Sizing Electric Motors for Mobile Robotics

December 30, 2018 | Author: anon-293485 | Category: Friction, Torque, Electric Motor, Force, Mechanical Engineering
Share Embed Donate


Short Description

Download Sizing Electric Motors for Mobile Robotics...

Description

Sizing Electric Motors for  Mobile Robotics

May 21, 2006

The Basics

May 21, 2006

Unit Conversions 2π 

rad  sec

1Watt 

=

May 21, 2006

=

1

rev sec

1Volt 



1Watt 

 Ampere

=

 N  m

=

1

1Volt 



sec

Coulomb sec

Basics The FORCE applied by a wheel is always tangent to the wheel.

Force is measured in units of weight w eight (lb, oz, N) May 21, 2006

Basics The required TORQUE to move a mobile robot is the force times the radius of the wheel.

May 21, 2006

Torque is measured in units of weight w eight x length (lb·ft, oz ·in, N·m)

Procedure for Sizing DC Motors

May 21, 2006

Information Needed • Estimated Weight • Number of wheels and motors • Maximum incline • Desired maximum velocity at worst case • Push/Pull forces

May 21, 2006

Procedure • Step One: Determine total applied force at worst case

May 21, 2006

Friction • Static Friction  – Used to determine traction failure

• Rolling Friction  – Used to determine motor requirements

• Kinetic Friction

May 21, 2006

Rolling Friction  F  R

= µ  ⋅ N   R

Ro lling friction ∀ µR Is the coefficient of Rolling  – Using the coefficient of Static friction ( µS) will typically be to high

• To determine µR:  – Roll a wheel at a initial velocity, v elocity, v, and measure the time, t, in which it takes to v stop

 µ  R

May 21, 2006

=

t   g  ⋅

Rolling Friction • Some typical values for µR  – Steel on steel: 0.001  – Rubber on pavement: 0.015

May 21, 2006

Other Forces • Gravity  F  I 

= W  ⋅ sin θ 

• External θ

May 21, 2006

Total Force • Calculate worst case  – Up hill with rolling friction  F  W  ( µ R cos θ 

= ⋅



+ sin θ )

 – Up hill with rolling friction, pushing  F  W  ( µ  R cos θ  sin θ )  – Level ground with rolling friction  F  µ  R W 

= ⋅ =



+

+ F 

 EX 



 – Level ground with rolling friction, pushing  F  May 21, 2006

= µ  ⋅W  + F   R

 EX 

Other Cases • Tracks  – Set µr =0  – Use a spring scale to determine the force required to pull the chassis in neutral and add that to the t he worst case force

• Gear Trains  – Bulky gear trains may significantly affect the outcome  – If this is a concern, it may be best to test in the same way as tracks May 21, 2006

Procedure • Step One: Determine total applied force at worst case • Step Two: Calculate power requirement

May 21, 2006

Power Requirement • Determine velocity, v, requirement under maximum load (worst case force) • Using the worst case force and velocity, calculate the power requirement  P 

=  F  ⋅ v

• This is the total power, divide by the number of motors if more than one motor is used RULE OF THUMB: 3 TIMES MARGIN May 21, 2006

Procedure • Step One: Determine total applied force at worst case • Step Two: Calculate power requirement • Step Three: Calculate torque and speed requirement

May 21, 2006

Speed/Torque Requirements • Using the velocity requirement, v, and the radius of the wheel, r 

ω  =

v



Speed requirement is in rad/sec

• Using the speed from above and the power per motor  T  May 21, 2006

=

 P 

ω 

Procedure • Step One: Determine total applied force at worst case • Step Two: Calculate power requirement • Step Three: Calculate torque and speed requirement • Step Four: Find a motor that meets these requirements May 21, 2006

Spec Sheet

May 21, 2006

Spec Sheet

May 21, 2006

Procedure • Step One: Determine total applied force at worst case • Step Two: Calculate power requirement • Step Three: Calculate torque and speed requirement • Step Four: Find a motor that meets these requirements • Step Five: Plot motor characteristics May 21, 2006

Torque vs. Speed Curve T 

= T  −  PK 

T  PK  S  NL

• Where T = Torque • TPK = Stall Torque • SNL = No Load Speed ∀ ω = Speed May 21, 2006

⋅ ω 

Torque vs. Speed Curve Torque vs. Speed 7.00E-02

From this plot, maximum speed can be determined for a given load.

6.00E-02

5.00E-02

  m 4.00E-02    N  ,   e   u   q   r   o 3.00E-02    T

2.00E-02

1.00E-02

0.00E+00 0

1000

2000

3000

4000

Speed, rpm

May 21, 2006

5000

6000

7000

8000

Power  T 

= T  −  PK 

T  PK  S  NL

⋅ ω 

ω  = (T  PK  − T )

 P   P (ω )

 P (T ) May 21, 2006

=− =−

= T  ⋅ ω 

T  PK  S  NL S  NL T  PK 

⋅ ω  + T  ⋅ ω  2

PK 

⋅ T  + S  ⋅ T  2

 NL

S  NL T  PK 

Power  Power vs. Speed 1.20E+01

1.00E+01

8.00E+00

  s    t    t   a   w  , 6.00E+00   r   e   w   o    P

 P (ω )

4.00E+00

2.00E+00

=−

T  PK  S  NL

⋅ ω  + T  ⋅ ω  2

PK 

0.00E+00 0

1000

2000

3000

4000

Speed, rpm

May 21, 2006

5000

6000

7000

Power  Power v s. Torque Torque 1.20E+01

1.00E+01

8.00E+00

  s    t    t   a   w  , 6.00E+00   r   e   w   o    P

 P (T )

4.00E+00

=−

2.00E+00

S  NL T  PK 

⋅ T  + S  ⋅ T  2

 NL

0.00E+00 0

0.01

0.02

0.03

Torque, Nm

May 21, 2006

0.04

0.05

0.06

Power 

Power vs. Speed 1.20E+01

1.00E+01

8.00E+00

Power vs. Torque

  s    t    t   a   w  , 6.00E+00   r   e   w   o    P

1.20E+01

4.00E+00

1.00E+01

2.00E+00

8.00E+00

0.00E+00

  s    t    t   a   w  , 6.00E+00   r   e 6000   w   o    P

0

1000

2000

3000

4000

Speed, rpm

ω 

1 =

2

5000

7000

4.00E+00

ω max

2.00E+00

0.00E+00 0

0.01

0.02

Peak power is obtained at half of  maximum torque and speed May 21, 2006

0. 03

0.04

0.05

0.06

Torque, Nm



1 =

2

T max

Procedure • Step One: Determine total applied force at worst case • Step Two: Calculate power requirement • Step Three: Calculate torque and speed requirement • Step Four: Find a motor that meets these requirements • Step Five: Plot motor characteristics May 21, 2006

A Few Extra Points

May 21, 2006

Simple DC Motor Model V 

=  I  ⋅ R + e



e

= k  ⋅ I  t 

  η max = 1 −    May 21, 2006

 I  NL  I  P 

2

       

= k e ⋅ ω 



=  I  ⋅ R + k  ⋅ ω  e

Motor Inductance • The windings of a DC motor creates an Inductance, L • Change in current through an di V   L inductance creates a voltage dt  • Switching current to a motor causes di/dt to spike (Flyback) =

May 21, 2006

Flyback voltages can be very high and damage electronics, that is why a flyback diode in the switching circuit is required.

Winches • Similar to drive motors

May 21, 2006

Common Mistakes • Using static or kinetic friction instead of rolling friction  – If a wheel is rolling without slipping, the only energy loss is due to deformations in the wheel/surface (rolling friction)

• Using PWM to control a motor reduces the available torque  – The average power, speed and torque are reduced, however, effective torque is not significantly effected May 21, 2006

Questions?

May 21, 2006

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF