Solution chapter 2 Dynamic Systems Modeling Simulation and Control - Kluever

April 18, 2019 | Author: americo079 | Category: Torque, Friction, Force, Classical Mechanics, Physical Quantities
Share Embed Donate


Short Description

Solution chapter 02....

Description

Chapter 2: Modeling Mechanical Systems

2.1

The free-body diagram (FBD) is shown below, assuming  z  zin (t ) and z

 zin (t ) :

b1 z  + z 

m

k ( z   z  –   –  z   z in in)

b2  z  z in 

Applying Newton’s Newton’s second second law (summing positive upward):

   F  b1z  k ( z  zin )  b2 ( z  zin )  mz  Rearrange and put all dynamic variables ( z  ( z  and  and z  ) on the left –   – hand hand side and input variables (  zin and z in ) on the right-hand side.

mz  (b1  b2 ) z  kz  b2 zin ( t)  kzin ( t) 

Mathematical model

1

Copyright © 2016 John Wiley & Sons

Chapter 2 2.2

The free-body diagram (FBD) is below, assuming  xin (t )  x and  x  0 + x

k  xin  x 

bx

m

Applying Newton’s Newton’s second second law (positive to the right):

   F  k ( xin  x)  bx  mx

Rearrange with dynamic variables on the left –  left – hand hand side and input variable  xin (t )  on the right-hand side.

  b x  kx  kxin (t ) m x

Mathematical model

2

Copyright © 2016 John Wiley & Sons

Chapter 2 2.3 a) The free-body diagram (FBD) is below, assuming  x  0 + x

 f a (t )

bx

m

Applying Newton’s Newton’s second second law (positive to the right):

   F  f a (t )  bx  mx Rearrange with dynamic variables on the left-hand side and input variable  f  a on the right-hand side.

  b x   f  a (t ) m x

Model using x using x as  as dynamic variable

 b) Substitute v  x and v  x  into the mathematical model in part (a):

mv  bv   f  a (t )

Mathematical model using velocity v as dynamic variable

3

Copyright © 2016 John Wiley & Sons

Chapter 2 2.4

2 FBD of mass m and “massless node,” assuming  z1  z 2 and  z  + z 1

+ z 2

k  z1  z 2 

bz 2

0

 f a (t )

m “massless node” mnode

Applying Newton’s second law to “massless node” and mass m (positive is to the right): Massless node: Mass m:  

   F  bz2  k ( z1  z2 )  mnode z 2  0 (node has zero mass; mnode = 0)

 F  k (z  z )  f (t )  mz  1

2

a

1

Rearrange with dynamic variables (  z1 , z2 , z1 , z 2 ) on the left-hand side and input variable  f  a on the righthand side:

1  k ( z 1   z 2 )   f  a (t ) m z 

Mathematical model

2  k ( z 2  z 1 )  0 b z 

4

Copyright © 2016 John Wiley & Sons

Chapter 2

1  z  2 and z 2  0 : 2.5 FBD of mass m and “massless node,” assuming  z  + z 1

+ z 2

b  z1  z 2 

kz 2

 f a (t ) m

“massless node” mnode

Apply Newton’s second law to “massless node” and mass m. Massless node:

Mass m:

1  z  2 )  mnode     F   kz 2  b( z  z 2  0    F  b( z1  z2 )  f a (t )  mz 1

Rearrange with dynamic variables (  z1 , z2 , z1 , z 2 ) on the left-hand side and input variable  f  a on the righthand sides:

1  b( z  1   z 2 )   f  a (t ) m z 

Mathematical model

2  z 1 )  kz 2  0 b( z 

5

Copyright © 2016 John Wiley & Sons

Chapter 2 2.6 FBD of mass m when x < 0.5 m (no contact with spring): + x

m

Applying Newton’s second law: Rearrange:

bx

   F  bx  mx

mx  bx  0

( holds for x < 0.5 m )

FBD of mass m when x ≥ 0.5 m (contact with spring): + x

k ( x  0.5) m

bx Apply Newton’s second law:

   F  bx  k ( x  0.5)  mx

Rearrange: mx  bx  k ( x  0.5)  0  (for x ≥ 0.5 m) Collect the two equations:

  bx  0   for x < 0.5 m m x   b x  k ( x  0.5)  0   for x > 0.5 m m x

Mathematical model

6

Copyright © 2016 John Wiley & Sons

Chapter 2 2.7

FBD of masses m1 and m2 assuming  z1

 0, z2  0, and z1  z 2

 f a (t )

k1 z 1

m1

b  z1  z 2 

Friction force

k2 z 2

m2

Apply Newton’s second law to each mass (positive to the left):

 F  f (t )  k z  b(z  z )  m z  Mass m :    F  k z  b( z  z )  m z  Mass m1:   2

a

1 1

2 2

1

1

2

2

1 1

2 2

Rearrange with dynamic variables on the left-hand side and input variable  f  a on the right-hand side:

m1 z1  b( z1  z2 )  k1 z1  fa ( t) 

Mathematical model

m2 z2  b( z2  z1 )  k2 z2   0

7

Copyright © 2016 John Wiley & Sons

Chapter 2 2.8

Horizontal displacements of the link at the spring connections are  L1sinθ  (upper) and L2sinθ  (lower). For small rotation angles, sin     . FBD of the link and mass m assuming L1    x

 0  (all springs are in compression) and  x  0 + x

k1 ( L1    x)

bx m

 J 

k2 x

k3 L2 

Apply Newton’s second law: sum torques about pivot point (clockwise) and sum forces on mass m: Link: +

T  k (L   x)L  k L  L

Mass: + 

1

1

1

3

2

2

 J  

 F  k (L    x)  bx  k x  mx 1

1

2

Rearrange with dynamic variables (  , x, x ) on the left-hand side:

  ( k  L2  k  L2 )   k  L x  0  J   1 1 3 2 1 1

Mathematical model

  b x  (k 1  k 2 ) x  k 1 L1   0 m x

8

Copyright © 2016 John Wiley & Sons

Chapter 2 2.9 a) Draw FBD with assumption  x 2  x1 (spring k 2 is in tension) and x1 > 0

k 2 ( x2  x1 )

k1 x1

m1

m2

Apply Newton’s second law to each mass (positive is to the right)

 F  k x  k (x  x )  m x Mass m :    F  k ( x  x )  m x Mass m1:  

1 1

2

2

2

2

2

1

1

1 1

2 2

Rearrange with dynamic variables on the left-hand side:

m1 x1  k1 x1  k2 ( x1  x2 )  0

Mathematical model

m2 x2  k2 ( x2  x1 )  0  b) Use constant total energy to derive the model. Total system energy = total potential energy + total kinetic energy

 total   P   K  

1 2

k1 x12 

1 2

k2 ( x1  x2 )2 

1 2

total P.E. (two springs)

m1 x12 

1 2

m2 x22

total K.E. (two masses)

Take the time derivative of total energy:

total  constant   total  0  total  k1 x1x1  k 2 (x 1  x 2 )  x1  x 2   m 1x 1x 1  m 2x 2x 2  0 Factor out  x1and x2 from  total equation:

 total   k1 x1  k2 ( x1  x2 )  m1x1  x1  k 2 (x1  x 2 )  m 2x 2  x 2  0 Because  x1  and x2 cannot both be equal to zero for all time 0 ≤ t ≤ ∞, the two bracket terms must be set equal   total  0 . Therefore, set both bracket terms to zero. to zero so that  

m1 x1  k1 x1  k2 ( x1  x2 )  0

Mathematical model - same as part (a)

m2 x2  k2 ( x2  x1 )  0

9

Copyright © 2016 John Wiley & Sons

Chapter 2 2.10

The given model is

m1 x1  b  x1  x2    k1  k 2  x1  k1x 2  0 m2 x2  b  x2  x1   k1  x2  x1   f a (t )  1) Friction term b  x1  x2  depends on relative velocity hence dashpot b

Observations:

connects masses m1 and m2. 2) Stiffness term k1  x2

 x1  depends on relative displacement hence

spring k 1 connects m1 and m2. 3) Force  f a (t ) acts on mass m2 only and in the positive direction. 4) Spring k 2 is only connected to mass m1 . Mechanical system: + x1

+ x2 b

k 2

m1

m2

 f a (t )

k 1

FBD of both masses assuming  x2  x1 (spring k 1 in tension),  x2  x1  0 , and x1  0 (spring k 2 in tension):

b  x2  x1  k2 x1

 f a  t 

m1

m2

k1 ( x2  x1 )

Apply Newton’s second law:

 F  k x  b  x  x   k (x  x )  m x Mass m :    F  b  x  x   k ( x  x )  f t   m x Mass m1:   2

2 1

2

2

1

1

1

1

2

2

1

1

a

1 1

2 2

Rearranging:

m1 x11  b  x1  x2    k1  k 2  x1  k1x 2  0

Mathematical model - matches

m2 x2  b  x2  x1   k1 ( x2  x1)  f a t  

given modeling equations

10

Copyright © 2016 John Wiley & Sons

Chapter 2 2.11

The given mathematical model is

m1 x1  b1x1  k1  x1  x 2   f a (t )  m2 x2  b2 x2  k1  x2  x1   k 2x 2  0 1) Dashpots b1and b2 are only connected to masses m1and m2 , respectively,

Observations:

since the friction terms depend on absolute velocities. 2) Spring k 1 is connected to m1 and m2 since the stiffness force depends on relative displacement. 3) Force  f a (t ) is applied directly to mass m1 in the positive direction. 4) Spring k 2 is only connected to mass m2 . Mechanical system: + x2

+ x1

 f a (t )

b2

k 1

b1

m1

m2

k 2

FBD of both masses, assuming  x2  x1 , x1  0 ,  x2   0 and x2  0 :

 f a  t 

b2 x2

m1

b1x1

k1 ( x2  x1 )

m2

k 2 x2

Apply Newton’s second law to each mass:

 F  f t   b x  k (x Mass m :    F  k ( x  x )  b x Mass m1:   2

a

  1 1

1

2

1

1

2

2 2

 x1)  m1x1  k 2x 2  m2x 2

Rearranging:

m1 x1  b1x1  k1  x1  x 2   f a (t) 

Mathematical model –  matches given

m2 x2  b2 x2  k1  x2  x1   k 2x 2  0

modeling equations

11

Copyright © 2016 John Wiley & Sons

Chapter 2 2.12

The given mathematical model is

m1 x1  k1x1  k 2  x1  x 2   0

m2 x2  k 2  x 2  x1   0 Observations:

1) No friction terms   no dashpots. 2) No applied forces. 3) Spring k 1 is only connected to mass m1 since the stiffness force only depends on x1 . 4) Spring k 2 is connected to masses m1and m2 since the stiffness force depends on relative displacement.

Mechanical system:

+ x2

+ x1

k 1

k 2 m1

m2

FBD of both masses, assuming  x2  x1 and x1  0 :

k1 x1

m1

k2  x2  x1 

m2

Apply Newton’s second law to each mass: Mass m1:

   F   k 1 x1  k 2 ( x2   x1 )  m1x1

Mass m2:

   F   k 2 ( x2   x1 )  m2 x2

Rearranging:

m1 x1  k1x1  k 2  x1  x 2   0

Mathematical model - matches

m2 x2  k2  x2  x1   0

given modeling equations

12

Copyright © 2016 John Wiley & Sons

Chapter 2 2.13

a) Derive an equation for rate of energy loss (power dissipated). Power  

d   dt 

Therefore  

  

where total energy 

d d  

  J  

d  dt 



1 2

 J  2 (kinetic energy)

Use Newton’s second law to get the “in ertia torque” J   FBD of disk J :  

 J 

b , friction torque

Sum all the torques on disk J  with sign convention as positive clockwise:



T  b = J   



Substitute for  J   from the torque equation into the power equation (   ):   b   2 Power dissipated = b 

 b) Rotational system: Power = torque x angular velocity. Using the free-body diagram from part (a), the only torque is the friction torque. Summing torques (positive rotation in clockwise direction): 





Therefore, Power    b   b   2

T  b = J   Power dissipated =  b  2

The power dissipated equation must have a minus sign since friction causes energy losses,    0

13

Copyright © 2016 John Wiley & Sons

Chapter 2

2.14

Free-body diagram of the pulley-system disk J :

 

Input torque,

T in

b ,friction torque

mg  , weight of mass m

Apply Newton’s second law to disk, J  (sum torques in the counter-clockwise direction)



T  T

in

 b  mgr  J  

 ) on the left-hand side and input variables T  and mgr   on Rearrange with dynamic variables (   and   in the right-hand side:

 J   b   Tin  mgr 

Mathematical model

 Note that mgr acts as a “load torque” on the pulley.

14

Copyright © 2016 John Wiley & Sons

Chapter 2 2.15

Free-body diagram of the system, assuming 1   2 and  2



0

 

 

Torsional shaft torque,

 J 1

 J 2

k 1   2 

+

+

r 2  f c Contact force

Friction torque, b 2

 f c

Gear 1 (no inertia)

Input torque,

T in

Apply Newton’s second law to all three disks: Gear 1: 

T  T

in

Gear 2 + J 1:

Disk 2:





 f c r1   J gear1 gear1   0

T  f r

c 2

T  k 

1

 k 1  2   J1 1 

 2   b2  J 22   

Because Gear 1 has negligible inertia, Tin  f c r 1  or  f c



1

r 1

T in . Substitute  f c



1

r 1

T in for the contact force

in the equation for Disk  J 1 . Rearranging we obtain:

 J11  k 1   2  

r 2 r 1

T in

Mathematical model

 J 22  b2  k 2  1    0 We can substitute the gear ratio N  = r 2/r 1 into the first equation if desired.

15

Copyright © 2016 John Wiley & Sons

Chapter 2 2.16

Free-body diagram of both disks, assuming 1   2 ,  1  0 and  2  0 :

 

 

Torsional shaft torque, k 1 1  2 

 J 1

Input torque,

+

T in

+

 J 2

Spring torque, k 2θ 2

Friction torque, b 1

Apply Newton’s second law to each disk: Disk J 1:

  T   T in  b 1  k 1 ( 1   2 )  J 1  1

Disk J 2:



T  k     k  1

1

2

2 2

 J 22   

Rearranging we obtain:

  b   k  (     )  T   J 1  1 1 1 1 2 in

Mathematical model

 J 22  k1 2  1   k 2 2   0

16

Copyright © 2016 John Wiley & Sons

Chapter 2 2.17 Free-body diagram assuming    0 and    0



b d2

kd 1 

 d  3

  

+  

 f a (t )  Note that for small angle   , the vertical deflection of the left end is d1 sin   d 1  and the vertical deflection of the right end is  d2  d3  sin 

  d 2  d3      .

Hence the vertical velocity of the right end is  d 2

 d 3   .

Apply Newton’s second law and sum torques about the pivot  (counter-clockwise):



T  kd  d  f d 1

1

a

2

 b  d 2  d 3   d 2  d 3   J  

Rearranging we obtain: 2

 J   b  d 2  d 3    kd12   f a (t )d 2

17

Copyright © 2016 John Wiley & Sons

Mathematical model

Chapter 2 2.18

Using the polyfit command in MATLAB, fit the data with the spring deflection as the independent variable and the load force as the dependent variable. The MATLAB commands are

>> F = [ -50 -45 -35 -25 -15 -10 0 10 15 25 >> x1 = [-7.2055 -6.2354 -4.6099 -3.1938 -1.8822 >> pp1 = polyfit(x1,F,3)

35 45 50 ]; -1.2482 0 1.2482

… ]

The third-order polynomial coefficients are pp1 = [-0.0213 -0.0000 8.0449 -0.0000 ] and

   x  8.0449 x  where x is in mm. The MATLAB command hence the spring force is  F k   0.0213 3

 polyval is used to evaluate the polynomial for -8 > x1_fit = linspace(-8,8,200); >> F_fit = polyval(pp1,x1_fit);

% evaluate 3rd-order polynomial for spring force

The same steps are applied to the data for Spring #2. However, Spring #2 exhibits a linear relationship with deflection (see plots below):

Spring #1 has a nonlinear  relationship with deflection (cubic polynomial), while Spring #2 has a linear  relationship with deflection. 80

60 Data Polynomial fit

40

60 N

N

40 ,

, inr

g

g inr

20

20 ps

ps o

n

n o

0

0 e

Data Linear fit

e cr

cr

of -20

of

d

d -20 a a o

o

L -40 L

-40

-60 -8

-60 -6

-4

-2

0

2

4

6

-80 -8

8

-6

-4

-2

0

2

Spring #2 deflection, mm

Spring #1 deflection, mm

18

Copyright © 2016 John Wiley & Sons

4

6

8

2.19

The M-file for computing the friction force is below, along with the plot. % % Problem 2.19 % % constants Fst = 10; Fc = 7; b = 70; cpts = [ 0.001 0.002 0.005 ]; xdot = linspace(-0.05,0.05,10000); for i=1:3 c = cpts(i); Ff(i,:) = sign(xdot).*(Fc + (Fst-Fc).*exp(-abs(xdot)./cpts(i))) + b.*xdot; end plot(xdot,Ff) grid xlabel('Relative velocity, m/s') ylabel('Friction force, N')

15

10

c = 0.001 m/s c = 0.002 m/s c = 0.005 m/s

5 N , e cr of

0 n oi t ci r F

-5

-10

-15 -0.05 -0.04 -0.03 -0.02 -0.01

0

0.01 0.02 0.03 0.04 0.05

Relative velocity, m/s

At very low relative velocities (near zero) the friction force instantaneously switches between +/- the static friction force  F  st  (i.e., -10 N to +10 N) regardless of the value for the velocity coefficient c. As the magnitude of the relative velocity increases from zero the friction force decreases to a value nearly equal to the dry friction force  F C  = 7 N. The “rate” of decrease in friction force near zero velocity depends on the coefficient c where smaller values of c produce a sharper decrease in friction near zero relative velocity. At higher relative velocities (such as 0.02 m/s) the friction force is simply the sum of dry friction  F C  = 7 N and viscous friction b x  regardless of coefficient c.

19

Copyright © 2016 John Wiley & Sons

2.20

The Mfile for creating the plot is below:

% % Problem 2.20 % xdot = [-1.5:0.1:1.5]; % range of xdot values (m/s) v = 0.2; % m/s Fd = 4500*xdot./sqrt(xdot.^2 + v^2); plot(xdot,Fd) grid xlabel('Relative velocity, m/s') ylabel('Damper force, N')

The plot shows that when the magnitude of relative velocity is small, the damper force is linear with velocity, but when the magnitude of relative velocity is large, the damper force is large and nearly constant at

 4500  N. 5000 4000 3000 2000 e

,

N

1000 r

0 e

of

cr p

m -1000 D

a

-2000 -3000 -4000 -5000 -1.5

-1

-0.5

0

0.5

Relative velocity, m/s

20

Copyright © 2016 John Wiley & Sons

1

1.5

Chapter 2 2.21

The Mfile for creating the plot of damper force vs. relative velocity is % % Problem 2.21 % xdot = linspace(-1.5,1.5,500); v1 = 0.06; v2 = 0.19; Fd = (3389*(xdot-v1)./sqrt((xdot-v1).^2 + v2^2) ) + 1020.84; plot(xdot,Fd)

5000 4000 3000 N ,

2000 e cr of

1000 r e p m a D

0 -1000 -2000 -3000 -1.5

-1

-0.5

0

0.5

1

1.5

Relative velocity, m/s

The plot looks much like the plot from P roblem 2.20. When the relative velocity is “small” (near zero) the damper force is approximately linear with  x . Note that the magnitude of the damper force for negative values of relative velocity (compression stroke) is much less than corresponding force from Problem 2.20. Large positive relative velocity exhibits a nearly constant damper force of about 4400 N (extension) while large negative relative velocity shows a nearly constant damper force of about -2300 N (compression).

21

Copyright © 2016 John Wiley & Sons

Chapter 2 2.22 where

The round-wire spring constant is k  

Gd 4 8 ND3

G = modulus of elasticity in shear d  = wire diameter ( = 1 mm)  N = number of coils ( = 5)  D = spring diameter ( = 1.5 cm = 15 mm)

For stainless steel, G = 77.2 GPa = 77.2 (109) Pa (or N/m²)

 77.2 10  N/m  1 mm  k   9

2

8 5 15 mm 

3

4

1 m  1000 mm 

 571.85 N/m

22

Copyright © 2016 John Wiley & Sons

Chapter 2 2.23

For a square-wire coiled spring (cross-sectional area = 0.8 mm 2), the spring constant is

k   where

Gt 4 5.6 ND3

G = modulus of elasticity in shear t  = width (or height) of square wire ( =

0.8 mm2 )

 N  = number of coils ( = 5)  D = spring diameter ( = 1.5 cm = 15 mm)

t   0.8  0.894 mm , using G = 77.2 (109) or N/m² for stainless steel:

 77.2 10  N/m  0.894 mm  k   9

2

5.6 5 15 mm 

4

3

1 m 1000 mm 

 522.84 N/m

23

Copyright © 2016 John Wiley & Sons

Chapter 2 2.24 Draw the FBDs for all three disks, assuming 1   2 and  2  3  

 

 

T in

 

Viscous friction torque,

+



b 1   2

Torsional shaft torque,

+

 Disk, J 2 (Turbine)

Disk J 1 (Impeller)

k ( 2   3 )

+

T  L

Disk, J 3 (Load)

Apply Newton’s second law to each disk (positive clockwise direction ): Disk J 1: 

T  T

Disk  J 2: 

T  b 



T  k 

Disk J 3:

in

 b 1   2   J 1 1   2   k  2  3   J 2 2   

1

2

 3   T L  J 3 3 

Rearrange with all dynamic variables on the left-hand sides:

  b 

     k 

 J11  b 1   2  Tin (t )  J 2 2

2

1

2

Mathematical model

 3   0

 J 33  k 3   2   T L

24

Copyright © 2016 John Wiley & Sons

Chapter 2 2.25 Draw FBDs of gears 1, 2 and robot arm assuming 1   2 :

 

Robot arm

d

 

mg

Gear 2 + Disk J 1

Torsional shaft torque,

+

 f c

k 1  2 

Contact force

Input torque,

d cos  2  90 

 f c

Gear 1

T in

 Note that the moment of inertia of the robot arm about the rotation axis is  J 2  J cm  md  (parallel axis 2

theorem) where J cm is the moment of inertia of the arm about its c.m. Sum torques for each inertia: Gear 1 (neglect inertia):



T  T

in



Gear 2 + Disk  J 1:

Robot Arm: 



 f c

 fc r1  J gear1    gear1  0



1

r 1

T in

T  f r  k      J    c 2

1

2

T  k     mgd cos  1

2

1 1

2

Substitute for contact force  f  c and gear ratio  N  

 90  J 22  r 2 r 1

 

and rearrange:

 J11  k 1   2   NT in

Mathematical model

    J 22  k 2  1   mgd cos 2  90

25

Copyright © 2016 John Wiley & Sons

Chapter 2

2.26 Draw the FBDs of masses m1 and m2 assuming xin > x2 (spring k 2 is compressed), x1 > x2 (spring k 1 is in tension),  xin

 x2  , and  x1  x2 . + x1

+ x2 Stiffness force  between cart and head

Stiffness force  between cart and head

Frame stiffness force

k2  xin  x2 

k1  x1  x2 

k1  x1  x2  m2

Frame vibrational friction

b2  xin  x2 

m1 Friction force between cart and head

Friction force between cart and head

b1  x1  x2 

b1  x1  x2 

Sum forces (positive is to the right): Mass 1:

   F  k1  x1  x2   b1  x1  x 2   m1x 1

Mass 2:

   F  k2  xin  x2   b2  x in  x 2   k 1 x 1  x 2  b 1 x 1 x 2  m 2x 2

Move all dynamic variables to the left-hand sides and all input variables to the right-hand sides:

m1 x1  b1  x1  x2   k1  x1  x 2   0 m2 x2  b2 x2  b1  x2  x1   k1  x 2  x1   k 2x 2  b2x in  k 2x in

26

Copyright © 2016 John Wiley & Sons

Mathematical model

Chapter 2 2.27 FBD of both masses assuming  z1  z w , z2  z 1 (i.e., both springs are in compression) and  z2  z 1 , and z 2  0 : k1  z1  z w 

 z1

Only if 

m1



z w

(compression only)

k2  z2  z 1 

b1  z2  z 1 

m2

 f a (t )

b2 z 2

Apply Newton’s second law to each mass (summing positive upwards): Head:

   F  k1  z1  zw   k 2  z2  z1   b1  z 2  z1   m1z 1

Frame:

   F  k2  z2  z1   b1  z2  z1   f a  b2z 2  m2z 2

Rearrange the above equations:

k  ( z    z  ) if   z 1   z w 1  b1 ( z  1   z  2 )  k 2 ( z 1   z 2 )   1 w 1 m1 z  0 if   z 1   z w  2  b1 ( z  2   z  1 )  b2 z 2  k 2 ( z 2   z 1 )   f  a (t ) m2 z 

 Note: the spring k 1 can only be in compression (  z1  z w )

27

Copyright © 2016 John Wiley & Sons

Mathematical model

Chapter 2 2.28

When θ  = 0 (level), the return spring k 2 has compressive pre-load force  F  L . When xc     0 ,

 pushrod “spring” k 1 is undeflected. Draw the FBD of the rocker arm (moment of inertia  J ) and assume a small rotation angle

θ   so

that the

vertical deflection of each end of the rocker arm is  L1 sin   L1  (left end) and  L2 sin   L2  (right end). Furthermore, assume θ  > 0 and  xc  L1   (pushrod spring k 1 is compressed) friction torque,

+  

b   k1  xc  L1 

k2 L2   F L

Pushrod force (compressive only)

Sum torques about the pivot (clockwise is positive)



T  k  x 1

c

 L1  L1  b   k2 L2  FL  L2  J 

 

Rearrange to obtain the mathematical model:

k 1 ( xc  L1 ) L1  F  L L2   b   k  L2     J    2 2  F  L L2 

if   xc   L1 

Mathematical model

if   xc   L1 

 Note that the pushrod force can only be compressive, which occurs when  xc  L1  In order to compute the cam-follower displacement  xc for static equilibrium with a level rocker arm (θ  = 0) use the compressive pushrod equation with        0

 J   b   k2 L22   k1  xc  L1  L1   FL L2  k 1 xc L1  F  L L2  0

Cam-follower displacement to balance return-spring pre-load force:

28

Copyright © 2016 John Wiley & Sons

 xc



 F L L2 k1L1

Chapter 2 2.29 FBD of each mass assuming  z1  z2 , z2  z 3 (springs in tension) and  z1  z 2 and z2  z 3

b  z2  z 3 

b  z1  z 2   F a

m1

m2

k ( z 1  z 2 )

br  z 1 friction

br z 2

m3

k ( z 2  z 3 )

friction

br z 3 friction

Apply Newton’s second law (sum forces positive to the left):

Mass m1:  

 F  F

a

 b  z1  z2   k  z1  z 2   br z1  m1z 1

Mass m2:

   F  b  z1  z2   k ( z1  z 2 )  b  z 2  z 3   k  z 2  z 3   br z 2  m 2z 2

Mass m3:

   F  b  z2  z3   k  z2  z3   br z3  m3 z 3

Rearrange and place all dynamic variables on the left-hand sides:

1  b( z 1   z  2 )  br  z  1  k ( z 1   z 2 )  F a m1 z  2  b( z  2   z  1 )  b( z  2   z  3 )  br  z   2  k ( z 2   z 1 )  k ( z 2  z 3 )  0   m2 z 

Mathematical

3  b( z 3   z  2 )  br  z   3  k ( z 3  z 2 )  0   m3 z 

model

29

Copyright © 2016 John Wiley & Sons

Chapter 2 2.30

Draw the FBD of both masses assuming  z 2

 z 1   (spring k 1 is in compression),  z 2  z 1 , and

 z in    z 2  (ignore weight terms since displacements are measured from static equilibrium)

m1

k 1 ( z 2  z 1 )

2  z  1 ) b( z  m2

k2  zin  z 2 

Apply Newton’s second law and sum all forces (positive upward): ¼ car mass:

2  z  1 )  m1z 1    F   k 1 ( z 2  z 1 )  b( z 

Wheel/axle mass:

2  z  1 )  k 2 ( z in  z 2 )  m2 z 2    F   k 1 ( z 2  z 1 )  b( z 

Rearrange and place all dynamic variables on the left-hand side and input  (z in) on the right-hand side:

1  b( z 1  z  2 )  k 1 ( z 1  z 2 )  0 m1 z  2  b( z 2  z  1 )  k 1 ( z 2  z 1 )  k 2 z 2  k 2 z in (t ) m2 z 

30

Copyright © 2016 John Wiley & Sons

Mathematical model

Chapter 2 2.31

Draw the FBD of both masses with sliding friction (dry friction), assuming  x1  x2 and x1 > 0

m2  F  f  

kx1

(sliding friction force)

m1

bx1  F PZT

where F f

 Fdry sgn  x1  x2    k Nc sgn  x1  x2   and  k  is the kinetic friction coefficient and  N c is the

normal clamp force.

Apply Newton’s second law and sum forces on all masses (positive to the right): Clamp mass:

   F  F f    kx1  bx1  FPZT  m1x1

Slide mass:

   F  F f    m2 x2

(holds for sliding contact)

For the case of “stiction,” we have x1  x2 and there is no relative motion between mass m1 and m2 (in addition  x1  x2 ). The FBD for the stiction case is below:

m2 m1

kx1 bx1

+x1

m1  m2

 F PZT

Sum forces on single joined mass:

   F  kx1  bx1  FPZT  m1  m 2  x1 Therefore the mathematical model for the stiction case is

1  b x1  kx1  F PZT (m1  m2 ) x

To compute stiction force  F c , draw FBD with equal and opposite stiction force acting on m1 and m2 : m2

kx1 bx1

 F st “sticking friction” force

m1

 F PZT

31

Copyright © 2016 John Wiley & Sons

Chapter 2 Summing forces (positive to the right)

Slide mass:

   F  Fst  m2 x2  m2 x1 (note that  x2  x1 for stiction)

Clamp mass:

   F  kx1  bx1  FPZT  Fst  m1x1

Because x1  x2 , substitute clamp-mass equation (stiction case) for  x1  and solve for F  st  :  F  st  

m2 m1  m2

 F PZT  b x1  kx1 

Stiction force (for joined masses)

For the “no-clamp” (release) case, use the first FBD with  F  f    0 (no friction) and F  PZT  = 0:

 F   kx  b x  m x    F  0  m x  x  0 ,

Clamp mass:   Slide mass:

1

1

2 2

1 1

2

or  x2  constant

Complete mathematical model (three cases):

m1 x1  bx1  kx1   k Nc sgn  x1  x2   FPZT  

Sliding contact case:

m2 x2   k N c sgn  x1  x 2  “stiction” (joined) case:

   m1  m2  x1  bx1  kx1  FPZT

 No contact (release) case:

1  b x1  kx1  0 m1 x m2 x2  0

32

Copyright © 2016 John Wiley & Sons

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF