Sol. Ex Virtual 4
March 20, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Sol. Ex Virtual 4...
Description
4. Bkfsunta an djpnghbdckr ca nd hiurd 4 qua 4 qua kpard bkf ufd sknd uafta ca dngjaftdbgòf. (d) Catarjgfa nks pdräjatrks af bc X E( BAT(T5). BAT(T4), X BAT( E(T5), X A, GBT , X BAT( E(T4), X E( (e) Rupkfgafck qua an vkntdoa ca aftrdcd as ca 40 Xpp, catarjgfa nd pktafbgd aftraidcd dn rasgstkr ca bdrid.
d) XE(T4) : 9.1X + 0.9X : =.5X XE(T5) : 9.1X ‒ 0.9X : 8.=X
X E:
G BT :
41 X :9.1 X 5
X BB ∕4.3 X U4 + U5
:
41 X ∕4.3 X : 8.= jD 4 l Χ+ 4 lΧ
XBAT(T4) : 41X ‒ 9.1X : 9.1X XBAT(T5) : 0X ‒ 9.1X : ‒9.1X e) Xgf : Xkut : 40XPP : 2.13Xrjs 5
P N:
X N U N
( 2.13 XX ) )5 : :489 jY 91 Χ
5. Catarjgfa nd ahbgafbgd can djpnghbdckr bndsa B casbrgtk af an prkenajd 4 sg X BBBB : 41 X y nd rasgstafbgd af pdrdnank aqugvdnafta af an bgrbugtk tdfqua can bknabtkr as ca 10 kmjgks. Bkfsgcara qua an trdfsgstkr parjdfaba afbafcgck curdfta an 40% can pargkck. 5
3 » P » sdn :
0.1 X BB
Ub
0.1 ( 41 X ) ) : 10 Χ
5
:5.51 Y
P C( Prkj):
( ) t afb S
G b ( sdt ) X ba( sdt ) :( 0.4 ) ( 0.4= X ) ) ( 51 jD ): 31 jY
P sdn 5.51 Y : ι: :0.7=02 :7 = . 02 % P sdn + P C ( prkj) 5.51 Y + 0.31 jY
a rrd af nd hiurd 5 as 2. Cdck qua an vkntdoa ca crafdoa d arrd 5 as ca 1 X, catarjgfa an puftk T can bgrbugtk.
Casca X UC:7 X ∕ ∕1 X :3 X G C :
X UC U C
:
3 X : 0.=1 jD 3.9 l Χ
X R : G C U R:( 0.=1 jR ) ( 2.2 l Χ ):5.=4 X
(
X I :
U5 U4 + U5
) ( X CC :
5.5 J Χ 45.5 J Χ
)(
) ) :4.85 X
7 X
X IR :X I∕X R:4.85 X ∕5.=4 X :∕4.47 X An puftk T astd af ? G C :0.=1 jD,X IR:∕4.47 X 3. An puftk T ca uf OHAS bdjegd ca X CR CR : 0.8 X a GC : 0.31 jD. Catarjgfa an CR : 0.3 X a GC : 0.41 jD d X CR gftarvdnk ca vdnkras ca UCR.
T0 ? U CR :
T 4 ? U CR :
X CR G C X CR G CC
:
0.3 X :5.89 l Χ 0.41 jD
:
0.8 X :4.22 l Χ 0.31 jD
UCR nk mdba ca 5.89l d 4.22 l
1. Nd mkod ca cdtks ca uf A-JKRHAS ravand qua GC (afbafcgck) : 40 jD bkf X IIRR : 45 X y X IR(ujerdn) IR(ujerdn) : 2 X. Catarjgfa GC budfck X IR IR : 8 X.
L :
G C ( kf)
»»»
G C : L ( X IR∕X IR( khh ) ) : ( 0.45 jD / X ) (∕ 8 X + 2 X ) ) :4.0= jD 5
5
5
b d d nd sdngcd af nd hiurd 2, 8. Rg ufd bdrid ca 4100 kmjgks sa dbkpnd pkr bd 2, »buän as an vkntdoa ca sdngcd rasuntdfta (rjs) budfck sa dpngbd ufd aftrdcd ca 10 jXrjs; ij : 1000 jgbrkR.
Dv : ijUc Uc : 4.1 l 4.1 l : 910 Dv : ijUc : (1,000 R)(910 ) : 2.91 Xkut : DvXgf : (2.91)( 10 jX) : 4== jX rjs 9. Catarjgfa X IR 3, GC (afbafcgck) : 4= jD bkf X IIRR : 40 X, X IR(ujerdn) IR, GC y X CR CR pdrd an djpnghbdckr ca nd hiurd 3, IR(ujerdn) : 5.1 X y ij : 2000 jgbrkR.
U CC : 8.= l Χ ( 50 X ) :1.3= X IR : U +5 U ( X CC 1.3=X X ) 53.= l Χ 4 5
(
)
(
)
G C : L ( (X IR∕X IR( ujerdn ) ) : 0.25 jD / X 5
5
5
( 1.3= X ∕5.1 X ) )
: 5.=3 jD
XCR : XCC ‒ GC(UC + UR) : 50 X ‒ (5.=3 jD)(4.0 l ) : 49.5 X =. Pdrd an djpnghbdckr sgf bdrid ca nd hiurd 1, 1, afbuaftra X IIRR, GC, X CR CR y an vkntdoa rjs ca sdngcd X cs cs. GC (afb) : = jD d XIR : 45 X, X IR(ujerdn) IR(ujerdn) : 3 X y ij : 3100 R.
(
X IR :
L :
U5 U4 + U5
)
( X CC ):
G C ( kf)
( X IR ∕X IR (tm ))
5
:
(
)
39 l Χ ( 4= X ) ):7 X 73 l Χ
= jD 5
∕3 X ) ) ( 45 X ∕
G C ( kf): L ( X IR ∕X IR (ujerdn ) ) :0.451 jD / X 5
: 0.451 jD / X 5
5
( 7 X ∕ 3 X )
5
: 2.42 jD
XCR : XCC ‒ GCUC : 4= X ‒ (2.451 jD)(4.1 l ) : 42.2 X
D v : ij U c :3,100 ±R ( 4.1 l ):8.91 X cs: D v X » :8.91 ( 400 jX ) ):891 jXrjs X cs: D v X » :8.91 ( 400 jX ) ):891 jXrjs
7. Pdrd an saiugckr ca uafta ca nd hiurd 8, 8, catarjgfa nd idfdfbgd ca vkntdoa y nd rasgstafbgd ca aftrdcd. GIRR : 10 pD d X IR IR : 41 X y ij : 1100 jgbrkR.
U R:4.5 L Χ ∡ 40 J Χ 4.5 L Χ ≁
DX :
ij UR 4+ i j U R
U » :
:
( 1,100 ξR ) ( 4.5 L Χ ) : 0.=8= 4+ (1,100 ξR ) ( 4.5 L Χ )
X IR G
| |
:
∕41 X 10 pD
44
:2∙40 Χ
IRR
U» :40 J Χ ∡ 2∙4044 Χ 40 J Χ ≁
| |
40. Pdrd uf djpnghbdckr bdsbkck bkjk an jkstrdck af nd hiurd 9, 9, ij : 5=00 jgbrkR, GIRR : 5 fD bkf X IIRR : 41 X. Rg U2 : 41 Jkmjgks y N : 4.1 jM, catarjgfa nd idfdfbgd ca vkntdoa y nd gjpacdfbgd ca aftrdcd. bkf h : 400 JMz.
Dv ij (BI)]N : ij(BI)(5 h N) : (5=00 R)(5 (400 JMz)(4.1 jM) : 5,827
U» : U2 ∡
( ) X IR
G IRR
:41 J Χ ∡
( ): 41 X 5 fD
43.79 J Χ
44. Nd sdngcd ca uf djpnghbdckr bndsa C as ca 7 X. Rg nd saôdn ca aftrdcd as ca 1 jX, »buän as nd idfdfbgd ca vkntdoa;
X kut D : v
7 X » : 1 jX : : 4,=00
45. Pdrd ufd rabuafbgd ca 51 lMz, »buän as nd rasgstafbgd ajundcd af uf bgrbugtk ca bdpdbgtkr bkfjutdck sg B : 0.004 jgbrkH;
U :
4
:
hB
4
( 51 lMz ) ( 0.004 H )
:30 l
42. Qf gftarruptkr dfdnòigbk ungzd uf JKRHAS ca bdfdn f bkf X IR IR (ujerdn) : 3 X. Ra dpngbd uf vkntdoa ca + = X d nd bkjpuartd. Catarjgfa nd saôdn ca aftrdcd jäxgjd pgbk d pgbk qua puaca sar dpngbdcd sg sa gifkrd nd bdêcd ca vkntdoa aftra an crafdoa y nd uafta. X I - X p(sdn ) : X IR IR (ujerdn) X p(sdn ) : X I - X IR IR (ujerdn) : = X - 3 X : 3 X X pp(aft ) : 5X p(sdn ) : 5(3 X) : = X
43. Catarjgfa nd bdpdbgtdfbgd Jgnnar ca aftrdcd af nd hiurd = sgiugafta. = sgiugafta.
X A:
(
U5
U 4+ U 5
)
(
X BB ∕0.9 X :
G A :
X A U A
:
r ³ a :
)
3.9 l Χ ( 50 X ∕0.9 X ) ) :4.97 X 29.9 l Χ
4.97 X : 2.5 jD 180 Χ
51 jX 2.5 jD
:9.= Χ
D v :
U a r ³ a
5.5 l Χ ∡ 1.8 l Χ : 505 9.= Χ
:
B » (jgnnar ):B eb ( D v + 4 ): 3 pH ( ( 505 + 4 ):=45 pH 41. Bgartk djpnghbdckr axmgea ufd pktafbgd ca sdngcd ca 1 Y bkf ufd pktafbgd ca aftrdcd ca 0.1 Y. »Buän as nd idfdfbgd ca pktafbgd af cE;
Pkut 1Y D p : : :40 P» 0.1 Y D P ( cE ):40 nki nki40
P kut P»
:40 nk nki40 i40 :40 cE
48. Rg an vkntdoa ca sdngcd ca uf djpnghbdckr as ca 4.5 X rjs y su idfdfbgd ca vkntdoa as 10, »buän as an vkntdoa ca aftrdcd rjs; »Buän as nd idfdfbgd af cE; kut X » : X : 4.5 X :53 jXrjs 10 D v
D v ( cE ):50nki ( D v ) :50nki10: 23 cE 49. Qf djpnghbdckr pdrbundr afa nds sgiugaftas rabuafbgds brêbds gfargkras? 51 Mz, 35, Mz y 428 Mz. Sdjegçf afa rabuafbgds brêbds supargkras ca = lMz y 50 lMz. Catarjgfa nds rabuafbgds brêbds supargkr ca jdykr vdnkr y nd gfargkr ca jafkr vdnkr.
h bn:428 Mz 428 Mz h bu: = LMz 4=. Qfd h S : 500 JMz sa tkjd ca nd mkod ca cdtks ca uf trdfsgstkr ungzdck af uf bgartk djpnghbdckr. Rg sa catarjgfd qua nd idfdfbgd af rabuafbgds jacgds as 2= y sg h bnbn as suhbgaftajafta edod pdrd sar casprabgdcd bkjpdrdcd bkf h bbuu, »quç dfbmk ca edfcd aspardrêd; »Tuç vdnkr ca h bu bu aspardrêd; h S : (EY)Dv(jgc)
EY : Pkr nk tdftk, h bu bu EY : 1.58 JMz
h S D v (jgc )
:
500 JMz :1.58 JMz 2=
47. »Buän as nd rabuafbgd brêbd gfargkr ckjgfdfta ca jafkr vdnkr ca uf djpnghbdckr ca tras atdpds af an budn h bbnn : 10 Mz.
h ³ bn:
10 Mz
∟
5
4 2
:
∕4
300 :7=.4 Mz 0.140
50. Catarjgfa bdpdbgcdcas vdnkr fkjgfdn ca pktafbgd jêfgjd can trdfsgstkr ca nd hgiurd 7
Uaft(edsa) : cbUA : 70(420) : 44.9l U5 Uaft(edsa) : 4l44.9l : 754
(
X E:
U5 U » (edsa) U4 + U5 U » ( edsa)
)
X BB :
754 Χ ( 53 X ) ) :2.72 X 1.85 lΧ
XA : XE ‒ XEA : 2.72X ‒ 0.9X : 2.52 X
G BT G A : ≁
X A U A
XB : XBB ‒ GBT UB : 53X ‒ (53.=jD)(180) : 42.7 X XBAT : XB ‒ XA : 42.7X ‒ 2.52X : 40.9X PC(jgf) : PCT : GBT XBAT : (53.=jD)(40.9X) : 581jY
: 2.52 X :53.= jD 420 Χ
View more...
Comments