solucionario de yunus

March 12, 2017 | Author: Alvaro Peñafiel | Category: N/A
Share Embed Donate


Short Description

Download solucionario de yunus ...

Description

Considere una pared de ladrillos de 3 m de alto, 6 m de ancho y 0.3 m de espesor cuya conductividad térmica es k 0.8 W/m · °C. En cierto día, se miden las temperaturas de las superficies interior y exterior de la pared y resultan ser de 14°C y 2°C, respectivamente. Determine la razón de la pérdida de calor a través de la pared en ese día.

Una

ventana

de

hoja

doble,

de

1.0

m

1.5 m, está formada por dos capas de vidrio de 4 mm de espesor (k 0.78 W/m · K) que están separadas por un espacio de aire de 5 mm (kaire 0.025 W/m · K). Se supone que el flujo de calor a través del espacio de aire se da por conducción. Las temperaturas interior y exterior del aire son de 20°C y 20°C, respectivamente, y los coeficientes interior y exterior de transferencia de calor son 40 y 20 W/m2 · K, también respectivamente. Determine a) la pérdida de calor diaria a través de la ventana en estado estacionario de transferencia de calor y b) la diferencia de temperatura debida a la resistencia térmica más grande.

Considere una ventana de vidrio de 1.2 m de alto y 2 m de ancho cuyo espesor es de 6 mm y la conductividad térmica es k 0.78 W/m · °C. Determine la razón de transferencia de calor estacionaria a través de esta ventana de vidrio y la temperatura de su superficie interior, para un día durante el cual el cuarto se mantiene a 24°C, en tanto que la temperatura del exterior es de –5°C. Tome los coeficientes de transferencia de calor por convección sobre las superficies interior y exterior de la ventana como h1 10 W/m2 · °C y h2 25 W/m2 · °C y descarte cualquier transferencia de calor por radiación.

Considere una ventana de hoja doble de 1.2 m de alto y 2 m de ancho que consta de dos capas de vidrio (k 0.78 W/m · °C) de 3 mm de espesor separadas por un espacio de aire estancado (k 0.026 W/m · °C) de 12 mm de ancho. Determine la razón de transferencia de calor estacionaria a través de esta ventana de hoja doble y la temperatura de su superficie interior para un día durante el cual el cuarto se mantiene a 24°C en tanto que la temperatura del exterior es de –5°C. Tome los coeficientes de transferencia de calor por convección sobre las superficies interior y exterior de la ventana como h1 10 W/m2 · °C y h2 25 W/m2 · °C y descarte cualquier transferencia de calor por radiación.

Repita el problema 3-20 si se ha hecho el vacío en el espacio entre las dos capas de vidrio.

Considere una casa de ladrillos calentada eléctricamente (k 0.40 Btu/h · ft · °F) cuyas paredes tienen 9 ft de alto y 1 ft de espesor. Dos de las paredes tienen 50 ft de largo y las otras tienen 35 ft. La casa se mantiene a 70°F en todo momento, en tanto que la temperatura del exterior varía.

Un elemento resistor cilíndrico en un tablero de circuito disipa 0.15 W de potencia en un medio a 40°C. El resistor tiene 1.2 cm de largo y un diámetro de 0.3 cm. Si se supone que el calor se transfiere de manera uniforme desde todas las superficies, determine a) la cantidad de calor que este resistor disipa durante un periodo de 24 h, b) el flujo de calor sobre la superficie del resistor, en W/m2 y c) la temperatura superficial del resistor para un coeficiente combinado de transferencia de calor por convección y radiación de 9 W/m2 · °C.

Considere un transistor de potencia que disipa 0.2 W de potencia en un medio a 30°C. El transistor tiene 0.4 cm de largo y un diámetro de 0.5 cm. Si se supone que el calor se transfiere de manera uniforme desde todas las superficies, determine a) la cantidad de calor que este transistor disipa durante un periodo de 24 h, en kW; b) el flujo de calor sobre la superficie del transistor, en W/m2 , y c) la temperatura superficial del transistor para un coeficiente combinado de transferencia de calor por convección y radiación de 18 W/m2 · °C

Un

tablero

de

circuito

de

12

cm

18 cm aloja sobre su superficie 100 chips lógicos con poco espacio entre ellos, disipando cada uno 0.06 W en un medio a 40°C. La transferencia de calor desde la superficie posterior del tablero es despreciable. Si el coeficiente de transferencia de calor sobre la superficie del tablero es de 10 W/m2 · °C,

Considere una persona parada en un cuarto a 20°C con un área superficial expuesta de 1.7 m2 . La temperatura en la profundidad del organismo del cuerpo humano es 37°C y la conductividad térmica de los tejidos cercanos a la piel es alrededor de 0.3 W/m · °C rep 35,5

Está hirviendo agua en una cacerola de aluminio (k 237 W/m · °C) de 25 cm de diámetro, a 95°C. El calor se transfiere de manera estacionaria hacia el agua hirviendo que está en la cacerola a través del fondo plano de ésta de 0.5 cm de espesor, a razón de 800 W.

Se construye una pared de dos capas de tabla roca (k 0.10 Btu/h · ft · °F) de 0.5 in de espesor, la cual es un tablero hecho con dos capas de papel grueso separadas por una capa de yeso, colocadas con 7 in de separación entre ellas.

El techo de una casa consta de una losa de concreto (k 2 W/m · °C) de 3 cm de espesor, que tiene 15 m de ancho y 20 m de largo. Los coeficientes de transferencia de calor por convección sobre las superficies interior y exterior del techo son 5 y 12 W/m2 · °C, respectivamente.

Una

sección

de

pared

de

2

m

1.5 m de un horno industrial en el que se quema gas natural no está aislada y se mide la temperatura en la superficie exterior de esta sección, lo cual resulta ser de 80°C. La temperatura de la sala en donde está el horno es de 30°C y el coeficiente combinado de transferencia de calor por convección y radiación es de 10 W/m2 · °C.

Repita el problema 3-31 para un aislamiento de perlita expandida, si se supone que la conductividad es k 0.052 W/m · °C.

Considere una casa cuyas paredes tienen 12 ft de alto y 40 ft de largo. Dos de las paredes no tienen ventanas, en tanto que cada una de las otras dos tiene cuatro ventanas hechas de vidrio (k 0.45 Btu/h · ft · °F) de 0.25 in de espesor y con un tamaño de 3 ft 5 ft. Está certificado que las paredes tienen un valor R de 19 (es decir, un valor de L/k de 19 h · ft2 · °F/Btu).

Considere una casa que tiene una base de 10 m 20 m y paredes de 4 m de alto. Las cuatro paredes de la casa tienen un valor R de 2.31 m2 · °C/W. Las dos paredes de 10 m 4 m no tienen ventanas. La tercera pared tiene cinco ventanas hechas de vidrio (k 0.78 W/m · °C) de 0.5 cm de espesor y con un tamaño de 1.2 m 1.8 m.

Se construye la pared de un refrigerador con aislamiento de fibra de vidrio (k 0.035 W/m · °C) comprimida entre dos capas de hoja metálica de 1 mm de espesor (k 15.1 W/m · °C).

Se debe conducir calor a lo largo de un tablero de circuito que tiene una capa de cobre sobre uno de sus lados. El tablero tiene 15 cm de largo y 15 cm de ancho y los espesores de la capa de cobre y del material epóxico son de 0.1 mm y 1.2 mm, respectivamente.

Respuestas: 0.8%, 99.2% y 29.9 W/m · °C

Una placa de cobre (k 223 Btu/h · ft · °F) está comprimida entre dos tableros de material epóxico (k 0.15 Btu/h · ft · °F) de 0.1 in de espesor y un tamaño de 7 in 9 in. Determine la conductividad térmica efectiva del tablero a lo largo de su lado de 0.9 in.

Se mide la conductancia térmica por contacto en la interfase de dos placas de cobre de 1 cm de espesor y resulta ser de 18 000 W/m2 · °C. Determine el espesor de la placa de cobre cuya resistencia térmica sea igual a la de la interfase entre las placas

Seis transistores de potencia idénticos con caja de aluminio están sujetos a uno de los lados de una placa de cobre (k 386 W/m · °C) de 20 cm 30 cm y 1.2 cm de espesor, por medio de tornillos que ejercen una presión promedio de 10 MPa.

Dos barras de aluminio (k 176 W/m · °C) de 5 cm de diámetro y 15 cm de largo, con las superficies esmeriladas, se comprimen una contra la otra con una presión de 20 atm.

Una placa de cobre (k 386 W/m · °C) de 1 mm de espesor está comprimida entre dos tableros de material epóxico (k 0.26 W/m · °C) de 5 mm de espesor y tienen un tamaño de 15 cm 20 cm.

En la figura P3-53, se muestra una sección típica de la pared de un edificio. Esta sección se extiende hacia dentro y fuera de la página y se repite en la dirección vertical. Los miembros de soporte de la pared están fabricados de acero (k 50 W/m · K) y tienen 8 cm (t23) 0.5 cm (LB). El resto del espacio interior de la pared está lleno con material aislante (k 0.03

Una pared de 4 m de alto y 6 m de ancho consiste en ladrillos con una sección transversal horizontal de 18 cm 30 cm (k 0.72 W/m · °C) separados por capas de mezcla (k 0.22 W/m · °C) de 3 cm de espesor.

Se va a construir una pared de 10 cm de espesor con montantes de madera (k 0.11 W/m · °C) de 2.5 m de largo que tienen una sección transversal de 10 cm 10 cm. En algún momento, al constructor se le acabaron esos montantes y empezó a usar, en lugar de ellos, parejas de montantes de madera de 2.5 m de largo que tienen una sección transversal de 5 cm 10 cm, clavados entre sí.

Una pared de 12 m de largo y 5 m de alto está construida de dos capas de tablaroca (k 0.17 W/m · °C) de 1 cm de espesor, espaciadas 16 cm por montantes de madera (k 0.11 W/m · °C) cuya sección transversal es de 12 cm 5 cm. Los montantes están colocados verticalmente y separados 60 cm, y el espacio entre ellos está lleno con aislamiento de fibra de vidrio (k 0.034 W/m · °C).

Se va a construir una pared de 10 in de espesor, 30 ft de largo y 10 ft de alto, usando ladrillos sólidos (k 0.40 Btu/h · ft · °F) con una sección transversal de 7 in 7 in; o bien, ladrillo de idéntico tamaño.

Considere una pared de 5 m de alto, 8 m de largo y 0.22 m de espesor cuya sección transversal representativa se da en la figura. Las conductividades térmicas de los diversos materiales usados, en W/m · °C, son kA kF 2, kB 8, kC 20, kD 15 y kE 35. Las superficies izquierda y derecha de la pared se mantienen a las temperaturas uniformes de 300°C y 100°C, respectivamente.

La ropa hecha de varias capas delgadas de tela con aire atrapado entre ellas, con frecuencia llamada ropa para esquiar, es de uso común en los climas fríos porque es ligera, elegante y un aislador térmico muy eficaz. De modo que no es sorprendente que esa ropa haya reemplazado en gran parte los antiguos abrigos gruesos y pesados

Un horno de 5 m de ancho, 4 m de alto y 40 m de largo usado para curar tubos de concreto está hecho con paredes y techo de concreto (k 0.9 W/m · °C). El horno se mantiene a 40°C por la inyección de vapor de agua caliente en él. Los dos extremos del horno, con un tamaño de 4 m 5 m, están hechos de lámina metálica de 3 mm de espesor cubierto con espuma de estireno (k 0.033 W/m · °C) de 2 cm de espesor.

Considere

una

lámina

de

vidrio

epóxico

(k

0.10

Btu/h

·

ft

·

°F)

de

6

in

8 in cuyo espesor es de 0.05 in. Con el fin de reducir la resistencia térmica a través de su espesor, se van a plantar en todo el tablero rellenos cilíndricos de cobre (k 223 Btu/h · ft · °F) de 0.02 in de diámetro, con una distancia de centro a centro de 0.06 in.

Entra agua fría a 7°C a un tubo largo de pared delgada, de 5 cm de diámetro y 150 m de largo, a razón de 0.98 kg/s, y sale a 8°C. El tubo está expuesto al aire ambiente a 30°C, con un coeficiente de transferencia de calor de 9 W/m2 ·

Se transporta vapor de agua sobrecalentado, a una temperatura promedio de 200°C, por un tubo de acero (k 50 W/m · K, Do 8.0 cm, Di 6.0 cm y L 20.0 m). El tubo está aislado con una capa de 4 cm de espesor de argamasa de yeso (k 0.5 W/m · K), y se encuentra colocado en forma horizontal en el interior de un almacén en donde la temperatura promedio del aire es de 10°C.

Se usa un tanque esférico con un diámetro interior de 8 m, hecho de lámina de acero inoxidable (k 15 W/m · °C) de 1.5 cm de espesor, para almacenar agua con hielo a 0°C. El tanque está ubicado en un cuarto cuya temperatura es de 25°C. Las paredes del cuarto también están a 25°C. La superficie exterior del tanque es negra (emisividad 1)

En un tubo de acero inoxidable (k 15 W/m · °C) cuyos diámetros interior y exterior son de 5 cm y 5.5 cm, respectivamente, fluye vapor de agua a 320°C. El tubo está cubierto con aislamiento de lana de vidrio (k 0.038 W/m · °C) de 3 cm de espesor. El calor se pierde hacia los alrededores que están a 5°C por convección natural y radiación, con un coeficiente combinado de transferencia de calor por convección natural y radiación de 15 W/m2 · °C. Si el coeficiente de transferencia de calor dentro del tubo es 80 W/m2 · °C, determine la razón de la pérdida de calor del vapor por unidad de longitud del tubo. Determine también las caídas de temperatura a través de la pared del tubo y de la capa de aislamiento.

Una sección de 50 m de largo de un tubo que conduce vapor de agua cuyo diámetro exterior es de 10 cm pasa a través de un espacio abierto que está a 15°C. Se mide la temperatura promedio de la superficie exterior del tubo y resulta ser de 150°C.

Considere un calentador eléctrico para agua de 2 m de alto que tiene un diámetro de 40 cm y mantiene el agua a 55°C. El tanque está ubicado en un pequeño cuarto cuya temperatura promedio es de 27°C y los coeficientes de transferencia de calor sobre las superficies interior y exterior del calentador son 50 y 12 W/m2 · °C, respectivamente.

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF