • ώ • • 7
• •
)
0.= V` e`oj qu` `i t`rcöc`trd e` c`rfurad e`i prdgi`cj 0.> ii`hu` ji `quaiagrad `k ij t`cp`rjturj jcga`kt` j 80 ² N. Iu`hd s` suc`rh` `k uk gjúd e` jf`at` pdr uk p`rãded e` ta`cpd c`kdr j : s`huked y s` sjfj rêpaejc`kt` e`i gjúd y s` vu`iv` j `xpdk`r j 80 ² N. e`h N fdkeafaök jcga`ktji. V` pu`e` `stacjr qu` `i fd`nafa`kt` e` trjksn`r`kfaj e` fjidr ji t`rcöc`trd `k `i jar` `s :/0 tm qu` `k gjúd e` jf`at`. Va :2 s`hukeds e`spuás e` qu` `i t`rcöc`trd s` r`tarj e`i gjúd, i`` 1= ² N. @stac` ij fjktaeje e` ta`cpd qu` `i t`rcöc`trd `stuvd `k `i gjúd.
t 9: s`huked U 3 :522 - 670` - t
: / υ
J fdktakujfaök, s` r`tarj y s` cjkta`k` `k ukj jtcö sn`rj e` 80 hrjeds N
Fd`nafa`kt` e` trjksn`r`kfaj e` fjidr `k `i jar` 3 :/0 fd`nafa`kt` e` trjksn`r`kfaj e` fjidr `k jf`at`
m jar` 3 :/0 m p`tröi`d
υ 3 cF υ jf`at` 3 :2 s`hukeds e`far jm υ jar` 3 02 s`hukeds
U N 3 80 + (U - 80): ` - t
02 7 /
U N 3 U`cp`rjturj nakji 3 1=e`hF
1= 3 80 + (670 - 670` - t
ca - :2/02
: / :2)
ca - t / :2 3 2.1:60>
t : 3 2,125 s`h.
0.1 Pk t`rcöc`trd qu` ta`k` ukj fdkstjkt` e` ta`cpd e` : cak s` `kfu`ktrj akafajic`kt` j 02 ² F. V` suc`rh` `k uk gjúd cjkt`kaed j :22 ² F `k t 3 2. E`t`rcak` ij i`fturj e` t`cp`rjturj j ids :,7 cak.
υ 3 : cak pjrj uk t`rcöc`trd akafajic`kt` j 02 ² F. J fdktakujfaök, s` su c`rh` `k uk gjúd cj kt`kaed j :22 hrj eds F `k t 3 2
@k t 3 :,7
Q (t) 3 J (: - ca - t / υ)
Q (:,7) 3 02 (: - ca - :,7 / :) + 02
Q (:,7) 3 =5,1 hrjeds F
0.:2 @k `i prdgi`cj Kd 0.1, sa t 3 :.0 cak, `i t`rcöc`trd qu` ta`k` ukj fdkstjkt` e` ta`cpd e` : cakutd `stê akafajic`kt` j 02 ² F. V` suc`rh` `k uk gjúd cjkt`kaed j :22 ² F `k t 3 2. E`t`rcak` ij i`fturj e` t`cp`rjturj `k t 3 :,7 cak. @k t 3 :,0 Q (:,0) 3 ==,=56 ² F
U`cp`rjturj cêxacj akeafjej 3 ==,=56 hrjeds F
JU t 3 72 cak
U 3 ==,=56 - :6.=56 (: - ca - :=,= / :)
U 3 80 hrjeds F.
0.:: Pk prdf`sd e` nukfaök e` trjksn`r`kfaj e`sfdkdfaej s` sdc`t` j ukj `ktrjej e` acpuisd ukatjrad. Ij sjiaej e`i prdf`sd s` cae` fdk pr`fasaök y s` `kfu`ktrj r`pr`s`ktjej pdr ij nukfaök Q (t) 3 t `- t. E`t`rcak` ij r`spu`stj ji `sfjiök ukatjrad `k `st` prdf`sd.
] (s) 3 : Q (t) 3 t`- t :
Q (s) 3
(s +:) 7
H (s) 3
Q (s) 3
:
(s +:) 7
] (s)
Rjrj e`t`rcakjr ij r`spu`stj ji `sfjiök ukatjrad
Q (s) 3
:
(s +:) 7
Q (s) 3
:
(s +:) 7
3J+G+ ss +: (s +:) 7
F
J 3 : G 3 -: F 3 -:
Q (s) 3
:-:-
:
ss +: (s +:) 7
Q (t) 3 : - ca - t - t` - t
W`spu`stj e`i sast`cj e` prac`r dre`k `k s`ra`
8.: E`t`rcak` ij nukfaök e` trjksn`r`kfaj M (s) / Z (s) pjrj `i kav`i e` iãquaed qu` s` cu`strj `k
nahurj R8-8. W`sast`kfaj W : y W 7 sdk iak`ji`s. @i fjueji e`i tjkqu` 6 s` cjkta`k` fdkstjkt` `k g pdr c`ead e` ukj gdcgj< `i fjueji e`i tjkqu` 6 `s ake`p`kea`kt` e` ij jiturj m. Ids tjkqu`s kd akt`rjftÿjk.
View more...
Comments