Problem The angle of intersection of a circular curve is 45° 30' and its radius is 198.17 m. PC is at Sta. 0 + 700. Compute the right angle offset from Sta. 0 + 736.58 on the curve to tangent through PC.
Problem The angle of intersection of a circular curve is 36° 30'. Compute the radius if the external distance is 12.02 m. Cos(1/2)I=R/(R+E)
Length of curve from PC to A: s=736.58−700s=736.58−700 s=36.58 ms=36.58 m
cos18∘15′=R/R+12.02cos18∘15′=RR+ 12.02 Rcos18∘15′ +12.02cos18∘15′=RRcos18∘15′ +12.02cos18∘15′=R Angle subtended by arc s from the center of the curve: sθ=2πR360∘sθ=2πR360∘
Length of offset x: cosθ=R−xRcosθ=R−xR x=R−Rcosθ=198.17−198.17cos10.58 ∘x=R−Rcosθ=198.17−198.17cos10.5 8∘ x=3.37 mx=3.37 m
Given the following elements of a circular curve: middle ordinate = 2 m; length of long chord = 70 m. Find its degree of curve, use arc basis. Apply Pythagorean theorem to find the radius: (R−2)2+352=R2(R−2)2+352=R2
(R2−4R+4)+1225=R2(R2−4R+4)+12 25=R2 4R=12294R=1229 R=307.25 mR=307.25 m
Degree of curve (arc basis): 20D=2πR360∘20D=2πR360∘ 20D=2π(307.25)360∘20D=2π(307.25) 360∘ D=3.7∘
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.