Solucionario parte 4 Matemáticas Avanzadas para Ingeniería - 2da Edición - Glyn James

September 25, 2017 | Author: Kimberly Clark | Category: Sine, Fourier Series, Trigonometric Functions, Special Functions, Pi
Share Embed Donate


Short Description

Download Solucionario parte 4 Matemáticas Avanzadas para Ingeniería - 2da Edición - Glyn James...

Description

4 Fourier series Exercises 4.2.9 1(a) 1 a0 = π



0

−π

 −πdt +



π

tdt 0  2 π

   t π 1 π2 1 0 2 (−πt)−π + −π + =− = = π 2 0 π 2 2  0   π 1 −π cos ntdt + t cos ntdt an = π −π 0  0 t π 1 1  π − sin nt sin nt + 2 cos nt + = π n n n −π 0

2 1 − 2 , n odd = (cos nπ − 1) = πn πn2 0, n even  0   π 1 −π sin ntdt + t sin ntdt bn = π −π 0   t π 0 1 π 1 + − cos nt + 2 sin nt = cos nt π n n n −π 0  3   , n odd 1 = (1 − 2 cos nπ) = n 1  n  − , n even n Thus the Fourier expansion of f (t) is   2   1  3 π + sin nt − sin nt − 2 cos nt + 4 πn n n n even n odd n odd ∞ ∞ ∞  sin(2n − 1)t  π 2  cos(2n − 1)t sin 2nt i.e. f (t) = − − − +3 2 4 π n=1 (2π − 1) (2n − 1) 2n n=1 n=1 f (t) = −

c Pearson Education Limited 2004 

192

Glyn James: Advanced Modern Engineering Mathematics, Third edition

1(b)  0 1 t2 π + πt (t + π)dt = = π 2 2 −π −π  0  0 sin nt cos nt 1 1 (t + π) an = (t + π) cos ntdt = + π −π π n n2 −π

0, n even 1 2 = (1 − cos nπ) = , n odd πn2 πn2  0  cos nt sin nt 1 0 1 1 −(t + π) (t + π) sin ntdt = = − bn = + π −π π n n2 −π n 1 a0 = π



0

Thus the Fourier expansion of f (t) is ∞  2  1 π sin nt cos nt − f (t) = + 2 4 πn n n=1 n odd ∞ ∞ π 2  cos(2n − 1)t  sin nt i.e. f (t) = + − 4 π n=1 (2n − 1)2 n n=1

1(c) From its graph we see that f (t) is an odd function so it has Fourier expansion ∞  bn sin nt f (t) = n=1

with

  2 π 2 π t sin ntdt f (t) sin nt = 1− bn = π 0 π 0 π  π 1 t 1 2 2 − 1− cos nt − = sin nt = 2 π n π πn nπ 0

Thus the Fourier expansion of f (t) is ∞ 2  sin nt f (t) = π n=1 n

c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition 1(d) From its graph f (t) is seen to be an even function so its Fourier expansion is ∞ a0  + f (t) = an cos nt 2 n=1 with 2 a0 = π 2 an = π 2 = π



π

0



0



0

π

2 f (t)dt = π



π/2

2 cos tdt = 0

2 f (t) cos ntdt = π

π/2



2 4 π/2 [2 sin t]0 = π π

π/2

2 cos t cos ntdt 0

[cos(n + 1)t + cos(n − 1)t]dt

 π/2 2 sin(n + 1)t sin(n − 1)t + = π (n + 1) (n − 1) 0   π 1 π 1 2 sin(n + 1) + sin(n − 1) = π (n + 1) 2 (n − 1) 2  0, n odd    4 1 − , n = 4, 8, 12, . . . = π (n2 − 1)   1 4   , n = 2, 6, 10, . . . 2 π (n − 1) Thus the Fourier expansion of f (t) is ∞ 2 4  (−1)n+1 cos 2nt f (t) = + π π n=1 4n2 − 1

1(e)  π 1 t t 4 2 sin cos dt = = 2 π 2 −π π −π   π  π  1 1 1 1 t an = cos(n + )t + cos(n − )t dt cos cos ntdt = π −π 2 2π −π 2 2   2 1 2 1 2 sin(n + )π + sin(n − )π = 2π (2n + 1) 2 (2n − 1) 2  4  , n = 1, 3, 5, . . .  π(4n2 − 1) = 4  − , n = 2, 4, 6, . . . π(4n2 − 1) bn = 0 1 a0 = π



π

c Pearson Education Limited 2004 

193

194

Glyn James: Advanced Modern Engineering Mathematics, Third edition

Thus the Fourier expansion of f (t) is ∞ 4  (−1)n+1 cos nt 2 f (t) = + π π n=1 (4n2 − 1)

1(f )

Since f (t) is an even function it has Fourier expansion ∞

a0  an cos nt f (t) = + 2 n=1   2 π 2 π | t | dt = tdt = π a0 = π 0 π 0  π  1 2 π 2 t sin nt + 2 cos nt t cos ntdt = an = π 0 π n n 0

0, n even 2 4 = (cos nπ − 1) = − 2 , n odd πn2 πn Thus the Fourier expansion of f (t) is

with

4  1 π − cos nt 2 π n2 n odd ∞ π 4  cos(2n − 1)t i.e. f (t) = − 2 π n=1 (2n − 1)2 f (t) =

1(g)  π 1 π 1 2 t − πt 0 = 0 (2t − π)dt = a0 = π 0 π  π  π 2 1 1 (2t − π) sin nt + 2 cos nt an = (2t − π) cos ntdt = π 0 π n n 0

4 2 = (cos nπ − 1) = − πn2 , n odd πn2 0, n even  π  π (2t − π) 2 1 1 − cos nt + 2 sin nt bn = (2t − π) sin ntdt = π 0 π n n 0

0, n odd 1 2 = − (cos nπ + 1) = − , n even n n c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition

195

Thus the Fourier expansion of f (t) is 

f (t) =



 2 4 cos nt + − sin nt 2 πn n n even

odd ∞ ∞ 4  cos(2n − 1)t  sin 2nt i.e. f (t) = − − π n=1 (2n − 1)2 n n=1 n

1(h) 1 a0 = π = = an = =

= =

1 bn = π





0

(−t + e )dt + −π



π

t

t

(t + e )dt 0

  t2 0 π 1  t2 t t − +e +e + π 2 2 −π 0  2 1 2 π + (eπ − e−π ) = π + sinh π π π  0   π 1 t t (−t + e ) cos ntdt + (t + e ) cos ntdt π −π 0  t  t 0 0 1 1 1 − sin nt + 2 cos nt ne sin nt + et cos nt −π + 2 π n n (n + 1) −π  π  t π 1 t 1 t sin nt + 2 cos nt + 2 ne sin nt + e cos nt 0 + n n (n + 1) 0 2 cos nπ  eπ − e−π  2 (−1 + cos nπ) + πn2 π(n2 + 1) 2   2 (cos π − 1) cos nπ sinh π , cos nπ = (−1)n + 2 2 π n (n + 1)



0

 t

(−t + e ) sin ntdt + −π

π

 t

(t + e ) sin ntdt 0

 0  t π 1 1 1 t cos nt − 2 sin nt + − cos nt + 2 sin nt = π n n n n −π 0  t π 2 t e cos nt e sin nt  n − + + 2 π +1 n n2 −π n 2n cos nπ(eπ − e−π ) = − cos nπ sinh π, cos nπ = (−1)n =− 2 π(n + 1) π(n2 + 1) c Pearson Education Limited 2004 

196

Glyn James: Advanced Modern Engineering Mathematics, Third edition

Thus the Fourier expansion of f (t) is  ∞   2 π 1 (−1)n − 1 (−1)n sinh π + sinh π + cos nt f (t) = + 2 π π n=1 n2 n2 + 1 −

2

∞ 2  n(−1)n sinh π sin nt π n=1 n2 + 1

Since the periodic function f (t) is an even function its Fourier expansion is ∞

a0  + f (t) = an cos nt 2 n=1 with  π 1 2 2 3 − (π − t) (π − t) dt = = π2 π 3 3 0 0  π  π 2(π − t) 2 2 (π − t)2 2 2 sin nt − an = (π − t) cos ntdt = cos nt − 3 sin nt π 0 π n n2 n 0 4 = 2 n 2 a0 = π



π

2

Thus the Fourier expansion of f (t) is ∞  π2 1 f (t) = cos nt +4 3 n2 n=1

Taking t = π gives 0=

∞  1 π2 +4 (−1)n 2 3 n n=1

so that ∞ 1 2  (−1)n+1 π = 12 n2 n=1

c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition 3

Since q(t) is an even function its Fourier expansion is ∞

q(t) = with

a0  + an cos nt 2 n=1

 2 π a0 = π 0  2 π an = π 0

Qt dt = Q π  π Qt 2Q t 1 cos ntdt = 2 sin nt + 2 cos nt π π n n 0

0, n even 2Q 4Q = 2 2 (cos nπ − 1) = − 2 2 , n odd π n π n Thus the Fourier expansion of q(t) is   ∞ 4  cos(2n − 1)t 1 q(t) = Q − 2 2 π n=1 (2n − 1)2

4

 1 π 1 10 5 sin tdt = [−5 cos t]π0 = a0 = π 0 π π  π  π 5 5 sin t cos ntdt = [sin(n + 1)t − sin(n − 1)t]dt an = π 0 2π 0  π cos(n + 1)t cos(n − 1)t 5 − + , n = 1 = 2π (n + 1) (n − 1) 0  1 5  cos nπ cos nπ   1  − − = − + 2π n+1 (n − 1) n+1 n−1

0, n odd, n = 1 5 10 =− (cos nπ + 1) = , n even − π(n2 − 1) π(n2 − 1)

Note that in this case we need to evaluate a1 separately as   π 1 π 5 a1 = 5 sin t cos tdt = sin 2tdt = 0 π 0 2π 0   π 5 π 5 bn = sin t sin ntdt = − [cos(n + 1)t − cos(n − 1)t]dt π 0 2π 0  π 5 sin(n + 1)t sin(n − 1)t − , n = 1 =− 2π (n + 1) (n − 1) 0 = 0 , n = 1 c Pearson Education Limited 2004 

197

198

Glyn James: Advanced Modern Engineering Mathematics, Third edition

Evaluating b1 separately   π 5 π 5 sin t sin tdt = (1 − cos 2t)dt b1 = π 0 2π 0 π 1 5  5 t − sin 2t = = 2π 2 2 0 Thus the Fourier expansion of f (t) is ∞ 5 10  cos 2nt 5 + sin t − π 2 π n=1 4n2 − 1

f (t) =

5 a0 = = an = = =

1 bn = π

 0   π 1 2 2 π dt + (t − π) dt π −π 0  1 π 4 1  2 0 3 π t −π + (t − π) = π2 π 3 3 0  0   π 1 2 2 π cos ntdt + (t − π) cos ntdt π −π 0   (t − π)2 π 0 2 1  π2 2(t − π) + cos nt − 3 sin nt sin nt sin nt + π n n n2 n −π 0 2 n2 

0

2



π sin ntdt + −π

0

π

2



(t − π) sin ntdt

 0  (t − π)2 π (t − π) 2 1  π2 − cos nt cos nt + 2 + − sin nt + 3 cos nt = π n n n2 n −π 0  2 2  π 1  π − + (−1)n = π n n 2 π [1 − (−1)n ] = (−1)n − n πn3 c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition Thus the Fourier expansion of f (t) is  ∞  ∞ 4  sin(2n − 1)t (−1)n 2 2  2 π sin nt − cos nt + f (t) = π + 3 n2 n π n=1 (2n − 1)3 n=1

5(a)

Taking t = 0 gives ∞  2 π2 + π2 2 = π2 + 2 3 n2 n=1

and hence the required result

5(b)

∞  1 1 = π2 2 n 6 n=1

Taking t = π gives ∞  2 π2 + 0 2 (−1)n = π2 + 2 2 3 n n=1

and hence the required result ∞  (−1)n+1 1 2 π = 2 n 12 n=1

6(a)

c Pearson Education Limited 2004 

199

200

Glyn James: Advanced Modern Engineering Mathematics, Third edition

6(b)

The Fourier expansion of the even function (a) is given by ∞

f (t) =

a0  + an cos nt 2 n=1

with 2 a0 = π





π/2

π

tdt + 0

 (π − t)dt

π/2

 π π 2  1 2 π/2  1 t + − (π − t)2 = = π 2 0 2 2 π/2  π/2   π 2 t cos ntdt + (π − t) cos ntdt an = π 0 π/2  π/2  π − t π 1 1 2 t sin nt + 2 cos nt sin nt − 2 cos nt + = π n n n n 0 π/2   1 2 2 nπ − 2 (1 + (−1)n ) = cos 2 π n 2 n  n odd   0, 8 = − 2 , n = 2, 6, 10, . . .   πn 0, n = 4, 8, 12, . . . Thus the Fourier expansion of f (t) is ∞ 2  cos(4n − 2)t π f (t) = − 4 π n=1 (2n − 1)2

Taking t = 0 where f (t) = 0 gives the required result. c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition

201

7

1 a0 = π

 0

π

t (2 − )dt + π







t/πdt π

 π  t2 2π t2  1  2t − = =3 + π 2π 0 2π π  π   2π t 1 t cos ntdt an = (2 − ) cos ntdt + π 0 π π π  π  t 2π t 1 1 1 2 sin nt − sin nt − sin nt + cos nt + cos nt = π n πn πn2 πn πn2 0 π 2 = 2 2 [1 − (−1)n ] π n

0, n even 4 = , n odd π 2 n2  π   2π t 1 t sin ntdt (2 − ) sin ntdt + bn = π 0 π π π  π  t 2π 1  2 t 1 1 − cos nt + sin nt + − sin nt = cos nt − cos nt + π n πn πn2 πn πn2 0 π =0 Thus the Fourier expansion of f (t) is ∞ 4  cos(2n − 1)t 3 f (t) = + 2 2 π n=1 (2n − 1)2

Replacing t by t − 12 π gives ∞ 3 4  cos(2n − 1)(t − π) 1 f (t − π) = + 2 2 2 π n=1 (2n − 1)2

c Pearson Education Limited 2004 

202

Glyn James: Advanced Modern Engineering Mathematics, Third edition

Since π π 1 cos(2n − 1)(t − π) = cos(2n − 1)t cos(2n − 1) + sin(2n − 1)t sin(2n − 1) 2 2 2 n+1 = (−1) sin(2n − 1)t ∞ 1 3 4  (−1)n+1 sin(2n − 1)t f (t − π) − = 2 2 2 π n=1 (2n − 1)2

The corresponding odd function is readily recognised from the graph of f (t) .

Exercises 4.2.11 8

Since f (t) is an odd function the Fourier expansion is ∞ 

f (t) =

bn sin

n=1

with 2 bn = 

 0



nπt 

  t nπt nπt 2 nπt   2 − t sin sin dt = cos +   nπ  nπ  0

2 cos nπ =− nπ Thus the Fourier expansion of f (t) is ∞ nπt 2  (−1)n+1 sin f (t) = π n=1 n 

9 Since f (t) is an odd function (readily seen from a sketch of its graph) its Fourier expansion is ∞  nπt f (t) = bn sin  n=1 with 2 bn = 

 0



nπt K ( − t) sin tdt  

  2 K nπt Kt nπt K nπt = − cos + cos − sin  nπ  nπ  (nπ)2  0 2K = nπ c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition Thus the Fourier expansion of f (t) is f (t) =

10 1 a0 = 5



∞ nπt 2K  1 sin π n=1 n 

5

3dt = 3 0

 5 1 15 nπt nπt dt = sin 3 cos =0 5 5 nπ 5 0 0  5  1 15 nπt 1 5 nπt dt = − cos bn = 3 sin 5 0 5 5 nπ 5 0

6 3 [1 − (−1)n ] = nπ , n odd = nπ 0, n even

1 an = 5



5

Thus the Fourier expansion of f (t) is ∞ 6 (2n − 1) 3 1 sin πt f (t) = + 2 π n=1 (2n − 1) 5

11  π/ω A ω 2A − cos ωt A sin ωtdt = = π ω π 0 0  π/ω  π/ω Aω Aω sin ωt cos nωtdt = [sin(n + 1)ωt − sin(n − 1)ωt]dt an = π 0 2π 0  π/ω cos(n + 1)ωt cos(n − 1)ωt Aω − + = , n = 1 2π (n + 1)ω (n − 1)ω 0   2 A A 2(−1)n+1 − 2 = [(−1)n+1 − 1] = 2 2 2π n − 1 n −1 π(n − 1)

0, n odd , n = 1 2A = − , n even π(n2 − 1) 2ω a0 = 2π



π/ω

Evaluating a1 separately Aω a1 = π

 0

π/ω

A sin ωt cos ωtdt = 2π



π/ω

sin 2ωtdt = 0 0

c Pearson Education Limited 2004 

203

204

Glyn James: Advanced Modern Engineering Mathematics, Third edition

Aω bn = π



π/ω

0

Aω sin ωt sin nωtdt = − 2π

 0

π/ω

[cos(n + 1)ωt − cos(n − 1)ωt]dt

 π/ω Aω sin(n + 1)ωt sin(n − 1)ωt − =− , n = 1 2π (n + 1)ω (n − 1)ω 0

= 0, n = 1   Aω π/ω 2 Aω π/ω A b1 = sin ωtdt = (1 − cos 2ωt)dt = π 0 2π 0 2 Thus the Fourier expansion of f (t) is   ∞  π A cos 2nωt 1 + sin ωt − 2 f (t) = π 2 4n2 − 1 n=1

12

Since f (t) is an even function its Fourier expansion is ∞

f (t) =

a0  nπt + an cos 2 T n=1

with 2 a0 = T an = =

2 T



T

0



0 2

T

 T 2 1 3 2 t t dt = = T2 T 3 0 3  2 T 2 Tt nπt 2tT 2 2T 3 nπt nπt nπt 2 dt = sin + − t cos cos sin T T nπ T (nπ)2 T (nπ)3 T 0 2

4T (−1)n (nπ)2

Thus the Fourier series expansion of f (t) is ∞ T2 nπt 4T 2  (−1)n f (t) = cos + 2 3 π n=1 n2 T

c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition 13 2 a0 = T 2 an = T



T

0



T

0

 T 2E 1 2 E tdt = 2 t =E T T 2 0 E 2πnt t cos dt T T

T 2πnt 2πnt  T 2 2E tT cos =0 sin + = 2 T 2πn T 2πn T 0  2E T 2πnt dt t sin bn = 2 T 0 T T  2E tT 2πnt E 2πnt  T 2 = 2 − sin =− cos + T 2πn T 2πn T 0 πn 

Thus the Fourier expansion of e(t) is ∞ E1 2πnt E − sin e(t) = 2 π n=1 n T

Exercises 4.3.3 14

Half range Fourier sine series expansion is given by f (t) =

∞ 

bn sin nt

n=1

with 2 bn = π

 0

π

 π 1 2 − cos nt 1 sin ntdt = π n 0

2 [(−1)n − 1] nπ

0, n even 4 = , n odd nπ Thus the half range Fourier sine series expansion of f (t) is =−

∞ 4  sin(2n − 1)t f (t) = π n=1 (2n − 1)

Plotting the graphs should cause no problems. c Pearson Education Limited 2004 

205

206

Glyn James: Advanced Modern Engineering Mathematics, Third edition

15

Half range Fourier cosine series expansion is given by ∞

a0  + an cos nπt f (t) = 2 n=1 with 2 a0 = 1 an = 2

 

1

0 1

0

(2t − 1)dt = 0

(2t − 1) cos nπtdt

 1 2 (2t − 1) sin nπt + =2 cos nπt nπ (nπ)2 0 4 = [(−1)n − 1] (nπ)2

0, n even 8 = − , n odd (nπ)2 Thus the half range Fourier cosine series expansion of f (t) is ∞ 8  1 f (t) = − 2 cos(2n − 1)πt π n=1 (2n − 1)2

Again plotting the graph should cause no problems.

16(a)  a0 = 2

0

 an = 2

0

1

1

 1 1 4 (1 − t2 )dt = 2 t − t3 = 3 0 3 (1 − t2 ) cos 2nπtdt

 1 2t (1 − t2 ) 2 sin 2nπt − =2 cos 2nπt + sin 2nπt 2nπ (2nπ)2 (2nπ)3 0 1 =− (nπ)2 c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition  bn = 2

1

0

(1 − t2 ) sin 2nπtdt

 1 2t (1 − t2 ) 2 cos 2nπt − =2 − sin 2nπt − cos 2nπt 2nπ (2nπ)2 (2nπ)3 0 1 = nπ Thus the full-range Fourier series expansion for f (t) is f (t) = f1 (t) =

16(b)

∞ ∞ 1  1 2 11 − 2 sin 2nπt cos 2nπt + 3 π n=1 n2 π n=1 n

Half range sine series expansion is f2 (t) =

∞ 

bn sin nπt

n=1

with

 bn = 2

0

1

(1 − t2 ) sin nπtdt

 (1 − t2 ) cos nπt − =2 − nπ  2 1 =2 − (−1)n + 3 (nπ) nπ  2   , n = nπ  1 4   2 + , n nπ (nπ)3

2t 2 sin nπt − cos nπt (nπ)2 (nπ)3  2 + (nπ)3

1 0

even odd

Thus half range sine series expansion is  ∞ ∞  2 4 1 11 sin 2nπt + + f2 (t) = sin(2n − 1)πt π n=1 n π n=1 (2n − 1) π 2 (2n − 1)3

16(c)

Half range cosine series expansion is ∞

a0  f3 (t) = an cos nπt + 2 n=1 c Pearson Education Limited 2004 

207

208

Glyn James: Advanced Modern Engineering Mathematics, Third edition

with

 a0 = 2

0

 an = 2

0

1

1

(1 − t2 )dt =

4 3

(1 − t2 ) cos nπtdt

 1 (1 − t2 ) 2 2t =2 cos nπt + sin nπt sin nπt − nπ (nπ)2 (nπ)3 0 −4(−1)n = (nπ)2 Thus half range cosine series expansion is f3 (t) =

∞ 4  (−1)n+1 2 + 2 cos nπt 3 π n=1 n2

Graphs of the functions f1 (t), f2 (t), f3 (t) for −4 < t < 4 are as follows

17

Fourier cosine series expansion is ∞

a0  + an cos nt f1 (t) = 2 n=1 c Pearson Education Limited 2004 

Glyn James: Advanced Modern Engineering Mathematics, Third edition

with

 2 π 1 (πt − t2 )dt = π 2 a0 = π 0 3  π 2 an = (πt − t2 ) cos ntdt π 0  π (π − 2t) 2 2 (πt − t2 ) sin nt + cos nt + 3 sin nt = π n n2 n 0 2 = − 2 [1 + (−1)n ]

n 0, n odd 4 = − 2 , n even n

Thus the Fourier cosine series expansion is ∞ 1 2  1 f1 (t) = π − cos 2nt 2 6 n n=1

Fourier sine series expansion is

f2 (t) =

∞ 

bn sin nt

n=1

with

 2 π (πt − t2 ) sin ntdt bn = π 0  π (πt − t2 ) (π − 2t) 2 2 − cos nt + sin nt − 3 cos nt = π n n2 n 0 4 [1 − (−1)n ] = 3 πn

0, n even 8 = , n odd πn3

Thus the Fourier sine series expansion is ∞ 1 8 f2 (t) = sin(2n − 1)t π n=1 (2n − 1)3

c Pearson Education Limited 2004 

209

210

Glyn James: Advanced Modern Engineering Mathematics, Third edition

Graphs of the functions f1 (t) and f2 (t) for −2π < t < 2π are:

18

 2a x, 0
View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF