solucionario shigley

Share Embed Donate


Short Description

Download solucionario shigley...

Description

Chapter 6 6-1

− σ  = S /n ⇒ n = σ  S− σ  S n=  DE: σ  = σ  − σ  σ  + σ  + 3τ  σ  = σ  − σ  σ  + σ  σ  = 12, σ  = 6, σ  = 0 kpsi (a) MSS: 50 = 4.17 Ans. n= 12 MSS:

 y

σ 1

 y

3

1

3

 y



2

 A

1

σ 

DE: (b) σ  A , σ  B

12

=

2

2 1/2

 A  B

 B

2

 

2 1/2

2

  ± +− 12

2

2

 y

 x y

n



= 1050.39 = 4.81

( 8) 2

3

Ans.

50 = (12 + 3(−8 )) = 18.33 kp = 2.73 Ans. kpsi si,, n = 18.33 = −6 − 10 ± −6 + 10 + (−5) = −2.615, −13.38 385 5 kp kpsi si 2

2



2

1/2



2

2

2

2

3

2

2

 −  ± + 2

1

 B

2

2

3

2

2

2

1/2

  B

2 1/2

+4 12 4 1 = 12.123 23,, 3.87 877 7 kp kpsi si (d) σ  , σ  = 2 2 σ  = 12.123, σ  = 3.877, σ  = 0 kpsi 50 = 4.12 Ans. n= MSS: 12.123 − 0 σ  = [12 − 12(4) + 4 + 3(1 )] = 10.72 kp kpsi si DE: 50 n= = 4.66 Ans. 10.72 12

 A

Ans.

= 16, −4 kps psii

= 0, σ  = −2.615, σ  = −13.38 385 5 kp kpsi si 50 = 3.74 Ans. n= MSS: 0 − ( −13.385) DE: σ  = [( −6) − ( −6)( −10) + ( −10) + 3( −5) ] = 12.29 kp kpsi si 50 n= = 4.07 Ans. 12.29

σ 1

1/2

2

2

σ 

(c) σ  A , σ  B

 x

= (12 − 6(12) + 6 ) = 10.39 kp kpsi si,,

2

DE:

 x  y

3

= 16, σ  = 0, σ  = −4 kpsi 50 n= = 2.5 MSS: 16 − ( −4)

σ 1

2

  A

150

Solutions Manual • Instructor’ Instructor’s s Solution Manual to Accompany Mechanical Mechanical Engineering Design Design

6-2 S y

= 50 kp kpsi si

MSS:

σ 1

DE:



− σ  = S /n ⇒

σ  A2

(a) MSS:

 A  B

n

DE:

(b) MSS:

2 1/2

− σ  σ  + σ  σ 1

σ 1

n

 y

3

 B



= σ  S− σ   y

1

3

= S /n ⇒

=S /

n

 y

 y

50 = 12 kp = 4.17 kpsi si,, σ  = 0, n = 12 − 0

50 = 12 kp = 4.17 kpsi si,, σ  = 0 , n = 12 3

 A  B

(c) MSS:

2 1/2

2

1

3

50 = [12 − (12)(−12) + (−12) ] = 2.41 50 σ  = 0, σ  = −12 kp kpsi si,, n = −(−12) = 4.17 n

DE: (d) MSS:

DE:

n

Ans.

Ans.

2 1/3

2

1

 B



Ans .

50 = [12 − (12)(6) + 6 ] = 4.81 Ans. 50 σ  = 12 kpsi, σ  = −12 kp = 2.08 kpsi si,, n = 12 − ( −12) n

DE:

2 1/2

− σ  σ  + σ 

Ans.

2 1/2

2

σ  A2

Ans.

3

50 = [12 − (12)(12) + 12 ] = 4.17



Ans.

3

= [(−6) − (−6)( −5012) + (−12) ] = 4.81 2 1/2

2

= 39 390 0 MP MPaa σ  − σ  = S / n ⇒ MSS:

6-3 S y

1

DE: (a) MSS:



σ  A2

DE:

(b) σ  A , σ  B

 A  B

n

=

2 1/2

− σ  σ  + σ  σ 1

 B



= σ  S− σ   y

1

3

= S /n ⇒

n

 y

=S /  y

390 = 18 = 2.17 180 0 MP MPa, a, σ  = 0, n = 180 3

390 = [180 − 180(100) + 100 ] = 2.50

180 2

n

 y

3

2 1/2

2

  ± + 180

1002

 A  B

Ans. Ans.

= 224.5, −44.5 MPa = σ  , σ  1

MSS:

n

= 224.5 −390(−44.5) = 1.45

DE:

n

= [180 +390 = 1.56 3(100 )] 2

1/2

Ans.

Ans.

2 1/2

− σ  σ  + σ 

2

2

2

σ  A2



3

 B



150

Solutions Manual • Instructor’ Instructor’s s Solution Manual to Accompany Mechanical Mechanical Engineering Design Design

6-2 S y

= 50 kp kpsi si

MSS:

σ 1

DE:



− σ  = S /n ⇒

σ  A2

(a) MSS:

 A  B

n

DE:

(b) MSS:

2 1/2

− σ  σ  + σ  σ 1

σ 1

n

 y

3

 B



= σ  S− σ   y

1

3

= S /n ⇒

=S /

n

 y

 y

50 = 12 kp = 4.17 kpsi si,, σ  = 0, n = 12 − 0

50 = 12 kp = 4.17 kpsi si,, σ  = 0 , n = 12 3

 A  B

(c) MSS:

2 1/2

2

1

3

50 = [12 − (12)(−12) + (−12) ] = 2.41 50 σ  = 0, σ  = −12 kp kpsi si,, n = −(−12) = 4.17 n

DE: (d) MSS:

DE:

n

Ans.

Ans.

2 1/3

2

1

 B



Ans .

50 = [12 − (12)(6) + 6 ] = 4.81 Ans. 50 σ  = 12 kpsi, σ  = −12 kp = 2.08 kpsi si,, n = 12 − ( −12) n

DE:

2 1/2

− σ  σ  + σ 

Ans.

2 1/2

2

σ  A2

Ans.

3

50 = [12 − (12)(12) + 12 ] = 4.17



Ans.

3

= [(−6) − (−6)( −5012) + (−12) ] = 4.81 2 1/2

2

= 39 390 0 MP MPaa σ  − σ  = S / n ⇒ MSS:

6-3 S y

1

DE: (a) MSS:



σ  A2

DE:

(b) σ  A , σ  B

 A  B

n

=

2 1/2

− σ  σ  + σ  σ 1

 B



= σ  S− σ   y

1

3

= S /n ⇒

n

 y

=S /  y

390 = 18 = 2.17 180 0 MP MPa, a, σ  = 0, n = 180 3

390 = [180 − 180(100) + 100 ] = 2.50

180 2

n

 y

3

2 1/2

2

  ± + 180

1002

 A  B

Ans. Ans.

= 224.5, −44.5 MPa = σ  , σ  1

MSS:

n

= 224.5 −390(−44.5) = 1.45

DE:

n

= [180 +390 = 1.56 3(100 )] 2

1/2

Ans.

Ans.

2 1/2

− σ  σ  + σ 

2

2

2

σ  A2



3

 B



151

Chapter 6

(c) σ  A , σ  B

=−

MSS: DE: (d) σ  A , σ  B

MSS:

n

160 2

  ± − + 160

2

2

1002

= 48.06, −208.06 MP MPaa = σ  , σ 

= 48.06 −390 = 1.52 (−208.06)

1

Ans.

= [−160 +390 = 1.65 3(100 )] = 150, −15 150 0 MP MPaa = σ  , σ  380 = 1.27 Ans. n= 150 − ( −150) n

2

2

1

DE:

n

1/2

3

390 = [3(150) = 1.50 ] 2 1/2

Ans.

Ans.

= 22 220 0 MP MPaa (a) σ  = 100, σ  = 80, σ  = 0 MPa 220 = 2.20 Ans. n= MSS: 100 − 0 σ  = [100 − 100(80) + 80 ] = 91.65 MP DET: MPaa 220 n= = 2.40 Ans. 91.65 (b) σ  = 100, σ  = 10, σ  = 0 MPa 220 = 2.20 Ans. n= MSS: 100 = 95.39 MP σ  = [100 − 100(10) + 10 ] MPaa DET: 220 = 2.31 Ans. n= 95.39 MPaa (c) σ  = 100, σ  = 0, σ  = −80 MP 220 = 1.22 Ans. n= MSS: 100 − ( −80) = 156.2 MPa σ  = [100 − 100( −80) + ( −80) ] DE: 220 = 1.41 Ans. n= 156.2 100 0 MP MPaa (d) σ  = 0, σ  = −80, σ  = −10 220 = 2.20 Ans. n= MSS: 0 − (−100) σ  = [( −80) − ( −80)( −100) + ( −100) ] = 91.65 MPa DE: 220 n= = 2.40 Ans. 91.65

6-4 S y

1

2

3

2 1/2

2

1

2

3

2 1/2

2

1

2

3

2 1/2

2

1

2

3

2

2

3

152

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

6-5 (a) MSS:

DE: (b) MSS:

DE:

n

= OO BA = 21..23 = 2.1 08

n

2.56 = OC  = = 2.4 OA 1.08

n

= OO DE  = 11..65 = 1.5 10

n

= OO DF  = 11..81 = 1.6   B

(a) C   B

 A

Scale 1" 200 MPa 

O

  A

 D  E  F  (b)

 J  K 

G

 L

(d )

 H   I 

(c)

(c) MSS:

DE: (d) MSS:

DE:

n

= OO GH  = 11..68 = 1.6 05

n

= OOGI  = 11..85 = 1.8 05

n

= OOK J  = 11..38 = 1.3 05

n

= OO LJ  = 11..62 = 1.5 05

153

Chapter 6

6-6 S y

= 220 MPa

(a) MSS:

DE: (b) MSS:

DE:

n

= OO BA = 21..823 = 2.2

n

3.1 = OC  = = 2.4 OA 1.3

n

= OO DE  = 21.2 = 2.2

n

= OO DF  = 2.133 = 2.3   B

(a) C   B

 A

1"



100 MPa

 E   D



O

  A

G  J 

 H   I 

(c)



 L

(d )

(c) MSS:

DE: (d) MSS:

DE:

n

1.55 = OO H  = = 1.2 G 1.3

n

= OOGI  = 11..83 = 1.4

n

= OOK J  = 21..823 = 2.2

n

= OO LJ  = 31..13 = 2.4

(b)

154

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

6-7 Sut 

= 30 kpsi, S = 100 kpsi; σ  = 20 kpsi, σ  = 6 kpsi uc

 A

 B

(a) MNS: Eq. (6-30 a)

n

= Sσ  = 30 = 1.5 20 ut 

Ans.

 x

BCM: Eq. (6-31a )

n

= 30 = 1.5 20

Ans.

M1M: Eq. (6-32a )

n

= 30 = 1.5 20

Ans.

M2M: Eq. (6-33a )

n

= 30 = 1.5 20

Ans.

(b) σ  x

= 12 kpsi, τ  = −8 kpsi  x y

σ  A , σ  B

=

12 2

12

( 8) 2

2

= 16, −4 kpsi

= 30 = 1.88 Ans. 16 1 16 (−4) = − ⇒ n 30 100

BCM: Eq. (6-31 b)

n

M1M: Eq. (6-32a)

= 30 = 1.88 16

n

= 1.74

Ans.

Ans.

= 30 = 1.88 Ans. 16 = −6 kpsi, σ  = −10 kpsi, τ  = −5 kpsi −6 − 10 ± −6 + 10 + (−5) = −2.61, −13.39 kpsi σ  , σ  = 2 2

M2M: Eq. (6-33a)

n

 y

 A

 x y



 B



MNS: Eq. (6-30b)

n

BCM: Eq. (6-31 c)

n

M1M: Eq. (6-32c)

n

M2M: Eq. (6-33c)

n

(d) σ  x

2

n

MNS: Eq. (6-30a)

(c) σ  x

  ± +−

= −12 kpsi, τ  = 8 kpsi  x y

σ  A , σ  B

MNS: Eq. (6-30b)

12

=−2 n

2

2

= −−100 = 7.47 13.39 = − −100 = 7.47 13.39

= −−100 = 7.47 13.39

= − −100 = 7.47 13.39

  ± − + 12 2

= −−100 = 6.25 16

Ans. Ans. Ans. Ans.

2

82

Ans.

= 4, −16 kpsi

155

Chapter 6

BCM: Eq. (6-31b) M1M: Eq. (6-32b)

4 ( −16) = − ⇒ n = 3.41 Ans. n 30 100 1 = (100 − 30)4 − −16 ⇒ n = 3.95 1

100(30)

n

 +

100

2



− + 30 = 1 n M2M: Eq. (6-33b) 30 30 − 100 n − 1.1979n − 15.625 = 0 Reduces to 1.1979 + 1.1979 + 4(15.625) = 4.60 n= 4

n ( 16)

2



1"



2

2

Ans.

  B

 B

20 kpsi

(a)

 A O

  A



 E   D

K  F 

G

 H 

 I 

 L

(c)

 J 

(d )

(b)

Ans.

156

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

6-8 See Prob. 6-7 for plot. (a) For all methods:

n

= OO BA = 11..55 = 1.5 03

(b) BCM:

n

D = OOC  = 10..48 = 1.75

n

E  = OOC  = 10..558 = 1.9

(c) For all methods:

n

= OOK L = 05..682 = 7.6

(d) MNS:

n

= OO F J  = 50..12 = 6.2 82

BCM:

n

= OO GF  = 20..85 = 3.5 82

M1M:

n

3.3 = OO H  = = 4.0 F  0.82

M2M:

n

= OOF I  = 30..82 = 4.7 82

All other methods:

=

=

=

42 kpsi, Sut  66.2 kpsi, ε f  0.90. Since ε f  > 0.05, the material is ductile and 6-9 Given: S y S yt . thus we may follow convention by setting S yc  Use DE theory for analytical solution. For σ  , use Eq. (6-13) or (6-15) for plane stress and Eq. (6-12) or (6-14) for general 3-D. (a) σ 

=

2 1/2

2

= [9 − 9(−5) + (−5) ] = 12.29 kpsi 42 n= = 3.42 Ans. 12.29 = 13.08 kpsi (b) σ  = [12 + 3(3 )] 42 = 3.21 Ans. n= 13.08 = 11.66 kpsi (c) σ  = [( −4) − ( −4)( −9) + ( −9) + 3(5 )] 42 n= = 3.60 Ans. 11.66 = 9.798 (d) σ  = [11 − (11)(4) + 4 + 3(1 )] 42 = 4.29 Ans. n= 9.798 2

2

1/2

2

2

2

2

2

2

1/2

1/2

157

Chapter 6   B

1 cm



(d )  H 

10 kpsi G O C 

 D

(b)

  A

 A  E 

 B (a)



(c)

For graphical solution, plot load lines on DE envelope as shown. (a)

= 9, σ  = −5 kpsi OB 3.5 = = 3.5 n= OA 1

σ  A

(b) σ  A , σ  B n

(c) σ  A , σ  B n

(d) σ  A , σ  B

n

6-10

 B

=

12 2

  ± + 12

Ans.

2

2

32

= 12.7, −0.708 kpsi

D = OOC  = 41..23 = 3.23

= −4 − 9 2

 −  ± + 4

2

4.5 = OO F  = = 3.6 E  1.25

= 2+ 4 11

2

9

52

Ans.

 −  ± + 11

= −0.910, −12.09 kpsi

4

2

5.0 = OO H  = = 4.35 G 1.15

=

2

12

= 11.14, 3.86 kpsi

Ans.

=

=

275 kpsi and ε f  0.06. The steel is This heat-treated steel exhibits S yt  235 kpsi, S yc ductile ( ε f  > 0.05) but of unequal yield strengths. The Ductile Coulomb-Mohr hypothesis (DCM) of Fig. 6-27 applies — confine its use to first and fourth quadrants.

158

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

=

=−

90 kpsi, σ  y 50 kpsi, σ  z (a) σ  x fourth quadrant, from Eq. (6-13)

=0



σ  A

= 90 kpsi and σ  = −50 kpsi. For the  B

= (σ  /S ) −1 (σ  /S ) = (90/235) −1(−50/275) = 1.77 Ans. = 120 kpsi, τ  = −30 kpsi ccw. σ  , σ  = 127.1, −7.08 kpsi. For the fourth n

 A

(b) σ  x quadrant

 yt 

 B

uc

 x y

 A

 B

=−

= (127.1/235) −1 (−7.08/275) = 1.76 Ans. = −90 kpsi, τ  = 50 kpsi. σ  , σ  = −9.10, −120.9 kpsi.

=

= − Sσ  = − −275 = 2.27 Ans. 120.9 = 40 kpsi, τ  = 10 kpsi cw. σ  , σ  = 111.4, 38.6 kpsi. For the

n

40 kpsi, σ  y (c) σ  x  x y  A Although no solution exists for the third quadrant, use

 B

 yc

n

 y

110 kpsi, σ  y (d) σ  x first quadrant

 x y

n

 A

235 = Sσ  = 111 = 2.11 .4  yt 

 B

Ans.

 A

Graphical Solution: OB

  B

1.82

(a) n

= O A = 1.02 = 1.78

(b) n

D = OOC  = 21..24 = 1.75 28

(c) n

2.75 = OO F  = = 2.22 E  1.24

(d) n

= OO GH  = 21..46 = 2.08 18

(d )

 H 

1 in



100 kpsi

G

  A

O C 

 D

 A

 B (a)  E 

F  (c)

(b)

159

Chapter 6

6-11

The material is brittle and exhibits unequal tensile and compressive strengths.  Decision: Use the Modified II-Mohr theory as shown in Fig. 6-28 which is limited to first and fourth quadrants. Sut  22 kpsi, Suc 83 kpsi

=

Parabolic failure segment: S A

=

= 22

S B

−22 −30 −40 −50 = 9 kpsi, σ  = −5

(a) σ  x Eq. (6-33a)

  − 1

2

S A

S B

S A

22.0 21.6 20.1 17.4

−60 −70 −80 −83

13.5 8.4 2.3 0

kpsi. σ  A , σ  B

 y

+ 22 22 − 83

S B



= 9, −5

kpsi. For the fourth quadrant, use

= Sσ  = 229 = 2.44 Ans. = −3 kpsi ccw. σ  , σ  = 12.7, 0.708 kpsi. For the first quadrant, S 22 = = 1.73 Ans. n= σ  12.7 = −9 kpsi, τ  = 5 kpsi . σ  , σ  = −0.910, −12.09 kpsi. For the ut 

n

 A

(b) σ  x

= 12 kpsi, τ 

 x y

 A

 B

ut 

 A

=−

4 kpsi, σ  y (c) σ  x  x y  A  B third quadrant, no solution exists; however, use Eq. (6-33 c)

= −−1283.09 = 6.87 Ans. = 4 kpsi,τ  = 1 kpsi. σ  , σ  = 11.14, 3.86 kpsi. For the firstquadrant S S 22 = = = 1.97 Ans. n= σ  σ  11.14 n

(d) σ  x

= 11 kpsi,σ 

 y

 x y

 A

 A

 yt 

 A

 A

 B

  B

30 Sut 



30

–50

Sut 



83

–90

22

  A

160

6-12

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

Since ε f  < 0.05, the material is brittle. Thus, Sut  basically the same as MNS.

= 9, −5 kpsi 35 = 3.89 Ans. n= 9 (b) σ  , σ  = 12.7, −0.708 kpsi 35 = 2.76 Ans. n= 12.7 (c) σ  , σ  = −0.910, −12.09 kpsi 36 = 2.98 Ans. n= 12.09 (d) σ  , σ  = 11.14, 3.86 kpsi 35 = 3.14 Ans. n= 11.14

=. S

uc

and we may use M2M which is

(a) σ  A , σ  B

 A

 B

 A

 B

 A

(3rd quadrant)   B

 B

1 cm



10 kpsi

Graphical Solution: (a) n

= O A = 1 = 4.0

Ans.

= OC  = 1.28 = 2.70

(c) n

3.7 = OO F  = = 2.85 E  1.3

Sut 

O H 

O

Ans.

 B

Ans. (3rd quadrant) Ans.

(c)

= 30 kpsi, S = 109 kpsi uc

Use M2M:

= 20, 20 kpsi

Eq. (6-33a): (b) σ  A , σ  B

Eq. (6-33a) (c) σ  A , σ  B

n





(15) 2

= 30 = 1.5 20

= 15, −15 kpsi 30 =2 n= 15

Ans.

Ans.

= −80, −80 kpsi

For the 3rd quadrant, there is no solution but use Eq. (6-33 c). Eq. (6-33c):

 D

(b)

 E 



3.6

= O G = 1.15 = 3.13

(a) σ  A , σ  B

C   A

3.45

OD

(d )

G

4

OB

(b) n

(d) n

6-13

 H 

n

= − −109 = 1.36 80

Ans.

(a)

  A

161

Chapter 6

(d) σ  A , σ  B

= 15, −25 kpsi n (15)

Eq. (6-33b):

30 n

 + −

= 1.90

(a) n

= OO BA = 42..25 = 1.50 83

(b) n

D = OOC  = 42..24 = 2.00 12

(c) n

15.5 = OO F  = = 1.37 (3rd quadrant) E  11.3

(d) n

= OO GH  = 52..39 = 1.83



2

+ 30 = 1 30 − 109 25n

Ans.

  B

 B (a)

 A

O

  A



1 cm



10 kpsi G  D

(b)

 H 

(d )

 E 



(c)

6-14

=

= 8.0 kN, and T = 30 N · m, applying the = 280 MPa )(0.1) 4(8)(10 ) = 32π d Fl + π4d P = 32(0π.55)(10 + π (0 .020 ) (0.020 ) = 95.49(10 ) Pa = 95.49 MPa

Given: AISI 1006 CD steel, F  0.55 N, P DE theory to stress elements A and B with S y

3

A:

σ  x

3

2

6

3

3

2

162

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

τ  x y σ 

n

B:

σ  x

T  16(30) = 16 = = 19.10(10 ) Pa = 19.10 MPa π d  π (0 .020 ) 6

3

=

σ  x2



3

2

+ 3τ 

 x y

1/2



280 = σ S  = 101 = 2.77 .1  y

2 1/2

2

= [95.49 + 3(19.1) ] = 101.1 MPa Ans.

4(8)(103 )

4P

6

= π d  = π (0.020 ) = 25.47(10 ) Pa = 25.47 MPa 3

2

16T 

4 V 

16(30)

4



0.55(103 )

= π d  + 3  A = π (0.020 ) + 3 (π/4)(0.020 ) = 21.43(10 ) Pa = 21.43 MPa = 45.02 MPa σ  = [25.47 + 3(21.43 )] 280 n= = 6.22 Ans. 45.02

τ  x y

3

3

6

2

6-15

2

2



1/2

Design decisions required: • Material and condition • Design factor • Failure model • Diameter of pin Using F 

= 416 lbf from Ex. 6-3 σ max



 M  = 32 π d  3

1/3

  = 32 M 

π σ max

  Decision 1: Select the same material and condition of Ex. 6-3 (AISI 1035 steel, S y 81 000) .

=

 Decision 2: Since we prefer the pin to yield, set n d  a little larger than 1. Further explanation will follow.  Decision 3: Use the Distortion Energy static failure theory.  Decision 4: Initially set n d 

=1

σ max

= nS = S1 = 81000 psi  y

 y





 =

32(416)(15) π (81 000)

1/3



= 0.922 in

163

Chapter 6

Choose preferred size of d 

= 1.000 in π (1) (81 000) = 530 lbf  F  = 32(15) 3

= 530 = 1.274 416

n

Set design factor to n d   Adequacy Assessment:

= 1.274 000 = nS = 81 = 63580 psi 1.274  y

σ max





6-16

 =

32(416)(15) π (63 580)

π (1) 3 (81 000)



=

n

= 530 = 1.274 416

32(15)

1/3



= 1.000 in

= 530 lbf  (OK)

For a thin walled cylinder made of AISI 1018 steel, S y The state of stress is σ t 

(OK )

p (8) = pd  = = 40 p, 4t  4(0.05)

σ l

= 54 kpsi, S = 64 kpsi. ut 

= pd  = 20 p, 8t 

σ r 

= − p

These three are all principal stresses. Therefore, σ 

= √ 1 [(σ  − σ  ) + (σ  − σ  ) + (σ  − σ  ) ] 2

1

2

2

2

2

3

3

1

2 1/2

= √ 1 [(40 p − 20 p) + (20 p + p) + (− p − 40 p) ] 2 = 35.51 p = 54 ⇒ p = 1.52 kpsi (for yield) Ans. . . For rupture, 35.51 p = 64 ⇒ p = 1.80 kpsi Ans. 2

6-17

2

2

For hot-forged AISI steel w 0.282 lbf/in3 , S y 30 kpsi and ν 2 2 0.282/386 lbf  s  /in r i 3 in r o 5 in r i 9 r o2 25 3 ν

·

Eq. (4-56) for r 

= ; = ; =

= r  becomes σ  = ρω

= = 0.292. Then ρ = w/g = ; = ; = ; + = 3.292; 1 + 3ν = 1.876.

i



2

 +  3

ν

8

2

2r o

+ r 

Rearranging and substituting the above values: S y ω2

0.282

2

i

− 1

+ 3ν 3+ν

1



  +  − 

= 386 3.292 8 = 0.016 19

50

9 1

1.876 3.292

164

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

Setting the tangential stress equal to the yield stress, ω

 =

1/2

30 000 0.016 19



= 1361 rad/s

= 60ω/2π = 60(1361)/(2π ) = 13 000rev/min Now check the stresses at r  = (r  r  ) , or r  = [5(3)] = 3.873 in 3+ν σ  = ρω (r  − r  ) or

n

1/2

o i

   

2



1/2

o

8

=

0.282ω2

3.292

386

8

= 0.001203ω

i

(5

2

− 3)

2

2

Applying Eq. (4-56) for σ t  σ t 



2

   + 0.282

3.292

386

8

= 0.012 16ω

9

+

25

9(25) 15



1.876(15) 3.292

2

Using the Distortion-Energy theory σ 

Solving

ω

σ t 2

  = =

6-18

r  t 

30 000 0.011 61

So the inner radius governs and n

2 1/2

− σ  σ  + σ 



1/2





= 0.011 61ω

2

= 1607 rad/s

= 13 000rev/min

Ans.

For a thin-walled pressure vessel,

= 3.5 − 2(0.065) = 3.37in p( d  + t ) σ  = 2t  500(3.37 + 0.065) = 13 212 psi σ  = d i

i





2(0.065)

500(3.37) = pd  = = 6481 psi 4t  4(0.065) σ  = − p = −500 psi σ l



i

i



165

Chapter 6

These are all principal stresses, thus,

= √ 1 {(13 212 − 6481) + [6481 − (−500)] + (−500 − 13 212) } 2 σ  = 11 876 psi S 46 000 46 000 = n=  = σ  σ  11 876 = 3.87 Ans. σ 

2

2 1/2

2

 y

6-19

Table A-20 gives S y as 320 MPa. The maximum significant stress condition occurs at r i σ r  0, σ 2 0, and σ 3 σ t . From Eq. (4-50) for r  r i where σ 1

= =

=

=

=

2r o2 po

2(1502 ) po

= −r  − r  = − 150 − 100 = −3.6 p σ  = 3.6 p = S = 320 320 = 88.9 MPa Ans.  p = 3.6 σ t 

2

2

o

2

i

o

o

2

 y

o

6-20

Sut  30 kpsi, w 0.260 lbf/in3 , ν radius, from Prob. 6-17

=

=

σ t  ω2

Here r o2



= 0.211, 3 + ν = 3.211, 1 + 3ν = 1.633. At the inner

 +  3

ν

8

+ 3ν r  2r  + r  − 3+ν 2 o

2 i

1

2 i



2 i

= 25, r  = 9, and so σ t  ω2

=

0.260 386

  3.211

50

8

+9−

1.633(9) 3.211

=

0.0147

Since σ r  is of the same sign, we use M2M failure criteria in the first quadrant. From Table A-24, Sut  31 kpsi , thus,

=

ω

  = 31 000

1/2

0.0147

= 1452 rad/s

= 60ω/(2π ) = 60(1452)/(2π ) = 13 866 rev/min Using the grade number of 30 for S = 30 000 kpsi gives a bursting speed of 13640 rev/min. rpm

ut 

6-21

T C 

= (360 − 27)(3) = 1000 lbf · in ,

T  B

= (300 − 50)(4) = 1000 lbf · in

 y

223 lbf   A

127 lbf   B

8"



8" 350 lbf   xy plane

6"

D

166

Solutions Manual

• Instructor’s Solution Manual to Accompany Mechanical Engineering Design

In x y plane,  M  B = 223(8) = 1784 lbf · in and M C  = 127(6) = 762 lbf · in. 387 lbf  8"

 A

8"

6"

 B

D



106 lbf 

281 lbf   xz plane

In the x z plane,  M  B = 848lbf · in and M C  = 1686 lbf · in. The resultants are  M  B = [(1784) 2 + (848) 2 ]1/2 = 1975 lbf · in  M C  = [(1686) 2 + (762) 2 ]1/2 = 1850 lbf · in

So point B governs and the stresses are τ  x y = σ  x =

Then σ  A , σ  B =

σ  A , σ  B =

=

16T 

=

π d 3

32 M  B

σ  x

2 1 d 3

π d 3

16(1000) π d 3

=

32(1975) π d 3

σ  A =

d 3

d 3

±

2

+ τ  x y

2

20.12 2

psi

1/2

2

σ  x

psi

20 120

=

       20.12

±

d 3

+ (5 .09)

kpsi · in3

10.06 + 11.27 d 3

=

   1/2

2

2

(10.06 ± 11.27)

Then

5093

=

21.33 d 3

2

kpsi

and σ  B =

10.06 − 11.27 d 3

=−

1.21 d 3

kpsi

For this state of stress, use the Brittle-Coulomb-Mohr theory for illustration. Here we use Sut (min) = 25 kpsi, Suc (min) = 97 kpsi, and Eq. (6-31b) to arrive at 21.33 25d 3



−1.21

97d 3

Solving gives d  = 1.34 in. So use d  = 1 3/8 in

=

1 2.8

Ans.

Note that this has been solved as a statics problem. Fatigue will be considered in the next chapter. 6-22

As in Prob. 6-21, we will assume this to be statics problem. Since the proportions are unchanged, the bearing reactions will be the same as in Prob. 6-21. Thus  x y plane:

M  B = 223(4) = 892lbf · in

 x z plane:

M  B = 106(4) = 424lbf · in

167

Chapter 6

So 2 1/2

2

= [(892) + (424) ] = 988lbf · in 32(988) 10 060 = 32π M  = = psi π d  d  d 

 M max

 B

σ  x

3

3

3

Since the torsional stress is unchanged, 3

= 5.09/d  kpsi

τ  x z

    +  ±

1

= d 

σ  A , σ  B

3

σ  A

10.06

10.06

2

2

3

= 12.19/d 

and

1/2

2

(5.09)

2

3

= −2.13/d 

σ  B

  

Using the Brittle-Coulomb-Mohr, as was used in Prob. 6-21, gives

− −972.d 13 = 21.8

12.19 25d 3 Solving gives d 

3

= 1 1/8 in. Now compare to Modified II-Mohr theory

Ans.

= 300cos20 = 281.9 lbf , ( F  ) = 300 sin 20 = 102.6 lbf  3383 = 676.6lbf  T  = 281.9(12) = 3383 lbf · in, ( F  ) = 5 ( F  ) = 676.6tan20 = 246.3 lbf 

6-23

( F  A ) t 

 A r 

C  t 

C  r 

 y  ROy = 193.7 lbf  O

 ROz = 233.5 lbf 

246.3 lbf 

 A



B

20"

16"

 x

10"

O

 R By = 158.1 lbf 

281.9 lbf 

20"

 M  B σ  x τ  x y σ 

102.6 lbf 

 

2

2

2

2

3

(maximum)

3

17 230 = 16(3383) = π d  d  3

=

σ  x2



3

2

+ 3τ 

 x y



1/2

d 3

2

= Sn

 y

3

17 230 d 3

2

1/2

= 79d 180 = 603000 .5

so use a standard diameter size of 1.75 in

 

10"

 xz plane

= 20 193.7 + 233.5 = 6068 lbf · in = 10 246.3 + 676.6 = 7200 lbf · in 73 340 = 32(7200) = π d  d 

73 340

= 1.665 in

C

 R Bz = 807.5 lbf 

 z

     + d 

B

16"

 xy plane

 M  A

676.6 lbf  A

3

Ans.

 x

168

6-24

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

From Prob. 6-23, 1/2

   = +      + = τ max

73 340

2

1/2

2

17 230

= 2Sn  y

τ  x2y

2

2d 3

6-25

2

σ  x

40 516

d 3

d 3



= 1.678 in



= (270 − 50)(0.150) = 33 N · m, S = 370 MPa ( T  − 0.15T  )(0 .125) = 33 ⇒ T  = 310.6 N, T  = 0.15(310.6) = 46.6 N ( T  + T  ) cos 45 = 252.6 N

Ans.

so use 1.75in

 y

1

1

1

2

1

2

107.0 N

 y

163.4 N

252.6 N

300

O

89.2 N

400

 A

300

150  B

252.6 N 400

 z



 M  A  M  B σ  x τ  x y

 

320 N



2

2

= 0.3 163.4 + 107 = 58.59 N · m = 0.15 89.2 + 174.4 = 29.38 N · m .59) 596.8 = 32(58 = π d  d  2

174.4 N

(maximum)

2

3

3

168.1 = 16(33) = π d  d  3

=

σ 

150

 xz plane

 xy plane

6-26

000 = 60 2(3.5)

2

σ  x

3

2

+ 3τ 

 =   +   

 x y

2

168.1

3

d 3

= 17.5(10− ) m = 17.5 mm, 3

2

596.8

1/2

1/2

=

d 3

so use 18 mm

664.0 d 3

Ans.

From Prob. 6-25,

   = +      + = τ max

596.8

2

2d 3



= 17.7(10− ) m = 17.7 mm, 3

σ  x

2

2

1/2

d 3

so use 18 mm

= 2Sn  y

τ  x2y

2

168.1

1/2

342.5 d 3

Ans.

=

370(106 ) 2(3.0)

=

370(106 ) 3.0

169

Chapter 6

6-27

For the loading scheme shown in Figure ( c),  M max

 + =

= F 2 a2 b4 = 23.1 N · m

4.4 2

(6



+ 4.5)  M 

 y

For a stress element at  A: σ  x

=

32 M  π d 3

=

 B

32(23.1)(103 ) π (12) 3



 x

 A

= 136.2MPa

The shear at C is 3

τ  x y

τ max

Since S y

/2)(10 ) = 34(πF d //2)4 = 4(43π.4(12) = 25.94 MPa /4 2

2

   = 2

136.2

1/2

= 68.1 MPa

2

= 220 MPa, S = 220/2 = 110MPa, and sy

n

110 = τ S = 68 = 1.62 .1 sy

Ans.

max

For the loading scheme depicted in Figure ( d )  M max

=2

2

 +  −    =  + 

F  a

b

2

F  1

b

2

2

2

F  a

b

2

4

2

This result is the same as that obtained for Figure ( c). At point  B, we also have a surface compression of  F  F  4.4(103 ) σ  y 20.4 MPa  A bd  18(12)

=− =− −−

With σ  x

6-28

=−

= −136.2 MPa. From a Mohrs circle diagram, τ  = 136.2/2 = 68.1 MPa. 110 = 1.62 MPa Ans . n= 68.1 max

Based on Figure ( c) and using Eq. (6-15) σ 

2 1/2  x



= σ  = (136.2 ) = 136.2 MPa S 220 = 1.62 Ans. n=  = σ  136.2  y

2 1/2

170

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

Based on Figure ( d ) and using Eq. (6-15) and the solution of Prob. 6-27, σ 



2

2 1/2



= σ  − σ  σ  + σ  = [(−136.2) − (−136.2)( −20.4) + (−20.4) ] = 127.2 MPa S 220 n=  = = 1.73 Ans. σ  127.2  x  y

 x

 y

2

2 1/2

 y

6-29

When the ring is set, the hoop tension in the ring is equal to the screw tension.

w

dF 

σ t 

r i2 pi

= r  − r 

1

2

2

o



r o2

+ 

i

r 2

We have the hoop tension at any radius. The differential hoop tension d F  is

= wσ  dr  wr  p wσ  dr  = F  = r  − r 

d F 



2 i i 2 2 o i

r o

 



r i

r o

r o2

   +  1

r 2

r i

dr 

= wr  p i

i

(1)

The screw equation is F i

= 0.T 2d 

(2)

From Eqs. (1) and (2)

= wF r  = 0.2d T wr  d F  = f p r  d θ f T w F  =  f p wr  d θ = r  0.2d wr 

 pi r i d 

 pi

i

dF  x

 x

i

i i



 

 x

i

i

i

i

o

= 20π. f2d T 



 

d θ

o

 Ans.

6-30 (a) From Prob. 6-29,

= 0.2 F d  T  190 = = 3800 lbf  F  = 0.2d  0.2(0.25) F  = wr  p T 

i

i

(b) From Prob. 6-29,  pi

i

Ans.

i

= wF r  = wF r  = 0.3800 = 15 200 psi 5(0.5) i

i

i

Ans .

171

Chapter 6

(c)

σ t 

r i2 pi

= r  − r 

1

2

2

o

r o2

+ 

i



15 200(0.52

=

=

r  r i

2

 pi r i2

r o2

+

r o2

2 i

− r 

+ 1 ) = 25 333 psi

= 1 − 0.5 Ans . σ  = − p = −15200psi = σ  −2 σ  = σ  −2 σ  τ  = 25 333 − (−15 200) = 20 267 psi Ans. 2



i

1

(d)

2



3



max

2

σ 

2



1/2

2



= σ  + σ  − σ  σ  = [25333 + (−15 200) − 25 333(−15 200)] = 35 466 psi Ans.  A

 A  B

 B

2

2

1/2

(e) Maximum Shear hypothesis n

= τ S = 0τ .5S = 020.5(63) = 1.55 .267 sy

 y

max

Ans.

max

Distortion Energy theory n

= Sσ  = 3563466 = 1.78  y

Ans.

6-31 1" R

The moment about the center caused by force F  is Fr e where r e is the effective radius. This is balanced by the moment about the center caused by the tangential (hoop) stress.

r e

1"  R 2

r o

  =

Fr e

r σ t w dr 

r i

 t 

w pi r i2



r o



r i2

r o2

From Prob. 6-29, F 

2

w pi r i

dr 

2

r o

r i2

F  r o2



r i

2

r e

r o2

    = − + − =  −  + −  r i

2

r o2 ln

= wr  p . Therefore, i

i

r e

r i

= r  − r 

r e

0.5

= 1 − 0.5 2

2

2 o

For the conditions of Prob. 6-29, r i

2

r i2

r o2

i

2

+ r  ln r r 

o

2 o

i

= 0.5 and r  = 1 in 1 − 0.5 1 + = 0.712 in 1 ln 2 0.5



o

2

2

2



r o r i



172

6-32

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

δnom

= 0.0005 in

(a) From Eq. (4-60)  p

=

30(106 )(0.0005)



1

(1 .52

2

2

2



− 1 )(1 − 0.5 ) = 3516 psi 2(1 )(1.5 − 0.5 ) 2

 Inner member:

 R 2  p  R 2

2

2

2

2

2

2

2

Ans.

+ r  = −3516 1 + 0.5 = −5860 psi ( σ  ) = − 1 − 0.5 − r  (σ  ) = − p = −3516 psi σ  = σ  − σ  σ  + σ  = [(−5860) − (−5860)(−3516) + (−3516) ] = 5110 psi Ans.

Eq. (4-57)

t  i



i 2 i



r  i

Eq. (6-13)



i

2

2 1/2

 A  B

 A

 B

2



2 1/2

Outer member:



1.52

2



+ 1 = 9142 psi −1

= 3516 1.5 ( σ  ) = − p = −3516 psi σ  = [9142 − 9142( −3516) + ( −3516) ] = 11320 psi Ans. ( σ t ) o

Eq. (4-58)

2

2

r  o

Eq. (6-13)

2 1/2

2

o

(b) For a solid inner tube,  p

=

30(106 )(0.0005)



1

(1 .52

2

2



− 1 )(1 ) = 4167 psi 2(1 )(1.5 ) 2

2

Ans.

= − p = −4167 psi, ( σ  ) = −4167 psi = 4167 psi Ans. σ  = [( −4167) − ( −4167)( −4167) + ( −4167) ] 1.5 + 1 = 10 830 psi, ( σ  ) = −4167 psi (σ  ) = 4167 1.5 − 1 = 13410 psi Ans. σ  = [10830 − 10 830(−4167) + ( −4167) ] ( σ t )i

r  i



t  o

2

2

2

2



r  o

2 1/2

2

o

6-33

2 1/2

2

i

Using Eq. (4-60) with diametral values,  p

Eq. (4-57)

=

207(103 )(0.02) 50

(752

 

2

2

2



− 50 )(50 − 25 ) = 19.41 MPa 2(50 )(75 − 25 ) 50 + 25 = −32.35 MPa 50 − 25 2

2

2

2

2



= −19.41 (σ  ) = −19.41 MPa σ  = [( −32.35) − ( −32.35)( −19.41) + (−19.41) ] = 28.20 MPa Ans. (σ t )i

2

2

r  i

Eq. (6-13)

2

i

2 1/2

Ans.

173

Chapter 6



752

2



+ 50 = 50.47 MPa, − 50

= 19.41 75 ( σ  ) = −19.41 MPa σ  = [50.47 − 50.47(−19.41) + ( −19.41) ] = 62.48 MPa ( σ t ) o

Eq. (4-58)

2

2

r  o

2 1/2

2

o

Ans.

6-34

1.999 = 1.9998 − = 0.0004 in 2 2

δ

Eq. (4-59) p (1)

= 14.5(10 )  p = 2613 psi

0.0004

6



22 22

2



+ 1 + 0.211 + p(1) −1 30(10 ) 2

6



12 12



+ 0 − 0.292 −0

Applying Eq. (4-58) at  R, ( σ t ) o (σ r ) o



22

2

2

2



= 2613 2 +− 11 = 4355 psi = −2613 psi , S = 20 kpsi, S = 83 kpsi −2613n + 20 000 = 1 n (4355) + 20 000 20 000 − 83 000 n = 4.52 Ans. ut 

uc

2



Eq. (6-33b)

6-35





6

4

4

4

= 30(10 ) psi, ν = 0.292, I  = (π/64)(2 − 1.5 ) = 0.5369 in

Eq. (4-60) can be written in terms of diameters,  p

=

E δd   D



2

d o

−D

2 D 2

2





2

2



6

− d  = 30(10 ) (0.002 46) 1.75 d  − d   D

i

2

2

o

i

= 2997 psi = 2.997 kpsi





(2 2

2

2

2

− 1.75 )(1.75 − 1.5 ) 2(1.75 )(2 − 1.5 ) 2

2

2



Outer member:

Outer radius:

( σ t ) o

=

1.752 (2 .997) 22

2

− 1.75

1.752 (2 .997)

(2)

= 19.58 kpsi, ( σ  ) = 0 r  o

22

 + =

( σ t ) i

=

r o :

( σ  x ) o

/2) = 6.000(2 = 11.18 kpsi 0.5369

r i :

( σ  x ) i

.75/2) = 6.000(1 = 9.78 kpsi 0.5369

Inner radius:

22

2

− 1.75

1

1.752

Bending:

22.58 kpsi, ( σ r ) i

= −2.997 kpsi

174

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

Torsion:



r o :

( τ  x y ) o

r i :

( τ  x y )i

4

= 2 I  = 1.0738 in /2) = 8.000(2 = 7.45 kpsi 1.0738 .75/2) = 8.000(1 = 6.52 kpsi 1.0738

Outer radius is plane stress

= 11.18 kpsi, σ  = 19.58 kpsi, τ  = 7.45 kpsi = nS = 60 σ  = [11.18 − (11.18)(19.58) + 19.58 + 3(7.45 )] n

σ  x

 y

 x y

2

Eq. (6-15)

2

1/2

2

 y

o

21.35

= 60 ⇒ n

no

o

Inner radius, 3D state of stress

= 2.81

o

Ans.

 z

–2.997 kpsi 9.78 kpsi

22.58 kpsi  x

From Eq. (6-14) with τ  yz σ 

 y

6.52 kpsi

= τ  = 0  zx

= √ 1 [(9.78 − 22.58) + (22.58 + 2.997) + (−2.997 − 9.78) + 6(6.52) ] = 60 n 2

2

2

2

i

24.86

= 60 ⇒ n

ni

i

6-36

2 1/2

From Prob. 6-35:  p

= 2.41

Ans.

4

4

= 2.997 kpsi, I  = 0.5369 in , J  = 1.0738 in

 Inner member:

Outer radius:

( σ t )o ( σ r )o



(0 .8752

2

= −2.997 (0.875 = −2.997 kpsi .997)(0.875 ) = − 2(2 = −22.59 kpsi 0.875 − 0.75 =0 2

2

2

Inner radius:

( σ t )i ( σ r )i



+ 0.75 ) = −19.60 kpsi − 0.75 )

2

2

Bending: r o :

( σ  x ) o

.875) = 6(0 = 9.78 kpsi 0.5369

r i :

( σ  x ) i

.75) = 6(0 = 8.38 kpsi 0.5369

175

Chapter 6

Torsion: r o :

( τ  x y ) o

.875) = 8(0 = 6.52 kpsi 1.0738

r i :

( τ  x y )i

.75) = 8(0 = 5.59 kpsi 1.0738

= 8.38 kpsi, σ  = −22.59 kpsi, τ  = 5.59 kpsi − (8.38)( −22.59) + (−22.59) + 3(5.59 )] = 29.4 kpsi S 60 = 2.04 Ans. n =  = σ  29.4

The inner radius is in plane stress: σ  x σ i

2

= [8.38

 y

 x y

2

1/2

2

 y

i

i

Outer radius experiences a radial stress, σ r  σ o

= √ 1 (−19.60 + 2.997) + (−2.997 − 9.78) + (9.78 + 19.60) + 6(6.52) 2 = 27.9 kpsi 60 n = = 2.15 Ans. 27.9 2



2

2

2 1/2



o

6-37 σ  p

1

=2

 ±  √   + √    ±  ±  = √ 

 √  2

K  I 

cos

2π r 

θ

K  I 

2

2π r 

sin

K  I 

= √ 2π r  K  I 

= √ 2π r 

θ

cos

2

cos

θ

2

θ

2

sin

cos

2

θ

2

2

cos θ

2

2



θ

2

θ

cos

2

θ

K  I 

θ

2

2π r 

sin

cos

2

2

cos

2

+ sin

2



sin

2

cos

sin

θ

2

sin

2π r 

K  I 

θ

θ

2

2



3θ 2 2

cos

 2

θ

1/2

2

cos

2

3θ 2

 1/2

±  1

sin

θ

2

Plane stress: The third principal stress is zero and σ 1

K  I 

θ

= √ 2π r  cos 2

+  1

sin

θ

,

2

σ 2

K  I 

θ

= √ 2π r  cos 2

−  1

sin

θ

2

,

σ 3

Plane strain: σ 1 and σ 2 equations still valid however, σ 3

6-38

For θ

= ν (σ  + σ  ) = 2ν √ K 2π r  cos θ2  I 

 x

 y

 Ans.

= 0 and plane strain, the principal stress equations of Prob. 6-37 give K  K  σ  = σ  = √  = , σ  = 2ν √  2νσ  2π r  2π r   I 

1

2

 I 

3

1

=0

Ans.

176

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

√ 1 [(σ  − σ  ) + (σ  − 2νσ  ) + (2νσ  − σ  ) ] = S 2 σ  − 2νσ  = S 1 1 ⇒ σ  = 3S Ans. σ  = S 1−2 For ν = , 3 3 σ  − σ  = S ⇒ σ  − 2νσ  = S MSS: 1 ⇒ σ  = 3S Ans. ν= 3

(a) DE:

1

2

1

1

2

1

1

1

2 1/2

1

  

(b)

1

 y

1

1

 y

 y

1

 y

3

1

 y

1

 y

 y

1

= 23 σ 

σ 3

1

 

Radius of largest circle 2   3 1

6-39

 1,  2

 

 R

1

=2



σ 1

2

− 3 σ 

1

=

6

(a) Ignoring stress concentration

= S  A = 160(4)(0.5) = 320 kips Ans. From Fig. 6-36: h /b = 1, a /b = 0.625/4 = 0.1563, β = 1.3 F 

(b)

 y

70

Eq. (6-51)



= 1.3 4(0.5)

Given: a

= 12.5 mm, K 

 I c

Eq. (6-51):

ut 

i

2

− r  ) = 17512−.5150 = 0.5 i

r i /r o

Fig. 6-40:

π (0 .625)

 y

o

a /(r o



= 76.9 kips Ans. = 80 MPa · √ m, S = 1200 MPa, S = 1350 MPa 350 = 175 mm, r  = 350 − 50 = 150 mm r  = F 

6-40

σ 1

= 150 = 0.857 175

=. 2.5 √  K  = βσ  π a 80 = 2.5σ  π (0 .0125) σ  = 161.5 MPa β

 I c



2

177

Chapter 6

Eq. (4-51) at r 

= r  : o

σ 

161.5  pi

r i2 pi

= r  − r  (2) 2 i

2 o

1502 pi (2)

= 175 − 150 = 29.2 MPa Ans. 2

2

6-41 (a) First convert the data to radial dimensions to agree with the formulations of Fig. 4-25. Thus r o 0.5625 0.001in

= ± r  = 0.1875 ± 0.001in  R = 0.375 ± 0.0002in  R = 0.376 ± 0.0002 in i

o i

= | |−| |

Ri Ro relation in The stochastic nature of the dimensions affects the δ (1/2)( Ri Ro ) 0.3755. From Eq. (4-60) Eq. (4-60) but not the others. Set  R

=

p

δ = E   R

Substituting and solving with  E 

+



2

r o

−R

2



=

2

 − −  R

2 R 2 r o2

2

r i

r i2



= 30 Mpsi gives p = 18.70(10 ) δ 6

Since δ and

=R −R i

o

¯ =  R¯ −  R¯ = 0.376 − 0.375 = 0.001 in

δ

i

o

     ˆ = + 2

0.0002

σδ 

2

0.0002

4

1/2

4

= 0.000 070 7 in

Then C δ

= σˆδ¯  = 0.0000707 = 0.0707 0.001 δ

The tangential inner-cylinder stress at the shrink-fit surface is given by

¯ + r¯  σ  = − ¯ − r¯  + 0.1875 = −18.70(10 ) δ 00..3755 3755 − 0.1875 = −31.1(10 ) δ σ¯   = −31.1(10 ) δ¯ = −31.1(10 )(0.001) = −31.1(10 ) psi it 

 R 2 p  R 2

2 i 2 i

6

6

i t 

6

3



2

2

2

2

6



178

Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design

Also 3

ˆ = |C  σ¯   | = 0.0707( −31.1)10 = 2899 psi σ  = N( −31100, 2899) psi Ans.

σσ  i t 

δ it 

it 

(b) The tangential stress for the outer cylinder at the shrink-fit surface is given by σ ot 

=p

¯ + ¯  ¯−¯  r o2

 R 2

r o2

 R 2 6

= 18.70(10 ) δ

0.56252 0.56252

6

+ 0.3755 − 0.3755

2 2



= 48.76(10 ) δ psi σ¯   = 48.76(10 )(0 .001) = 48.76(10 ) psi σˆ   = C  σ¯   = 0.0707(48.76)(10 ) = 34.45 psi σ  = N(48 760, 3445) psi Ans. 6

ot 

σ ot 



6-42

3

3

δ ot 

ot 

From Prob. 6-41, at the fit surface pressure which was found to be

σ ot 

= N(48.8, 3.45) kpsi.

The radial stress is the fit

6

= 18.70(10 ) δ  p¯ = 18.70(10 )(0.001) = 18.7(10 ) psi σˆ   = C   p¯ = 0.0707(18.70)(10 ) = 1322 psi p

6

 p

3

3

δ

and so p

= N(18.7, 1.32) kpsi

and σ or 

= −N(18.7, 1.32) kpsi

These represent the principal stresses. The von Mises stress is next assessed.

¯ = 48.8 kpsi, σ¯   = −18.7 kpsi k  = σ¯   /σ¯   = −18.7/48.8 = −0.383 σ¯   = σ¯   (1 − k  + k  ) = 48.8[1 − (−0.383) + (−0.383) ] = 60.4 kpsi σˆ    = C  σ¯   = 0.0707(60.4) = 4.27 kpsi σ A  

 B

 B

 A

 A

2 1/2

2 1/2

σ 

 p

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF