Soil-HW51
Short Description
hw...
Description
DEPARTMENT OF CIVIL ENGINEERING
CEG133/ V77 GEOTECHNICAL ENGINEERING
ASSIGNMENT NO. : 3
Weight-Volume Relationship TOPIC
PREPARED BY:
Reyes, Reycelyn D. DATE SUBMITTED:
_____________
SUBMITTED TO: __ ENGR. GERARDO DB. ABESTILLA____
3.1 For a given soil, the following are given: Gs = 2.67; moist unit weight, Ξ³ = 17.61 KN/m3, and moisture content, w = 10.8%. Determine: a.) Dry unit weight b.) Void ratio c.) Porosity d.) Degree of saturation
Solution: Ξ³
a) Ξ³d =
=
1+π€ Ξ³π€ πΊπ
b) Ξ³d =
17.61 1.108
= 15.89 kN/m3
1+π (2.67)(9.81)
15.89 =
1+π
e = 0.65 c) n =
e 1+π
=
0.65 1.65
= 0.39
d) Se = wGs S =
(0.108)(2.67) 0.65
x 100%
= 44.50% 3.2 Refer to Problem 3.1. Determine the weight of water, in KN, to be added per cubic meter of soil for: a.) 80% DEGREE OF SATURATION b.) 100% DEGREE OF SATURATION
Solution: a. ) S =
vπ€ π£π£
βS = 80 β 44.50 = 35.5% n =
vπ€
0.39
=
π£π
; VT = 1m3 vπ£ 1
Vv = 0.39 0.355 =
vπ€ 0.39
;
Vw = (0.355)(0.39) Vw = 0.140 m3 Ww = 0.140 x 9.81 = 1.37 Kn
b. ) βS = 100 - 44.5 = 55.5 S =
vπ€ π£π£
; 0.555 =
Vw = 0.218 m3 Ww = 0.138 x 9.81 = 2.14 kN
vπ€ 0.39
3.3 A 0.4-m3 moist of soil sample has the following: Moist mass = 711.2 kg Dry mass = 623.9 kg Specific gravity of soil solids = 2.68 Estimate: a. Moisture content b. Moist density c. Dry density d. Void ratio e. Porosity
Solution: a. ) w =
711.2β623.9 623.9
( 100)
w = 13.99% 711.2
b. ) Ο =
0.4 Ο
c.) Οd =
= 1778 kg/m3
1+ w 1778
Οd =
1+ .1399
Οd = 1559.79 kg/m3 Gπ Οπ€
d. ) Οd =
1+e
e = 0.7182 e. ) n =
e 1+ e
n = 0.4180 3.4 For a given sand, the maximum and minimum void ratios are 0.78 and 0.43, respectively. Given Gs = 2.67, determine the dry unit weight of the soil in kN/m3 when the relative density is 65%.
Solution: Dr =
eπππ₯ β e ππππ₯ βeπππ
; 0.65 =
0.78β e 0.78β0.43
e = 0.5525 Ξ³d =
(2.67)(9.81) 1.5525
= 16.87 kN/m3
3.5 In its natural state, a moist soil has a volume of 9.35 x 10-3 m3 and weighs 177.6 x 10-3 kN. The oven-dry weight of the soil is 153.6 x 10-3 kN. If Gs = 2.67, calculate the moisture content, moist unit weight, dry unit weight, void ratio, porosity, and degree of saturation.
Solution: 177.6π₯10β3
Ξ³m =
9.35x10β3
Ξ³m = 18.99 kN/m3 w =
(177.6x10β3)β(153.6x10β3) 153.6x10β3
x 100
w = 15.625% 153.6x10β3
Ξ³d =
9.35 π₯ 10β3
Ξ³ = 16.423Kn/m3 Gπ Ξ³π€
Ξ³d =
1+e
16.428 =
(2.67)(9.81) 1+e
e = 0.5944 e
n =n+ e = 0.3728 S =
π€Gπ e
=
S =
G π Ξ³π€ 1+e 0.15625(2.17) 0.5944
x 100
S = 70.19 % 3.6 For a given sandy soil, emax = 0.75, emin = 0.46, and Gs = 2.68. What will be the moist unit weight of compaction (kN/m3) in the field if Dr = 78% and w = 9%?
Solution: Dr =
eπππ₯ β e eπππ₯ β eπππ
; 0.78 =
0.75 β π 0.75β0.46
E = 0.5238 Ξ³d =
G π Ξ³π€ 1+π
=
(2.68)(9.81) 1.5238
= 17.25 kN/m3 Ξ³d =
Ξ³ππππ π‘ 1+π€
; 17.25 =
Ξ³ππππ π‘ 1+π€
Ξ³moist = 18.81kN/m3
3.7 The moist weight of 5.66 x 10-3 of a soil is 102.3 x 10-3 kN. The moisture content and the specific gravity of the soil solids are determined in the laboratory to be 11% and 2.7, respectively. Calculate the following: a. Moist unit weight (kN/m3) b. Dry unit weight (kN/m3) c. Void Ratio d. Porosity e. Degree of saturation (%) f. Volume occupied by water (m3)
Solution: Vππππ π‘
a. ) Ξ³moist =
=
π
102.3 x 10β3 5.66 π₯ 10β3
Ξ³moist = 18.07 kN/m3 Ξ³ππππ π‘
b.) Ξ³d =
=
1+ π€
18.07 1.11
Ξ³d = 16.28 kN/m3 G π Ξ³π€
c. ) Ξ³d =
; 16.28 =
1+π
(2.7)(9.81) 1+π
e = 0.63 d. ) h =
π 1+π
0.63
=
= 0.39
1.63
e. ) Se = wGs; S(0.63) = (0.11)(2.7) S = 47.39% f. ) s =
Vπ€ Vπ£
0.39 =
; n =
Vπ£ V
Vπ£ 5.66x10β3 Vπ€
0.4739 =
; Vv = 2.180 x10-3
2.180 x 10β3 -3
Vw = 1.03 x 10
;
m3
3.8 For a given sandy soil, the maximum and minimum dry unit weights are 16.89 kN/m3 and 14.46 kN/m3, respectively. Given Gs = 2.65, determine the moist unit weight of this soil when the relative density is 60% and the moisture content is 8%.
Ξ³d max = 16.98 kN/m3
0.60 =
Ξ³d(min) = 14.46 kN/m3
1 1 β 14.46 Ξ³π 1 1 β 14.46 16.98
Gs = 2.65
Ξ³d
= 15.87 kN/m3
Dr = 60%
Ξ³m = Ξ³d(1 + w)
w = 8%
Ξ³m = 15.87 ( 1+0.08) Ξ³m = 17.14 kN/m3
3.9 The saturated unit weight of a soil is 19.8 kN/m3. The moisture content of the soil is 17.1%. Determine the following: a. Dry unit weight b. Specific gravity of soil solids c. Void ratio
Solution: Ξ³sat =19.8 kN/m3 w = 17.1% wGs = Se 0.171Gs = e (Gπ +π)(Ξ³π€ )
Ξ³sat =
1+ e
; 19.8 =
(Gπ +0.171Gπ )(9.81) 1+ 0.171Gπ
Gs = 2.44 (Gπ Ξ³π€ )
Ξ³d =
1+ e
Ξ³sat = Ξ³d (1 + w) 19.8 = Ξ³d (1+0.171) Ξ³d = 16.91 kN/m3 e = 0.171 (2.44) e = 0.4172 3.11 The unit weight of a soil is 14.94 kN/m3. The moisture content of this soil is 19.2% when the degree of saturation is 60%. Determine: a. Void ratio b. Specific gravity of soil solids c. Saturated unit weight
Solution: a. ) Ξ³
=
Se
(Gπ +π)(Ξ³π€ )
( +Se)Ξ³π€ w
1+ e
1+ e
; 14.94 =
14.94 =
(0.6π) +0.6π)(9.81) 0.192
(
1+ e
e = 0.69 b. ) Se = wGs; (0.6)(0.69) = (0.192)Gs Gs = 2.16 c. ) Ξ³sat =
(Gπ +π)(Ξ³π€ ) 1+ e
=
(2.16+0.69)(9.81) 1.69
Ξ³sat = 16.54 kN/m3
3.12 A saturated soil has the following characteristics: initial volume(Vi) = 24.6 cm3, final volume (Vf) = 15.9 cm3, mass of wet sol (m1) = 44 g, and mass of dry soil (m2) = 30.1 g. Determine the shrinkage limit.
Solution: SL = SL =
m1 βm2
(100)-
V π βVπ
(Οw)(100)
m2 44β30.1
m2 24.6β15.9
30.1
30.1
(100)-
(1g/cm3)(100)
SL = 17.28% 3.13 The moist unit weights and degrees of saturation of a soil are given in the table. Ξ³ (kN/m3) S(%) 16.62 50 17.71 75 Determine: a. e c. Degree of saturation b. Gs d. Mass of water, in kg/m3, to be added to reach full saturation
Solution: a. ) w = 18% Gs = 2.73 1680
Οd =
1+0.18
Οd = 1423.73 kg/m3 (1+0.18)(2.73)(1000)
b. ) 1680 =
1+e
e = 0.9175 n =
e 1+e
= 0.4785
c.) Se = wGs S =
0.18(2.73) 0.9175
(100)
S = 53.56% d. ) Οsat =
(Gπ +π)(Οπ€ ) 1+e
(100)
Οsat = 1902.22kg/m3 Mass of water Οsat β Ο = 1902.22 β 1680 = 222.22 kN/m3
3.15 Refer to Problem 3.14. Determine the weight of the water, in kN, that will be in 0.0708m3 of the soil when it is saturated.
Solution: n = n =
e 1+e Vπ£ V
0.8
=
= 0.44
1.8
; 0.44 =
Vπ£ 0.0708
Vv = 0.0315 m3 S =
Vπ€ Vπ£
; 1 =
Vπ€ Vπ£
; Vw = Vv = 0.0315 m3
Ww = VwΞ³w =0.0315 x 9.81 Ww = 0.309 kN
3.16 The dry density of a soil is 1780 kg/m3. Given Gs = 2.68, what would be the moisture content of the soil when saturated?
Ξ³d =
1780 x 9.81
Ξ³d =
G π Ξ³π€
1000
1+e
= 17.46 kN/m3
; 17.46 =
2.68 x 9.81 1+e
e = 0.5056 Se = wGs ; (1)(0.5056) = w(2.68) w = 18.87%
3.17
The porosity of a soil is 0.35. Given Gs = 2.69, calculate: a.Saturated unit weight ( kN/m3) b. Moisture content when moist unit weight = 17.5 kN/m3
Solution: G π Ξ³π€
Ξ³sat =
1+e (2.69+0.54)(9.81)
=
1.54
= 20.59 kN/m3 n
e =
1βn 0.35
=
1β0.35
= 0.54 b.) Ξ³moist = 17.54 kN/m3 Ξ³ =
(Gπ +ππ)Ξ³π€ 1+e
17.5 =
(2.69+5(0.54))(9.81) 1.54
S = 10.11% Se = wGs (0.1011)(0.54) = w(2.69) w = 2.02%
View more...
Comments