Download Solución de Problemas de Conservación de La Energía...
Description
4.
]k ]kau aumi mikg kgdr drik ik b bcc _r _rkh khac ac`d `dss bc mmkg kgsc scrv rvdm dmiý iýg g bc aad d cg cgcr crfà fàd5 d5
_rkhac`d5
Sg d`krtifudbkr bc dutk`ývia mkgsistc cg ug miaigbrk aacgk bc dmcitc bc bcgsibdb τ 0
( ) lf
9 C 8
`=
,
bkgbc c`hkgd ug pistýg quc ticgc ug krijimik, mk`k sc iaustrd cg ad jifurd. Ads ärcds trdgsvcrsdacs 8 8 8 bca miaigbrk, bca cec y bca krijimik skg D p 043 m` , D ] 08 m` y D ?04.? m` .Mdamuac ad jucrzd J rcqucribd pdrd c`puedr ca pistýg bcgtrk bca miaigbrk d ugd vcakmibdb Z p04.?
Bdtks5
τ 09?? lf / ` D p 043 m` D s08 m`
=
8
8
8
D? 04 m` 4
Z p0 ` / s ]kaumiýg5
J
Bijcrcgmid bc prcsikgcs5
J 0( _ _∘ _ 8) ( D p∘ D? ) ...(4) Hcrgkuaai5 8
_ Z 8 _ 8 ... (8) 0 + τf 8 f τf Mkgscrvdmiýg bc ad `dsd5
` ˙ 0Z 8 τ D ?0Z p ( D p ∘ D ? ) τ ↘ Z 80 Z p Bc (4), (8) y (=) sc khticgc5
( D » » p ∘ D ) ?
D?
» …(=)
` . s
τ 8 ( D p∘ D? ) J 0 Z p 8 8 D ?
=
_rkhac`d. Cg ug cxpcri`cgtk `ébimk sc bcscd igycmtdr räpibd`cgtc ugd pcqucôd mdgtibdb bc jauibk rdbikdmtivk cg ad vcgd bc ug dgi`da. Ca fdstk vkau`étrimk T bc ad ecrigfd quc sc iaustrd cg ad jifurd scrä5
Ϗt T0T ? scg < ? ≢t ≢ς ς »??%, csti`c ad sdaibd bc pktcgmid caémtrimd. ]kaumiýg5
` ˙ 0 τ ∏ 04???∖4?? 04????? 8
lf s
8
Z 4 _4 Z _ + + z 4 + n pu`p 0 8 + 8 + z 8 + nturhigd+ na 8 f τf 8 f τf nturhigc 0 z 4∘na
˙ 0`˙ f ( 48?∘=3 )04????? x 9.>4 x >3 0» >=.2@V Cturhigc Fcgcrdmiýg caémtrimd 0 ?.>*>=.2 @V 0 ::.6 @V
_rkh. 2.4> (Ed`cs D. Jdy) ]kaumiýg5 _adgtcd`ks pdrd ca rcqucri`icgtk (d) ad cmudmiýg bc ad mkgscrvdmiýg bc ad `dsd yd quc gks skaimitd ad vcakmibdb bca dirc d trdvés bc ad pucrtd. Mkgscrvdmiýg bc ad `dsd pdrd ca dirc5
b
❔
∠ ❔ ∖b 0 ˙` ∘` ˙ d
i
k
❔
bt
❔
b bt
❔ ∖b 0∘ τ ZD ∘ j `˙ ∠ ❔ d
d
b ∏d
∘ τ d ZD ∘j `˙
bt
τd
0
( ?)
Mkgscrvdmiýg bc ad `dsd pdrd aks prkbumtks bc ad mk`hustiýg5 ❔
b bt
❔ ∖b 0`˙ ∘` ˙ ∠ ❔
τ p
p
i
k
b ∏ p bt
0` ˙ ( 4 + j )
b ∏ p
`˙ (4 + j )
bt
τ p
0
( ?)
∏ p + ∏d 0M
b ∏ p
∘b ∏ d
bt
bt
0
Ad cmudmiýg (=) sc rcc`padzd cg ad cmudmiýg (8)5
( ?)
b ∏d
∘ ˙` (4 + j )
bt
τ p
0
( ?)
Ad cmudmiýg (2) sc rcc`padzd cg ad cmudmiýg (4)5
˙ (4 + j ) ∘ τd ZD ∘ j `˙ ∘` 0 τ p
τ d
Z 0
\
`˙ ( 4 + j ) ) ∘ j
D
( ?)
τ p
P
( ?)
τ d
h) Dpaimd`ks Hcrgkuaai Hcrgkuaai pdrd ca jauek bc dirc5
8 _ Z _ d 0 + τd 8 τ d
( ?)
Igscrtd`ks ad cm. (:) cg (6).
_∘ _ d0
\
τd ` ˙ 8 D
( 4 + j ) ) j ∘ τ p
P
( ?)
τd
_rkh. 2.82 (Ed`cs D. Jdy) ]kaumiýg _adgtcd`ks ad cmudmiýg bc Hcrgkuaai pdrd ad aàgcd bc mkrricgtc bcsbc ad pdrtc igjcrikr ndstd ad pdrtc supcrikr bca mnkrrk. 8
8
Z _ Z 8 _8 + + f U 80 4 + 4 + f U 4 τ τ 8 8 8
Z h ( _ d+ τf A= ) _d + 0 + f ( A4 + A8) τ τ 8
A4+ A8+ A= ) Z h 0∕ 8 f ( A
_rkh. 2.8: (Ed`cs D. Jdy) ]kaumiýg5 (d) _adgtcd`ks ad cmudmiýg bc ad mkgscrvdmiýg bc ad `dsd `dsd pdrd ca tdgquc 45
b
❔
∠ ❔ ∖b 0`˙ ∘` ˙ p
bt
τ D t
i
k
❔
b n4
0 τT ∘ τZ D p
bt
(4)
_adgtcd`ks Hcrgkuaai da igfrcsk bc ad tuhcràd trdgsvcrsda5
8
8
Z 8 _8 Z _ + + f U 80 4 + 4 + f U 4 τ τ 8 8
8
nfτ Z _ 0 + τ τ 8
(8)
_adgtcd`ks Hcrgkuaai d ad sdaibd bc ad tuhcràd trdgsvcrsda5
8
8
Z _ Z 8 _8 + + f U 80 4 + 4 + f U 4 τ τ 8 8
_ _k 0 τ τ
(=)
Bkgbc5 _ cs ad prcsiýg bcgtrk bc ad tuhcràd. _? cs ad prcsiýg d ad sdaibd bc ad tuhcràd cg ca tdgquc 8
_?0 νfτ 0 _
( 2)
Bkgbc cs ad daturd bc ad mkau`gd bc dfud cg ad sdaibd bc ad tuhcràd trdgsvcrsda cg ca tdgquc 85
( 3)
n4 + n 808 n? Xcc`padzd`ks ad cm. (2) cg (8)5 8
Z 8
0
f ( n∘ ν )
( :)
4
n 0n4∘ h ν 0 n8∘h
n ∘ν 0n 4∘n8
n ∘ν 0n 4∘(8 n? ∘n4)< n ∘ν 08 ( n » » 4∘n? ) » ( 6)
n ∘ν 08 ( n » » 4∘n? ) » Xcc`padzd`ks ad cm. (6) cg ad cm. (:)5
Z 0 8 ∕ f ( n4∘ n? )
( >)
Xcc`padzd`ks ad cm.(>) cg ad cm. (4)5
Dt
b n4
0T ∘8 D p ∕ f ( n ∘n ) 4
bt
(9)
?
Mudgbk sc damdgzd ca cstdbk cstdmikgdrik sc ticgc5
( )
T n ∗0 8 D p
8
4
f
( 4?)
+n
?
h)
b n4
8 D p
bt
D t
0T ∘
∕ f ( n ∘n ) 4
?
(44)
Hakf pcrskgda skhrc Igfcgicràd Gdvda y djigcs5 nttps5//bcggysbcadtkrrc.hakfspkt.mk`/
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.