Soil Mechanics II Problem
December 2, 2016 | Author: AliMuhammedTekin | Category: N/A
Short Description
Soil Mechanics Problem...
Description
EFFECTIVE STRESS
PROBLEM-1 Calculate total stress, porewater pressure and effective stress on a horizontal plane at levels A, B, C, D and draw the depth versus stress diagrams (z-s).
n 17 kN/m 3 k 18 kN/m 3 d 20 kN/m 3
d 18.5 kN/m3
SOLUTION-1 s s uw POINT-A
s A n . z 17 3 51 kN/m3 uwA w . z 0 s A s A uw 51 kN/m 3
n 17 kN/m
3
k 18 kN/m 3 d 20 kN/m 3
POINT-B
s B 17 3 18 2 87 kN/m 3 uwB w . z 0 s B s B uw 87 kN/m3 POINT-C
s C 17 3 18 2 20 1 107 kN/m 3 uwC w . z 9.81 1 9.81 kN/m3
d 18.5 kN/m3
s C s C uw 107 9.81 97.19 kN/m3 POINT-D
s D 17 3 18 2 20 1 18.5 2.5 153.25 kN/m 3 uwD w . z 9.81 3.5 34.34 kN/m 3
s D s D uw 153.25 34.34 118.91 kN/m3 or briefly, using buoyant unit weights '
s D 17 3 18 2 (20 9.81) 1 (18.5 9.81) 2.5 118.91 kN/m3
VERTICAL STRESS DIAGRAM
SHEARING RESISTANCE of SOILS
PROBLEM-1 Diagnose thr soil type with the data from three shearbox tests.
s
100
200
300
max
58
115
175
200
Kesme Kutusu Kırılma Zarfı
100
100
200
300
s
c=0 =30 Zemin Türü KUM
PROBLEM-2 Zemin örnekleri üzerinde yapılan kesme kutusu deneyinde aşağıdaki sonuçlar elde edildiğine göre; bu zeminlerin türünü tayin ediniz. s (kPa)
10
20
30
Simge
t1 (kPa)
6.25
12.49
18.76
•
t2 (kPa)
18.54
22.67
26.51
o
PROBLEM-3 Results of four triaxial shear tests on a c- are given. Calculate the shearing resistance if this soil is tested in the shear box at a normal stress of sn=200 kPa s3 (kPa)
50
100
200
300
s1 (kPa)
150
300
600
700
Graphical solution must be used for tests more than two,because circles are variable
c=0 =30?? or
c=20kPa =20
s=max=c+stan=20+200tan20=
ELASTIC - PLASTIC EQUILIBRIUM
PROBLEM-1 Calculate the shearing resistance of the sand at a normal stress of 100 kPa, given the result of triaxial tests. Test No
Cell pressure (kPa)
Deviator stress
Major principal stress, (kPa)
1
100
277.5
377.5
2
200
524.0
724.0
3
300
770.0
1070.0
Here, you have a choice: use graphical or analytical method.
c=0 and =34°: SAND
s c s tan 0 100 tan 34 67.5 kPa
s1f=s3N+2cN0.5
377.5=100N+2cN0.5 1070 =300Nf+2cN0.5
PROBLEM-2 The following results have been obtained from a triaxial (UU) test on a sample of clay. Determine the type of soil and its parameters. Test No
Cell pressure s3 (kPa)
Deviator Stress sd (kPa)
Major principal stress s1 (kPa)
1
100
140
240
2
200
135
335
3
300
150
450
We draw a horizontal envelope regardless what the results show
Type: Normally loaded clay
c
70 67.5 75 71 kPa 3
PROBLEM-3 The uncunfined compressive stregth qu of a soil is given as 130 kPa olarak veriliyor. The same soil was tested in the triaxial cell with the cell pressure s3=qu . The deviator stress at failure was measured as 230 kPa. Determine the shearing resistance parameters and guess its type. s3=0 s3=130
s 1 qu 130 kPa s 1 s 3 s d 130 230 360 kPa
Graphic solution
Analytical solution
s1 s 3 N 2 c N 130 0 N 2 c N 360 130 N 2 c N N
230 1.769 130
N tan 2 45 1.769 2 =16 From the stress circle c=50 kPa =16 c- soil (overconsolidated)
130 2 c N c 49 kPa
PROBLEM-4 Serbest basma dayanımı qu=100 kPa olan yumuşak kil ve kayma direnci açısı =30 olan kum için s- diyagramı çizerek kırılma zarflarını işaretleyiniz. Bu zeminlerin d=20 kN/m3 ise yüzeyden 5 m derinlikte kayma direnci denklemlerini yazınız.
Kayma direnci denklemleri NL Kil Kum
sc
qu 100 50 kPa 2 2
s s tan z tan 5 20 tan 30 57.7 kPa
PROBLEM-5 Aşağıda kesiti verilen zeminden alınan numuneler üzerinde üç eksenli kesme deneyi yapılmıştır. Buna göre kesitte a) efektif gerilmenin, b) kayma direncinin derinlikle değişimini gösteren s-z doğrularını çiziniz. YASS
5
SP
n =18.5
2
d =22.1
3
a) EFEKTİF GERİLME
KUMDA KİLDE
8
s 5m 37 3 22.1 9.81 73.9 kPa
s13m 73.9 8 18.7 9.81 145.1 kPa
b) KAYMA DİRENCİ
d =18.7
CH
s 2 m 2 18.5 37
KUMDA
s 1 s 3 s deviatör max s1 s 3 N 2 c N
UU Deney Sonuçları ( sdeviatörmax ) ZEMİN
s3 = 100
s3 = 200
SP
70
140
CH
59
55
170 100 N
N 1.70
tan 2 45 1.70 2
s c veya
cu
s0
0.11 0.037 I P
s s tan15
0 YASS
37 SP
74
5
59 30 kPa 2
15
0
0 2
KİLDE
c
340 200 N
9.9 19.8
30
s
30
CH
s c 30 kPa 13
s
145
PROBLEM-6
PROBLEM-7 Draw the total stress diagrams for the soil profile shown
GWL SP
=32 OCR=3 d= 21 kN/m3
CH OCR= 1 IP= 40 d= 19 kN/m3
EARTH PRESSURES
PROBLEM 1:
Determine the active lateral earth pressure on the frictionless surface shown in figure. Calculate the resultant force and its location from the base of the wall. STEP-1: Calculate Ka H=5 m
d 20 kN / m3 30o c0
1 Sin 1 Sin(30o ) 1 Ka veya o 1 Sin 1 Sin(30 ) 3 30 1 2 2 K a tan (45 ) t an (45 ) 2 2 3
STEP-2: Calculate the vertical effective stress (s’z) Yüzeyde: s z 0
uw 0
Tabanda: s z .H o (20 9.81) 5 51 kPa uw w .H o 9.81 5 49 kPa
STEP-3: Calculate the lateral effective stress (s’x)a
1 (s x ) a K a .s z 51 17 kPa 3
PROBLEM 1: (continued) STEP-4: Sketch the lateral earth pressure distributions Lateral Earth Yanal Toprak Pressure Basıncı
Su BasıncıPressure Hydrostatic
H=5 m
17 kPa
49 kPa
STEP-5: Calculate the active thrust
Pa Psu basıncı Ptoprak basıncı where (Pwater pressure) is the due to the pore water and (Pearth pressure) is the lateral force due to the soil
Pa
1 1 1 1 (s x ) a H o u H o ( 17 5) ( 49 5) 165 kN/m 2 2 2 2
STEP-6: Determine the location of the resultant Since both lateral pressure and the pore water (hydrostatic)pressure distributions are triangular over the whole depth, the resultant is at the centroid of the triangle, that is;
z H o / 3 5/ 3 1.67 m
from the base of the wall
PROBLEM 2:
Determine the active earth pressure on the frictionless surface shown 15 kPa
GWT
STEP-1: Calculate Ka and Kp
H=4 m
d 19 kN/m
1 sin 1 sin 26 K a tan 2 (45 ) 0.39 2 1 sin 1 sin 26 1 sin 1 sin 26 K p tan 2 (45 ) 2.56 2 1 sin 1 sin 26
3
26o c 8 kPa
STEP-2: Calculate the vertical effective stress (s’z) Yüzeyde: s z 0 uw 0 Tabanda: s z .H o (19 9.81) 4 36.76 kPa uw w .H o 9.81 4 39.24 kPa
STEP-3: Calculate the lateral effective stress at the base (s’x)a (s x )a Ka .s z 0.39 36.76 14.34 kPa
STEP-4: Calculate the lateral effective stress due to external load at the base(s’q)a (s q )a K a .q 0.39 15 5.85 kPa
STEP-5: Calculate the lateral tension effect due to cohesion (s’c)a (s c ) a
2c N
28 26 tan 2 (45 ) 2
10 kPa
PROBLEM 2: (continued) STEP-6: Sketch the distributions of lateral earth pressure 15 kPa
GWT GWT
Lateral Earth Yanal Toprak Pressure Basıncı
Yayılı Load Yük
Hydrostatic Su Basıncı
Cohesion Kohezyon
H=4 m
(+) 14.34 kPa
(+) 5.85 kPa
(+) 39.24 kPa
STEP-7: Calculate the total lateral force (thrust)
Pa Pearth Pload Pwater Pcohesion 1 1 (s x ) a H o (s q ) a H o u H o (s c ) a H o 2 2 1 1 Pa ( 14.34 4) 5.85 4 ( 39.24 4) 10 4 2 2 Pa 28.68 23.4 78.48 40 90.56 kN Pa
(-) -10 kPa
PROBLEM 3: Determine the active earth pressure on the frictionless surface shown. 10 kPa SW
n 17 kN/m3
H=3 GWT
SP H=3
32o SW
n 19.31 kN/m 3 30o SP
STEP-1: Calculate Ka values
1 sin 1 sin 32 ( K a ) SW tan 2 (45 ) 0.307 2 1 sin 1 sin 32 1 sin 1 sin 30 ( K a ) SP tan 2 (45 ) 0.333 2 1 sin 1 sin 30
PROBLEM 3: (continued) 10 kPa
H=3
SW n 17 kN/m3 GWT
32 SW SP d 19.31 kN/m 3
Yayılı Load Yük
I
o
H=3
30 SP
Yanal Toprak Lateral Earth Basıncı Pressure SW SW
III
1
II
Yanal Toprak Lateral Earth Basıncı Pressure SP SP
3
IV 4
5
p1 q K aSW 10 0.307 3.07 kPa p2 q K aSP 10 0.333 3.33 kPa p3 K aSW nSW H SW 0.307 17 3 15.66 kPa p4 nSW H SW K aSP 17 3 0.333 16.98 kPa H SP K aSP (19.31 9.81) 3 0.333 9.50 kPa p5 SP
6
FORCES
PRESSURES
p6 W HW 9.81 3 29.43 kPa
VI
V
o
2
Hydrostatic Su Basıncı Pressure
PaI 3.07 3 9.21 kN / m PaII 3.33 3 9.99 kN / m 1 23.49 kN / m 2 16.98 3 50.94 kN / m
PaIII 15.66 3 PaIV
1 14.25 kN / m 2 1 29.43 3 44.15 kN / m 2
PaV 9.50 3 PaVI
P 152.05 kN / m
PROBLEM 4 Bir SW kumda yapılan kesme kutusu deneyinde aşağıdaki sonuçlar alınmış. Kum 5 m derinlikte büyük bir kutuya ( B=10 m, L=30 m ) dolduruluyor. Kapağın a) kuru durumda sükunette, b) kuru durumda aktif, c) kutu su ile dolu iken pasif durumda alacağı toplam itkiyi bulunuz. 3 3 H=5m
X
s
( k 19 kN / m , d 22.5 kN / m ) Results from Shearbox tests
max
m
L=30m
10 = B
1 ) Calculate shearing resistance of sand:
a)
113 229 tan 37 150 300
Test No
1
2
s
150
300
113
229
s max s tan s tan37
K0 1 Sin 1 sin 37 0.398 p0 K 0 z k 0.398 5 19 37.81 kPa
tabanda
1 1 P0 k H 2 K 0 B 19 52 0.398 10 945.3 kN 2 2
sw
pa K a z k 0.249 5 19 23.66 kPa
Aktif Durum (Kuru Kum)
5m
1 Sin 1 b ) K a tan 2 45 tan 2 26.5 0.249 2 1 Sin N
tabanda
1 1 Pa k H 2 K a B 19 52 0.249 10 591.4 kN 2 2
63.5 23.66 kPa
1 Sin c) K p tan 2 45 N tan 2 63.5 4.023 2 1 Sin p p K p z z w 4.023 5 12.69 5 9.81 255.26 49.05 304.31 kPa taban
sw
Pasif Durum (Batık Kum)
5 m
1 1 Pp H 2 K p B w H 2 B 2 2 1 1 Pp 12.69 52 4.023 10 9.81 52 10 2 2 Pp 6381.5 1226.3 7607.8 kN
26.5
255.26 kPa
49.05 kPa
PROBLEM 5 Calculate the force F required to keep the door in active equilibrium. 30 1 K a SP tan 2 45 2 3 35 K a SW tan 2 45 0.271 2
FORCES (THRUST)
PRESSURES p1 18 2
1 12 kPa 3
1 p2 18 2 20 9.81 1 15.4 kPa 3
p3 p4 18 2 10.19 1 0.271 12.5 kPa p5 0 p6 22 9.81 3 0.271 9.91 kPa p7 0 p8 9.81 4 39.24 kPa
1 2 12 12 kN / m 2 1 Pa 2 12 15.4 1 13.7 kN / m 2 Pa 3 12.5 3 37.5 kN / m Pa1
MOMENTS
1 3 9.91 14.9 kN / m 2 1 Pa 5 39.2 4 78.4 kN / m 2 P 156.5 kN / m Pa 4
M0 0
2 3 1 6 F 12 3 1 13.7 3.4 37.5 1.5 14.9 78.4 4 F 46 kN / m 3 3 3
PROBLEM 6 Construct the active pressure diagram on vertical plane XX and calculate the thrust Pa. Dry sand Submerged CH
X
3
k=19 kN/m3 SP =300 YASS
d=18 kN/m3 3 =100 CH c=10 kPa 2
d=22 =450
kN/m3
cohesion
I
1
VI 4
2
IV
III X
3
pressures 1 p1 19 3 19 kPa 3 p2 19 3 0.704 40.13 kPa
p3 19 3 0.171 9.75 kPa p4 18 9.81 3 0.704 17.30 kPa p5 18 9.81 3 0.171 4.20 kPa 2c 2 10 p6 16.78 kPa 1.192 N
p7 22 9.81 2 0.171 4.17 kPa
p8 9.81 5 49.05 kPa
(- )
10 K aCH tan 2 45 0.704 2
6
V 5
30 1 K a SP tan 2 45 2 3
45 K aGW tan 2 45 0.171 2
CH
II
GW
submerged GW water
VIII
7 VII 8
FORCES
10 N CH tan 45 1.192 2
1 PaI 3 19 28.47 kN / m 2
PaII 3 40.13 120.39 kN / m Pa III 2 9.75 19.5 kN / m 1 PaIV 3 17.30 25.95 kN / m 2
PaV 2 4.20 8.40 kN / m PaVI 3 16.78 50.34 kN / m 1 PaVII 2 4.17 4.17 kN / m 2 1 PaVIII 5 49.05 122.63 kN / m 2
P 279.17 kN / m
Örnek:
XX düzleminde aktif toprak basıncı diyagramlarını çizip toplam aktif kuvveti Batık (Pa) hesaplayınız. Batık 3
CH
Kuru kum
X
k=19 kN/m3 SP =300 YASS
d=18 3 =100 c=10 kPa
CH
d=22 =450
GW
kohezyon CH
I
1
Su
GW
kN/m3
2
VI
II 4
2
kN/m3
IV
III X
3
Basınçlar
(-)
6
V
VIII
7 VII
5
8
Kuvvetler
p1 19 3
1 PaI 3 18.98 28.47 kN / m 2 PaII 3 40.13 120.39 kN / m
p3 19 3 0.171 9.75 kPa
Pa III 2 9.75 19.5 kN / m
p4 18 9.81 3 0.704 17.30 kPa
PaIV
1 18.98 kPa 3 p2 19 3 0.704 40.13 kPa
p5 18 9.81 3 0.171 4.20 kPa p6
2c N
2 10 16.78 kPa 1.192
p7 22 9.81 2 0.171 4.17 kPa p8 9.81 5 49.05 kPa
30 1 K a SP tan 2 45 2 3 45 K aGW tan 2 45 0.171 2 10 K aCH tan 2 45 0.704 2 10 N CH tan 45 1.192 2
1 3 17.30 25.95 kN / m 2 PaV 2 4.20 8.40 kN / m PaVI 3 16.78 50.34 kN / m 1 2 4.17 4.17 kN / m 2 1 5 49.05 122.63 kN / m 2
PaVII PaVIII
P 279.17 kN / m
KISA SINAV-1 • Aşağıdaki kesitte sürtünmesiz duvara etkiyen toplam aktif kuvveti hesaplayıp, bu kuvvetin etkime noktasını bulunuz. 33 kPa
1 Sin N 1 Sin 1 Ka N Kp N
SP n=17 kN/m3 = 330
2.5 m YASS
CI d=19.81 kN/m3 =110 c=22 kPa
3.5 m
Sonuçları Ka virgülden sonra 3 hane, yükler ve basınçlar için ise 2 hane olacak şekilde yuvarlayınız.
KISA SINAV-1 (Çözüm) 33 kPa SP YASS
CI
n=17 kN/m3 = 330
2.5 m
d=19.81 3.5 m kN/m3 0 =11 c=22 kPa
YÜK
SP
CI
CIKOHEZYON
SU
I III
1
3
2
II (+)
4
IV (+)
V (+)
VI 5
6
(-)
1 Sin N 1 Sin
KaSP
1 1 Sin 0.295 N 1 Sin
1 1 Sin KaCI 0.680 N 1 Sin
VII (+)
7
KISA SINAV-1 (Çözüm) 33 kPa SP YASS
P
CI
x=?
n=17 kN/m3 = 330
2.5m
d=19.81 3.5 m kN/m3 0 =11 c=22 kPa
YÜK
SP
CI
SU
I III
1
3
2
II (+)
4
IV (+)
p1 q KaSP 33 0.295 9.74kPa p2 q KaCI 33 0.680 22.44kPa p3 SP H SP KaSP 17 2.5 0.295 12.54kPa p4 SP H SP KaCI 17 2.5 0.680 28.90kPa H CI KaCI (19.81 9.81) 3.5 0.680 23.80kPa p5 CI p6
CIKOHEZYON
2c 2 22 36.29kPa N 1.47
p7 w H w 9.81 3.5 34.34kPa
VI
V
5
(+)
6
(-)
VII
7
(+)
PI 9.74 2.5 24.35 kN / m PII 22.44 3.5 78.54 kN / m 12.54 2.5 15.68 kN / m 2 PIV 28.90 3.5 101.15 kN / m PIII
23.80 3.5 41.65 kN / m 2 PVI 36.29 3.5 127.02 kN / m PV
34.34 3.5 60.10 kN / m 2 P 194.45 kN / m PVII
194.45 kN / m X 24.35 4.75 78.54 1.75 15.68 4.33 101.15 1.75 41.65 1.17 127.02 1.75 60.10 1.17 X 2.03 m
RETAINING WALLS
PROBLEM-2: Check the equilibrium of the wall. b20
DOLGU
duvar= 23 kN/m3
H=3.5 m
20
Df=1m O
= 21 kN/m3 = 300
a88 B=2.5m
DOĞAL ZEMİN
n = 18 kN/m3 = 150 c =12 kN/m2
Problem 2 (Solution) - Aktif ve Pasif Kuvvetlerin Hesabı b20
Pv
Pp
O
Ph
DOĞAL ZEMİN
a 88, b 20, 20, 30
Pa
n = 18 kN/m3 = 150 c =12 kN/m2
a88 B=2.5m
K a 0.436
= 21 kN/m3 = 300
Pa
H=3.5 m Df=1m
DOLGU
Coulomb
1 21 3.52 0.436 56.1 kN / m 2
15, b 0 K p tan 2 45 1.7 2
Pp
1 18 12 1.7 15.3 kN / m 2
Aktif Kuvvetin Yatay Bileşeni Ph 56.1 cos 90 88 20 52 kN / m Aktif Kuvvetin Düşey Bileşeni Pv 56.1 sin 90 88 20 21 kN / m
Problem 2 (Solution) - Duvarın Ağırlığı B-2x x
x
H=3.5 m
Duvar üst genişliği tan a
3.5 3.5 x x tan a
3.5 2.50 2 2.50 2 0.122 2.25 m tan 88
duvar= 23 kN/m3 Df=1m
a88
O B=2.5m
x
M b, taş Alantaş taş
1 2.5 2.25 3.5 23 191.19 kN / m 2
Mtaş=191.2
H=3.5 m
Problem 2 (Solution) - Sliding check
Pv=21
DOLGU = 21 kN/m3 = 300
Pa=56.1 Ph=52
a88
Pp=15.3 B=2.5m
n = 18 kN/m3, = 150, c =12 kN/m2
Düşey Fz Mb, taş +Pv 191.2 21 212.2 kN / m Resisting Forces FR Fz f B c Pp
2 2 F 212.2 tan 15 2.5 12 R 15.3 37.42 20 15.3 3 3 FR 72.2 kN/m
GS KAYMA
F
R
Ph
72.2 1.39 1.50 KAYMAZ, GÜVENSİZ 52
Df=1m
Mtaş=191.2
H=3.5 m
Problem 2 (solution) - Sliding check DOLGU = 21 kN/m3 = 300
Pv=21
Pa=56.1 Ph=52
a88
Pp=31.5
n = 18 kN/m3, = 150, c =12 kN/m2
B=2.5m
30, b 0 K p tan 2 45 3.0 2
Pp
1 21 12 3 31.5 kN / m 2
KONTROLDE G.S.=1.00 ARANIR
2 2 F 212.2 tan 15 2.5 12 R 31.5 37.42 20 31.5 88.92 kN / m 3 3
FSSLIDING
F
R
Ph
88.92 1.71 1.50 52
Does not slide, safe
Problem 2 (solution) - Overturning control :
Pv=21
H=3.5 m
1.25m
Mb, taş=191.2 B/3=1.17m
Df=1m
O 2.46 m
B=2.5m
GSOVERTURN
Ph=52
M M
RES
OVER
880 X
tan a
1.17 1.17 x 0.04 m x tan 88
191.2 1.25 239 26.03 52 1.17 21 2.46 60.84 51.66
Does not overturn, safe
Problem 2 (solution) - eccentricity
Mb, taş=191.2
Pv=21
H=3.5 m
1.25m
F
z
x
Df=1m
212.2
Ph=52
e
O
880 2.46 m
F
z
x M0
B=2.5m
212.2 x 191.2 1.25 21 2.46 52 1.17 M x F
o
z
229.82 1.08 m 212.2
B 2.5 e x 1.08 0.17 m 2 2
Problem 2 (solution) - eccentricity
Mtaş=191.2
Pv=21
F
z
x 1.08
Df=1m
O
212.2 e=0.17
H=3.5 m
1.25m
Ph=52
880
2.46 m
B=2.5m
smin=50.3
smax=119.5
s
min
0, s max qemn
s
max min
max s min
F
6e 1 BL B 212.2 6 0.17 1 2.5 1 2.5 119.5 kPa z
s max s min 50.3 kPa
PROBLEM-3: Determine the dimensions of the wall against sliding, overturning and eccentricity.
Dimensions selected b20
duvar= 24 kN/m3
DOLGU 21 c0 30
8.5 m
Df=1.3 m
DOĞAL ZEMĠN 16 c 12 18
PROBLEM-3 (solution) - Ön Boyutlandırma b=20-30cm
100
2
Seçilen Boyutlar
Konsol
H
0.3 m
b20
0.08H-0.1H 0.33B
B=0.4H-0.7H
7.7 m 8.5 m
2.2 m
0.8 m
Df=1.3 m B=6.5 m
(Gerekirse Diş)
0.8 m
PROBLEM-3 (solution) – Yanal Toprak Basınçları Dolguda
0, b 20, 30
Try B=6.5m (0.4-0.7H!) b20
(Rankine)
H=8.5 m
K a cos b Pa
cos b cos b cos 2
2
0.397
1 21 8.52 0.397 301.2 kN / m 2
Pa Pa
Pv
Doğal Zeminde 18
b=200
Ph Df=1.3
cos b cos 2 b cos 2
Pp b20
18 K p tan 2 45 1.894 2 1 Pp 16 1.32 1.894 25.6 kN / m 2
Ph Pa cos 20 283.04 kN / m Pv Pa sin 20 103.02 kN / m
PROBLEM-3 (solution) – Ağırlıklar 0.3 m
b20
3.7 m
dolgu= 21 kN/m3 duvar= 24 kN/m3
Ms Gövde
7.7 m 8.5 m
Mb
2.2 m
0.8 m
3.5 m
Df=1.3 m B=6.5 m
Temel
0.8 m
0.8 0.3 7.70 24 124.8 101.6 226.4 kN / m 2 3.5 3.7 Ms 7.70 21 582.1 kN / m 2
M b 6.5 0.8 24
PROBLEM-3 (solution) Sliding Check
DOLGU 21 c0 30
Ms=582.1
H=8.5 m
Mb=226.4
b20
Pv 103.02 b=200
Ph 283.04 Pp=25.6
Df=1.3
H/3=m B=6.5 m
Doğal Zemin 16 c 12 18
F
R
F F F
z
M b Pv M s
z
226.4 103.02 582.1
z
911.52 kN / m
2 2 18 2 12 2 Fz tan B c Pp 911.52 tan 6.5 25.6 271.4 kN / m 3 3 3 3
FSkayma
F
R
Ph
271.4 0.96 1.25 283.03
Wall slides! Assuming GS=1.25 is enough for sliding, make a key to obtain the required additional passive resistance.
Mb=226.4
Wanted total passive resistance :
21 c0
30
Pv 103.02
Ms=582.1
Ph 283.04 H/3=m
Df=1.3
D=?
Pp=??
PROBLEM-3 (solution) Kayma Kontrolu Diş Uygulaması
B=6.5 m
Doğal Zemin 16 c 12 18
Ddiş=?
Re quired additional passive res. : FSsliding
F
R
Ph
271.4 PpEK
283.03
Key depth :1.4 m Then ;
1.25 Pp EK 283.03 1.25 271.4 82.39 kN / m
Wanted total passive resistance : PpToplam 25.6 82.39 107.99 107.99
FSoverturn
1 16 D2 1.89 D 2.67 m Ddiş D D f Ddiş 2.67 1.3 1.4 m 2
F
R
Ph
Key depth : 1.4m, Then : D f 2.7 m 1 Pp 16 2.72 1.894 110.46 kN / m 2 193.75 52 110.46 1.259 1.25 283.03
√
(Dişten doğan beton ağırlığı lehimize hesaba katılmadan).
MbTEMEL=124.8
MbBOYUN=101.6
PROBLEM-3 (solution) Check for overturning
21 c0
30
Pv 103.02
Ms=582.1
Df1=1.3
Ph 283.04 8.5/3
Df2=2.7
B=6.5 m
Pp=110.46 Ddiş=1.4 1
Doğal Zemin
16 c 12 18
FSoverturn
M
2.6 3.25 4.7 Duvar temeli MbTEMEL
Boyun MbBOYUN
diş
Duvar üzerindeki molgu Ms
124.8 3.25 101.6 2.6 1.4 1 24 3.25 582.1 4.7 8.5 Ph z Pv b 283.04 103.02 6.5 3 o
3514.8 26.6 132.3
MbTEMEL=124.8
MbBOYUN=101.6
PROBLEM-3 (solution) Eccentricity
21
Pv 103.02
c0
30
Ms=582.1
Ph 283.04
Df1=1.3
8.5/3
Df2=2.7
B=6.5 m
Pp=110.46 Ddiş=1.4
Doğal Zemin
1
16 c 12 18
2.6
F
z
3.25
x Mo
4.7
M x F
boyun
temel
o
z
dolgu
Pv
Ph
405.6 264.16 109.2 2735.87 669.63 801.95 3382.51 3.58 m 911.52 33.6 945.12 M b Pv M s
M diş 1.4 1 24
B 6.5 x 3.58 3.25 3.58 0.33 m 2 2 Fz 6e 945.12 6 (0.33) 189.7 1 1 kPa s min 0, s max qemn 101.1 BL B 6.5 1 6.5 e
max s min
diş
PROBLEM-3 (solution) Check for bearing capacity (strip footing)
1 qd c( N c ) D f ( N q ) B( N ) 2 = 18 Nc= 15.5
Nq=6
N=3.9
qd 12 15.5 18 1.3 6 0.5 18 6.5 3.9 186 140 228 554kPa sem= qd/FS 185 kPa
smax=189kPa OK!
PROBLEM-5: Calculate the active pressure acting on the wall a)Horizontal fill state of Rankine b)Sloping (b) fill state by Rankine c)Sloped (b) fill state by Coulomb approaches.
25
b20 a ) Rankine, horizontal
sw
H=6m
= 350 k = 22kN/m3
K a tan2 45 Pa
35 0.271 2
1 22 62 0.271 107.32 kN / m 2
b ) Rankine, b
a8
K a cos b
Pa
cos b cos 2 b cos 2 cos b cos b cos 2
2
0.303
1 22 62 0.303 119.99 kN / m 2
c ) Coulomb, b
Ka
Pa
sin 2 a sin sin b sin 2 a sin a 1 sin a sin a b
1 22 62 0.378 149.69 kN / m 2
2
0.378
BEARING CAPACITY
PROBLEM 1: Calculate the highest axial column load (Qmax) for square and circular footings. Qmax
SC Df=3m
c=10 kPa =19 kN/m3 = 20
For =20 Nc=17.69 Nq=7.44 N= 4.97
B=Df=1
Footing base at -3m But by definition Df B →
For square footing
⁂
Df= 1m
qd 1.3 c N c 1 D f N q 0.4 2 B N
=(1.3x10x17.69)+(19x1x7.44)+(0.4x19x1x4.97) =230+141+28= 410 kPa Ultimate load Pmax=qdxA=410x12 = 410 kN Circular footing
qd 1.3 c N c 1 D f N q 0.3 2 B N
= (1.3x10x17.69)+(19x1x7.44)+(0.3x19x1x4.97)=230+141+28=399 kPa Ultimate load Pmax=qdxA=399p0.52=313 kN This is 76% of the square footing !!
P
PROBLEM 2: Şekilde verilen daire temelde 2.5 güvenlik sayısı ile taşınabilecek yükü (Qem=P) hesaplayınız.
2m
300
SP
n 19.5 kN / m3 YASS
3m
200 SC
c 15 kPa
d 20 kN / m3
qd K1 c Nc Cw 1 Df Nq C'w K2 2 B N Daire Temel İçin Şekil Katsayıları K1=1.3, K2=0.3 (D=B)
=30o Nq 22.46 ve 20o Nc 17.69, N 4.97 (Terzaghi)
YASS olmasa idi Cw=C’w=1
qd 1.3 15 17.69 119.5 2 22.46 1 0.3 20 3 4.97
P
qd 344.96 875.94 89.46 1309.36 kPa Son Taşıma Gücü
SP
Qd
p D2
p x32
qd 1309.36 9255 kN 4 4 Güvenli Taşıma Gücü Q 9255 Qemn d 3702 kN GS 2.5
SC
YASS temel tabanında ise Cw=1, C’w=0.5
qd 1.3 15 17.69 1 19.5 2 22.46 0.5 0.3 20 3 4.97
P
qd 344.96 875.94 44.73 1265.63 kPa Son Taşıma Gücü
SP YASS
SC
Qd
p D2
qd
p x32
1265.63 8946 kN
4 4 Güvenli Taşıma Gücü Q 8946 Qemn d 3579 kN GS 2.5
YASS yüzeyde ise Cw=C’w=0.5
P YASS
SP
SC
qd 1.3 15 17.69 0.5 19.5 2 22.46 0.5 0.3 20 3 4.97 qd 344.96 437.97 44.73 827.66 kPa Ultimate load Qd
p D2
Allowable load Qemn
qd
p x32
827.66 5850.4 kN
4 4 Q 5850.4 d 2340 kN GS 2.5
M=600 kNm P=1200 kN
1.75 m
300
SP
k 20 kN / m3
footing to carry 1200 kN axial load and 600 kNm moment .
B
200 2m
c 20 kPa
d 19 kN / m3
PROBLEM 3: Design a square
SC YASS
B’
M 600 0.5 m B B 2e P 1200 B Re quired e try min imum size B 3 m 6 B 3 2 0.5 2 m
e
B
B
Şekil katsayıları yeni boyutlara göre bulunacak
B 2 B 2 K1 1 0.2 1 0.2 1.133 K 2 0.5 0.1 0.5 0.1 0.433 L 3 L 3 db 2 Su Seviyesi Düzeltme Katsayıları 0.67 Cw 0.82 (temelin gerçek boyutu kullanılıyor) B 3 q K cN C D N C K BN B B' alınacak d
1
c
w
1
f
q
w
2
2
30 için N q 22.46, 20 için N c 17.69, N 4.97 qd 1.133 20 17.69 1 20 1.75 17.69 0.82 0.433 19 2 4.97 qd 400.86 619.15 67.06 1087.07 kPa Qd q d B L 1087.07 2 3 6522.42 kN GS
max s min
Qd 6522.42 5.44 P 1200
P 6e 1200 6 0.5 267 1 1 0 kPa B L B 3 3 3 (temelin gerçek boyutu kullanılıyor)
PROBLEM 4: A footing will be designed to carry an axial load of 20000 kN with
one basement, using properties measured in laboratory. The owner has accepted to use select material (c=0, f=40, =22kN/m3) up to the garden level. P=20000 kN
Select fill
GP = 40 = 22 kN/m3 (backfill)
3.5m
B
CH (natural soil) c = 60 kPa = 16 = 18.5 kN/m3
SOLUTION We shall use basement depth as -3.5m and use it as the footing dimension (B=Df). We shall then demonstrate the profound effect of Df on the bearing capacity. Bearing capacity factors from Table IV-1, page 97 CH =16 : Nc =13.68 N=2.94 ; GP 40: Nq81.27 kitaptan
The ultimate bearing capacity of square footing by Terzaghi
qd 1.3cN c 1 D f N q 0.4 2 BN =(1.3x60x13.68)+(22x3.0x81.27)+(0.4x18.5x3x2.94) =(1067+5364+65)= 6496 kPa The benefit of coarse material is observed in the high second term. Let us use a FOS like 3 to be on the safe side sall = qd/FOS = 6496/3 = 2165 kPa
The load to be carried by a footing 3.5 by 3.5: Qem = sem x A = 2165x32 = 19485 KN
which is sufficiently above the required load Q=20000kN !
PROBLEM 5: YASS I düzeyinde iken şekilde gösterilen yükleri (Mx= 280 kNm, My= 120 kNm, P= 1700 kN) 2.5 güvenlikle taşıyacak bir temeli Terzaghi yöntemi ile boyutlandırınız. Bulunan boyutlara göre su seviyesinin YASS II düzeyine düşmesi ile güvenlik sayısında oluşacak değişimi hesaplayınız.
Taşıma gücü katsayıları; ' 36 için Nq 47.16, ' 28 için Nc 31.61, N 15.15
Terzaghi
Çift yönde eksantriklik var; Mx =280 kNm, My =120 kNm MB =120 kNm, ML =280 kNm eB
MB 120 0.071 m Bmin 6e 6 0.071 0.42 m P 1700
eL
ML 280 0.165 m Lmin 6e 6 0.165 0.99 m P 1700
Seçim:
B=1.50 m, L=1.70 m
B B 2e 1.5 2 0.071 1.36 m L L 2e 1.7 2 0.165 1.37 m
Şekil katsayıları yeni boyutlar için, B’≈L’ olduğu için kare gibi; YAS I-I için;
da 3 1 Cw 0.5 Df 3
Son taşıma gücü Terzaghi ile;
K1 1.3
K2 0.4
db 0 0 C* w 0.5 B 1.50
(B=B’, Df>B olduğu için Df=B alınacak)
qd K1 c Nc Cw 1 Df Nq C* w K 2 2 B N qd 1.3x40x31.61 0.5x20x1.50x47.16 0.4x0.5x19x1.36x15.15 1643.72 707.4 78.30 2429.4 kPa Yük:
Güvenli Yük:
Qd qd B L 2429.4 1.36 1.37 4526.5 kN Qemn
Qd 4526.5 1811 kN GS 2.5
YASS II-II için;
Son taşıma gücü;
da 0 0 Cw 1 Df 3
db 0 0 C* w 0.5 B 1.50
qd K1 c Nc Cw 1 Df Nq C* w K 2 2 B N qd 1.3x40x31.61 1x20x1.50x47.16 0.4x0.5x19x1.36x15.15 1643.72 1414.8 78.30 3136.82 kPa
Yük:
Qd qd B L 3136.82 1.36 1.37 5845 kN
Böylece su seviyesinin düşürülmesi ile
GS
Qd 5845 3.44 ’e yükseliyor. P 1700
PROBLEM 6: Calculate the reduction in the ultimate bearing capacity of the footing shown below if the GWT rises from level AA to BB.
B
1
B
3 3 GWL rises
3.5 A
A c=11kPa =15 d=21kN/m3
SOLUTION Using Terzaghi formula
GWL
GWL at A-A: =15 Çizelge IV- 1
Nc=12.9 Nq=4.5 N=2.2
da/Df= 0.0/4.0= 0 Şekil 4.13 Cw=1.0
db/B=3/3.5=0.86
and Cw*=0.91
Infinite (strip) footing L>>B
* 1 qd c( N c ) Cw D f ( N q ) Cw B( N )
2
qd ( 11 12.9 ) 1.0( 21 3.5 4.5 ) 0.91( 0.5 21 3.5 2.2 ) 141.9 330.75 73.6 546 kPa
GWL rises to B-B da/Df= 3.0/4.0= 0.75 Şekil 4.13 Cw= 0.63 0.50
db/B=0/3.5=0.0
Cw’=
qd ( 11 12.9 ) 0.63( 21 3.5 4.5 ) 0.50( 0.5 21 3.5 2.2 ) 141.9 208.4 40.4 391 kPa This means a drop of 28% by a rise of 3 m in the groundwater level!
PROBLEM 7: Design a rectangular footing to carry the axial load and moments shown on soil with c=20 kPa, =20 and n= 18 kN/m3 at a depth of 1.5m. MB=450kNm
ML=750kNm P=950kN
SOLUTION: I shall select dimensions to provide a square footing. So, eL= ML/P= 750 kNm/950 kN = 0.79m eB= MB/P= 450 kNm/950 kN = 0.48m Therefore, use
L= 3.10m
L’=L-2eL= 3.10-1.58 1.50m
B= 2.50 m B’ =B-2eB=2.50-0.96 1.50m
Çizelge IV-1
=20:
Nc =17.69
Nq= 7.44
N= 4.97
Kare temelin son taşıma gücü
qd 1.3cN c 1D f N q 0.4 2 BN Qd= (1.5)2{(1.3x20x17.69)+(18x1.5x7.44)+(0.4x18x1.50x4.97)} = 2.25(460 + 201 + 54) = 2.25x715 = 1608 kN FOS = 1608/950 = 1.70 < 3.0
TRY AGAIN !
Check contact stresses
P 6e 950 6 0.79 s max (1 ) (1 ) 310kPa B L B 3.1 2.5 3.1 950 6 0.48 s min (1 ) 18kPa 3.1 2.5 2.5 Dimensions are unsuitable, try again!
View more...
Comments