Solucion Cap. 6 Daniel W. Hart[1]

May 7, 2017 | Author: Heflin Gonzales Yance | Category: N/A
Share Embed Donate


Short Description

Download Solucion Cap. 6 Daniel W. Hart[1]...

Description

INGENIERÍA ELÉCTRICA Y ELECTRONICA

SOLUCIONARIO DE LOS PROBLEMAS

CONVERTIDOR REDUCTOR: 6.1) Cual es la relación Vo/Vs y la eficiencia del convertidor lineal descrito en la Sección 6.1 Vo/Vs=(Vs+Vce)/Vs

La eficiencia del convertidor lineal esta dado al consumo del transistor, este actúa como resistencia variable, la eficiencia va de la mano del valor del transistor. 6.2) una fuente de continua debe reducir el nivel de tensión de una fuente de 100V a 30V. La potencia de salida es 100W. a) Determine el rendimiento del convertidor lineal de la figura 6.1 cuando lo utilicemos en esta aplicación. b) ¿Cuánta energía se pierde en el transistor en un año? c) ¿Cuánto cuesta la energía perdida en un año

a) Vs=100 Vo=30 Vce=70 Rendimiento en función del consumo del transistor, el rendimiento es de 0.3 b)

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA Perdida en el transistor:

b) Perdida en dinero, el costo del KW/hora es 0.38 :

6.4) El convertidor reductor de la figura presenta los siguientes parámetros Vs  24V , D  0.65 , L  50 H , C  75 F , R  10 La frecuencia de conmutación es de 25 KHz. Determine: a) La tensión de salida b) Las corrientes máximas y mínimas c) El rizado de la tensión d) SOLUCION: La tensión de salida será:

Vo  Vs  D V0  24*0.65  15.6V La corriente máxima

 1 1 D  I L m áx.  V0     R 2 Lf  1  0.65 1  I L m áx .  15.6    1.9968 A 3  10 2 x 250 x 25 x10  La corriente mínima  1 1 D  I L min .  V0     R 2 Lf 

1  0.65 1  I L min .  15.6    1.1232 A 3  10 2 x 250 x 25 x 10   Rizado de la tensión de salida

V0 1 D  V0 8 LCf 2 ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

V0 (1  0.65)   0.373% V0 8 x 250 x75 x 25 x106

6.5) El convertidor reductor de la figura presenta los siguientes parámetros

Vs  15V , D  0.6 , L  50 H , C  150 F , R  5 La frecuencia de conmutación es de 50 KHz. determine: a) La tensión de salida b) Las corrientes máximas y mínimas c) El rizado de la tensión de salida

SOLUCION: La tensión de salida será:

Vo  Vs  D

V0  15*0.6  9V La corriente máxima

 1 1 D  I L m áx.  V0     R 2 Lf 

1  0.6 1  I L m áx .  9    2.52 A 3   5 2 x50 x50 x10  La corriente mínima  1 1 D  I L min .  V0     R 2 Lf 

1  0.6 1  I L min .  9    1.08 A 3   5 2 x50 x50 x10  Rizado de la tensión de salida

V0 1 D  V0 8 LCf 2

V0 (1  0.6)   0.267% V0 8 x50 x150 x50 x106

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

6.6) El convertidor reductor de la figura presenta una entrada de 50V y una salida de 25V. la frecuencia de conmutación es de 10KHz y la potencia de salida es de 125W.

a) Calcule el ciclo de trabajo b) Calcule el valor de la inductancia que limite la corriente de pico en la bobina a 6.25A c) Calcule el valor de la capacidad que limite el rizado de la tensión de salida a un 0.5%. SOLUCION: PARAMETROS

Vs  50V V0  25V f  10KHz

Ps  125W

R  10 Ciclo de trabajo:

Vo 25   0.5 Vs 50

D

La corriente en el inductor será:

IL 

125  6.25 A 50

La inductancia será:

L

Vs (1  D ) D 2 fI L

L

50(1  0.5)0.5  10mH 2 x104 x6.25

Para un rizado de:

V0  0.005 V0 La capacitancia será:

C

C

Vs  V0 V 8L 0 f 2VS V0

50  25  12.5mF 8 x10 x0.005 x50

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

6.3) Un convertidor reductor presenta una entrada de 60V y una salida de 25V . la resistencia de la carga es de 9Ω, la frecuencia de conmutación es de 20kHz, L=1mH y C=200µF. a) Calcule el ciclo de trabajo

D

Vo 25   0.417 Vs 60

b) Calcule la corriente media, de pico y eficaz de la bobina

I med 

I máx  I mín 2

iL R  1 (1  D)   VO   2 Lf  R

I máx  I L  I máx

(1) 1  I máx  25   3 3  9 2 110  20 10  I máx  3.402778 A

iL R  1 (1  D)   VO   2 Lf  R

I mín  I L  I mín

(1) 1  I mín  25   3 3  9 2 110  20 10  I mín  2.152778 A c) Calcule la corriente media de la fuente

3.402778  2.152778 2  0.625 A

I med  I med

I pico  2  I máx I pico  4.8122548 A

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

6.4) El convertidor reductor de la figura presenta las tensiones Vs=30V y V0=20V y una frecuencia de conmutación de 40kHz. La potencia de salida es de 25W. determine el tamaño de la bobina para que la corriente mínima sea el 25% de la corriente media en la bobina. SOLUCION:

a) Tamaño de la bobina si:

I L min  25% I L Calculando el ciclo de trabajo:

D

20  0.67 30

La potencia absorbida por la carga es igual a la entregada por la fuente, entonces calculamos la corriente de salida que será igual a la corriente media de la bobina

I L0 

P 25   1.25 A VS 20

Por dato del problema:

I L min  25% I L I L min  0.25 x1.25  0.313 A También sabemos que:

iL 2 1 V (1  D)   IL   O  2  Lf 

I L min  I L 

I L min

I L min  1.25 

0.5 x20 x(1  0.67)  0.3123 A Lx40 x103

Para lo cual reemplazando obtenemos:

L  88 H

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

6.5) Un convertidor reductor presenta una tensión de entrada que varía entre 50 y 60 V y una carga que varía entre 75 y 125 W. La tensión de salida es 20 V. Calcule la inductancia mínima que proporcione corriente permanente en todos los modos de operación para una frecuencia de conmutación de 20 kHz. SOLUCIÓN:

VO  VS D D  0.4 Para que L sea mínimo debemos trabajar con los siguientes datos:

 1 (1  D)  imáx  VO   2 Lf  R imáx 1 (1  D)   VO R 2lf 2.5 1 1  0.4   20 20 2 L  20 103 1.5  40 103  L  0.6 20 L  2 mH

6.6) Diseñe un convertidor reductor de manera que la tensión de la salida sea 28V cuando la entrada sea 48V. el valor de la carga es de 8Ω y la corriente en la bobina es permanente. El rizado de la tensión de salida no deberá superar el 0.5%. especifique la frecuencia de conmutación y el valor de cada uno de los componentes. PARÁMETROS:

V0  28V VS  48V

R  8 I L  cte El rizado de la tensión será:

V0  0.005V0 Elegimos arbitrariamente una frecuencia mayor a los decibeles de la radio:

f  40 KHz Calculando el ciclo de trabajo: ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

D

28  0.583 48

Sabemos que:

Lmin 

(1  D) R 2f

Entonces reemplazando datos:

Lmin 

(1  0.583)8  41.7  H 2 x40 x103

El valor de la bobina será un 25% mayor a la mínima para que la corriente en la bobina sea permanente

L  1.25x41.7  52.125 H El valor de la capacitancia será:

C

C

1 D V 8L( 0 ) f 2 V0

1  0.583  12.5 F 8 x52.125 x0.005 x 402

6.7) Especifique el valor de la tensión y de la corriente para cada uno de los componentes del diseño del problema anterior SOLUCION: La corriente media en la bobina:

iL 

(Vs  V0 ) D fL

iL 

(48  28)0.583  5.592 A 52.125 x40 x103

La corriente pico en el condensador:

iL 5.592   2.796 A 2 2 La corriente eficaz en el condensador:

I eff

iL  2  1.61A 3

Tensión máxima en el diodo:

VS  48V ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

Tensión en la bobina cuando esta cerrado:

VS  V0  48  28  20V Tensión en la bibona cuando esta abierto:

V0  28V La tensión que tolera el condensador:

VS  28V 6.8) Diseñe un convertidor reductor que produzca una salida de 15V a partir de una fuente de 24V. el valor de la carga es de 2A, y la corriente en la bobina es permanente. especifique la frecuencia de conmutación y el valor de cada uno de sus componentes suponiendo que son ideales DATOS:

V0  15V VS  24V I c arg a  2 A

I L  cte Calculamos la resistencia de la carga por la Ley de Ohm:

R

VS I CARG .



24  7.5 2

Calculando el ciclo de trabajo:

D

15  0.583 24

Tomamos arbitrariamente el valor de la frecuencia que será:

f  25KHz La inductancia mínima será:

Lmin 

(1  D) R 2f

Lmin 

(1  0.623)7.5  93.75 H 2 x25 x103

Para que la corriente en la bobina sea permanente:

L  1.25x93.75  117.19 H

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

6.9) Diseñe un convertidor reductor que presente una salida de 12V a partir de una entrada de 18V. la potencia de salida es de 10W. el rizado de la tensión de salida no deberá superar los 100mV pico a pico. Especifique el ciclo de trabajo, la frecuencia de conmutación y los valores de la bobina y el condensador. Suponga que la corriente en la bobina es permanente y que los componentes son ideales. PARAMETROS:

V0  12V VS  18V PS  10W El rizado de la tensión será:

V0  100mV V0 La frecuencia arbitraria será:

f  40 KHz El ciclo de trabajo será:

D

12  0.667 18

La resistencia de la carga:

P0 

V02 R

122 R  14.4 10 La inductancia mínima:

Lmin 

(1  D) R 2f

Lmin 

(1  0.667)14.4  59.94 H 2 x40 x103

La inductancia para la corriente permanente:

L  1.25x59.94  74.93 H La capacitancia será:

C

C

1 D V 8L( 0 ) f 2 V0

1  0.667  3.47  F 8 x74.93 x(0.1) x 402

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

CONVERTIDOR ELEVADOR 6.15)

El convertidos de la figura presenta los siguiente parámetros

VS  20V

D  0.6 R  12.5 C  200 F L  65 H f  40 KHz a) La tensión de salida:

V0 1  VS (1  D )

V0 

20  50V 1  0.6

b) La corriente media:

IL 

VS (1  D) 2 R

IL 

20  10 A (1  0.6) 2 x12.5

Calculando la corriente máxima y minima:

iL VS D  2 2 Lf iL 20 x0.6   2.31A 2 2 x65 x 40 x103 Corriente máxima:

iL 2  10  2.31  12.31A

I max  I L  I max

Corriente mínima:

iL 2  10  2.31  7.69 A

I min  I L  I min

c) El rizado de la tensión de salida:

V0 D  V0 RCf V0 0.6   0.6% V0 12.5 x 200 x 40 x103 d) La corriente media en el diodo es

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA 6.16) Un convertidor elevador presenta una entrada de 5V y una salida de 20W a 15V. la corriente mínima en la bobina no debe ser menor que el 50% de la media. El rizado de la tensión de salida debe ser menor que un 1%. La frecuencia de conmutación es de 30KHz . determine el ciclo de trabajo y el valor mínimo de la bobina y el valor mínimo del condensador. PARAMETROS:

V0  15V VS  5V PSal  20W f  30KHz Donde:

I L min  50% I V0  1% V0 Calculando el ciclo de trabajo:

D  1

5  0.67 15

Calculando la resistencia de la carga:

V02 P0  R R

152  11.25 20

La corriente media será:

IL 

VS (1  D) 2 R

IL 

5  4.08 A (1  0.67) 2 x11.25

Por dato la corriente mínima será:

I L min  50% I

I Lmin  0.5 x 4.08 I L min  2.04 A Pero también:

1 V (1  D)  I L min  I L   O  2  Lf  5 x0.67 I L min  4.08   2.04 A Lx30 x2 x103 Lmin  27.37  H

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA Calculando la capacitancia:

V0 D   1% V0 RCf

0.67 11.25 x0.01x30 x103 C  198.52 F C

6.17) Dibuje la corriente en la bobina y en el condensador del convertidor elevador del problema 10. Determine los valores eficaces de etas corrientes. El parámetro D:

T  2.5x105 DT  1.5x105 Los valores eficaces serán: Capacitor:

I Ceff 

2.31  1.33 A 3

Inductor

I Leff 

10  5.77 A 3

6.18) Diseñe un convertidor elevador que presente una salida de 36V utilizando un generador de 24V. la carga es de 50W. el rizado de la tensión de la salida deberá ser menor del 0.5%.especifique el ciclo de trabajo la frecuencia de conmutación, el tamaño de la bobina y el valor eficaz. suponga que la corriente es permanente y que los componentes son ideales. PARAMETROS:

V0  36V VS  24V

P0  50W V0  0.5% V0 La frecuencia arbitraria que se toma es:

f  30KHz Donde: Calculando el ciclo de trabajo:

D  1

24  0.33 36

Calculando la resistencia de la carga: ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

P0 

V02 R

R

362  25.92 50

La corriente media será:

IL 

VS (1  D) 2 R

IL 

24  2.0626 A (1  0.33) 2 x 25.92

Por dato la corriente mínima será:

iL VS D  2 2 Lf iL 24 x0.33   2.06 A 2 2 x64 x30 x103 La corriente eficaz será:

I Leff 

2.06  1.19 A 3

6.20) El convertidor elevador de la figura presenta los siguientes parámetros y la frecuencia de conmutación es = 40 KHz Hallar: a) determine la tensión de salida b) determine la corriente media, máxima, mínima de la bobina. c) Determine el rizado de tensión de la bobina. Parámetros: figura:

Vs  12v D  0.6 R  10 L  50  H C  200  F Solución: a)

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

 D  V0  Vs    1 D   0.6  V0  12    1  0.6  V0  18v

b)

Vs D R(1  D) 2 12*0.6 IL  10(1  0.6) 2 I L  4.5 A IL 

Vs D V DT  s 2 R(1  D) 2L 12*0.6 12*0.6*1   2 10(1  0.6) 2*50*10 6 * 40*10 3  4.66 A

I max  I max I max

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

Vs D V DT  s 2 R(1  D) 2L 12*0.6 12*0.6*1   2 10(1  0.6) 2*50*106 * 40*103  4.34 A

I min  I min I min

c)

I min  0 V0 D  V0 RCf V0 0.6  V0 10* 200*10 6 * 40*10 3 V0  0.0075  0.75% V0

6.21) Dibuje la corriente en la bobina y en el condensador del convertidor reductor elevador del problema 6.20 determine los valores eficaces de estas corrientes.

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

6.22) En el convertidor elevador de la figura anterior presenta las siguientes Tensiones Vs  24v y V0  36v y una resistencia de carga de 10 ohms si la frecuencia de conmutación es de 60KHz. a) determine la inductancia de manera que la corriente mínima sea un 40% de la media. b) Determine la capacidad necesaria para limitar el rizado de la tensión de salida a un 0.5% a) hallando el ciclo de trabajo D

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

 D  V0  Vs    1 D   D  36  24    1 D  D  0.6

 Del dato tenemos I min  40% I L

Vs D R(1  D) 2 24*0.6 IL  10(1  0.6) 2 IL  9A IL 

 Hallando la inductancia

Vs DT 2L Vs DT L 2( I L  I min ) I min  I L 

24*0.6*1 2(0.6*9) *60*10 3 L  22.2  H L

 Hallando la capacidad

I min  0 V0 D  V0 RCf C

D V0 Rf V0

0.6 10*60*103 *0.005 C  200 F C

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

6.23) Diseñe un convertidor reductor elevador que entregue una carga de 75W a 50v utilizando una fuente de 40v el rizado de salida no debería ser superior al 1%, especifique el ciclo de trabajo, la frecuencia de conmutación, el tamaño de la bobina y del condensador. Solucion:  Hallando la resistencia de la carga

R V 2 / P R  502 / 75 R  75  Hallando el ciclo de trabajo

 D  V0  Vs    1 D   D  50  40    1 D  D  0.55 Nota: seleccionando una frecuencia de conmutación de 25KHz superior al rango auditivo podemos encontrar la inductancia mínima para una corriente permanente.

Lmin 

(1  D) 2 R 2f

(1  0.55) 2 75 2* 25*103  303.75 H

Lmin  Lmin

Escogeremos entonces una inductancia mayor a Lmin igual a L  310 H

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

 Hallando la capacidad

V0 D  V0 RCf C

D V0 Rf V0

0.55 75* 25*10 3 *0.01 C  29.3 F C

6.24) Diseñe un convertidor CC-CC que produzca una salida de 15v utilizando un generador cuya tensión varíe entre 12v y 8v. la carga de la resistencia es de 15 ohms.

Datos:

8  Vs  12v V0  15v R  15 f  25 KHz

 Hallando la variación del ciclo de trabajo.

8  Vs  12 V0 (1  D)  12 D 8 (1  D) 12   15 D 15 15 15 D 27 23 0.55  D  0.65

8

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

 Hallando la variación de la inductancia mínima. Para D = 0.55

Lmin 

(1  D) 2 R 2f

(1  0.55) 215 2* 25*103  33.41 H

Lmin  Lmin Para D = 0.65

Lmin 

(1  D) 2 R 2f

(1  0.655) 215 2* 25*103  23.88 H

Lmin  Lmin Entonces

23.88  Lmin  33.41

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

V0  100mV ..........V0  12V .......VS  18V ....PS  10W V0 5  0.67 15 f  40 KHz

D  1

V02 152 ......R   11.25 R 20 (1  D ) R (1  0.667)14.4 Lmin  ...Lmin   59.94  H 2f 2 x 40 x103 L  1.25 x59.94  74.93 H P0 

C

1 D V 8 L( 0 ) f 2 V0

C  200  F .....VS  20V .....D  0.6....R  12.5 L  65 H ...... f  40 KHz V0 1 20  ......V0   50V VS (1  D ) 1  0.6 VS (1  D) 2 R 5 IL   4.08 A (1  0.67) 2 x11.25 I Lmin  0.5 x 4.08 IL 

I L min  2.04 A iL VS D  2 2 Lf iL 20 x0.6   2.31A 2 2 x65 x 40 x10 3 i I max  I L  L 2 I max  10  2.31  12.31A iL 2  10  2.31  7.69 A

I min  I L  I min

V0 D   1% V0 RCf 0.67 11.25 x0.01x30 x103 C  198.52  F C

ELECTRÓNICA INDUSTRIAL

INGENIERÍA ELÉCTRICA Y ELECTRONICA

ELECTRÓNICA INDUSTRIAL

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF