SLOPE-DEFLECTION METHOD The slope-deflection method uses displacements displacements as unknowns and and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are expressed in terms of displacements and end rotations of these ends. An important characteristic of the slope-deflection method is that it does not become increasingly complicated to apply as the number number of unknowns in the problem increases. In the slope-deflection method the individual equations are relatively easy to construct regardless of the number of unknowns. DERIVATION OF THE SLOPE-DEFLECTION EQUATION When the loads are applied to a frame or to a continuous beam, the member will develop end moments and become deformed as indicated. The notation used in the figure will be followed. 1- The moments moments at the the ends of the member member are are designated as Mij and M ji indicating that they act at ends I and j of member ij.
ij
θ i
φ ∆ij θ j L
ji
2- Rotations Rotations of ends ends I and j of the the member are denoted by Θi and Θ j. Since the rotations of all members of a rigid frame meeting at a common joint are equal, it is customary to refer to each of them as the joint rotation. 3-The term ∆ij represents the translation of one end of the member relative to the other end in a direction normal to the axis of the member. Sometimes the rotation of the axis of the member Φij= ∆ij/L is used in place of ∆ij . The moments, the rotations at the ends of the member and the rotation of the axis of the member
∆i ij
M
∆ j = − θ i
∆i = −
φ
∆
M
− φ =
θ j
− φ =
ji
ij
θi
+
θ
−
ji
j
M
q L2 8
+
M
− − ij
φ
=
+
+
E I3
2
θi
M L i2j L
2 E I3 E I3 L 2j i L M L iLj
2
θ j
∆ j
L j iL
E3 I
2
q L2 2 L L
+
E I3 2
8
q L2 2 L L
+
E I3 2
8
∆ j L
∆i L M
ij
L
−
3EI
M
φ
= −
=
2 EI
=j i
2 EI
L L
M
ij
ji
L
+
6 EI
L
+
6 EI
M
ji
L
3 EI
q L3 24 EI
−
q L3 24 EI
( 2 θ + θ − 3 φ ) − i
j
(θ +
2θ
i
−j
3 φ
)+
q L2 12
q L2 12
Now we wrote Mij and M ji in terms of the deformations Θi , Θ j Φij and the external load q acting on the member. These equations are referred to as SLOPE-DEFLECTION EQATIONS. Slope-deflection equations consider only bending deformations. Deformations due to shear forces and axial forces in bending members are ignored.
M
n f
=
2 E I
L
2θ
n
+
θ f
−
3
∆ ± M nFfE M L
Example: It is required to determine the support moments for the continuous beam. 100 kN 1
20 kN/m 2
− M 1 F2 = M 2F 1 =
3
I
3 I
2x2.5m
7.50
−
F 23
=M = F 32
100*5 8
= 62.5kNm
20*7.52 12
= 93.75kNm
S lo l o p e − D e fl f l e ct c t i o n . E q u a ti tio n s
93.75
100
46.875
40.625
59.375
20 kN/m
87.5
M 1 2 = M 2 1 =
62.5
M 2 3 = M 3 2 =
12
1
Equilibrium Equilibrium.equations equations.of . joı n ts
+ M 23 = 0 M 32 = 0 M 21
21
23
2 E I 5 2 E I 5 6 E I 7 .5 6 E I 7 .5
θ 2 − 6 2 . 5 = 2 θ 2 + 6 2 . 5 =
( 2θ 2 + θ 3 ) − 9 3 . 7 5 = (θ 2 +
2 θ 3 ) + 9 3 . 7 5 =
32
2
3
2 .4
θE2I + 0 . 8
θ E3I = 3 1 . 2 5
0 .8
θE2I + 1 . 6
θE3I =
− 9 3 .7 5 →
θ2
=
3 9 .0 6 2 5
→
θ3
=
− 7 8 .1 2 5
I S u b s t it it u d e.t h e se s e. r e su s u l ts t s. i n . s lo l o p e. d e fl f l ec e c ti t i o n. e q u a t io io n s M 12
= − 4 6 .8 7 5 k N m , → M 21 =
9 3 .7 5 k N m
EI
100
46.875
20 kN/m 1
2
40.625
3
87.5
59.375
62.5
59.375
62.5
+
+ 3.125 m
-
40.62 5
Shear Force Diagram
87.5 97.66 54.69 + +
46.875
Bending Moment Diagram 93.75
Example: A continuous continuous beam is supported supported and loaded loaded as shown in the figure. During loading support 2 sinks by 10 mm. Analyze the beam for support moments and reactions. E = 200*10 6... kN m 2
40 kN 1
20
10 kN/m 2
2
−
F 12
=M =
−
F 23
=M =
F 21
3
2m
F 32
40*4 8 10*6 2 12
= 20kNm
I = 100 10 0 *10 *10 − 6. ..m 4 I =E20000...
= 30kNm
2
6m
S l o p e − D e f l e c ti ti o n. E q u a t i o n s 1
Sub stitude stitude .these .results i n .slope .d eflection eflect ion .equ ations 12
= − 2 . 8 0 5 5 . 1 0 − 3 r a d
M
23
= − 7 3 .8 8 9 k N m , → M 21 = − 1 2 .7 7 8 k N m = 1 2 .7 7 8 k N m , → M 32 = 4 0 k N m
k2N m
40
73.889
10 kN/m
12.778
20
40
1
3
20
20
30
8.8
21.67
38.8 + −
41.67
1.67
-
−
3.125 m
Shear Force Diagram
21.2 35.25
9.45
12.778 +
-
73.889
+ −
40
Bending Moment Diagram
ANALYSIS OF FRAMES WITH NO SIDESWAY A frame will not side sway, or be displaced to the the left or right, provided provided it is properly restrained. restrained. Also no side sway will occur in an unrestrained frame provided it is symmetric with respect to both loading and geometry.
Example: It is required to analyze the frame for moments at the ends of members. EI is constant for all members. members.
20.kN / m
40kN 3
1 2
Fixed-End Moments
2 −
20kN
2
F 12
=M = F 21
− M F23 = M 3F 2 =
4
− M F42 = M 2F 4 =
4m
2
2
20*4 2 12 40*4 8 20*4 8
= 26.67 kNm = 20kNm = 10kNm
S lo l o p e − D e fl f l e ct ctio n. E q u a t io n s M 1 2 = M 2 1 = M 2 3 = M 3 2 = M 4 2 = M 2 4 =
2 E I 4 2 E I 4 2 E I 4 2 E I 4 2 E I 4 2 E I 4
θ 2 − 2 6 . 6 7 =
−27.88
2 θ 2 + 2 6 . 6 7 =
24.245
( 2 θ 2 + θ 3 ) − 2 0 = (θ 2 +
( 2 θ 2 ) + 1 0 =
24
Equilibrium Equilibrium.equations.of . joı n ts M 2 1 + M 2 3 + M 2 4 = 0
I EI S u b s t it it u d e.t h e se s e. r e su s u l ts t s. i n . s lo l o p e. d e fl f l ec e c ti t i o n. e q u a t io io n s 4
20
3
−31.82
2 E I
31.82
32
2
2 θ 3 ) + 2 0 = 0
(θ 2 ) − 1 0 =
24.25
23
21
24.08 27.88
7.57
+
39.09
20
12.04
+ 11.21
− 40.91
+ −
+
−
7.57
− −−
24.25
31.82 27.88
10.61
+
27.96
9.09
−
−
11.21
10.91
+
Example: Find Member end moments moments and draw shear and moment moment diagrams
M 2 1 + M 2 3 = 0
60.kN / m Equilibrium equations of joints
2
3
1 .5
4
EI is constant
0 .2 5
M 12
8 −
F 23
=M = F 32
S lo lo p e M 1 2
=
2 E I 4
M 2 1
=
M 2 3
=
2 E I
=
2 E I
=
2 E I
M 3 4 M
=
12
θE2I + 1 . 5
θE3I =
4 8 8 4 2 E I
θ 2
−320 →
= 320.kNm
M
23
M
34
256
→
θ3
=
−256
240
+
256 −
=
2 θ 2
=
θ2
= 1 2 8 k N m , → M 21 = 2 5 6 k N m = − 2 5 6 k N m , → M 32 = 2 5 6 k N m = − 2 5 6 k N m , → M 43 = − 1 2 8 k N m
− D e fl f l e c t i o n . E q u a t i o n s 256
2 E I
M 3 2
60*82
θ E3 I= 3 2 0
EI EI S u b s t it it u d e.t h es e s e. r e su s u l ts t s. i n . s lo l o p e. d e fl f l ec e c ti t i o n. e q u a t io io n s
4
1
θE2 I+ 0 . 2 5
M 3 2 + M 3 4 = 0
96
=
+
240
Shear
128
128
2 θ 3 ) + 3 2 0
224
(θ ) =
+
256
=
−
− −
96
( 2θ 3 ) =
−
(kN)
( 2θ 2 + θ 3 ) − 3 2 0 = (θ 2 +
96
−
Normal 240
Force
− 240
+ 128
256 −
Moment
−
(kN.m)
128
+
Example: Find member end moments and draw the diagrams of the frame
− M =
50 2
M
3
2 I
EI 12
kN
M 2 1 = M 2 3 = M 3 2 =
5 2 E I 5 4 E I 10 4 E I 10
=
7.m
S lo l o p e − D e fl fl e c t i o n . E q u a t i o n s 2 E I
F 23
F 32
3
M 1 2 =
=
F 21
−
5
1
m
q0 * L2 30
=
22.59
Pab 2 L2
Pa2 b L2
M 32 = 0
→
θ 3
M
=
102
50*32 *7 102
= 73.5kNm
= 31.5kNm
−
−
7.41
=
− 6 7 .6 8
7 .6 4 k N m , → M 55 29 kN m
21
=
7.64
→ M
5 5 .2 9 k N m 0 kN m
+
55.29
EI EI S u b s t it it u d e.t h es e s e. r e su s u l ts t s. i n . s lo l o p e. d e fl f l ec e c ti t i o n. e q u a t io io n s M 12
50*3*72
66.3 Shear
2 θ 3 ) + 3 1 . 5 = 5 6 .6 1
= 15
= 10kNm
30
−
+ M 2 1 + M 2 3 = 0
=
=
12*52
40.53
( 2θ 2 + θ 3 ) − 7 3 . 5 =
=
=
20
+
+
2 θ 2 + 1 0 =
θ2
=
20
12*52
9.47
θ 2 − 1 5 =
(θ 2 +
q0 * L2
F 12
−
Moment
ANALYSIS OF FRAMES WITH SIDESWAY A frame will side sway or be displaced to the side when the frame frame or loading acting acting on it is non-symmetric. non-symmetric. In the analysis of frames with side sway it is necessary to consider the shear forces at the base of the columns and the horizontal external load must be in equilibrium (force equilibrium equation) in addition to the equilibrium of joints. Example: Using the slope-deflection method determine the end moments of the members and draw the shear force and bending moment diagrams of the frame. EI is constant throughout the frame. ∆
40. kN m
2
∆
θ 2
3
θ 3
2
S lo l o p e − D e fl f l e ct ctio n. E q u a t io n s
60.kN 4 1
1
1
4.m
Q12
M 1 2 =
− M 1 F2 = M 2F 1 = −
60 Q43
Axial deformation is neglected (no change in length of the members) so the lateral displacement of joint2 and 3 are equal.
F 23
= M 3F 2 =
60*4 8 40*4
= 30kNm 2
12
+ 30 =
M 2 3
5 3 .3 3 =
Equilibrium Equations
M 3 2
M 2 1 + M 2 3 = 0
M 3 4
Q1 2 + Q 4 3 + 6 0 = 0
∆ 2 E I 2 θ 2 − 3 4 4 2 E I = ( 2 θ 2 + θ 3 ) − 4 2 E I = (θ 2 + 2θ 3 ) + 4 ∆ 2 E I = − 2 θ 3 3 3 3
M 2 1 =
= 53.33kNm
M 3 2 + M 3 4 = 0
∆ 2 E I θ 2 − 3 − 3 0 = 4 4
M 4 3 =
∆ 2 E I − θ 3 3 = 3 3
5 3 .3 3 =
=
Shear forces at the base of columns
21
2
3 4 1
34
3
43
Q12
1
Q43
4
= 0 → M 2 1 + M 1 2 − 4Q1 2 − 2 * 6 0 = 0
3
= 0 → M 3 4 + M 4 3 − 3Q 4 3 = 0
Q 43 =
M 2 1 + M 1 2 4
2 3 .9 6
→ θ 3 =
− 1 4 .8 5 7
4 5 .9 8
EI
M 2 3 34
= − 3 5 .2 6 k N m , → M 21 = 3 6 .7 2 k N m = − 3 6 .7 9 k N m , → M 32 = 5 0 .4 5 k N m = − 5 0 .4 6 k N m , → M 43 = − 4 0 .5 6 k N m 83.43
− 30
+
M 3 4 + M 4 3 3
30.37
40
−
+
76.57
50.45
Shear
30.34 −
(kN)
−
36.75
36.53
29.63
+
36.75
60 36.26
→ ∆ =
s l o p e .d e f l e c ti t i o n .e q u a t i o n s 12
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.