Solucionario Cohen Turbinas A Gas

March 23, 2023 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Solucionario Cohen Turbinas A Gas...

Description

lOMoARPSD9 3 8 2

 

Solucionario Cohen Turbinas a gas

Termodinamica (Universidad Nacional Mayor de San Marcos)

StuDocu no está patrocinado ni avalado por ningún colegio o universidad.

Descargado por Gonzalo HR (emperador_973@hotmai ([email protected]) l.com)

lOMoARPSD9 3 8 2

 

 

Lecturer’s Solutions Manual

Gas Turbine Theory Sixth edition

HIH Saravanamuttoo  GFC Rogers H Cohen PV Straznicky For further instructor material please visit:

www.pearsoned.co.uk/saravanamuttoo ISBN: 978-0-273-70934-3  978-0-273-70934-3 

 Pearson Education Limited 2009 Lecturers adopting the main text are permitted to download and photocopy the manual as required.

Descargado por Gonzalo HR (emperador [email protected]) [email protected])

lOMoARPSD9 3 8 2

 

 

Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England

and Associated Companies around the world  world  Visit us on the World Wide Web at: www.pearsoned.co.uk ---------------------------------This edition published 2009

The rights of HIH Saravanamuttoo, GFC Rogers, H Cohen and PV Straznicky to be identified identified as authors of this work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988. ISBN: 978-0-273-70934-3 All rights reserved. Permission is hereby given for the material in this publication to be reproduced for OHP transparencies and student handouts, without express permission of the Publishers, for educational purposes only. In all other cases, no part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without either the prior written permission of the Publishers or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS. This  book may not be lent, resold, res old, hired out or otherwise disposed dis posed of by way of trade in any form of  binding or cover other than that in which it is published, without the prior consent of the Publishers.

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Supporting resources Visit www.pearsoned.co.uk/saravanamuttoo www.pearsoned.co.uk/saravanamuttooto to find other valuable online resources For instructor instructors s •

PowerPoint slides that can be downloaded and used for presentations presentations

For more information please contact your local Pearson Education sales representative or visit www.pearsoned.co.uk/saravanamuttoo www.pearsoned.co.uk/saravanamuttoo  

3 © Pearson Education Limited 2009

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Preface Since the introduction of the Second Edition in 1972 many requests for solutions have been received. The advent of modern word processing systems has now made it convenient to  prepare these in an electronic format and I am glad to do so. All significant gas turbine calculations carried out in industry are universally done by digital computer and the purpose of these problems is to provide an understanding of the engineering  principles involved. It is perhaps of historical significance that all of these calculations were originally done on a slide rule and many were previous examination questions. This manual will be available to instructors adopting the main text, who are then permitted to  photocopy the material, but it is hoped that students will tackle the problems before looking at the manual. I will be very glad to hear of any corrections needed. My sincere thanks to Mr.Hariharan Hanumanthan, a doctoral student at Cranfield University, for his invaluable assistance in the preparation of this manual. H.I.H. Saravanamuttoo Ottawa, June 2008

4 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 2.2

 γ  -1     Ta  P 02  γ     –1 T02  – T a =       η c   P a     1  288   = (11) 3.5  – 1 = 345.598 K    0.82  

 

Compressor and turbine work required per unit mass flow is: Wtc =

C pa ( T02 − T a )

T03  – T 04 =

η m

= C pg ( T0 3 − T04 )    

1.005× 345.598 345.598   = 308.992 K   0.98×1.147

T 04 =11 =115 50 – 309 = 841K    γ  −1      γ      1   T03 − T04 = η t T 03 1 −      P P    03 04   1     4   1   308.992 = 0.87 × 1150 1 −      P P    03 04  

 P 03  P 04

 

= 4.382

 P 03 = 11.0 − 0.4 = 10.6 bar   b ar  P04 = 2.418 ba

, P05 = P a

1     1  4    = 148.254K  T04 − T 05 = 0.89 × 841 1 −    2.418    

5 © Pearson Education Limited 2009

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Specific power output: W  N  = 1.147 × 0.98 × 148.254 = 166.64 k kW Ws/kg Hence mass flow required =

20 × 103 166.64

 

= 120.019kg/sec

 

T 02 = 288 + 345.6 = 633.6K  

  T03 − T 02 = 1150 − 633.6 = 516.4K   Theoretical f  Theoretical  f  =  = 0.01415 (from Fig. 2.15) Actual f  Actual  f  = 0.0 0.01415 0.99 = 0.01429   S.F.C  =

3600 f  W  N 

=

3600 × 0.01429 166.64

kg g/kW − hr   = 0.308 k

 

6 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 2.3

T02 − T a =

288 0.85

1

[3.8

3.5

− 1] = 157.3K  

 P 03  = 3.8 − 0.12 = 3.68 ba bar    P 03  P a

 

= 3.68  

T03 − T 04 = 1050 × 0.88[1 − (

1 3.68

1

) 4 ] = 256.87K  

Net work output W = η m (load ) [(m − mc )C pg pg ( T03 − T04 )  −

mC pa (T02 − Ta  )

η m(comp .rotor )



  m × 1.005 × 157.3 200 = 0.98[( m − 1.5) × 1.147 × 256.87 − ]  0.99 200 = 288.73m − 433.1 − 156.5m   (a) m = 4.788 kg/sec

With no bleed flow:  Net work output = 0.98 × 4.788[1.147 × 256.87 −

1.005 × 157.3 0.99



= 633.11 kW (b) The power output output with no bleed = 633.11kW 633.11kW

7 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 2.4 A

B

C

 n −1  n     c

0.3287

0.3250

0.3213

 n −1     n t 

0.2225

0.2205

0.2205

T02 T 01  

2.059

2.242

2.437

∆T 012 (K)

305

357.8

413.9

T 02 02 (K)

593

645.8

701.9

 P 03 P 04 03/  P  04 

8.55

11.40

15.2

1.612

1.708

1.820

T 03 03 

1150

1400

1600

T 04 04 

713.4

819.6

879.2

∆T 034  

436.6

580.4

720.7

W c= (1.005 ×∆T 12 )/0.99  

309.6

363.2

420.2

W t= 1.148(1 − B )∆T 034  

501.2

649.6

786.0

W net Wc    –  net=W  t W 

191.6

286.4

365.8

Power

14,370

22,912

31,093

Base

+59.4%

+116%

557

754

898

0.0162

0.0219

0.0268

mf = ma × f × (1 − B)  

4374

6150

7791

SFC  (kg/kwhr)

0.304

0.268

0.251

 base

11.8%

17.4%

440

547

606

 P 03    P 04 

n −1

T 03 03/T 04 04= 

n

 

∆T cc    f /a

 EGT   (( C ) 

8 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 2.5 T 03 03=1525 K  P 03 03=29.69 bar  P 04 04=13.00 bar

∴  P 03  P 04

= 2.284  ∴

T 03

  = ( 2.284 )

T 04

0.2223

= 1.202  

T 04 04=1268.7 K , ∆T  hp = 256.3    P 05  P 06

=

13.00 × 0.96 1.02

= 12.24  ∴

T 05

  = (12.24)

T 06

0.223

= 1.745  

T 03 03 – T 04 04=256.3 T 05 05  T 06 06  T 05 T 06 05 – T  06  T 03 T 04 03 – T  04  ∆T   total 

∆T  total ×1.148 × 0.99    – ∆T c × 1.004  

1525 874 651.0 256.3 907.3 1031.1 573.0

1425 816.6 608.4 256.3 864.7 982.7 573.0

1325 759.3 565.7 256.3 822.0 934.2 573.0

458.1

409.7

361.2

∴ m for 240 M W = 240000 = 523.9 kg/s 458.1

 MW  f /a)1  ( f   f /a)2  ( f 

η th  

240.0 0.0197 0.0085 0.0282 458.1

214.6 0.0197 0.0050 0.0247 409.7

189.2 0.0197 0.0030 0.0227 361.2

0.02 0.0282 82 ×43 4310 100 0  37.7

0.024 0.0 247 7 ×43 431 100   38.5

0.022 0.0 227 7 ×43 4310 100 0  36.9

reduced. May be difficult to control low fuel: air ratio in 2 So η th remains high as power reduced. combustor. 9 © Pearson Education Limited 2009  

nd

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 2.6

288 (5.5)0.286 − 1 = 206.8 T2 = 494.8K    ∆T 12 =    0.875 ∆T 34 =

300  0.286   ( 7.5) − 1 = 268.7  T 4 = 568.7K 0.870

∆Tcc = 1550 − 569 = 981 C    

∆T 56 = ∆T 67 =



268.7 × 1.005 1.148 × 0.95 × 0.99 206.8 × 1.005 1.148 × 0.99

= 250.1  T 6=1550 – 250 = 1300K

= 182.9  

 

 HPT ,250.1= ,250.1= 0.88 × 1550 1 −

T 7=1300 – 182.9 = 1117.1K 1 

 R 0.25 

 Rhp=2.248

CDP =1.00 ×5.5 × 7.5 × 0.95 = 39.19 bar  bar P   P 6 =



1 

 LPT , 182.9= 0.89 × 1300 1 −



 R

0.25

39.19 2.248

= 17.43 bar

 RLP =1.990 P   RLP  =1.990 P 7=8.76 7=8.76 bar



 P 8= P 1=1.00 1     ∴ ∆T 78 = 0.89 × 1117.1 1 − = 416.3  K 0.25  8.76 

∴  m ×1.148 × 0.99 × 416.3 = 100, 00000 ∴ m=211.3 kg/s  f /a=

0.028 0.99

= 0.0283  

Spe Specific output =1.148 ×0.99 × 416.3 = 473.1  

∴ η th  =

473.1 0.283 × 43100

= 38.8%   

 EGT  =1117.7-416.3  =1117.7-416.3 =701.4 K  =701.4 K =428.4 C   10 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 2.8  P a=1.013 bar , T a=15

∆T 12 =





288

8.50.286 − 1 = 279.5k     0.87

T  =567.5 K 02

 P 04 04=1.013 ×8. 5 × [1 − 0.015] × [1 − 0.042] = 8.125 bar

∆T 45 =

2  79.5 × 1.004 1.147 × 0.99

= 247.1  T 5 = 1037.8 K



247.1=0.87 ×1285 1 −



  P   P 5 = 2.991 bar  ⇒ 4 = 2.716,  P  0.25 ( P 4 / P 5)   P 5 1



 P 6=1.013 × 1.02 = 1.0333

 

 

∴ ∆T 56 = 0.88 × 1037.8 1 −

 P 5  P 6

1 0.25

2.895

= 2.895  

  = 213.1  ∴ T 6=824.7 K 

∴ Power = =1 112.0 ×1.147 × 0.99 × 213.1 = 27,106  kW T 3 – T 2=0.90(824.7-567.5)=231.5 T 3=231.5+567.5=799K

∆T cc = 1285 − 799 = 486 C    



T in in=799-273=526 C   

( f   f /a)id=0.0138

 f /a=

0.0138 0.99

=0.0139

mf = 0.0 0.013 139 9 ×112 12..0  =1.56 kg/s Heat input = 1.56 × 43,100 43,100

kJ kg kg s

= 67,288 kW

∴  Efficiency =40.3 %

11 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 2.9

n −1

For compression:

For expansion:

n

n −1 n

 P  T02 − T01 = T 01[( 02 )  P 01

=

1

η ∞c

= η ∞t (

(

0.66 γ  − 1 )= = 0.4518   0.88 × 1.66 γ  

γ  − 1 0.88 × 0.66 )= = 0.3498   1.66 γ  

n −1 n

− 1] = 310[20.4518 − 1] = 114K  

T04 − T 03 = 300[20.4518 − 1] = 110.3K   T04 = 410.3K T −T = 06



05

Q mC  p

and

=

 

T05 = 700K

500 × 103 180 × 5.19

( given)

= 535.2 K   

T 06 = 1235.2K 

 P 03 = 2 × 14.0 − 0.34 = 27.66 b baar    P 04  = 2 × 27.66 = 55.32 ba bar  

 

 P 06 = 55.32 − (0.27 + 1.03) = 54.02 ba bar    P 07 = 14.0 + 0.34 + 0.27 = 14.61bar  



 P 06  P 07

 

= 3.697

T06 − T 07 = 1235.2[1 − (

1 3.697

)0.3498 ] = 453.3K  

T 07 = 781.82K 

12 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Power output = mC p [∆T067 − ∆T034 − ∆T012 ] = 18 180 × 5, 5,19 × 22 229.0   = 213996 kW or 213.996   W   W    Thermal efficiency =

213.996 500

= 0.4279

or 

42.8%  

H.E.effectiveness = T05 − T 04 =  700 − 410.3 = 0.7798 T07 − T 04 781.8 − 410.3

or 78%

13 © Pearson Education Limited 2009  

 

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.1

n −1

For compression:

For expansion:

n

n −1

1 0.87 × 3.5

0 .8 7

=

n

=

4

= 0.3284  

= 0.2175

and 

n n −1

= 4.5977  

At 7000 m  Pa = 0.411 bar; Ta = 242.7 K    C a

2

2c p

=

2602 2 × 1.005 × 1000

= 33.63K 

T01 = 242.7 + 33.63 = 276.33K   P01 = P a [1 + η i

C a 

2

2c pT a

 P 01 = 0.441[1 +

]

γ   γ  −1

0.95 × 33.63

242.7  P 02 = 8 × 0.633 = 5.068bar  

]3.5 = 0.633bar    

T02 − T 01 = 276.33[8.00.3284 − 1] = 270.7K   T 02 = 547.02K   pa 02 01 T03 − T 04 = c (T − T  ) = 1.005 × 270.7 = 239.6K  1.147 × 0.99 c pgη m

T04 = 1200 − 239.6

T04 = 960.4K

n

 P03  T 03  n −1   1200  =   =   P04  T 04   960.4   4.763   P 04 =   = 1.710bar  2.784    Nozzle pressure ratio

P 03 = 5.068(1 − 0.06) = 4.763bar  

4.5977

 P 04  P a

=

= 2.784  

1.710 0.411

= 4.16  

14 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

(Since the critical pressure ratio is of the order of 1.9 the nozzle is clearly choked)  P 04  P c

=

1 1  0.333    1 − 0.95  2.333     

 P 5= P c=

1.710 1.918

 ρ 5 =

= 0.891  bar

2

T5 = Tc =

γ  + 1

 P c    RT c

T 04 =

2 × 960.4 2.333

100 × 0.891

=

=1.918

4

0.287 × 823.3

= 823.3K  

= 0.377

kg/m3  

1

1

C 5 = ( γ   RT  c ) 2 = (1.333 × 0.287 × 823.3 × 1000 ) 2 = 561.22 m/ m/sec  A5=

m

15

=

 ρ 5C  5

= 0.0708m2  

0.377 × 561.22

 F = m(C j − Ca ) + Aj ( Pj − P a )  F  = 15(561.22 − 260) + 0.0708(0. (0.891 − 0.411)105  F  = 4518.3 + 3398.4 = 7916.7 N

 

T 02 = 547.02K  T03 − T 02 = 1200 − 547.02 = 652.8K   Therefore theoretical f theoretical f = 0.01785 (Fig. 2.15) Actual f Actual  f =

S .F .C  =

0.01785 0.97

= 0.0184  

0 .0   184 × 3600 × 15 7916.7

= 0.01255 kg/kN

15 © Pearson Education Limited 2009  

 

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.2

From problem 3.1 P  3.1 P 04 04=1.710 bar  P 05 = 1.17(1 − 0.03) = 1.658bar   P 05 = 1.918 as be before  P c  P 05  P c

=

1.658 1.918

= 0.8644bar 

Since T05 = 2000K ,

 ρ 5 =

T6 = T c =

100 × 0.8644 0.287 × 1714.5

2 2.333

× 2000 = 1714.5 K  

 

kg/m3

= 0.1756

1

C 5 = (1.333 × 0.287 × 1714.5 × 1000) 2 = 809.88 15

m/s

2

 A = 0.1756 × 809.88 = 0.1054

m

5

Percentage increase in area = 0.1054-0.0708=48.97% =15(809.88–260)+0.1054(0.8644–0.411) ×105    F =15(809.88–260)+0.1054(0.8644–0.411)  F =8248.2+4778.83=13027.03 =8248.2+4778.83=13027.03 N Percentage increase in thrust =

13 1302 027. 7.03 03 − 791 916 6.7 7916.7

= 64.56%  

16 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.3

Since P  Since  P 01  = P   P a = 1 bar 01 = T 01 01 = T a = 288 K

T02

 1  − T 01 = 288 9 3.5 − 1 = 306.77K   0.82  

0.85mc pg (T03 − T04 ) = T03 − T 04 =

mC  pa

η m

(T02 − T01 ) 

1.005 × 306.77 0.85 × 1.147 × 0.98

= 322.678K 

γ  −1   γ     1  T03 − T04 = η  j T 03 1 −    P03 / P 04     1   4 1 322.678 = 0.87 × 1275 1 −    P03 / P 0 4    



 P 03 = 3.955  P 04

 P 03 = 9.0 − 0.45 = 8.55bar    P 04 = 2.161bar   P04  Pa

. = 2.161

and 

P 04 P a

=

1 1  0.333    1 − 0.95  2.333     

4

 

So nozzle is choking even while landing 17 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

2.161

= 1.126bar    1.918 T 04 = 1275 − 322.678 = 952.3K  

 P5 = P c =

 2    2 × 952.322 = 816.4K   × T 04 = 1 2 . 3 3 3 γ   +  

T5 = Tc = 

 ρ 5 =

 P c  RT c

=

100 × 1.126 0.287 × 816.4

= 0.480

kg/m 3

1

  1

C5 = ( γ  RT c ) 2 = (1.333 × 0.287 × 816.4 × 1000 ) 2 = 555.86 m/ m/s (m − mb ) =  ρ 5 A5C5  = 0.480 × 0.13 × 558.86 = 34.87 kg/sec mintake =

34.87 0.85

= 41.02  

(N.B. – m b, bleed at 90º produces no thrust. Also, ram drag based on intake flow) flow)  F = (34.87 ×558.86 − 41.02 × 55) + 0.13(1.126 − 1) × 105    F = (19487.44-2256.1)+1638  F =18869.34 N

or

 F =18.87 =18.87 kN

18 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.4

Isentropic expansion in nozzle:  P 04  P a

=

2.4 1.01

= 2.376

 γ  + 1  =   P c  2 

 P 04

γ   γ  −1

4

 2.333  =  = 1.851  2 

Choking ; So P5 = P  c = T 04 T c

=

 ρ 5 =

γ  + 1 2

=

2 .333 2. 2

2.4 1.851 and

= 1.296

  bar

T5 = Tc  =

 P c   100 × 1.296 = = 0 .5 2 6  RT c 0.287 × 857.26

 

1000 × 2 2 .3 3 3

= 857.26K 

kg/m3  

1

1

m//sec C 5= ( γ   RT  c ) 2 = (1.333 × 0.287 × 857.26 × 1000 ) 2 = 572.68 m  A5=

m

 ρ 5C 5

=

23 0.526 × 572.68

= 0.0763m2  

 F  = 23 × 572.68 + 0.0763(1.296 − 1.01)105  F  = 13171.64 + 2182.18 = 15353.82N

 

or F = 15.35kN

19 © Pearson Education Limited 2009  

 

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 P 07  P a

= 1.75

and

P07  = 1.01 × 1.75 = 1.768 bar  

1   1 3.5 Ta  P 07    = 288 (1.75 ) 3.5 − 1 = 56.74 K   1 T07 − T a = −       0.88  η c   P a    

mh C pg (T04 − T05 ) = mc C pa (T07 − Ta )  mc

 But 

= 2.0

mh

2 × 1.005 × 56.74

= 99.43K  1.147 T 05 = 1000 − 99.43 = 900.57 K   T04 − T 05 =

1   4    P  1  99.43 = 0.90 × 1000 1 −      ⇒  04 = 1.597   P04 P05   P 05  

 P 05 =  P 05  P a

=

2.4

= 1.503bar 

1.597 1.503

= 1.488

1.01

 

Hot nozzle is now unchoked, so P  so  P 6= P a=1.01 bar

 P   =  05  T6  P 6 

T05

T 6 =

γ  −1 γ  

1

= 1.488 4 = 1.1045

900.57

= 815.36K  1.1045 T05 − T 6 = 85.2K 

 

1

1

2

2

C6 =  2C p (T05 − T06 )   = (2 × 1.147 × 85.21× 1000) C 6 = 442.12m/s Hot nozzle thrust:  Fh = 23 × 442.12 = 10,168.8 N   The cold nozzle pressure ratio:=1.75, while the critical pressure ratio is :

 1.4 + 1  =   P c  2 

 P 07

3.5

= 1.893  

20 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

So this nozzle is also unchoked. Since the expansion is isentropic: T 07 T 8

1

= 1.753.5 = 1.1733

T8 =

288 + 56.74

= 293.8 K 1.1733 T07 − T 8 = 50.94K 

and

T07 =  344.74

1

 

1

C8 =  2C p ( T07 − T8 )  = ( 2 × 1.005 × 50.94 × 1000 ) 2 = 320 m/s 2

Cold thrust Fc = 46 × 320 = 14720 N

 

To Tota tall th thru rust st:: =1472 =14720 0 + 101 016 68. 8.8 8 = 24 248 888N

 

or   F  F =24.89 =24.89 kN

21 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.5 From solution of turbofan example in Chapter 3: T 03 03=800 K T 04 04-T 03 03=1550 – 800=750 K Actual f  Actual  f  =  =

0.0221 0.99

= 0.0223  

m = 35.83 kg/s and F  and F s=71,463 N S.F.C  =  =

0.0223 × 35.83 × 3600 71463

= 0.0403 kg/Nh

 P 09 09= P 02 02 – 0.05=1.65-0.05=1.60 bar So nozzle is unchoked and

 P09  Pa

 P 05    P c 

= 1.60  <

 

  1 3.5  T 09 09 – T 8 = n jT 09 09 1 −       P09 P a     1 3.5  = 0.95 × 1000 1 −    =119.4 K 1.6     1

s  C 8= ( 2 × 1.005 × 119.4 × 1000 ) 2 = 49  0 m/  s  mc=179.2 kg/s  New thrust: F  thrust: F c=179.2 ×490 = 87, 8 80 08  N Total thrust = Unchanged F  Unchanged F h+new +new F   F c = 18931+87808=106,739 N T 02 and T 09 02=337.7 and T  09 – T 02 02=1000-337.7=662.3 K

22 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

From Fig. 2.15, theoretical f theoretical f = 0.01715 Actual f Actual  f =

S.F.C =

0.01715 0.97

  TotalFuel 

= 0.01768 for by-pass chamber

=

Totalthrust 

( (0.01768 × 179.2 + 0.0223 × 35.83) × 3600

 

106,739

S.F.C =0.1338 =0.1338 kg/kN

23 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.6

 P a=0.899bar T a=281.7K C a=336.4 m/  s  s 

 M =0.70 =0.70

1  0.4   n −1   0.333   n −1   = 0 .9 0   = 0.2248     =   = 0.3210     n t   1.333   n c 0.89  1.4 

 

T 01 01= Ta  1 +

γ   − 1 2

 

27.61 61 C   M 2  = 281.7(1 + 0.2 × 0.7 2 ) = 309.3K    ∆T r  = 27.  

1.4

 0.95 × 27.61  0.4 = 1 +  = 1.366   281.7  P a  

 P 01

T 02 T 01

= ( 5 .0 )

∆T 34 = T03

=

0.3210

1.148 × 0.99 0.2248

 P 04 

T04

= 1.676   ∴ T 02 02=472.2

1 62.9 × 1.005

 P 03 

∴ P 01 01=1.228 bar

∆T 12 = 162.9 C    

= 144.1   T 04  = 1250 − 144.1 = 1105.9 K 1

 P   1250  0.2248  ∴ 03 = = 1.724    P 04  1105.9 

 P 03 03= 1.366 × 5.0 × 0.945 = 6.454 bar ∴ P  04 =

 γ  + 1  Critical P.R Critical  P.R =  =    2   

P04 Pa  P 4=

=

3.744 0.899

3.744 1.852



γ   γ  −1

 1.333  =   2 

6.454 1.724

= 3.744 bar

4.003

=1.852

= 4.164  ∴ choked

= 2.022  bar T 4=1105.9 ×

2 2.333

=948.0 K

24 © Pearson Education Limited 2009  



Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 ρ  =

 100 × 2.022 0.287 × 948.0

3 = 0.7432  kg/m  

C = γ   RT 4 = 1.333 × 0.287 × 1000 × 948.0 = 602   .2 m/  ss 

π 

2

 A= 4  ( 0.15 ) = 0.01767   m= ρ  AC    = 0.7432 × 0.01767 × 602.2 = 7.91 kg/s C a= 0. 0.70 × 336.4 = 23 5.5 m/  ss   F = m   ( C j − Ca ) +  ( Pn − Pa ) A ×105   =7.91 ( 602.2 − 235.5 ) + ( 2.022 − 0.899 ) × 0.01767 × 105   =2900 N+1984 N=4884 N

∆T cc = 1250 − 472 = 778,  T iinn=472 K → ( f / a )id  = 0.0212   ≈ f /a =

0.0212 0.99

∴ mf = 7.91 ×0.02141 × 3600 = 609.8 kg/hr ∴ SFC =

609.8 4884

= 0.1249 kg/Nh

25 © Pearson Education Limited 2009  

= 0.02141  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.7  M =0.75; =0.75; BPR=3.8; FPR BPR=3.8; FPR=1.7 =1.7 C a=0.75 ×295.1 = 221.3 m/  s  s 

 

T 01 01= Ta  1 +

γ   − 1 2

 

M 2  = 216.7(1 + 0.2 × 0.752 ) = 241.08K   

∆Tr  = 24.38°C  

 0.95 × 24.38  = 1 +   P a  216.7 

 P 01

3.5

= 1.427  ∴ P 01 01=0.2558 bar

Fan T 02 T 01

= (1.7 )

n −1

n −1

= 1.1837  

n

n

=

0.286 0.90

= 0.3178  

P 02 ∴ T 02 02=0.4400 02=285.36 ∆T   f  = 44.28K   P  HPC

 T 03  0.3178 =550.38 P   P 03 = 1.9287  T 03 03=550.38 03=3.4757   = ( 7 .9 ) T   02  ∆T 023 = 265.02   Combustor P 04 Combustor P  04=3.4757(1 – 0.005)=3.3019 1 .004 × 265.02

HP turbine ∆T 45 = LP turbine ∆T 56 =

1.147 × 0.99

= 234.32  T 05 05=985.7 K

1 .004 × 44.28(3.8 + 1) 1.147 × 0.99

= 187.92  T 06 06=797.8 K

n

 P04  T 04  n −1 =     P05  T 05  n n −1

n

= 0.286 × 0.9 = 0.2232  

= 4.4803  

 1220  =  05  P   985.7   P 04

n −1

4.4803

= 2.60  

26 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 985.7  =   P 06  797.8   P 05

∴   P  P 06 06 =

4.4803

= 2.579  

3.3019 2.60 × 2.579

Cold Stream

= 0.4924  bar

(both choked)

Hot Stream

 P 02 02 = 0.4400 T 02 02=285.4  P 2 =

T 2 =

 ρ  =

0.4400 1.893 285.4 1.2

 P 06 06 = 0.4924bar T 0 06 6=797.8K

= 0.2324  

 P 6 =

0.287 × 237.8

1.852

= 0.2659  

 2   = 683.9    2.333 

= 237.8  

1  00 × 0.2324

0.4924

T 6 = 797.8 

 ρ  =

= 0.3405  

1  00 × 0.2659 0.287 × 683.9

= 0.1355  

mc  = 9.6×3.8 = 7.60   4.8

mh = 9.6 × 1 = 2.00   4.8

C c = 1.4 × 287 × 237.8 = 30 9.1 m/  s  s 

C h = 1.4 × 287 × 683.9 = 51 1.5 m/ s   s  

 A =

7.6 0.3405 × 309.1

2 = 0.0722 m  

 A =

2.0 0.1355 × 511.5

2 = 0.02886 m  

 Fc = 7.6 ( 309.1 − 221.3) + 0.0722 ( 0.2324 − 0.1793) × 105   = 667.3 + 383.4=1050.7  Fh = 2 .0 ( 511.5 − 221.3) + 0.02886 ( 0.2659 − 0.1793 ) × 105   = 580 + 250.0=830  F = 1880.7N T 04 04 = 1220, T03=550 →  f=0.0186 mf = 2.00 × 0.0186 × 3600 = 133.63  kg/hr SFC =

133.63 1880.7

= 0.0711  kg/Nh

27 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.8  M =0.85; BPR =0.85; BPR=5.7; =5.7; FPR  FPR=1.77 =1.77

 n − 1  0.286  n  = 0.90 = 0.3178    c  n − 1  0.333 × 0.9  n  = 1.333 = 0.2248    t   

T 01 01= Ta  1 +

γ   − 1 2

 

M 2  = 216.8(1 + 0.2 × 0.852 ) = 248.13K   

∆T r  = 31.331C  

 0.95 × 31.33  = 1 +  216.8  P a  

 P 01 T 02 T 01

= (1.77 )

0.31718

3.5

=0.227 27 ×1. 1.56 569 9 =0.3561 bar P  bar P 0022=0.6303 = 1.569  ∴ P 01 01=0.2

= 1.1989  

∴ ∆T 12 = 49.33K  

∴ T02=297.5

 P 03  34 = 19.21    =  P  1.77  02  0.3178 T 03 = 2.558 , ∆T 23 = 463.4     = (19.21) T   02 

T03=761K

∆T 023 = 265.02   P04 = 0.3561 × 1.77 × 19.21 × 0.97 =11.74 bar

∆T 45 =

1 .004 × 463.4 1.148 × 0.99

= 409.4  T 05 05=940.6 K

1

 1350  0.2248 = = 4.99     P 05  940.6   P 04

∆T 56 =

1 .004 × 49.33(5.7 + 1) 1.148 × 0.99

= 292.0  T 06 06=648.6 K

T 6=556.0 K 28 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 940.6    648.6 

 P 05

=

 P 06

P 06 ∴   P  06 =

1 0.2248

= 5.22  

11.74 4.99 × 5.22

= 0.4505 bar

 P 06  P a

= 1.984  ∴ choked

C a = 0.85 ×295.2   Cold Stream mc =  P 2=

220 × 5.7 6.7

 P 02  Pcr 

T 2 =

 ρ  =

=

297.5 1.2

(both choked)

= 187.2  

0.6303 1.893

mh =

= 0.3330  

 P 6 =

220 6.7

= 32.8  

0.4505 1.852

= 0.2433  

= 247.9  

1  00 × 0.3330 0.287 × 247.9

 ρ  =

= 0.468  

C c = 1.4 × 287 × 247.9 = 31 5.6 m/  s  s   A =

Hot Stream

187.2 0.468 × 315.6

= 1.267 m2 

1  00 × 0.2433 0.287 × 556

= 0.1525  

C h = 1.333 × 287 × 556 = 46 1.2 m/ s   s   A =

32.8 0.1525 × 461.2

= 0.466 m2 

 F c = 187   .2 ( 315.6 − 250.9 ) + 1.267 ( 0.333 − 0.227 ) × 105   =12.108+13430=25,538  F h = 32  .8 ( 461.2 − 250.9 ) + 0.466 ( 0.2433 − 0.227 ) × 105   = 6898+760=7658  F = 33,196N ( F s=150.9)  f =

0.017 0.99

=0.0172

mf = 0. 0.0172 × 32.8 × 3600 = 2028  kg/hr SFC =

2028 33196

= 0.0611  kg/Nh

29 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.9  M  1.4  1.4 Turbofan ( BPR=2.0,  BPR=2.0, FPR=  FPR=2.2) 2.2)

Assume full expansion, i.e. no pressure thrust 0 .4  n −1   n  = 0.90 × 1.4 = 0.3175    c

 n − 1  = 0.333 × 0.9 = 0.2248   1.333  n t   

γ   − 1

T 01 01= Ta  1 +

2

 

M 2  = 216.7(1 + 0.2 × 1.42 ) = 301.65K  

∆Tr  = 84.95K  

 0.93 × 84.95  = 1 +  216.7  P a  

 P 01 T 02 T 01 T 03 T 02

= ( 2.2 ) = ( 9 .0 )

0.3175

0.3175

3.5

= 2.968  ∴ P 01 01=0.3594 bar

= 1.2845  

∴ T 02 02=387.46 K ∴ ∆T12 = 85.8 K  

= 2.009  

∴ T 03 03=778.39 K  ∴ ∆T23 = 390.9 K   

Assuming no cooling, 1.004 × 390.9 = 1.147 × 0.99 × ∆T 45   ∆T 45 = 345.6  T 5=1154.3 K   1

 1500  0.2248 = = 3.206     P 05  1154.3   P 04

 LP   sy system (B+1) ×1.004 × 85.8 = 1.147 × 0.99 × ∆T 56   ∆T 56 = 227.6  T 6=926.7 =926.7 K   K   1

 P 05  P 06

 1154.3  0.2248

=

  926.7 

= 2.656  

 P 04 0.3594 × 2.2 × 9.0 × 0.93 = 6.618  bar 04= 0.  P 02 02=0.3594 ×2.2 = 0.7907 bar  P 06  =

6.618 3.206 × 2.656

= 0.7772 bar

 P 06  P a

= 6.418  

 P 02  P a 30

= 6.529  

© Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

With full expansion to P  to P a  T 02 T 2 T 06 T 6

= ( 6.529 ) = ( 6.418 )

0.286

0.25

 s   = 1.710  T 2=226.6 K   ;; C c2  = 2 × 1 .004 × 103 [387.4 − 226.6] = 568  m/ s 

= 1.582  T 6=582.2 K   ;;

C h2  = 2 × 1.147 × 103 [926.7 − 582.2] = 888.9  m/  s  s  mc  = 70 × mh  = 70 ×

2 2 +1 1 2 +1

= 46.67  ;  ; m  mcC c=46.67 ×568 = 265  08 N   = 23.33  ; mhC h=23.33 ×888.9 = 207  38 N   47246N (gross)

C a= 1.4 × 295.1 = 413.1  r  raam drag = 7 0 × 413.1 = 28920 N  

[ Specific TThhrust

= 261.8 N / kg / hr ]   

T 04 0.023 f = 04-T 03 03=1500-778-722 ∴ f ideal ideal = 0.023 f 

18326 N (nett) 0.023 0.99

= 0.0232  

∴  mf =23.33 × 0.0232 × 3600 = 1951 kg/hr SFC =

1951 18326

= 0.1065  kg/Nh

C a=413 m/  ss = (41 (413/ 3/10 1000 00)) ×36 3600 00  km/h=1486 km/h

∴ Flight time =

5600 1486.8

= 3.766 hrs

Fuel flow =3.766 ×2 × 1951 =14,697kg ∴ Fue

31

© Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.10  P a=1.013 bar ; T a=303K

303 150.286 − 1 = 437.5   ∆T 12 =    0.81

∴ T 2 = 740.5 K  740.5 K   ∆T cc = 1600 − 740.5 = 859.5 C    

∆T 34 =

  437.5 × 1.005 1.148 × 0.99 × 0.97



 

= 398.8  ∴ 398.8 = 0.87 × 1600 1 −

∴ Rhp = 3.86  P 3=1.013 ×15.0 × 0.95 = 14.43 bar  bar P   P 4=  P 4  P 5

=

3.74 1.013

14.43 3.86

= 3.74  bar

= 3.692  

T 4=1600 – 398.8 =1201.2 K

∴ ∆T 45 = 1201 .2 × 0.89 1 −



1 = 297.8 K 3.6920.25 

  kJ    ∴ Specific output =1.148 ×297.8 × 0.99 × 0.985 = 33.4 kg 

∆T cc = 860,  T in   = 0.0254   in=467 C   (  f / a )ideal  

 f /a= ∴  f 

0.0254 0.99

= 0.0257  

Airflow =11.0 kg/s ∴  P  Po ower =333.4 ×11.0 = 3667 kW mf = 0.0257 ×11.0 × 3600 = 1018.9  kg/hr

∴  SFC =0.278 =0.278 kg/kWh 32

1 

 R 0.25 

 

© Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 3.11

Load compressor ∆T  =

308

3.650.286 − 1 = 156.9 K     0.88

Power = 3.5 ×1.004 × 156.9 = 551.2 kW For gas turbine ∆T 12 =  308 120.286 − 1 = 379.6   T 02 02 = 688 K 0.84  P 03  P 04

= (12 × 1.01× 0.95 ) / 1.04 = 11.07  

 

∴ ∆T 34 = 1390 × 0.87 1 −

1 11.07

0.25

  = 546  

m × 1.148 × 546.0 × 0.99 = m × 1.004 × 379.6 + 200 + 551.2   m[620.5 − 381.1]=755.8 ∴ m=

 (690, ∆T  = 700) =  f /a (6

∴  mf =

SFC =

0.02 0.99

0.02 0.99

755.8 239.4

= 3.16  kg/s

 

× 3.16 × 3600 = 229.6  kg/hr

229.6 755.8

= 0.304  kg/kwhr

33

© Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 4.1 Flow area = π    (1 52 − 6.52 ) = 57  4 cm2= 0.0574 m2 8.0

139.37

C =  ρ × 0.0574 =

 m/  s  s 

ρ 

3.5

2  T 0    C  T s= 288 − ,    =  , θ c = 2010  P s  Ts  2c p 2

 P0



 ρ  =

 P s   100 × Ps P  = = 348.4 s    RT s 0.287 × Ts T s

We must find the axial velocity by iteration to satisfy continuity: Let C max  s   max=150 m/ s  C

θ   

T s 

T 0/T  s 

 P 0/  P  P s 

 P s 

 ρ   

C calc calc 

150

11.12

276.8

1.0405

1.149

0.870

1.095

127.3

127.3

8.05

279.94

1.0288

1.104

0.905

1.127

123.7

123.7

7.61

280.39

1.0271

1.098

0.910

1.131

123.1

123.1

7.54

280.46

1.0269

1.097

0.911

1.132

123.1



C a = 123.1   m/  s, s,

T s=280.46 K

At root, U = π  × ( 0.065 × 2 ) × 270 = 110   .3 m/  s  s 

tan α r  =

123.1 110.3

α r  = 4810'  



= 1.116  

34

© Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

At tip, U = π  × ( 0.15 × 2 ) × 270 = 254.4  m/  s  s  tan α t  =

123.1 254.4

= 0.4839

 

α t  = 25 48'  



At tip V  =254.4 +123.1 =79720.42 ⇒ V =282.3 =282.3 m/  s  s  2

2

2

a= 1.4 × 0.287 × 280.46 × 103 = 33 5.7 m/  s  s  282.3

∴  M   M =

335.7

= 0.841  

35

© Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 4.2 T 1=T 01 01 –

C 12 2Cp

; T 01 01 = 217 +

 243.3   P 01 01=0.23    217   A  A= =

π 

  ( 0.33 4

2

2302 2 × 1.005 × 103

=243.3 K

3.5

= 0.343  bar

− 0.182 ) = 0.060 m

2

m= ρ ACa = ρ AC cos25   ⇒ ρ  C =

3.6 0.060 × 0.906

 

 ρ C    = 66.22   But based on stagnation conditions, for a first estimate 100

  P 

100 × 0.343

 ρ  = 0.287 × T 0 = 0.287 × 243.3 = 0.491 kg/m3  0 ∴

C =

66.22 0.491

= 134.87   m/  s  s 

First trial: C m max ax=140 m/s C

θ   

Ts 

T0/Ts 

P0/Ps 

Ps 

 ρ   

ρC

140

9.7

233.7

1.042

1.155

0.297

0.443

62

150

11.2

232.2

1.049

1.182

0.290

0.435

65.2

160

12.7

230.7

1.056

1.21

0.287

0.434

69.2

152.4

11.5

231.9

1.051

1.19

0.288

0.433

66.0

Take C =152.4 =152.4 ×

66.22 66.0

= 152.90   m/  s  s 

C 1w 25 5 = 152.9 × 0.4226 = 64 .61 m/  s  s  1w=152.9 × sin 2 3.5

 ψη c  σ U 2 − Cw (r ω ) mean     = 1 +  P01   C pT 01 

 P 02

 18 + 33  1 s   × × 270 × 2π  = 216.3  m/  s   2 × 100  2

U e = (r ω )mean= 

36 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

U = π   × s  × 270 × 0.54 = 458  m/  s  3.5

1.04 × 0.8   0.9 × 4582 − 64.61 × 21 216.3    = 1 + 3   P 01  1.005 × 243.3 × 10 

 P 02

 P  02

 P 01

3.5

= (1.595)

= 5.12  

P 02 ∴   P  02=5.12 × 0.343=1.756 bar

37 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 4.3  P 01 01 = P a = 0.99 bar and T 01 01=T a=288K γ  −1   T01  P 02  γ    T 02-T 01 = 429-288= η   P 01  − 1    



∴ η c =

1

288  2.97  3.5





141  0.99 



0.63π 

σ  = 1 −

U 2 = π  ×

17 16.5 100

 − 1 = 0.753    

= 0.8835  

× 765 = 397.1 m / s

Hence: C 2w m/s    2 = 0.8835 × 397.1 = 351  m/s 2w = σ U 

  C r 22 3512   −  =429 –  T 2=T 02 023  2C  p  2 × 1.005 × 10  2C  p C 2

2

Therefore T 2=367.7 – θ r   

 ρ 2 =  A2 =

100 × 1.92 0.287 × T2

669

=

T 2

π  × 16.5 × 1.0

C r 2 =

10 m

 ρ 2 A2

4

=

= 51.83 × 10−4 m 2

0.60 51.83 × 10

−4

×

1

ρ2

=

 

115.76

ρ 2

θ r   is small – For the first trial let T 2=366K ∴ ρ 2 =

669 366

= 1.83

Hence Cr 2 = 63.26

m/s  

Final trial: Cr 2

θ

64.0

2.03

T2 366

ρ 

C r 2

1.827

63.5

∴  T 2=366 K 3.5

 T      429  =  2t     =   2 2  P  T    366 

 P2 t

3.5

= 1.743  

 

38 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 P 2t 2t=1.92 × 1.743 = 3.347 bar 141   = 1 + η i m p × 288   P 01 

 P 02

3.347



= 1 + η i

×

3.5

141 

3.5

 

0.99  288  ∴ η imp = 0.850 m p

Fraction of loss in impeller =

1 − 0.87 1 − 0.753

= 0.607  

39 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 4.4 (a) U 2= π   × × 0.50 × 270 =424.12 m/  s  s 

∆T  =

1.04 × 0.9 × 424.122

1.005 × 10 T 02 = 455.5K 

= 167.5K 

3

 0.90 × 167.5  = 1 +   P 01  288 

 P 02

3.5

= (1.523)

3.5

= 4.36  

 P 02 = 4.36 × 1.01 = 4.40bar  

(b) Flow area at tip: =

π   × × 50 × 5 10

4

= 0.0785  m2

C 2w s  2w=0.9 ×424.12 = 381.7  m/  s  2

2

   381.7   96  If C 22r r =96 and θ c =   +  = 76.84    44.9   44.9  (noting

2 × 1.005 × 103 = 44.9 )

T 2=455.5-76.84=378.66 K

 455.5  =   P 2  378.66 

 P 02

 ρ 2 =

3.5

= 1.909  

  100 × 2.30

 P 2=

1.909

= 2.30 bar

 ρ 2 A2  C r 2 = 2.12 × 0.0785 × 96 = 15.97  

= 2.12  

0.287 × 378.66

4.40

The agreement is close since the required flow is 16.0 kg/sec. s  ∴ C  = 96  m/  s  r 2

a = 0.287 × 1.4 × 378.66 × 103 = 390  m/  s  s  C 22 = 381.7 2 + 962  ∴ C2 = 393.6  M  = tan α

C 2 a

=

=

393.6 390 96

381.7

m/s  

= 1.01  

= 0.251



α  = 14 5  



40 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

(c)  P 3t 3t= P 2t 2t=4.40 bar  A  A= =

π   × × 58 × 5 10

 ρ 3C3r =

4

= 0.0911m 2

16.0

  = 175.6

  C 3 w =

381.7 × 2 25 5

0.0911

= 329 m/s

 

29

We must find C r3 r3 by trial and error; as a first guess assume: C r3 r3=96 ×

25 29

 

= 82.75m/s

T 03 =455.5 K   K   03=T 02 02=455.5 C 3w 3w

θ  w 

C 3r  3r  

θ r   

θ   

T 3 

T 0/T s 

 P 0/ P   P s 

 P s 

 ρ   

 ρ C r   

329

53.6

82.75

3.4

57.0

398.4

1.143

1.596

2.755

2.41

199.5

73

2.64

56.2

399.2

1.140

1.581

2.78

2.43

177.5

72.4

2.60

56.2

399.1

1.140

1.581

2.78

2.43

176



C3 r  = 72.4 m/s, T3 = 399.1 K 

C32 = 3292 + 72.4 2

⇒ C  3 = 336.87 m/s

a= 1.4 × 0.287 × 399.1 × 103 = 400.44 m/s    M  =

336.87 400.44

tan β =

72.4 329

= 0.841

= 0.22

β  = 12 24 '    



41 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 4.5

288 0.286 4 ∆T 013 =   − 1 = 175.1 K 0.80 

∆T013 =

 pσ U 22 c p × 10

3

 

= 175.1

2 2

U  =

1.005 × 175.1× 103 1.04 × 0.90

∴U 2 = 433 m/s   d  =  =

433

= 0.689m

π  × 200

 

T 03 03 = T 02 02 = 175.1+288=463.1 K At tip M  tip M =1.0 =1.0 T 2=T 02 02 ×

2

γ  + 1

=

463.1 1 .2

= 385.9K 



a = 1.4 × 0.287 × 385.9 × 103



C2 = a = 393.7m/s

 

C 2w   .7 m/  s  s  2w = 0.90 ×U 2 = 0.90 × 433 = 389 C 22  = C 22 r  + C 22 w  

∴ C 22 r   = 393.72 – 389.72=3133.6 ∴ C 2 r   = 55.97 m/s With a 50% loss in impeller, η  I   = 0.90  

∴ ∆T '012  P 02



= 0.90 × 175.1 = 157.59 K   157.59 

∴ P 01 = 1 + 288 

3.5

 

= 4.607bar  

 

= 1.876 × 105  

42 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 P 02 = 1× 4.607 = 4.607 bar



γ  

 γ  + 1   γ  −1 = = 1.23.5 = 1.893   P 2  2   

 P 02

4.607  P  = 1.893 = 2.434bar  2

 ρ 2 =

 100 × 2.434 0.287 × 385.9

m= ρ  AC2 r 

∴h =

∴A=

0.1138

π  × 0.689

= 2.198  kg/m3 14.0

2.198 × 55.97

× 100

= 5.257 cm

= 0.1138

 

m2

43 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 5.1

At mean radius, m Ω∆Cw = mC p ∆ T  



∆C w =

1 .005 × 20 × 103

= 108.1m/s

0.93 × 200 200 − 108.1 C 0w = 45.95m/s 0w= 22 tan α 0

=

tan α1

=

45.95

= 0.307

150 200 − 45.95 150

 

 

α 0 = 17 4 ' ( = α 2 ) 

 

= 1 .0 2 7

α1 = 45 44 ' ( = α 3 ) 

With free vortex, C  vortex, C wr=constant i.e. C  i.e. C wU = constant

Tip C 0w 0w ×250 = 46.0 × 200  

∴ C 0 w

= 36.8  m/s m/s  

44 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

∆C wu = constant ∴ tan α 0  =

36.8 150

∆C w =

1 08.1 × 200 250

 s  = 86.4  m/ s 

= 0.245,   α 0  = 13 46'    



  50 − 36.8 = 1.421,   α 1  = 54 53'   tan α 1 = 2 150  

tan α 2 = tan α 3 =

3  6.8 + 86.4 150 3  6.8 + 86.4 150



= 0.845,   α 2  = 40 14'    



= 0.821,   α 3  = 39 26 '    



Root C 0w 0w ×150 = 46 × 200

∆Cw =

108 × 200 150

= 144

 

C0 w = 61.3 m / s



m/ s  

61.3

 



15 '   tan α   = 150 = 0.409,   α 0  = 22 15 0

tan α 1 = tan α 2 = tan α 3 =

Λ=

1  50 − 61.3 150

= 0.591,   α 1  = 30 36'    

 150 − (144 + 61.3) 150 1   44 + 61.3 150



= −0.369,   α 2  = −2015'    

51''   = 1.369,   α 3  = 53 51  



 static enthalpy rise in rotor  Stagnation enthalpy rise in stage C 02



C 12

=

T1 − T 0 20

 

 C 02   C 12  1

 Now (T0+ 2C  p + 20) =T1+ 2C  p  ∴ T1 − T 0 = 20 +  2C p − 2C p  103  

45 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Tip C 0=

150

=

cos13 46 46 ' 

150 C 1=

150 0.9712

= 154.5  T 1-T 0=20+11.19-18.8=13.1

150

=

cos 39 26 ' 

0.7724

13.1

= 194.1   ∴ Λ =

20

= 65.5%  

Root C 0=

150 cos 22 15 15 ' 

T 1-T 0=20+

C 1=



=

150 0.9255

1  162.12



103  2 × 1.005

150 cos 53 51 51' 

=

T1 − T 0 = 0.92,



150 0.5899

Λ=

= 162.1  

254.22 

 

2 × 1.005 

= 254.2   T 1-T 0=20+13.07-32.15

0.92 20

= 4.6%  

(N.B.: Λ is very sensitive to small errors in C 0 and  and C   C 1)

46 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 5.2 Velocity diagram at mid span is as in previous question. s  ∆C w : mean = 108, tip =86.3, root =144 m/  s  Equal work at all radius

Tip C 0w 0w=

250 − 86.3

tan α 0  =

2 81.85 150

= 81.85  m/  s  s 

= 0.546,   α 0 = 28 36' ( = α 2 )  

2   50 − 81.85 tan α 1 =

150





= 1.121,   α1 = 4816' ( = α 3 )  

47 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Root C 0w 0w =

150 − 144

tan α 0  = tan α 1 =

2 3

s  = 3  m/  s 

= 0.0020,   α 0 = α 2 = 0°7'  

150 1  50 − 3 150

= 0.980,   α1 = α 3 = 44°25'  

48 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 5.3 (a) With no inlet guide vanes the inlet velocity is axial .

T = 288 −

a=

140 × 140 2 × 1.005

×

1

K   = 278.25   K 

103

  = 1.4 × 0.287 × 278.25 × 103 = 334.4  m/  s  s  γ   RT 

 V= = 0. 0.95 × 334.4 = 317.7  m/  s  s  ∴  V 2

2

2

2

V  =U  +C   ∴ U  = 317.7 2 − 1402 = 81333.3   =285.2 m/s ∴ U =285.2  D= = π   × × D × N  = 285.2  ∴ D

285.2

π  × 100

= 0.908 m

∴ Tip radius =0.454 m or 45.40 cm (b)

 P0

3.5

 T      288  = 0  = 

 P  P =

 ρ  =

 T   1.01 1.128

3.5

= 1.128  

 278.25  = 0.895 bar

0  .895 × 100 0.287 × 278.25

3 = 1.121 kg/m  

 Dhub = 0.60× 0.908 = 0.545 m  A  A =  =

π  4

(0.9082 – 0.5 452 ) = 0.4143m2  

∴ m = 1. 1.121 ×0.4143 × 140 =65.02 or m=65 kg/s

(c)

 P 02  P 01



0.89 × 20 



288

= 1+



3.5

= 1.2335

49 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

(d) At the root we have axial inlet velocity. Free vortex gives constant work at all radii and constant axial velocity.

U h=0.60 ×285.2 = 171.1  m/  s  s  mU ∆Cw Ω

∆C w =

1

= mC p ∆T  

103

C p ∆T × 103

tan α 1  =

tan α 2 =

uΩ 171.1 140

 1.005 × 20 × 103 = = 126.3m/s 171.1 × 0.93

= 1.2221,   α 1  = 50 44 '  

1 71.1 − 126.3 140

 



= 0.320,   α 2  = 17 46 '    



At tip

∆C w = 126.3 × 0.60 = 75.78 m m//s   285.2 = 2.0371,   α 1  = 63 50'   tan α 1  = 140  

tan α 2 =

2 85.2 − 75.78 140



= 1.4958,   α 2  = 56 14'    



Power iin nput = =6 65 ×1.005 × 20 = 1306.5 kW

 

50 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 5.4 n −1 n

=

0.286 0.88

= 0.325  

T 02 = ( 4.0 )0.325 = 1.569 T 01

 

∆T 012 = 288[1.569 − 1] = 163.9K   163.9

∴  Number of stages = ∆T  #

of

st stag agees

For first stage:

=

T out  T in

25

163.9

=

7

= 6.556  i.e. 7 stages

= 23.4  K/stage

288 + 23.4 288

= 1.0812  

1.0812 = ( R  R)) 0.325  ∴   R Rfirst=1.271 For last stage: T out =288+163.9=451.9 K   K   out=288+163.9=451.9 T in 451.9-23.4=428.5 K ; ∴ in = 451.9-23.4=428.5 K  1.0546= (  R) R)

0.325 

mU ∆Cw Ω

T out  T in

= 1.0546  

∴ Rlast=1.178

1 103

= mC p ∆T ;  (note that C a=165 cos20)

∆Cw = U − 2C sin 20 = U −  330 sin 20 ΩU (U − 112.9)

1 103

= C p ∆T

 

 

51 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

2

U  – 112.9U  112.9U =

1.005 × 23.4 × 103 0.83

 

U 2 – 112.9U-28.3 ×103 = 0   2

3

∴ U = 112.9 ± 112.9 + 4 × 28.3 × 10 = 112.9 ± 354.9   2 2

∴ U = 233.9 m/  s  s  π  DN  60

= 233.9  ∴   N  N =

60 × 233.9

π  × 0.18

= 24817.5  rpm

At the entry to last rotor: T 0=428.5; =428.5; P   P 0=

4 × 1 .0 1 1.178

= 3.43 bar

C =165 =165 m/  s  s ∴ T =428.5 =428.5 3.5

 T 0     428.5   P =  T   =  414.96 

 P0

 P =

3.43 1.1189

∴   ρ  =

1652 2 .0 1 × 1 0 3

= 414.96  K

3.5

= 1.1189  

= 3.07 bar

  1 0 0 × 3 .0 7 0.287 × 414.96

= 2.58  kg/m3 

(π Dh ) ρ ×  Ca = m   π  × 0.18 × h × 2.58 ×165 cos 20 = 3.0   ∴h =

3.0

π  × 0.18 × 2.58 × 165 × 0.9397

h = 1.326 cm

= 0.01326  m

52 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 5.5 n −1

Axial:

n

0.286

=

0.92

 P   = = 1.417 =  02  T01 288  P 01 



 P 03  P 02

408

=

10.0 3.07

n

=

0.286 0.83

= 0.3446  

∴  T 2=288+120=408 K

For axial ∆T  = 4 × 30 = 120  K T02

n −1

= 0.311  Centrifugal:

0.311

 ∴  

 P 02  P 01

= 3.07  

= 3.257  

Axial : mU ∆Cw Ω

1

= mC p ∆T   

103

∆Cw = U − 2C a tan 20 = U-300 ×0.364 = U  − 109.2   U (U -109.2)= -109.2)=

103 × 1.005 × 30 0.86

=35.05 ×103  

U 2-109.2U-35.05 ×103 =0

∴  U =

109.2 ± 109.22 + 4 × 35.05 × 103 2

=

109.2 ± 390 2

 

U =249.6 =249.6 m/  s  s  249.6=

π  DN  60

 ∴   N  N =

60 × 249.6

π  × 0.25

= 19068  rpm

Centrifugal:

 P   =  03  T02  P 02  T03

0.3446

= ( 3.257 )

0.3446

= 1.502  

∆T 023 = 0.502 × 408 = 204.82  K ∆T  =

σψ U 22   0.90 × 1.04 × U 22 C  p

=

1.005 × 103

 ∴   U  = 2 2

1 .005 × 103 × 204.82

U 2=468.95 m/  s  s  (Centrifugal) = ∴ N (Centrifugal)

60 × 468.95

π  × 0.33

= 27140  rpm

0.90 × 1.04

 

53 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 6.1 (a) From Fig. 2.15, 2.15, for T 1=298 =298 K   K  and ∆T  = 583   K  K , theoretical f=0.0147 

η b  =

0.0147

= 0.980  

0.0150 (b) From Fig. 2.15, for f=0.0150 and T 1=298 =298 K   K , theoretical ∆T  = 593  K

η b  =

583 593

= 0.983  

(c) mass of CO per kg of of fuel: m=

28 12

× 0.04 × 0.8608 = 0.0803  kg

Actual released released energy energy = 43100–(0 43100–(0.0803 .0803 ×10110) 10110)   Efficiency based on released energy:

η  =

43100 − (0.0803 × 10110)

η  = 0.9812

43100

= 1 − 0.0188  

54 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 6.2 The combustion equation: C10H12 +65O2+244.5N2 → 10CO2+6H2O+52O2+244.5N2  132kg 2080 Fuel/ air ratio =

6846

440

132

( 2080 + 6846 )

108

1664

6846

= 0.0148  

Since the H2O will be in vapour phase, we require ∆ H vap , given by:

∆ H vap = −42500 +

108 132

× 2442 = −40500  KJ/kg of C10H12 

Energy equation is:

( H   H  p2- H   H  p0)+ ∆ H 0 + (  H R0 − H R1 ) =0 Where the first stage is 325 K for C 10H12 and 450 K for air Mean temperature of reactants O2 and N2 is

450 + 298 2

= 374  K

From fig. 2.15 for f  for f =0.0148 =0.0148 and for an initial temperature of 450 K  450 K   For air, temperature rise ∆T  = 565  K. Hence approximate final temperature T 2=565+450 =1015 K  =1015 K   First guess at mean temperature of products = (1015+298)/2=656.5 K  (1015+298)/2=656.5  K . Mean values of C p from tables are : R- reactants, P- products.  R’s  R’s

’s  P ’s

1st Guess

2nd Guess

mC  p 

O2 

0.934

CO2 

1.105

1.047

460.7

 N2 

1.042

H2O

2.051

2.041

220.4

O2 

1.019

1.014

1687.2

 N2 

1.088

1.084

7421.1 9789.4

55 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

(T 2 –298) {  ( 440 × 1.105 ) + (108 × 2.051) + (1664 ×1.019 ) + (6846 × 1.088)}    – (132 × 40500 ) − ( 450 − 29 8 ) ( 20 80 × 0.934 ) + ( 6846 × 1.0 42 )   

 – ( 325 − 198 ) [132 × 1.945]   = (T 2  − 298) × 985.5 − 5, 35, 000 − 152 × 9073 − 27 × 257 = 0  

∴  T 2=298+

6736000 9855

= 982   K  K  

Second guess at mean temperature of products=1280/2=640 K

∴  T 2=298+

6736000 9789.4

= 986.1   K  K  

56 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 6.3 Under design conditions: C 12

m2

 P1

T 01=T 1+ 2C  p = R ρ  +    2 ρ 12 A12C  p   1

475=

475=

4.47 ×10 100

+

0.287 ρ 1 1557

 ρ1

+

9 .0 2 2 ρ 12 × 0.03892 × 1.005 × 103

26.70

 

 

ρ 12

475 ρ12 − 1557 ρ 1 − 26.70 = 0  

From which :  ρ 1 =

1 557 ± 1557 2 − 4 × 475 × (−26.76) 2 × 475

 

 ρ 1  = 3.294  kg/m3 Hence:

0 .2 7 × 1 0

5

2

9.0 / 2 × 3.294 × 0.0975

2

 1023  − 1    475 

=19.0+ K  =19.0+  K 2  

20.88=19.0+1.153 K  20.88=19.0+1.153  K 2 

∴   K  K 2=1.630 Part-load conditions: 439=

3.52 × 100 0.287 ρ1

+

7.42 2 1

2

2 ρ × 0.0389 × 1.005 × 10

3

=

1226.5

ρ1

439 ρ12 − 1226.5ρ 1 − 18 = 0  

∴  ρ 1  = 2.808 kg/m3  105 ∆ P 0 =

  900   1 9 . 0 1 . 6 3 0 +  439 − 1     2 × 2.808 × 0.09752    7.42

∆ P 0 = 0.213  bar At design : C 1=

m

 ρ 1 A1

=

9.0 3.294 × 0.0389 7.4

=70.24 m/  s  s 

=67.75 m/  s  s  2.808 × 0.0389 4.47 × 100  P  At design: T 1= 1 = = 472.8  K At part load: C 1=

 R ρ 1

0.287 × 3.294

+

18.004

ρ 12

 

57 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 T 01   P 01 01= P 1    T 1  ∆ P 0

=

 P 01

0.27

γ / γ   −1

   475  =  4.47    472.8 

4.543 3.52 × 100 0.287 × 2.808

 439   P 01 01=3.52    436.78 

 P 01

= 4.543  bar

=0.0594

At part load: T 1=

∆ P 0

3.5

=

0.213 3.583

= 436.78  K

3.5

= 3.583bar  

= 0.0595  

58 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 7.1

C 2=

C a cos 6 65 5

260

=

0.4226

= 615.2  m/  s  s 

2 2 C w s  w2 2= 615.2 − 260 = 557.5  m/  s 

Tan  β 2 =

5 57.5 − 360 260

= 0.7596  ∴  β 2  = 37 13'    



C w tan 10 10=260 ×0.1763 = 45.84  m/  s  s  w3 3=260 ta Tan  β 3 =

 360 + 45.84 260

=1.5609 ∴ β 3  = 57 22 '    



Since C1=C3 and Ca is constant: C a

260

Λ = 2U  ( tan β − tan β  ) = 2 × 360 (1.5609 − 0.7596 )   3

2

Λ = 0.289   Temperature drop coefficient:

ψ  =

2C p ∆T 0 s U 2

=

2U ∆C w U 2

=

 2 ( 557.5 + 45.84 ) 360

=3.35

Power output =mU =mU ∆C w = 20 × 360 × (557.5 + 45.84 )  P =4343760W =4343760W or 4344 KW C 2 T 2=T 01-

2

615.22 =1000 –  = 835 K

2294

2C  p

59 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual ' 2

T 2 – T  = λ  N 

C 22 2C  p

= 0.05 ×

615.22 2294

= 8.25  K

T '2 = 835 − 8.25 = 826.75 K γ / γ   −1

 T   =  01'   P2  T 2 

 P01

4

 P 2 =



4

   1000    =  826.75  = 2.14    

2.140

= 1.869bar 

For isentropic flow, critical pressure ratio P c/Pa=1.853.

∴ 

 P 01  P 2

> 1.853.  ∴ The nozzle is choking

The throat conditions are:

 2  2 01 = × × 1000 = 857 K T  2.333  γ  + 1 

4.0  P c=

1.853

 ρ c =

= 2.158 bar, T c= 

 P c   2.158 × 100 3 = = 0.877  kg/m    RT c 0.287 × 857

C c= 1.333 × 0.287 × 857 × 103 = 572   .6 m/  s  s   Athroat=

m

 ρ c C c

=

20 0.877 × 572.6

2 = 0.0398  m  

60 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 7.2 γ  −1    1  γ       ∆T013 = η t T 01 1 −    P01 P 03  





1   4 1   =0.88 ×1050 1 −    = 147 K  2   

T 03 03 = 1050 – 147=903 K With zero outlet swirl: W s=UC w   w2 2=C   p ∆T  013 And with free vortex, C wr = constant Hence at root (C w w2 2)r =

C p ∆T 013 U 

=

 1.147 × 147 × 103 300

 Now at root, Λ = 0  ∴

∴ T 02 02-

Hence

C 22r  2C  p C 22r  2C  p

=T 03 03 –

=

T1 − T 3

C 32 2C  p

2752 2294

∴ C 2r  s  2r =642.6 m/  s 

T2 − T 3

= 562  m/  s  s 

= 0  hence T 2=T 3 

s  ;  T 02 02=T 01 01 and C 3=C aa3 3=275 m/  s 

+ 147 = 180 K

61 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

α 2 r  =  sin −1

562

= sin −1 0.8746 = 61    

642.6



(C aa22)r = 642.62 − 5622 = 311   .6 m/  s  s  w 2 r 

) − U r  =  562 − 300 = 0.8406   311.6 ( C a 2 )r 

tan  β 2 r  = ( C

 β 2 r  = 40 4 '    



r t 

(C aa22)t=(C  =(C aa22)r =311.6 m/  s  s and

(C w w2 2)t=

562

r r 

= 1.4  

=401.4 m/  s  s 

1.4

 401.4  α 2t  =  tan −1  = tan −1 (1.2882 )     311.6  ∴ α 2 t  = 52°10' 2 2 C 2t s  2t= 401.4 + 311.6 = 508.15  m/  s 

2752

With no exit swirl T 33tt=T 3r  = 870 K 3r =903 –  2294 508.152 T 2t = 937.5  K 2t=1050 –  2294 (T 1-T 3)= ∆T 013  because C 1=C 3 with no inlet or exit swirl

Λ

tip

T2t − T 3t 

937.5 − 870

= T1 − T 3 =

147

At the root T 22r r -T ’’2r  2r = λ n

=0.46

C 22r  2Cp

=0.05 ×

642.6

2

2294

 

T 22rr – T ’2r ’2r = 9 K T ’’2r  2r =(1050 – 180) – 9.0 =861 K γ / γ   −1

 T   =  01   P2  T '2 

 P01

 P 03

γ / γ   −1

 T   03

4

3.8    1050   P    = = 1.719  bar   ∴   2.21 = = 2    861  2.21  

 

 903 

4

3.8/2

=

  T '3 

 P3

  =  870  = 1.16  ∴   P 3  = 1.16 = 1.638  bar

62 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 7.3 C 22

4002

T 3=T 03 = (1200 − 150) − = 980.2K    03 –  2C  p 2294 U m =2 π rm N  or r m=

320 = 0.2037  m 2π  × 250

1    1 4     ∆T013 = η t T 01 1 −    P01 / P 03     1

 1  4   ∆T 013 150 =1− = 0.8611     =1− / 0 . 9 0 1 2 0 0 ×  P P η  T  t  01  01 03   P 01  P 03

P 03 = 1.818  ∴   P  03=

 ρ 3  =  A3=

r t  r r 

= 4.4bar  

1.818

γ / γ   −1

 T   =  03   P3  T 3 

 P03

h=

8

 P 3  RT 3 m

 ρ 3C 3  A

=

2π r m

=

3.343 × 100

=

=

4

4.4    1050  = 3.343  bar   =  = 1.316  ∴ P 3= 1.316  980.25 

0.287 × 980.25 36 1.19 × 400

=1.19 kg/m3 

=0.0756 m2 (N.B. C3=Ca3)

0.0756 2π  × 0.2037

=0.0591 m

0.2037 + (0. (0.0591/2) 0.2037 − (0.0591/2)

=

0.233 0.1741

= 1.34  

 A2 = A3  m C a2 must

satisfy

C a2=

2

C a2=

 ρ 2 A2  and

2 w2

C − C   

W s=C w  (because α 3  = 0 ) w2 2U =C   p ∆T  013 C w w2 2=

1.147 × 150 × 103 320

s  = 537.6  m/  s 

If C a2 s  C 22  = 3462 + 537  .62 a2=346 m/  s  T 2=T 02 02-

C 22 2C  p

T 22’’=T 2 – λ  N   P 2=

=T 01 01C 22 2C  p

 P 01 4

=

C 22 2C  p

=1200-

s  ⇒ C 2=639 m/  s 

6392 2294

= 1022  K

=1022-0.07 ×178 = 1009.5  K 8.0 4

=

8 .0

= 4.008  bar

(T01 T 2 ' )

(1200/1009.5 )

1.995

63 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 ρ 2 =

4  .008 × 100 0.287 × 1022 m

C aa22=

C2 A3

3

= 1.366  kg/m 36

=

1.366 × 0.0756

s (agrees with given 346 m/ s)  s) = 348 m/  s (agrees

At the root, for free vortex design, we have: r m r t 

=

0.2037 0.1741

= 1.17  

(Cw2 )r =(Cw2 )m ×

r m r r 

= 537.6 × 1.17 =629 m/  s  s 

C aa22 is constant at 346 m/  s. s. Hence: 2 2 C 2r  s  2r = 629 + 346 = 717.9  m/  s 

T 22r r =1200 –

U R  R=  

320 1.17

7182 =975.3 K 2294

= 273.5  m/  s  s 

V 22r r = 3462 + (629 − 273.5) 2 = 496.1  m/  s  s  a2r = γ   RT 2 r  = 1.333 × 0.287 × 975.3 × 103 =610.86 m/  s  s  ( M   M v2 v2)r =

496.1 610.86

=0.812

64 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 7.4

C r2 r2=constant

(1)

C w w2 2r=constant

(2)

From (2), since C aa22=C w w2 2 cot α 2  

 r m        r   2

C aa22r=constant and C aa22=(C  =(C aa22)m 

 r       rm  2

Also U =U m  

 Now,

U  C a 2

= tan α 2 − tan β 2  

Um  r  

2

∴ tan  β 2 =tan α 2 - ( Ca 2 )  r m    m tan α 2 =(tan α 2 ) m = ta tan n 58 58 23' =1.624 

U m

( C a 2 )m

=  tan 58 23’23’-ta tan n 20 29' =1.624-0.374=1.25 



(N.B. Flow coefficient (C  (C a/U )m=0.8 for this mean diameter design)

 

2

 r   Hence, tan  β 2 = 1.624 − 1.2 5        r m  2

65 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

2

 r m   r      2

 r m   r      2

tan β 2  

 β 2  

Root

1.164

1.357

0.709

35 20’

Tip

0.877

0.769

0

0

We therefore have untwisted nozzles. x 2 2 C w w2 2 r  =constant where x= sin α 2  = sin 58 23' =0.726 With 

x α 2  = constant, we also have C a2 a2 r  = constant.  x

 r m  Hence, C aa22= (C  (C a2 a2)m      r   2 This with

 r     yields r   m 2

U =U m 

 x +1

 r     M   tan  β 2  = tan α 2  -       C  r   m 2  a 2    m

1.726

 r m   r    

 



tan β 2  

 β 2  



Root

1.164

0.662

35 20’

Tip

0.797

0.056

3 12'   

66 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 7.5 m= ρ 3 AC   3=

=

 P 3  RT 3

 A

 P 3  RT 3

A 2C p × T03 − T 3  

2C p × T01 − ∆Tw − T3   

Assuming isentropic expansion, ( γ / γ   −1)

 T 3   P 3= P 01 01    T 01  m=

 A 2C  p  R

×

 

 P 01 T 01(γ / γ  −1)

2

γ  −1

T3   (T01 − ∆Tw − T3 )   

γ  +1

2 01 (γ / γ  −1) 01

m=  A 2C  ×  P  T   R  p

γ −1

T3   (T01 − ∆Tw ) − T3γ  − 1  

For the given inlet conditions m is a maximum when

2

γ −1

dm dT 3

= 0  i.e when:

2

( 3−γ ) /( γ  −1) 3

(T01 − ∆Tw ) T

γ  + 1 −     T3γ  −1  = 0   γ  − 1

∴ T 3= 2  (T01  − ∆T w )   γ  + 1  A 2C  p Hence, writing K  writing K =

mmax= K  (T01 − ∆T w )

mmax= K  (T01 − ∆T w )

mmax= K  (T01 − ∆T w )

 R γ  +1 γ  −1

γ  +1 γ  −1

γ  +1 γ  −1

 P 

×

01

T 01 (γ / γ   −1)

 

2 γ  +1   γ −1 γ  −1 2 2        −     γ + 1   γ  + 1     2 2  γ −1 γ  −1  2 2 2       −       γ + 1  γ + 1   γ  + 1   

   2      γ +1

2

γ  −1

 λ  − 1       γ  + 1 

    

67 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

But

C  p  R

mmax =

=

γ     γ  − 1

 AP 01 T  (γ / γ   −1)

(T01 − ∆T w )

01

mmax

mmax

T 01

=

 AP 01

 2 γ  γ  −1 2   (γ  − 1)     γ  +1  R γ  − 1 −1     ( γ  + 1) γ  

γ   2    ∆Tw     1 −  R  γ  + 1     T 01 

γ  +1 γ  −1

=

γ  +1 γ  −1

2

γ  +1 γ  −1

 AP 01

T 01

γ  +1 γ  −1

γ   2     ∆T      1 −  R  γ  + 1      T   w

γ  +1 γ  −1

γ  +1 γ  −1

T 01

γ  +1 γ  −1

 

T 01

γ  +1 γ  −1

 

01

Hence maximum mass flow will vary with N  with N / T 01  because ∆T w  varies with P  with P 0011/  P  P 0033.

68 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 8.1  N =250 =250 rev/s

⇒  Angular velocity ω = 2π  N  = 1570.5  rad/s

 Rr =0.1131m  Rt=0.2262 m

 ρ   = = 4500 kg/m3 (Ti-6Al-4V) ref table page 407 Centrifugal stress at the root

σ r  = =

 ρω 2 2

2

2

( Rt − Rr  ) K  

45 4500 1570 70.5 .5)  00(15 2

2

( 0.2262

2

− 0.11312 ) ( 0.6 )  

≅ 127.8  MPa Material UTS =880 =880 MPa Endurance limit =350 MPa Assess the vibratory stress at failure – Goodman diagram -vibratory stress at failure ≈ 300   Pa -high -Allowable approximately 1  ≅ 100 MPa 3

69 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 8.2  N =250 =250 rev/s  R =0.113m; R =0.105m 0

i

Width=0.025m Blade m ≅ 0.020 kg r cg cg ≅ 0.163m  

 = 4500 kg/m3,  ρ  =

Material

UTS = 880 MPa

For a thin ring rotor (eq 8.29)

σ t = ρω 2 Rr2ing + 

 Rring =

 F rim 2π  Aring 

0.113 + 0.105 2

 

= 0.109m  

 Aring =0.025(0.113-0.105) 2

=2 ×10−4 m    F rim ω 2 )   rim =43 ( mr ω  = 4 3 ( 0.02 × 0.163 × 1570.52 ) ≅ 345, 750 N   2

2

σ t  = 4500 (1570.5 ) ( 0.109 ) +

345,750 2π  ( 2 ×  10−4 )

 

=131.87 ×106 + 275 × 106 ≅ 407.06 × 106 Pa

σ t   = 407 MPa Considering burst, for  UTS = 880MPa and burst margin of 1.2, the maximum allowable σ t   

  = (σ t  )allowable

880

(1.2 )

2

= 611 MPa >> 407MPa

The design is conservative; but acceptable for a conceptual design.

70 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 8.3

t  t[hrs] 

σ [MPa]  

PLM 

T[K]

t1%[hrs] 

TO+Climb

0.33

300

26.8

1150

2,015

1.489 × 10  

Cruise

5

220

28

1000

100,000

5 × 10  

Descent+L

0.5

150

29.5

1050

124,520

4 × 10  

t 1%  

-4

-5

-6

-4

2.029 × 10  

∴ 4,929 flights PLM is obtained from figure 8.7, for CMSX-10

71 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 8.4 Haynes 188 at 1033K −0.06

 

∆ε  = 0.01 N

 f

−0.72

 

+ 0.7 N f 

Source:: Manson, S. S. and Halford, G. R., Fatigue and durability of structural materials (ASM International, 2006), Source where it is Figure 6.15(c). Reprinted with permission of ASM International ®. All rights reserved. www.asminternational.org

  →  Nf1 = 2 ×103 cycles ∆ε 1 = 0.009

N ff22 = 1 ×104 cycles ∆ε 2 = 0.007   →   N  Using Miner’s rule (linear damage accumulation) n  N f 1

1=

+

n N f  2

=1=

n 2 × 10

1 × 10 4 n + 2 × 103 n 2 × 10 7 n

3

+

n 1 × 10

4

 

 12 × 103    = n   7   2 × 10 

∴ n ≅ 1,670 cycles of each loading.

72 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 8.5 Rigid bearings : K  : K r r = rotor stiffness 1

ω  =

1

2  K   r  =  N  =  kgm  = 1      2  m  mkg  s  s mkg  2

m=20 kg ; ω   = =

π  N  30

= 5,235 rad/s

1

 K r   2

   ⇒ K r r =548 × 10  N/m  20  6

5,235= 

Soft bearings: total stiffness  K r + K s   548 × 106 + 1 × 107 = =    K K K  548 × 106 × 1 × 107 1

t



s

= 1.018 × 10 –7   K t = 9.821 × 106 N/m First critical speed

ω   = =

9.821×106 20

= 700.7 rad/s = 6,693 ≅ 6, 6,700 700 rpm

Plot the critical speed as a function of support stiffness!

73 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 9.1  Note: In the problems for chapter 9, we are dealing deali ng with wit h stagnation s tagnation conditions at all al l times ti mes and the suffix ‘0’ has dropped throughout.

Flow compatibility is expressed by: m T 1  P1

=

m   T 3 P3

P 3   T 1 ×   P1 T 3

×

And  P3  P1

∴ 

 P 2  P  1

=

 P2 P1



P2 − P 3 P1

=

P2 P1

− 0 .0 5

P2 P1

= 0 .9 5

P 2 P  1

 

m T 1

288  P P  =14.2 ×0.95 2 × = 6.903 2    P1 1100 P   P  1 1

 

6.903

 P 2  P  1

 

m T 1  P  1

5.0

34.515

32.9

4.7

32.444

33.8

4.5

31.064

34.3

From curves, equilibrium point is at:

 

 P 2 =4.835,  P  1

m T 1 =33.4,  P  1

η c  = 0.795  

74 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 P 3  P  1

=0.95 ×4.835 =4.59

And from turbine characteristic graph: η t   = 0.8497   m=

3 3.4 × 1.01 288

= 1.988  kg/s

 Net power output = mC  pg ∆T34 −

1

 

η m

mC pa ∆T12  

1   4 1      P output output = 1.988 × 1.147 × 0.8497 × 1100 1 −     4.59        

1 288   3.5 −1.988 × 1.005 × ( 4.835 ) − 1    0.795  

 P output output = 675.189 – 411.620 = 263.989KW  

 

 Net power output = 264 KW

75 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 9.2

m T  4

 P4

=

m T    3 × P3 × T 4   P3 P4 T 3

T 4

 ∆T  = 1 − 34   T3 T 3

∆T 34



= η t  1 −

 

T 3

 ;   1  r 4  1

r=

 P 3  P 4

;  and η t   = 0.85  

1

  P 3   4       P 4  

∆T 34

2.00

1.189

0.135

0.865

0.930

88.2

164.05

2.25

1.2247

0.156

0.844

0.918

90.2

186.31

2.50

1.257

0.174

0.826

0.909

90.2

205.0

 P 3  P 4

∴  ∴ 

 

m T 4  P 4 m T 3  P 3

=188

=90.2

T 3

when

 

 P 3  P 4

T 4 T 3

 

T 4 T 3

 

=2.270 (graphical solution)

m T 3  P 3

 

m T 4  P 4

 



1   1 4 34 T 3 = 0.85 1 −  2.27   = 0.1575    

 

∆T 

76 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

From compatibility of flow: m T 1

=

 P1 T 3



T 1

m   T 3 P3

=

(m  

×

P 3   T 1 ×  and P 3= P 2   and P  P1 T 3

) ( P / P )    / m T P  ( ) T3 / P3

2

1

1

1

90.2 ( P2 / P  1)   = T 1   m T1 / P  1

T 3

(

-----------------------------(A)

)

From compatibility of work:

∆T T1

=

∆T12 T1

 P 2  P  1

 

∆T  T3 C  pgη m

=

T3 T1 C pa

=

1  P 2 

 

P  1

T1

1.005

= 0.1762

T 3 T1

 -------(B)  



0.286

  η c  P 1  

m T 1

0.1575 × 1.147 × 0.98 T3

− 1  



T 3 T 1

 

T 3 T 1

 

η c  

  P 2       P 1  

0.286

 

∆T 12 T 1

 

(A)

T 3   1   ∆T    =      T 1   0.1762   T 1   (B)

5.2

220

2.13

4.54

0.82

1.602

0.734

4.17 

5.0

236

1.91

3.65

0.83

1.584

0.704

3.99 

4.8

244

1.77

3.15

0.82

1.566

0.690

3.92 



 P 2  P  1

= 5.105  and

Hence T 3=1170 K

T 3 T 1

= 4.06,  from graphical solution

77 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 9.3 At outlet of gas generator turbine m T 4 = m   T 3 × P 3 ×  T 4    P4 P3 P4 T 3 1   4   T 4 1  ;   = 1 − η t  1 −  and    P3 / P 4   T3  



m T 4  P4

=

m   T 3 P3

1   4   P 3 1  × × 1 − η t  1 −   ;    P4 P / P    3 4  

η t   = 0.85  

1

1

 P 3  P 4

  P 3         P 4   4

 

1

  1      1 −   P   P    3 4   4

  2 4     1       m T 3   m T 4    P 4   1 − η t 1 −     P a  P   P   P 3  P 4 /   3 4           1

1.3

1.0678

0.064

0.972

20.0

25.27 1.92

1.5

1.1067

0.097

0.958

44.0

63.22 1.664

1.8

1.1583

0.137

0.940

62.0

The value of P  of P 4/  P  P a in the table is found from P   P 4  P4  P 3 P 2  P4 = = × 0.96 × 2.60 = 2.496 4   P 3  P a  P3 P2  P a  P3 Hence curves – from which power turbine pressure ratio is r is  r = 1.55

104.90

1.387

78 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

And gas generator turbine pressure ratio r=1.61 Use work compatibility equation to find T 3 

∆T 12 T1

=

∆T34 T3

T  ×  3 T1

 C  pgη m      C pa   

1 1     4 3.5     1 T1  P 2      ∴  C  pa      − 1 = η mC pg T 3 1 −   P / P  η c   P1         3 4  

T1  must be given. Compressor efficiency from compressor characteristic once operating point found from

m T 1  P1

=

m   T 3 P3

×

P 3   T 1  where T3 unknown, so trial and error method required. × P1 T 3

79 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 9.4 For gas generator turbine m T  4

 P4

m T  =   3 × P3 × T 4   P3 P4 T 3

γ  −1   γ     ∆T 34 T 4 1  where = 1− = 1 − η t  1 −   ;    T3 T3 P /P     3 4  

and η t  is constant.

Thus:

m T 4  P3

   P 3  =  f       from gas generator turbine characteristics. P   4 

Since power turbine is choking at all conditions considered, the gas generator turbine is ∆T 34 operating at a fixed pressure ratio and hence fixed value of . T 3 (a) At 95% of speed, work compatibility yields γ  −1     T1  P 2 γ    η m C pg ∆T34 = C pa   − 1    η c   P 1    1   3.5 ∆T34 = C  pa ( 4.0 ) − 1    η m C pg 0.863  

T 1

=

C paT 1 0.486

 

η m C pg 0.863 At 100% speed we have similarly: 1   C paT 1 0.5465 3.5 4 . 6 1 ∆T34 = C  pa − ( )  = η  C  0.859   η m C pg 0.859  m pg 

T 1

 ∆T    ∆T34    =  34   1075 T   95% speed     3 100% speed 

But: 

Therefore; T 3= 1075 ×

0.5465

×

0.863

= 1214.5 K

0.859

0.486

(b) 95% mechanical speed at 273 K.

80 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

 N  T 1

(% design) = 95 95

288 273

From the operating line

=97.57 %

m T 1

= 439,

1  P 

∆T  =

m=

 p2

= 4.29  and η c  = 0.862  

1  P 

273

(4.29)0.286 − 1 = 163.6K    0.862

4  39 × 0.76 273

= 20.19 kg/s

Power=20.19 × 1.005 × 163.5 = 3318 kw.

81 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Problem 9.5 Work compatibility yields: 1 −

  1  γ  γ    mη t T3 1 −    P3 / P4    P3

Let:

 P4

=

P 2 P  1

 = m   T1     c η c   

3.5  P 2  − 1    P 1     1

= r   

At design point:

 31.5   31.5  T1  r  − 1  4 − 1 mc − mb 1 1 1   =    =   × ×  1 1 mc ηtη c   0.8 × 0.85 3.3    1  3.5   1  3.5    1− T 3 1 −     r     4       m mc mb mc

=

mc − mb mc

= 0.6622   mb

= 1 − 0.6622 = 0.3378 =

T1 / P  1

mc   T1 / P  1

 

Therefore at design point: mb T 1  P  1

= 0.3378 × 22.8 = 7.70  

   (m − m ) T  (mc − mb ) T3   3 c b 1  = 1    P 3 1 − 2   P3 1 − r 2  r    d  And

T 3 is constant.

mc − mb

( mc − mb )d

=

P 3

( P3 ) d 

 

1−

1−

1 2

r  1 −

2

r d  1 −

r  = 1 r d 

mc T1 / P1 − mb T1 /  P1      r 1 − 1 r 2    = =

1 r 2  Thus : P  : P 3= P 2  1 2

r d 

r 2 − 1

 

22.8 7.7

4 1 − 1 / 16

 

15

mc T1 / P1 − mb T1 / P1 = 3.899 r 2  − 1  --------------------(1) --------------------(1)

82 © Pearson Education Limited 2009  

Descargado por Gonzalo HR (emperador_973@hotmail ([email protected]) .com) lOMoARPSD9 3 8 2

 

th

HIH Saravanamuttoo, GFC Rogers, H Cohen, PV Straznicky, Gas Turbine Theory , 6  edition, Lecturer’s Solutions Manual

Also from work compatibility: 3.5 5 mc T1 / P1 − mb T1 / P1    0.4  457(r 1 3. − 1) =  ------------------(2) ------------------(2) 1   mc T1 / P  1 3.5  1  1 −  r  



 Now: mb T1 / P = P  1=

3 4



× 7.7 = 5.775  

From (1): mc T1 / P1 = 5.775 + 3.889 r 2 − 1    (2) becomes: 5.775

1−

2

5.775 + 3.899 r  − 1

r  

r 2  

r 2  − 1  

3.5

12.25

3.35

3.0

9.0

2.5 2.25

=

3.5 5 0.4457(r 1 3. − 1) 1   3.5 1   1 −      r    

, solve by trial and error

3.899 r 2  − 1  

5.775 + 3.899 r 2 − 1  

left-hand-side

13.08

18.85

0.694

2.83

11.05

16.82

0.657

6.25

2.29

8.94

14.71

0.607

5.06

2.015

7.865

13.63

0.576

1 3.5

3.5 5 0.4457  r 1 3. − 1  

1     1 − 1 3.5 3.5   r  

r  

r   

3.5

1.430

0.192

0.301

0.638 

3.0

1.369

0.164

0.270

0.607 

2.5

1.299

0.133

0.230

0.578 

2.25

1.261

0.116

0.207

0.560 

From curves, r = 2.08

right-hand-side

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF