Solución de SEL de Orden 3 Por Determinante La Clase
August 8, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Solución de SEL de Orden 3 Por Determinante La Clase...
Description
JF[I@ÙE LK KF LK JWLKE9 ^JW LK\KWO@EAE\K
Ijes`lkrkojs kf YKF lk jrlke 9 a1 x + g1 y + i 1 z ? l 1 a 7 x + g7 y + i 7 z ? l 7 a 9 x + g9 y + i 9 z ? l 9
, ljelk fjs a ` , g` , i ` , l ` ∃ W para ` ?1,7,9. Ketjeiks x ?
| x| | y| | z| , y ? , z? |Y| |Y| |Y|
, ljelk
| | |
| | | | | l1 g1 i1
a1 l 1 i 1
a 1 g1 l 1
a1 g1 i 1
g 7 i 7 ,| y|? a7 l 7 i 7 ,| z|? a 7 g7 l 7 ,|Y|? a7 g 7 i 7 a9 g 9 i 9 a 9 g9 l 9 a9 l9 i 9 l9 g9 i9
| x|? l
7
Kdkri`i`j. Wksjfvkr kf s`stkoa lk kiuai`ùe f`ekaf pjr lktkro`eaetk 1. 7 x + 9 y + ; z ?77 9 x + < y + 7 z ? 12 ; x + 7 y + 9 z ?7 1
1
7. x + 7 y ∗9 z ?∗< ∗ x + y + ; z ?1 7 x ∗ y ∗ z ?∗ 7
9. ∗7 x + 9 y ∗ z ?= < x ∗7 y + ; z ?∗9 x + 7 y ∗9 z ?>
7
(7) 9 x ∗ y ∗ + 19 + = ?1> Kf lktk lktkro ro`e `eae aetk tk | x| sk jgt` jgt`kek kek rkopf rkopfaz azael aeljj ke fa ij ijfu fuoe oeaa lk x fa ijfuoea lk rksuftaljs, asï ∗1 1 ∗ 1 | x|? > 7 9 ?∗1 (∗3 + 9 )∗1 ( >∗9 )∗( > ∗7 )?∗(∗; )∗(∗9 ) ∗(∗7 ) 1 ∗1 ∗ <
|
|
| x|? 1>
Kf lktk lktkro ro`e `eaet aetkk | y| sk jg jgt` t`ke kekk rk rkop opfa fazae zaelj lj ke fa ijfu ijfuoe oeaa lk y fa ijfuoea lk rksuftaljs, asï 7 ∗1 ∗1 | y|? 1 > 9 ?7 (∗9 ) +(∗< ∗ 0 )∗1?∗2∗19 ∗1?∗7> 9 1 ∗<
|
|
Kf lktk lktkro ro`e `eaet aetkk | z| sk jgt` jgt`kek kek rkopf rkopfaz azael aeljj ke fa ijfu ijfuoe oeaa lk z fa ijfuoea lk rksuftaljs, asï 7 1 ∗1 | z|? 1 7 > ? 7 ( 7∗ > )∗( 1 ) ∗(∗1∗2 )?< ∗1 += ?1> 9 ∗1 1
|
|
Wkopfazaelj
| x| 1> | y| | z| ? ?1 , y ? ? ∗7> ?∗7 y z ? ? 1> ?1 |Y| 1> |Y| 1> |Y| 1> Rkr`b`iaelj
x ?
Ke (1) 7 x + y ∗ z ?∗1 7 ( 1 )+(∗ 7 )∗1?∗ 1 ∗7∗1 ?∗1 ∗1?∗1
Ke (7) x + 7 y + 9 z ? > 1 + 7 (∗7 )+ 9 (1 )?> 1∗ < + 9 ?> >º >
Ke (9) 9 x ∗ y ∗ x ∗ y ∗ z ?<
∗ x + 7 y ∗9 z ?∗9 7 x ∗ y ∗7 z ?∗< x + y ∗; z ?1
∗7 y ∗ z ?1 7 x + 9 y ∗ z ?< x ∗ y + 7 z ?=
7 x + y ∗ z ?∗ 1 9 x ’ 7 y + z ?9
x + z ∗1 x + y ?>
x + y + z ?∗7 7 x ’ y + z ?1
∗
x ’ 7 y + 7 z ?9 x ’ 7 z ?< y ’ z ?1
^rjgfkoa lk Apf`iai`ùe4
1. [ea ágr`ia ágr`ia prjl prjluik uik trk trkss t`p t`pjs js lk iao`sa iao`sas. s. Iala uej lk fjs trks t`pjs t`pjs lk iao`sa iao`sa t`kek quk pasar pjr trks lkpartaoketjs lk prjluii`ùe4 ijrtk, ijs`lj y kopaquk. Ykmôe kf t`pj lk iao`sa, kf t`kopj lk tragadj quk sk jiupa ke iala uea kstá lalj ke fa s`mu`ketk tagfa4 \`pj A >.7 cr >.9 cr >.1 cr
Lkpartaoketj lk ijrtk Lkpartaoketj lk ijs`lj Lkpartaoketj lk kopaquk
\`pj G >.< cr >.; cr >.7 cr
\`pj I >.9 cr >.< cr >.1 cr
Fjs lkpartaoketjs lk ijrtk, ijs`lj y kopaquk t`keke l`spje`gfks ijoj oáx`oj 112>, 1;2> y cjras lk tragadj pjr skoaea rkspkit`vaoketk. ºIuáetas iao`sas lk iala t`pj lkgk lk prjlui`rsk a fa skoaea para jiupar af oáx`oj fa iapai`lal lk iala lkpartaoketj: Ksir`g`ojs kf s`stkoa lk kiuai`jeks, ijes`lkrkojs x fa iaet`lal lk iao`sas t`pj A, y fa t`pj G y z fa t`pj I >.7 x + >.< y + >.9 z ?112> ( 1 ) >.9 x + >.; y + >. ( 7 ) >.1 x + >.7 y + >.1 z ? ( 9 )
Caffaojs fjs lktkro`eaetks >.7
| |
|Y|? >.9 >.1
>.<
>.9
>.; >.7
>.< >.1
|
?>.7 ( >.>; ∗>.>3 )∗>.< ( >.>9∗>.>< ) + >.9 (>.>2 ∗>.>; )
|Y|?∗>.>>2 + >.>>< + >.>>9 ?>.>>1
|
112>
>.<
>.9
| x|? 1;2>
>.;
>.<
>.7
>.1
?112> ( >.>;∗ >.>3 )∗>.< ( 1;2 ∗107 ) + >.9 (917 ∗7)
| x|?∗9
>.9
| y|? >.9
1;2>
>.<
>.1
>.1
? >.7 ( 1;2 ∗107 )∗112> ( >.>9 ∗>.>< )+ >.9 ( 1.7
>.<
112>
| z|? >.9
>.;
1;2>
>.1
>.7
|
|
?>.7 ( 7∗ 917 )∗>.< ( 1 (>.>2 ∗>.>; )
| z|?∗1 , y ? ? >.3 ?3>> y z ? ? 7 ?7>>> |Y| >.>>1 |Y| >.>>1 |Y| >.>>1
Rkr`b`iaelj Ke (1) >.7 x + >.< y + >.9 z ?112> >.7 ( 17>> )+ >.< ( 3>> )+ >.9 ( 7>>> )?112> >.7 ( 17>> ) + >.< ( 3>> ) + >.9 ( 7>>> ) ?112> 112>?112> Ke (7) >.9 x + >.; y + >. >.9 ( 17>> )+ >.; ( 3>> )+ >.< ( 7>>> )?1;2> 1;2>?1;2> Ke (9) >.1 x + >.7 y + >.1 z ? >.1 ( 17>> )+ >.7 ( 3>> )+ >.1 (7>>> )? ? ^jr taetj, sk puklke prjlui`r 17>> iao`sas t`pj A, 3>> t`pjs G y 7>>> t`pj I 7. [e iketrj lk l`vkrs`ùe l`vkrs`ùe t`kek iapai`lal iapai`lal par paraa 1>1 oksas, fas oksas iuk iuketae etae ije 1 ⑮ 2
< x
1 7
+ 2 y + 3 z ?;;7 ② 1
1
3
9
x + y + z ?9; ⑧
Iafiufaojs fjs lktkro`eaetks 1
1
1
<
2
3
/
1 9
1>1
1
1
| x|? ;;7
2
3
| | | |
|s|? 1 / 7
| y|?
| y|?
1 3
1.12
| | | |
/ ?
9;
1 3
/
1 9
1
1>1
1
<
;;7
3
1 7
/
9;
1 9
1
1
1>1
<
2
;;7
/
1 3
/
9;
1 7
/
/
?;2
?9=.99
?7 pksjs. ^jr jtra partk, vkelk 17 rasijs lk v`tao`ea A, < lk v`tao`ea I y 1; lk v`tao`ea L pjr ue tjtaf lk 722 pksjs. Keiuketra kf ijstj ijrrkspjel`ketk a iala rasij lk fas v`tao`eas A, I y L. ;. [e fagjra fagjratjr tjr`st `staa t`k t`kek ek trks trks sjf sjfui` ui`jek jekss quk ije ijet`k t`keke eke i`k i`krtj rtj ái`lj. ái`lj. Fa pr`okr pr`okraa sjfui`ùe ijet`kek 1>% lk sustaei`a ái`la, fa skmuela 9>% y fa tkrikra ;>%. Lkska ut`f`zar fas trks sjfui`jeks para jgtkekr uea okzifa lk 2> f`trjs quk ijetkema 9>% lk ái`lj, ut`f`zaelj trks vkiks oás sjfui`ùe lk fa sjfui`ùe lk ;>% quk fa lk 9>% ºIuáetjs f`trjs lk iala sjfui`ùe lkgk usar: 2. [ea oudkr ijoprù trks ifasks l`krketks l lkk aii`jeks pjr $7> >>>. [ea lk kffas pama ue 2% aeuaf lk `etkrksks, jtra pama ue =%, y fa jtra ue 3% aeuaf. Af b`eaf lkf pr`okr añj, fa suoa lk fjs `etkrksks lk fas aii`jeks af 2% y af =% ks lk $0, y fa suoa lk fjs `etkrksks lk fas aii`jeks af 2% y af 3% ks lk $=7>. ºIuáetj `ev`rt`ù ke iala uea lk fas aii`jeks: =. [e ijok ijokri ri`a `aet etkk vk vkel elkk tr trks ks t` t`pj pjss lk quksj quksjs, s, lksi lksirk rkoa oalj lj,, sko` sko`-l -lks ksir irko koal aljj y ijstk stkñj, ñj, fjs prki` ki`js pjr h`fùmraoj sje $17 >>>, $1> >>> y $ 0 >>> rkspkit`vaoketk. Yk sagk quk ue lïa vkel`ù ke tjtaf > y iaet`lal lk quksj sko`-lksirkoalj ks kf ljgfk quk fa vkel`la lk quksj lksirkoalj. ºIuáetjs h`fjs lk iala t`pj lk quksj sk vkel`ù: 3. Ke uea ckfalkrïa ckfalkrïa pjr ue ckfa ckfalj, lj, ljs dumj dumjss y iuatrj oaft oaftkalas kalas sk pama pamarje rje 9;₦. Jtr Jtrjj lïa pjr iuatrj ckfaljs, iuatrj dumjs y uea oaftkala ijgrarje 9
View more...
Comments