Sinc Modulada - Pag 4
October 7, 2022 | Author: Anonymous | Category: N/A
Short Description
Download Sinc Modulada - Pag 4...
Description
UA – >?>4 ^YGBCÍ^GJS EA CJMQBGCFËÃJ ^YJO4 A_A@GJ M. K. OAYBÆBEAT
@GSUF EA A\AYCÍCGJS BJ. 6 6 – Yaprasabta krfogcfmabta js sakugbtas sgbfgs4 f) x(t ) = F t rg⎘ ⎐ t ⎒⎚ i) c) e) a)
⎝ U ⎮ ⎘ t ⎒ ⎘ t 6 ⎒ y (t ) = F trg⎐ ⎚ ract⎐ ∙ ⎚ ⎝ U ⎮ ⎝ U 9 ⎮ z 6 (t ) = y (t ∙ U ) z 9 (t ) = y (∙ t ) z 3 (t ) = y (U ∙ t )
9 – Cjbsgeara f oubëãj o (t ) ef ogkurf fifgxj4 3
9
6
> ) t ( o
-6
-9
-3
-5 -5
-3
-9
-6
>
6
9
3
5
t
f) Asijca f oubëãj k (t ) = o (7 ∙ 3t ) i) Cf`cu`a f abarkgf a f pjtäbcgf mçegf ea o (t ). ). Ç um sgbf` ea pjtäbcgf ju ea abarkgf: 3 – Eatarmgba sa js sakugbtas sgbfgs sãj sgbfgs ea pjtäbcgf ju sgbfgs ea abarkgf. Cf`cu`a f abarkgf a f pjtäbcgf mçegf ea cfef sgbf`. f) x6 (t ) = cjs(ώ t ) sgb(3ώ t ) ⎫cjs(3ώ t ), ∙ 3 ≥ t 0 3 i) x9 (t ) = ⎬ > , ojrf ⎧ > ≥ t ≥ 9 ⎫t , ⎤ c) x3 (t ) = ⎬5 ∙ t , 9 ≥ t ≥ 5 ⎤ ⎧ >,
ojrf
5 – Eatarmgba f Urfbsojrmfef ea Ojurgar ejs sakugbtas sgbfgs4 f) x(t ) = sgbc 9 (t ) i) y (t ) = ∊(t ∙ 3 ) + ∊ (t + 3) c) z (t ) = cjs 9 (6>ώ t )sgbc(t ) 1 – J sgbf` cjbtíbuj x(t ) ç f abtrfef ea um sgstamf `gbafr gbvfrgfbta bj tampj (@GU) a tam f sakugbta raprasabtfëãj am sçrga ea Ojurgar4 x(t ) =
−
∖ζ
h
a d 9 ώ h 6>t
h = ∙−
jbea ζ ç um bômarj raf` abtra > a 6. F raspjstf ea fmp`gtuea ej sgstamf @GU ç, ⎫⎤6, ⎤⎧>,
o ≥ [
L ( o ) = ⎬
o 2 [
Vuf` j mabjr vf`jr ea [ ea ojrmf tf` qua f sfíef ej sgstamf cjbtablf bj míbgmj, 7>% ef pjtäbcgf mçegf pjr pjr paríjej ea x(t ) : − 6 Egcf4 ∖ x 9 h = 9 h = >
6 ∙ x ? – Sadf x(t ) um sgbf` cudf trfbsojrmfef ea Ojurgar ç4 \ ( o ) = ε ( o ) + ε ( o ∙ 69 ) + ε ( o ∙ 91ώ )
a sadf f) i) c)
l(t ) = u (t ) ∙ u (t ∙ 9) .
Ç x(t ) pargóegcj: Ç x(t ) ∛ l(t ) pargóegcj: ^jea f cjbvj`uëãj ea ejgs sgbfgs bãj pargóegcjs efr cjmj rasu`tfej um sgbf` pargóegcj:
; – Sa f abtrfef ea um sgstamf @GU ç x(t ) = a ∙t u (t ) a f sfíef y (t ) = t 9 a ∙t u (t ) , abcjbtra f raspjstf gmpu`sgvf ej sgstamf, l(t ) . < – Qm sgstamf @GU cfusf` a astæva` tam f sakugbta oubëãj ea trfbsoaräbcgf4 L ( o ) =
d 9ώ o + 5
? ∙ (9ώ o )9 + 1 d 9ώ o
f) Abcjbtra f raspjstf gmpu`sgvf ej sgstamf. i) Vuf` f sfíef ej sgstamf qufbej f abtrfef ç, x(t ) = a ∙5t u (t ) ∙ ta ∙5t u (t )
7 – Qm sgbf` FM cjbvabcgjbf` ç efej pjr s FM (t ) = Fc X6 + h f m(t )]cjs (9ώ o c t ) qufbej j sgbf` 00
= m(t )
mjeu`fejr ç um tjm sabjgef`, gstj. ç, íbegca ea mjeu`fëãj cjmj = h f F m
m(t ) Fm cjs (9ώ o m t ) ,
jbea
o m o c .
Eaogba-sa j
f) Cjbsgearfbej Fm = 6 m_, abcjbtra j mæxgmj vf`jr ea h f qua parmgta eamjeu`fr asta sgbf` FM usfbej um eatactjr ea abvj`tórgf. i) ^frf j vf`jr ea h f jitgej bj gtam (f), abcjbtra f pfrca`f ef pjtäbcgf tjtf` qua astæ sabej usfef pfrf trfbsmgtgr f ofgxf `ftarf` supargjr ej sgbf` FM (supjr qua f pjtäbcgf astadf sabej egssgpfef pjr umf cfrkf ea 6Χ ). c) Vufgs js vf`jras mæxgmj a míbgmj ej sgbf` s FM (t ) qufbej j íbegca ea mjeu`fëãj ç = 1>% : e) Asijca j sgbf` mjeu`fej cjbsgearfbej qua j íbegca ea mjeu`fëãj ç fqua`a ej gtam (c). 6> – Cjbsgeara qua um sgstamf ea mjeu`fëãj FM-ESI/SC sjora gbtaroaräbcgf ea um sgstamf FM-SSI/SC. J sgbf` î abtrfef ej eamjeu`fejr ESI (mjstrfej bf ogkurf fifgxj), cjrraspjbeabta î trfbsmgssãj easadfef ç, s(t ) = f cjs(9ώ o f t ) cjs (9ώ o c t ) jbea o f = 6 hLz8 o c = 6 MLz, a j sgbf` gbtaroarabta ç s G (t ) = y (t ) cjs(9ώ o c t ) ∙ yˏ (t ) sab(9ώ o c t ) , jbea y (t ) = i cjs(9ώ o i t ) cjm o i = >.1 hLz a o c = 6 MLz (J O^O î abtrfef ej eamjeu`fejr a j O^I sãj geafgs a fmijs täm `frkurf ea ifbef I = < hLz). O^O
Û
O^I
9 cjs(9ώ o c t ) f) Cf`cu`a f ra`fëãj YSG g = ^ s ^ G abtra f pjtäbcgf ^ s ej sgbf` easadfej a f pjtäbcgf ^ G ej sgbf` gbtaroarabta, maegefs bf sfíef ej O^O, cjbsgearfbej f = i . e ^ eG abtra f pjtäbcgf ^ e ej sgbf` easadfej a f pjtäbcgf i) Cf`cu`a f ra`fëãj YSG j = ^ ^ eG ej sgbf` gbtaroarabta, maegefs bf sfíef ej eamjeu`fejr, cjbsgearfbej f = i . 66 – Supjblf um sgbf` x(t ) cjm trfbsojrmfef ea Ojurgar, + o c ⎒ ∙ o c ⎒ 6 ⎘ o 6 ⎘ o ή⎐ ή⎐ \ ( o ) = ⎚ ⎚ + 5>> ⎝ 9>> ⎮ 5>> ⎝ 9>> ⎮ jbea o c 22 6>>> Lz. f) Eatarmgba js sgbfgs pfssf-ifgxfs x G (t ) a xV (t ) tfgs qua, x(t ) = x G (t )cjs(9ώ o c t ) ∙ xV (t )sgb (9ώ o c t )
i) Supjr qua x(t ) sadf og`trfej pjr um og`trj og `trj cjm oubëãj ea trfbsoaräbcgf, o ≥ o c ⎫⎤6, L ( o ) = ⎬ o 2 o c ⎤⎧>, Sadf f sfíef easta og`trj y (t ) = l(t ) ∛ x(t ) . Abcjbtra js sgbfgs rafgs y G (t ) a yV (t ) tfgs qua, y (t ) = y G (t )cjs(9ώ o c t ) ∙ yV (t )sgb (9ώ o c t )
69 – Qm atrfbsmgssjr cjbvabcgjbf` 6> h[ ea pjtäbcgf cjm pjrtfejrf bãj mjeu`fef 6>,691 h[FM-ESI qufbej mjeu`fej pjr umgrrfegf sgbf` sabjgef`.
f) Eatarmgba j íbegca ea mjeu`fëãj am fmp`gtuea. i) Sa um sakubej sgbf` cjm íbegca ea mjeu`fëãj ea 5>% ç fegcgjbfej fj prgmagrj, sabej js ejgs trfbsmgtgejs sgmu`tfbafmabta, quf` saræ f pjtäbcgf ea sgbf` grrfegfef: 63 – Bum mjeu`fejr FM-ESI cjbvabcgjbf` fp`gcf-sa um sgbf` mjeu`fejr sabjgef` ea 6 hLz cjm _ ea fmp`gtuea, jitabej-sa um sgbf` mjeu`fej cjm íbegca ea mjeu`fëãj = Χ: c) Vuf` f fmp`gtuea mæxgmf femgssíva` pfrf j sgbf` mjeu`fejr pfrf qua bãj jcjrrf sjiramjeu`fëãj: e) Yaprasabta krfogcfmabta bj ejmíbgj ej tampj, j sgbf` mjeu`fej cjm ΰ = 69>% . 65 – F cjrrabta bf fbtabf ea um trfbsmgssjr FM ç ea .?
->. 5
->. 9
>
>. 9
>. 5
>.?
>.<
6
t
6? – ^rji`amfs 9.9, 9.?, 9.;, 9. ) + ∊(t ∙ 6>)] + ∊(t ) 5 9 1 – 6>( B ∙ 6 ) 0 [ 0 6> B Lz, jbea B ç ç j bômarj ea lfrmõbgcfs qua eavam sar cjbsgearfefs bf raprasabtfëãj am sçrga ea Ojurgar ea x(t ) pfrf kfrfbtgr f pjtäbcgf raquargef. ? – f) Bãj i) Sgm c)Sgm ∙ t ; – l(t ) = 9ta u (t ) < – f) l(t ) = 9a ∙9t ∙ a ∙3t u (t ) i) y(t ) = 69 a ∙ 9t ∙ 69 a ∙5t u (t ) 7 – f) h f = 6>>> _ ∙6 i) ^ QSI = 6? ^ U c) Fmfx = 6,1 Fc , Fmgb = >,1 Fc 6> – f) YSG g = >,1 i) YSG j = 6 66 – f) x G (t ) = sgbc(9>>t ) , xV (t ) = > i) y G (t ) = sgbc(9>>t ) , yV (t ) = ∙sgbc(6>>t ) sgb (9ώ 1>t ) 69 – f) = >,61,791 h[ 63 – i) ^ U = 35,>3 [ c) Fm = 6> _ 65 – ΰ = >,;>6 , G = 7,67 F 61 – i) A = 5,1 D c) = − , I = 5 Lz
View more...
Comments