Silabo Sistemas Digitales
May 22, 2023 | Author: Anonymous | Category: N/A
Short Description
Download Silabo Sistemas Digitales...
Description
YH@CAF EL @C L^_LQHLDIHC I\QQHI\@CQ ‐YHYULGCY EHJHUC@LY‗ EHJHUC@LY‗ H.
ECUFY UFY EL HELDUHBHICIHÙD 3.3. 3.1. 3.9. 3.5.
Ãrlc f @çdlc el Hdvlstjcihùd Bciu`ce Elpcrcgldf Ciceèghif _rfjrcgc el Lsuehfs
= Jlstùd el Hdbrclsruiurc y Ifgudhicihfdls = Hdjldhlrçc = Hdjldhlrçc el Yhslgcs = Hdjldhlrçc el Yhslgcs
3.. 3.8. 3.3?. 3.33. 3.31. 3.39. 3.35. 3.3 el ehihlgarl = Lsplihif = Fa`hjcfrhf =
Ulùrhics _rãitics @cafrcfrhf Ufc` Nfrcs
39 12 12 2<
?< 3? 3? 1<
\dhecels HH ?5 ?> ?> 1?
Ifdsf`hecihùd el Cprldehzcmls
3<
?<
?<
Citvhecels
Ufc` el Nfrcs
H
HHH ?5 ?> ?> 1? ?<
3.32. Efildl / Lquhpf Efildl(s)=
HH.
Ifdehihùd
Cpl``hefs y Dfgarls
_rfblshùd
Ifrrlf Hdstuihfdc`
Iffrehdcefr( c)
Crl``cdf Yc`czcr Ièscr
Hdjldhlrf L`lirùdhic
icrl``cdfOudhru.leu.pl
Y\GH@@C @c lxplrh lxplrhldi ldihc hc iurrhiu iurrhiu`cr `cr el Yhs Yhslgc lgcss Ehjhc` Ehjhc`ls ls ls el dcurc` dcurc`lzc lzc lù lùrhif rhif’pr ’prãit ãitif, if, sl frhld frhldcc c cdc` cdc`hzcr hzcr y ifgprldelr `fs shslgcs y ifgpfdldls el prfilscghldf ehjhc`, `ùjhif y gclgãtif el ghirfprfilscefrls y ifgpucefrcs, cp`hicdef `fs budecgldfs `c ehjhc`, ehjhc`ls eltifs gfef el slr slr ut ut`h`hzc zcef ef pf pfs slr lrhf hfrgl rgld dll ld su elvh vhec ecl`lirùdhic prfbl prfblsh shfd fdc` c` ld ihriuhfs `c hd hdlr lrci ciih ihùd ùd ifd ifydghirf `fs prfilscghldf, lquh lquhpf pfss hd hdbfr bfrgã gãti fs y ifgpu ifg pucihf cihfdc` dc`ls. ls. @fs Ifd Ifdfih fihghl ghldf dfss y elscrr elscrrf``f f``f prãiti prãitif f el` iursf iursf ifd ifdrh rhauy auyld ld ehr ehrli licgl cgldl dl c` `fj `fjrf rf el `cs Icpcihecels Ulrghdc`ls IU5.9 y IU5.5 Yl nc frjcdhzcef l` elscrrf``f el `c lxplrhldihc iurrhiu`cr ld `fs shjuhldls a`fquls lgãtifs= @ùjhic Ehjhc`, @ùjhic Yliuldihc`, Glgfrhcs y Ghirfprfilscefrls. Ifdshelrcdef `c cp`hicihùd el `c `ùjhic ehjhc` y sliuldihc` pcrc lsqulgctzcr `cs èidhics el prfilscghldf y c`gcildcghldf el ecfs ahdcrhfs. X `c prfjrcgcihùd aãshic el ldrcecs y sc`hecs el `fs ghirfprfilscefrls y/f ghirfifdrf`cefrls. @c lxplrhldihc iurrhiu`cr el Yhslgcs Ehjhc`ls, slrã ýt` pcrc qul l` lsuehcdl slc icpcz el cp`hicr `fs prhdihphfs budecgldc`ls el `c l`lirùdhic ehjhc` ld l` cdã`hshs y sf`uihùd el prfa`lgcs qul hdvf`uirld hdlrciihùd, ifdrf` y prfjrcgcihùd el ehspfshtvfs f plrhbèrhifs el ud ifgpucefr ifgpuc efr f ghirfprfilscefr. Dcurc`lzc= Ulùrhif - _rãitif _rfpùshf= Ifdrhauihùd ld l` _lr` el Ljrlsf Ifdldhef = Elsirhpihùd Jldlrc`
HHH.
IFG_LULDIHC IFG_LULDIHC EL LYU\EHFY LYU\EHFY JLDLQC@LY JLDLQC@LY (H - HH IHI@F) IHI@F) F EL LJQLYF LJQLYF (HHH (HHH - ^ IHI@F) \dhece el Ifgplldihc= Jlstùd el Hdbrclsruiurc y Ifgudhicihfdls Jlstfdc `c hdbrclsruiurc y ifgudhicihfdls qul prfgulvl l` p`cdlcghldf, cdã`hshs, ehslóf, hgp`lgldcihùd, ceghdhsrcihùd y `c sljurhece el `fs ehstdfs shslgcs el ifgudhicihùd, `fs rliursfs hdbfrgãtifs el `fs shslgcs fplrctv fpl rctvfs, fs, `cs ehv ehvlrs lrscs cs p`c p`ccbf cbfrgcs rgcs lidf` lidf`ùjh ùjhics ics y `fs dhv dhvl`l l`lss sh shifif-`ùj `ùjhif hif el `fs `cs rle rlels ls hdb hdbfrgã frgãtics tics lgprls lgp rlscrhc crhc`ls `ls ut`hzc ut`hzcdef def udc juç juçcc glfef glfef`ùj `ùjhic hic ls lsãdec ãdecrr el auldcs auldcs prãiti prãitics cs vc`f vc`frcd rcdef ef `c hgp hgpfrc frcdih dihcc el` prfilscghldf el ifgudhicihùd ld ud ldfrdf i`hldl-slrvhefr y/f ehsrhauhef.
HR.
CQUHI\ CQUHI\@CI @CIHFD HFD IFD IFD @CY @CY IFG_LU IFG_LULDI LDIHC HC JLDLQ JLDLQC@L C@LYY EL @C @C \DU Ifgplldihcs Jldlrc`ls el `c \DU Jlstfdc irlctvcgldl Jlstfdc irlctvcgldl prfilsfs frhldcefs c `c sf`uihùd sf`uihùd el prfa`lgcs prfa`lgcs ihld ihldifs, ifs, lidf`ùjhifs lidf`ùjhifs y nugcdçs nugcdçstifs, tifs, cp`hicecs ld ud ifdlxf hdlrehsihp`hdcrhf c rcvès el `c hdvlstjcihùd l hddfvcihùd.
R.
_Q _QFJ FJQC QCGC GCI IHÙD HÙD CI CICE CEÈG ÈGHI HIC C Qlsu`cefs el Cprldehzcmls (pfr Icpcihece Ulrghdc`)
Icpcihecels Ulrghdc`ls (IU)
Frjcdhzcihùd el \dhecels el Ifdldhefs
Lsrcljhcs Eheãitic
Lvheldihcs el Elslgplóf
Hdsrugldfs el Lvc`ucihùd
I`csl Gcjhsrc`
Ihriuhf @ùjhif Hgp`lgldcef
@hsc el Iflmf
Ylgcdcs (Hdhihf y Uèrghdf)
IU 5.9
Ceghdhstrc rliu rliurs rsfs fs `fs el ud freldc freldcefr efr uth uth`hz `hzcd cdef ef ud shstlgc fplrcthvf `harl y/f prfphltcrhf .
Lxp`hic gfel`fs el shslgcs ehjhc`ls ifd `c cp`hicihùd el `fs lfrlgcs el `ùjhic aff`lcdc Ehslóc l hgp`lgldc ihriuhfs `ùjhifs lsãtifs ifd ihriuhfs hdljrcefs .
Ylshùd ?3= Budecgldfs el @ùjhic Aff`lcdc y rlprlsldcihùd Ahdcrhc. Ylshùd ?1= Ulfrçc el Budihfdls y Ihriuhfs @ùjhifs lsãtifs Ylshùd ?9= Hgp`lgldcihùd el Ihriuhfs @ùjhifs ifd ihriuhfs
Lxpfshihùd Hdehvheuc`/Jrupc` Cprldehzcml acscef ld _rfa`lgcs
_rãitic Ic`hicec Lxcgld tpf Ldscyf.
Qýarhic, Juçc el Faslrvcihùd Lxcgld tpf ldscyf
Ylgcdcs ?3-?2 (1? el cjfsf 1> el sltlgarl)
Cprldehzcml If`cafrctvf Urcacmf el @cafrcfrhf
hdljrcefs UU@. IU 5.9 Ceghdhstrc `fs rliu rliurs rsfs fs el ud freldc freldcefr efr uth uth`hz `hzcd cdef ef ud shstlgc fplrcthvf `harl y/f prfphltcrhf
Ehslóc ihriuhfs ehjhc`ls sliuldihc`ls cp`hicdef `c `ùjhic aff`ldc y `c l`lirùdhic Ehjhc` el ihriuhfs hdljrcefs ld Yhs. Ehjhc`ls
Ylshùd ?5= Ihriuhfs @ùjhifs Yugcefrls y gu`tp`hicefrls ahdcrhfs AIE.
Elsirhal l` prfilscghldf `ùjhif ld ud
Ylshùd ?2= Hdrfe Hdrfeuii uiihùd hùd c` prfilscghldf `ùjhif ld Yhslgcs Eh Ehjjhc` hc`ls ls if ifd d ghirfifdrf`cef r.
ghirfifdrf`cef r ld lmliuihùd el prfjrcgcs acshifs el Yhs. Ehjhc`ls.
Ylshùd ?= _rfjrcgcihùd lgalahec ld
Ylshùd ?8= Hlrci Hlrcihùd hùd ldrl ldrl l` ghirfifdrf`cef r `c glg glgfr frhc hc y `fs ehspfs ehspfstvf tvfss plrhbèrhifs.
I`csl Gcjhsrc` Lxpfshihùd Hdehvheuc`/Jrupc` Cprldehzcml acscef ld _rfa`lgcs Cprldehzcml
_rfylif Bhdc` el Ihriuhf @ùjhif ifd Ghirfifdrf`ce fr.
Hdbfrgl Ciceèghif Jrupc`
Qýarhic, Juçc el Faslrvcihùd
Ylgcdcs 31-32
@hsc el Iflmf
(?1 el dfvhlgarl ?: el ehihlgarl)
Yusldcihùd el _rfylif Bhdc`
acscef ld Icsfs Cprldehzcml If`cafrctvf
Yusldcihùd el _rfylif Bhdc`
Urcacmf el @cafrcfrhf Urcacmf el Hdvlstjcihùd
YHYULGC EL LRC@\CIHÙD Acsl `ljc`= Qlj`cgldf el Dfrgcs Jldlrc`ls el Lvc`ucihùd y Cprldehzcml ifd l` ldbfqul ld Ifgplldihcs, el `fs lsuehcdls el _rljrcef \DU. _rhdihphfs y _rfilehghldfs= @c lvc`ucihùd pfr ifgplldihcs sl icrcilrhzc pfr slr prfjrlshvc, bfrgctvc y cuèdtic; pfr `f qul ls el prfilsfs l hdljrc` y sl frhldc c csljurcr l` `fjrf el `fs cprldehzcmls lsplrcefs, icpcihecels y ifgplldihcs. ifgp lldihcs. Yl lvc`ýcd `cs lvheldihcs ifdirlcs c rcvès el `cs iuc`ls `fs lsuehcdls elgulsrcd ncalr `fjrcef cprldehzcmls (lxpfshihfd (lxpf shihfdls ls frc`ls, frc`ls, prlsldcihù prlsldcihùd d el rcacmfs rcacmfs lsirhfs, lsirhfs, ldscyfs, ldscyfs, lxpfshihfdl lxpfshihfdls, s, gcpcs ifdilpuc`l ifdilpuc`ls, s, hdbfjrccs, hdbfjrccs, gcqulcs, ldrl frfs); y shrvl pcrc rlifjlr hdbfrgcihùd, fgcr elihshfdls fpfrudcs l hdbfrgcr c `fs lsuehcdls y cufrhecels pcrc `cs ciihfdls el glmfrc rlsplitvc. 3. C` vc`frcr vc`frcr `fs rlsu`c rlsu`cefs efs y/f prfeu prfeuif ifss sl elal el ldlr ldlr ld iuldc iuldc udc pfdel pfdelrci rcihùd hùd lspliç lspliçic ic sljýd `fs hdsrugldfs el lvc`ucihùd lgp`lcefs. @fs prfglehfs el udhece qulecrãd c irhlrhf el` efildl, quhèd elal ut`hzcr ifgf gçdhgf rls hdsrugldfs el lvc`ucihùd. @c bùrgu`c shjuhldl plrghl ic`iu`cr l` prfglehf prfgfihfdc` ifrrlspfdehldls= Urls udhecels= __7?.9 _ \ 3 + ?.9 _ \ 1+ ?.5 _ \ 9 1. @fs plsfs ifdshelrcefs sl lsca`lilrãd c irhlrhf el` efildl sljýd `cs pcrtiu`crhecels qul prlsldl l` elscrrf``f elscrrf``f el `c lxplrhldihc iurrhiu`cr. Efdel= __= _rfglehf _rfgfihfdc` _ \ h= _rfglehf el \dhece, h 7 3…9
Irhlrhfs pcrc `c _rfgfihùd= 3. L` shslgc shslgc el el ic`hicihùd ic`hicihùd ls vhjlshgc vhjlshgc`` (?-1?). (?-1?). 1. @c dfc cprfacfrhc cprfacfrhc ls 33, ld l` prfglehf prfgfihfd prfgfihfdc` c` l` glehf pudf (?.
View more...
Comments