Setra Cable Stays

April 23, 2017 | Author: Soowhan Jung | Category: N/A
Share Embed Donate


Short Description

Download Setra Cable Stays...

Description

Laboratoire Central des Pontset Chaussees

Drivingresearchaccrossnetworks

. ~;

, (i

,

t

Recommendations of French interministerial commission on Prestressing

~"~F~ REPUBLIOUE PIANCAISE

uin

~ ::L~(.,9 d..Oo~

2002

Issued by the Serviced'Etudes Techniques des Routes et Autoroutes Centre des Techniques des Ouvrages d'Art 46, avenueAristide Briand -BP 100 -92225 BAGNEUX CEDEX -France Tel. 33 (0)1 46 11 31 53 -Fax 33 (0)1 46 11 3355 -www.setra.eQuipement.gouv.fr

CIP recommendations

on cable stavs

CONTENTS

Article

2.1 2.2

Operation Evolution

ofandcable-stay required

Article

3.1 3.2

Effects Inventory

Article

3.4 3.3

Choice Replaceabilityof

of

of mechanical cable-stay

technology qualities

of

cable

and ageingenvironmental factors

stays

factors

18

20 22

materials

24

Article Article

4.1 4.3 4.2 4.4

Specifications Physical Remedial Dynamic

phenomena par.ameters actions

to

prevent

of inducing cablecable-stay

stays vibration

25

vibration

2831 36

CHAPTER 5. STATIC BEHAVIOUR OE CABLE STA~ Article Article

5.1 5.3 5.2

Approximate Linear Introduction

model

effect of

a

cableof

cable-stay stay

39

selfweight.

39

42 Article

5.6 5.5 5.4

Catenary Model Modelling

of

inextensible model a real

cable

sagging stay

47

cable

51 53

Article

6.1 6.2

Taking Cable

stay account deviatedof the at flexural a saddle stiffness

of a cable

at its anchorage.

57 58

Article

6.4 6.3

Vibrations Cable bending in the and free durability length

of..""""'..."'.""'."""""""""""""".' a cable stay

63 63

7. CABLE-STAY MECHANICS DURING CONSTRUCTION Article 7.1 Preloading of cable stays

1115 ~ ~PTER

67 67

3

CIP recommendations

on cable stavs

,.

Article 7.2 Intrinsic characterization

of cable-stay preloading

71

Article 7.3 Calculating the instantaneous tension of cable stays

77

Article 7.4 Strand-by-strand

78

tensioning

CHAPTER 8. DYNAMIC BEHAVIOUR OF CABLE STAYS

81

--

Article

8.1 Taut-string

Article

8.2 Vibration

Article

8.3

Article

8.4 Parametric

Excitation

model.. modes

general

Article

PSC category: PWC category:

requirements

'

'

'

81 83 91

displacement

."..."'.."'...'

93

'

99

strand cable stays

103

parallel- wire cable stays

Article

9.4 MLS category:

Article

9.5

Article

9.6 Other kinds of main tensile

Collective

'...'.'

of an anchorage

by longitudinal

parallel

'

cable stay

displacement

excitation

Common

Article 9.3

of a sagging

by lateral

Article 9.1 9.2

'..."

multi-layer-strand

external

108

cable stays

,

barrier

111 "

'

'

element

115 119

CHAPTER 10. CABLE-STAY ANCHORAGE

121

Article 10.1 Functions of a cable-stay anchorage

121

Article 10.2 General provisions common to all anchorage types

122

Article 10.3 Classification

125

--

of anchorages

Article 10.4 Type C anchorages for parallel-strand cable .stays

126

Article 10.5 Type S anchorages for parallel-strand cable stays

130

Article 10.6 Type B or B+R anchorages for parallel-wire cable stays

131

Article 10.7 Type F+R anchorages for MLS cable stays

133

CHAPTER 11. QUALIFICATION Article

11.1

General

Article

11.2

Mechanical

Article

11.3

Qualification

TESTING OF A CABLE-STAY

SYSTEM

139 139

qualification

of cable stays

of cable-stay

CHAPTER 12. CABLE-STAY

140

watertightness

'

INSTAllATION

'

147

151

Article 12.1 Organizational aspects

151

Article 12.2 Supply

152

Article 12.3 Manufacture of cable stays

153

Article 12.4 Erection of cable stays

156

Article 12.5 Tensioning and adjustment

158

Article 12.6 Permanent corrosion protection

162

CHAPTER 13. MONITORING AND MAINTENANCE

OF CABLE STAYS

165

Article 13.1 Principles and objectives of cable-stay maintenance

165

Article 13.2 Monitoring and maintenance

165

Article 13.3 Cable-stay adjustment

167

Article 13.4 Cable-stay replacement

168

4

CIP recommendations

on cable stavs

CHAPTER 14. CABLE-STAY

DESIGN AND VERIFICATION

RULES

173

Article 14.1 General

173

Article 14.2 Actions and combinations

of actions

173

Article 14.3 Cable-stay strength.

'

176

Article 14.4 Ultimate limit states

179

Article 14.5 Serviceability limit states..

180

Article 14.6 Verifications

182

of fatigue

Article 14.7 Saddles

184

Article 14.8 Extradosed prestressing tendons

184

CHAPTER 15. REFERENCES

189

Article 15.1 Standards

189

Article

15.2

Bibliograpical

references

'

'

".'

". 191

CHAPTER 16. DEFINITIONS AND NOTATIONS Article 16.1

Glossary

Article

Notation

16.2

193 ,

,

193 197

~

CIP recommendations

on cable stays

Early in 1997, the French Interministerial Commission on Prestressing (Commission Interministerielle de la Precontrainte -CIP) set up a working group to study the technological problems involved in cable stays and to establish an approval procedure similar to that implemented for prestressing systems. The working group drafted these Recommendations, a state-of-the-art review advising on the design, qualification, and implementation of cable-stay systems. It calls on the experience acquired with cable-stayed bridges in France and elsewhere in the last thirty years or so. This experience includes large cable-stayed bridges such as the Brotonne Bridge and the Pont de Normandie Bridge in France, the Second Severn Crossing in the UK, and the Vasco de Gama Bridge in Portugal, but also involves a wide range of smaller bridges. The cable technology described in these Recommendations principally concerns cable-stayed bridges, the cables of which are characterized by large variations in tension, fatigue effects, and direct exposure to the elements. More generally, it is hoped the recommendations will be of use for all cables exposed to climatic aggression, particularly to the ties of bowstring bridges, extradosed or intradosed prestressing tendons, and cables used in any stayed civil engineering structures, such as stadium roofs, masts, etc. On the other hand, the applications of interconnected cable networks are beyond these Recommendations which do not, therefore, deal with cabled spaceframe suspension-bridge technology. In addition, cable-stay saddles are addressed only in few recommendations on design, but using them is advised against, because of their durability of cable stays and because of maintenance and replacement difficulties.

the scope of structures or the form of a effect on the

These Recommendations are broken down into four parts: .Part 1 (Chapters 2 to 8) is a review of current scientific knowledge in the matter. It takes the form of a manual which can be referred to by designers and which substantiates the choices recommended in the subsequent parts. .Part 2 (Chapters 9 and 10) describes the cable-stay systems commonly used at the moment, and gives recommendations on the technology that can achieve the greatest durability. .Part 3 (Chapters 11 to 13) is the benchmark for approval and implementation of cable-stay systems that the CIP required. .Part 4 (Chapter 14) presents limit-state cable-stay design rules.

Texts in standard type are recommendations. Texts in italics are comments. Texts in small type are descriptions or examples.

FOREWORD 1.

7

CIP recommendations

on cable stavs

MEMBERS OF THE CIP CABLE-STAYS

WORKING GROUP

Chairman: Robert Chaussin (Roads Department, Ministry of Public Works)

Yves Bournand (VSL) Alain Chabert (LCPC) Louis Demilecamps (GTM) Andre Demonte (ISPAT -Trefileurope) Pierre Jartoux (Freyssinet International) Patrick Laboure (ISPAT -Trefileurope) Dominique Le Gall (Baudin Chateauneuf) Benoit Lecinq (SETRA 1) Daniel Lefaucheur (SETRA) Claude Neant (ETIC -BBR) The following also helped in the drafting of the Recommendations: Michel Marchetti (Formule Informatique) Michel Virlogeux (Consulting Engineer)

These Recommendations

were co-ordinated

by Jocelyne Jacob (SETRA) and Benoit Lecinq

Drawings by Philippe Jullien and Louis Risterucci (SETRA). Translation by Alex Greenland.

Photo credits: Cover photos: 1, 5, 9 (Freyssinet)

-2 (Etic) -3, 4, 10 (SETRA)

-6 (VSL)

-7 (Fontainunion)

Photos 43, 51, 55 to 57: Etic Photos 6, 11, 35: Fontainunion Photos 8,16,17,18,20,22 to 24,26,31,33,34,41,44,45,48,54,58,59,61 Photos 30, 39, 40, 46, 49, 50: GTM Photos 13 to 15, 27 to 29: LCPC Photos 1 to 5,7,9,10,12,19,21,25,36 to 38, 42, 47, 52, 53, 60: SETRA Photo 32: VSL

-8 (GTM)

to 63: Freyssinet

1 Benoit Lecinq has joined the Freyssinet International group since these Recommendations

8

were published.

CIP recommendations

on cable stavs

Analysis of the fatigue strength of cable stays must consider two complementary factors: .pure tensile stresses due to imposed loads, whose amplitude is much greater than in the case of prestressing tendons; .flexural stresses at anchorages, due principally to cable-stay vibration, but also to relative deformation of the cable stables and the bridge structure. These stresses are negligible in the case of prestressing tendons.

2.2.3 Environmental

aaaression

Contrary to prestressing tendons, cable stays are directly exposed to environmental rain, wind, ultraviolet radiation, freeze-thaw cycles, etc. (see Chapter 3).

2.2.4 Corollary

aggression:

on the desian of cable stays

Cable stays, which are the key factor in the stability of cable-stayed bridges, must provide the best possible operational guarantees. Their durability must be analyzed very rigorously at the initial design stage or at the stage of qualification of a cable-stay system. However, the cable stays will remain the most vulnerable elements of the structure, and there will remain some imponderables in the appreciation of their durability. Moreover, the possibility of damage due to a road accident cannot be excluded. For these reasons the design of cable stays must allow for their rapid replacement, without harmful consequences to the structure or serious disruption to traffic. All the protective arrangements must guarantee that inspection, adjustment, and maintenance can be carried out to attain the required lifetime or to determine the need for replacement.

2.2.5 Cateaories

of utilization

High-performance cable-stay systems are appreciably more expensive than prestressing systems. In order to restrict these extra costs for structures where the cables are less heavily loaded, a second category of utilization has been defined (see Chapters 11 and 14).

16

O"l

.s)j:)eJ:)

en6ijeJ

~e:)eJJe~U! ~lee~S JO ese:)

e4~

~S~U!Or O~U! S!Jqep

Jo uoijemU! e4~

U! S!Jqep

U! SU!e~S

pUB

'UMOp)jeeJq

JO UO!~eZ!JnsseJd

~SnJ 'S!Jqep

JO UO!~eJ~eued

pUB

I\eld

JO UO!~ep!XO peSeeJ:)U!

. . . .

:S8~U8nb8SUO~ 8ld!tlnw 4t!M 'S!Jq8p S8~npoJd pUB UO!SeJqe S8Sne~ t~etUO~ U! stJed jO-(S8Jt8WOJ~!W M8j e) Ilews AJ8A S! t! j! U8A8-tU8W8AOW 8A!te18J 841 "[£] UO!SOJJo:> 6u!~~aJI pUB an6!~el 6u!~~aJI se 4~ns eU8WOU84d le~!5010q!Jt 8~npU! St~8JJ8 UO!t~e ~!WeUAp 't~etuo~ jO Se8Je lie UI .~ ~ Je~dB4~

U! peu!Jep

~se~ UO!~B:)!J!IBnb

IB:)!UB4:)eW

e4~ SB 4:)ns

s~se~ Aq pe~BlnW!S

eq UB:)

4:)!4M Jo s~:)eJJe e4~ 'se:)JoJ IBJnXelJ pUB el!SUe~ :)!WBUAP JO SUO!~BU!qWO:) eJB s~:)eJJe UO!~:)B Xeldwo:) ~SOW e41 .6u!~se~ Aq dn pe)j:)Bq S!SAIBUB :)!~S!I!qBqOJd JO/PUB IB:)!~S!~B~S eJ!nbeJ O~ pue~ s~:)eJJe UO!~:)B :)!WBUAP

'S!SAIBUB IB:)!JeWnU

pUB IB:)!SA4d

Aq ~SB:)eJOJ Alnp eq UB:) s~:)eJJe UO!~:)B :)!~B~S el!4M

sJ:>a.ua le:>!Ue4:>aw S~Ol~'V'~

1'V'lN3WNO~II\N3

ON'V' 1'V'~IN'V'H~3W ~O Sl~3~~3

"je!Jq UD!Sep e4~ U! ese~

peal

S!4~ AJ!~eds

o~ JeUMO

~"Z"£

Z"£ 31~1l~"V

~~eroJd e4~ o~ dn S! ~I

"(6u!Je)juelq Jue::>seWmU! JO 'ed!d !\eJs e4J pUB SpUeJJs pe4Jee4S !\llenp!l\!pU! UeeMJeq SP!OI\ e4J 6U!II!J JnoJ6 Juewe::» SJe!lddns ewos !\q esodJnd S!4J JOJ pedOlel\ep ueeq el\e4 Sle!JeJew 6u!JelnSU! le!::>eds "SJn04 OMJ ue4J eJOW OU 'eO! 'eJ!J e4J 4S!n6u!Jxe OJ e)jeJ plnoM J! ew!J e4J JoJ sJuewele el!SueJ u!ew e4J U! es!J eJmeJedweJ pJeJeJ ~(SJe4Jo ue4J snoJe6uep eJOW eJe-e::>ueJsu! JoJ !\xode JeJ-leo::>-sJue6e 6u!)j::>0Iq ewos) sJ::>npoJd peseq-suoqJe::>OJp!\4 4J!M elqe::> e4J Jo 6u!)j::>°lq leJeue6 Jel\O sJuewele el!SueJ u!ew Jo uo!J::>eJoJdlenp!l\!pu! OJ e::>ueJeJeJd 6u!I\!6 !\q sJ::>npoJd elqewwelJ !\q 6u!llenJ J!W!I

sAelS 8/qe:J UO suO!lepU8wwo:J8J

d/:J

.

II

.pe6pnf eq ue~ slesodoJd e4J 4~!4M uo uo!JewJoJu! ewos ep!AoJd seldwexe 6U!MOIIOJe41. '0 ~ pUB 6 sJeJde4~ U! peU!Jep eJe enb!U4~eJ 6u!"eJS-elqe~ 4~ee OJ~!J!~eds Seld!~u!Jd le~!6oI0U4~eJ e41. .At!l!qeJnp peJ!Sep e4t eAe!4~e °t UO!telnWJOj le!~eds pue lUewteeJt tee4 JO e~ejJns 'senb!U4~et uo!t~nJtsuo~ osle tnq 'st~eJJe uo!t~e le~!Ue4~eW 4t!M e~UepJO~~e U! peU!WJetep AileJeue6 eJe 4~!4M sle!Jetew ~!Seq e4t AIUO taU SUJe~uo~ sle!Jetew jO e~!04~ e41

SlVI~31

uea UO!soJJoa laa1s

'an6!lej

pUB

6u!lJaJj UO!SOJJOa sJapua6ua

Villi ::10 3~IOH~

II!M 4a!4M 6u!)faeJa aaejJns

asnea

tOt 31~ll~"V

"SI!ej alqea a411!lUn ssaJ60Jd 1noJ6 a41 U! s)faeJa jO "6u!41eaJq,, aaU!S

a41 U! S)faeJa a6e)fU!J4S alqeHAaU! a41 etA laa1s a41 4aeaJ pUB Ae1s alqea AI1uanbasqns

uea (lnoJ6 1uawaa

"lnoJ61UaWaa a41 a1eJ1aUad ua41 uea Ja1eM

"g "p'

'an6!lej 01 anp a1e6edoJd 4HM 6u!)faolq jO asea a41 U! uo!suedxa

paU!eJ1SaJ 'Ae1s alqea a41 jO aJnXalj) SaSSaJ1S aa!/\Jas pUB SaSSaJ1S lenp!SaJ asa41 jO UO!leU!qwoa a41 "f; "pUnOMUn S! H ua4M lea!la4 41ea4s a41 6u!)few '(fe!Ja1ew a41 jO "Nowaw,,) pasnea S! I!oa a41 jO uO!lewJojap 1UaUewJad alq!SJaAaJJ! 'papaaaxa S! 3dOH a41 jO (lU!od PlatA) HW!I a!lSela a41 ua4M "Z "6u!puaq pUB UO!SJ01 jO UO!leU!qwoa e 01 1aa!qns S! 41ea4s a41 pUB 'UO!SJ01 u!eJjaa e dn slas 6u!pUeJ1S J!a41 'punoM ale salqea pa1ea!JqejaJd ua4M "~ :SJeaA 0 ~ AtUO 1noqe Jaye 'lnoJ61UaWaa 4HM pa)faolq sAe1s alqea uo pa/\Jasqo A601041ed a41 jO a,dwex3 'J8l8WB!P S8d!d

ABlS

8U81A4l8AIOd

p8lBlnwJOj

UB::> II .UMOU)f 118M MOU S! SU!j810AIOd

AIJ8dOJdW! jO (:)S3)

Aq P8l::>8l0Jd

B IIBWS DOl jO SWnJp

SABlS 81qB::> P8lB::>!JqBj8Jd

6U!)f::>BJ::>SS8JlS IBlU8WUOJ!AU8

°lUO

pUnOM

Uo In::>::>o

jO UOU8WOU84d

~uaWUOJ!AUa a4~ pue s~u!eJ~suo:> lenp!sa~

841

G£'G£

.se6P!Jq peAe~s-elqe~ JO selPpes eLl~ U! Jn~~o ue~ swelqoJd Jel!W!S .pesn ueeq sell ~ue6e 6u!)j~Olq ou ueLlM '~~e~uo~ ~u!od e)jew SeJ!M peAel -SSOJ~ JO SJeAel eJeLlM 'selqe~ pueJ~s JeAel-!~lnW JO eJnl!eJ JO sesne~ eLl~ JO euo S! S!LI~ 'se6p!Jq uQ

SAelS a/qea

uo Suo!lepuawwoaaJ

d/:J

Aq peU!jep

6u!dwep

s! SUO!~ell!~SO eeJj e/\!SSe~~ns

a4~ 'l\~uanbaJJ

Jeln6ue

le~uawepunJ

9G

:Ae~s elqe~ e jO 9 ~UeWeJ~ep ~!WLI~!Je601 OM~ jO Sepn~!ldwe

jO o!~eJ jO WLl~!Je601 eLl~ 'AI leU!::!

:se pau!Jap s! ~ o!~eJ s~! ~(I) pue I\e~s alqe~ a4~ Jo ssew ~!au!1 a4~ s! 11 JI

xe-J..-= '~I

he

:(£"g al~!~'r;f aas) A ~ue~suo~ 5u!dwep

sno~s!J\ e WOJJ pallapow

dump

d

aq ue~ 4~5ual ~!un Jad a~JoJ 5u!dwep

a4~ 'S~!WeUAp Jo suo!~enba a4~ ul 'sJa~aweJed leJaJ\as Aq paz!Ja~~eJe4~ S! pue 'sa5eJO4~Ue S~! Jo JO Ae~S a4~ Jo s~uauodwo~ a4~ uaaM~aq UO!~~!JJleUJa~U! Aq pasne~ S! 5u!dwep Ae~s-alqe~

DU!aWea

)0 Jeqwnu

sP/ou/ie~

SnSJe/l JepUt//ia e )0 lUetatJjeoa

Z. ~'p

6eJp )0 UOtln/o/l3

,(.

Q":'n = e ij

l

SOlS 9 t1

SOL

89t

Z'

Ol 89~

Z

gOl 89~

l

Z t'Ol89'

gOL

89t

l

toOL

B9v

l

ss8ulj6noJ

-f +-

8:)eJjnS

-~~

Z'o

6U!Se8J:)ul

:1~ r /~I

"-

J!W!llauunJ

t7'O

~

:::-.;;-;...;'.t1 9= a/_~ "

PU!M

8'0 j

~=O/1

~

O'l

~'l le:>!I!J:>J8dAH

le~!I!J~Jadns

le:J!J!J:J "t-

le:J!J!J:Jqns

'\.

't

9'L

@n

B'l :)

.Je4~eeM Sle!Je~eW e4~ pUB ~! O~SeJe4pe ~snp se 'eW!~ JeAO 4~ee4S e4~ }O SSeU46noJ e4~ U! se6ue4~ JeAO~ O~JepJO U! OJ ~Ue!~!JJeo~ e4~ JO} pe~dope AileJeue6 S! L.O }O enleA e pUB 'speeds PU!M eweJ~xe JO} e6ueJ le~!~!J~-Jedns e4~ U! eJe sAe~s elqe~ 'se6P!Jq ~sow UI .sseU46noJ uo spuedep t84t leAel 8 t8 tnO Sn8et81d Ue4t SeS8eJ:)U! tUe!:)!JJeo:) 68Jp e4t 'e6U8J 18:)!t!J:)JedA4 e4t U! 'Sen18A ITH Je46!4 JOJ . ~9.0 JO S'O °t SdOJp tUe!:)!JJeo:) 68Jp e4t 'ed!d A8tS e4t JO SSeU46noJ e4t uo 6u!puedep 'gO ~.9 °t gO ~.z WOJJ 6U!/\J8A Jeqwnu SPIOUAe~ 18:)!t!J:) 8 eAoq8 'e6U8J 18:)!t!J:)-Jedns e4t U! . ~Z' ~ tnoq8 t8 '46!4 AleA!t8leJ S! oJ 'e6U8J 18:)!t!J:)-qns e4t U! 'Sen18A ITH MOl JOJ . :oJ JO enl8A e4t JOJ Se6U8J eeJ4t eJ8 eJe4t 'SMO4S W8J68!P 6U!MOIIOJ e4t S'v'

SAelS 8/qe.? UO suoflepu8wwo.?8J

d/O

MO/Jlte ---; =m 9'0 11 ~"~.



.s~u!od 6U!MOIIOJe4~ o~ p!ed eq Plno4s uo!~ue~~e 'SWe~SAS Ae~s-elqe~ JO SJe!lddns e4~ Jo S~46!J AJe~e!JdoJd AileJeue6 eJe sJedwep ese4~ Jo 6u!~eJ pUB u6!sep e4~ 46nO4~1V' 'e6p!J8 elleAeppn elj~ uo se 'SP!IOS OM~ ueeM~eq UO!~:)!J! f\Jp JO 'se6p!Jq eeljoes JO 'punseJO 'ewe~ ep o:)se/\ elj~ uo se 'UO!~:)!J! SnO:)S!A JO (eueJdoeu pe~elnwJo! Alle!:)eds) le!Je~ew 6u!~ed!ss!p e!o UO!~O~S!Pelj~ esn sJedwep leuJe~UI "(euo JeMOI elj~ AlleJeue6) se6eJolj:)ue elj~ !O Jelj~!e Jeeu 'eJn~:)nJ~s elj~ o~ AIP!6!J pelj:)e~~e eqn~ lee~s e pUB elqe:) elj~ ueeM~eq pe:)eld eJe Aelj~ pUB 'pedeljs-6u!J eJe eselj~ ~sJadwep leUJa~UI

ewe£)

ep

oase/\

sn6el ell) JeAO e6p!J8 uo Jedwea :0'(; O)OLld

e6pfJB efpueWJON

a6P!J8 auuoJOJ8 uo sJadwea :6 ~ °JOl/d

ep luod

eLll uo sJedwea

:8 ~ °loLld

"e6p!J8 e!puewJON ep ~uod e4~ uo se 'Jel\el Jelnpued e Jo pue e4~ ~e JO 'e6p!J8 euuo~oJ8 e4~ uo se 'I\e~s e4~ uo 1\1~~eJ!p'sJ!ed U! pelle~SU! eq ue~ l\e41 .se6eJ04~Ue e4~ Jeeu 'elqe~ e4~ uo e~JoJ 6u!dwep eSJel\sueJ~ e 6u!~exe se~!l\ep ~!lneJpI\4 I\IIeJeue6 eJe ese4~ ~sJadwep leuJa~x3 :sJedwep

.

Jo SPU!)j leJel\es eJe eJe41

S/lelS e/qe:J uo suoflepuewwo:JeJ

d/::J

.



')f~ap a4J uo PU!M OJanp %917 AIUO 4J!M 'sAeJs alqe~ a4J uo 5eJp OJanp S! 'SUOIAd a4J oJU! pax!J S! J! aJa4M ')f~ap a4J U! Juawow s!xe-le~!JJal\ a4J Jo %99 'aldwexa JoJ 'a5p!J8 a!puewJoN ap JUOd a4J JO::l 'JoJ~eJ JueJapuodaJd a4J sawo~aq sAeJs alqe~ Jo aueld a4J uo uo!J~e PU!M 'uo!J~as SSOJ~ sJ! Jo 5u!U!IWeaJJs al\!J~a.!Ja Aq pa~npaJ aJe )f~ap a4J uo sa~JoJ 5eJp JI 'sa5p!Jq paAeJs-alqe~ ueds-5uol JoJ UJa~uo~ JueJJodw! ue S! Jua!~!.!Jao~ 5eJp a4J 5u!~npaJ Je4J pa/\Jasqo aq Plno4s JI

e6P!Jg BJBIB.! JOj ed!d ti"BIS :f7l OIOl/d

86P!J8 8!pUeWJON 8p 1uod 841 JOj s8d!d ,{e1S :CZ °1o4d

adfd ,{els a6pfJfj ewef) ap o.:>se;\ :ZZ olo4d

a6p!J'd aQO){-!4Se6!H

I\lwopUeJ

s,ueder

JOj ad!d ,{elS : J."l 0104d

"MOIJJ8JeM JdnJs!p OJ u!e6e '8~eJJnS J8JnO 84J uo S81dW!p p8~eld '1IeWS JO S8!J8S e 4J!M 'p8dol8A8p SaM 8d!d l\eJs Jo 8dl\J M8U e '86P!J8 eJeJe1 Jo.::l

"s8d!d 3dOH uo 8~elduowwo~ MOU S! '86P!J8 8!puewJoN 8P Juod 84J JoJ S8d!d 1184S-J!lds 8U811\doJdl\Iod JoJ P8JU8AU! saM 4~!4M '8de4S S!41 '(8d!d 3dOH 4JoOWS e JoJ 09'0 Jsu!e6e 'p8JnSe8W u88q se4 £9'0 OJ 19'O Jo 8nleA e) sl\eJs 8lqe~ 84J JO JU8!~!JJ80~ 6eJp 84J 6U!Se8J~U! I\IJ8AO JnO4J!M I\J!I!qeJsU! PU!M ~ u!eJ SJU8A8Jd-4~J!d w~ 09 e 4J!M X!184 81qnop )j~!4J ww £' ~ e-u8so4~ 8de4s 841 'MolJ J8JeM JdnJs!p 8d!d l\eJs 84J uo ,s8)jeJJs, le~!184 :86p!J8 8!puewJoN 8P Juod 84J JoJ 4~eoJdde JU8J8JJ!P e p8dol8A8p (818:)) Ju8W!J~8 np 8nb!U4~81J8 8nb!J!Ju8!~8 8JJU8:) 841

SJ\elS 8/qe.? UO suoflepu8wwo.?8J

d/:J

.

86pfJfJ 8fpuewJoN



8P 1Uod 81/1 UO uOf1a8uuoa 8/qea 6UfZf/fQe1SjAe1S :9~ 010l/d

86P!Jg 8!pUeWJON 8p Juod 84J uo S8/qea 6u!z!/!qeJS

:gZ °Jo4d

'sepow uo!~eJq!1\ esJel\sueJ~ uo ~~eJJe pe~npeJ f\lqeJep!suo~ e el\e4 f\e4~ Jel\eMOH .swelqoJd e~ueuoseJ ~!J~eweJed u!e~e~ 6u!~uel\eJd JoJ elqe~!nS f\IJeln~!~ed eJoJeJe4~ eJe selqe~ 6u!Z!I!qe~s 'sepow uo!~eJq!1\ le~!~el\ .~~e '4~U!U '4~X!S 'PJ!4~ e4~ ~nq lie ~!q!4U! II!M f\e~s elqe~ e Jo ueds e4~ 6uOIe f\eM e4~ Jo SPJ!4~ OM~ pUB PJ!4~ euo pe~eld selqe~ 6u!Z!I!qe~s OM~ :sf\e~s elqe~ Jo uo!~eJq!1\ le~!~al\ Jo sepow u!e~e~ ~!q!40Jd f\e4~ ~e4~ S! uo!~~eJ~~e u!ew J!e4~ 'pue4 Je4~0 e4~ uo .~~eJJe 6u!dwep e el\e4 oo~ f\e4~ sselun 'f\~!I!qe~SU! PU!M ~ u!eJ 6u!~uel\eJd U! sJedwep ue4~ el\!~~eJJe sse I eq o~ uel\oJd el\e4 f\e4~ ~nq '(~~eroJd e6p!J8 e!puewJoN ep ~uod e4~ JoJ ese~ e4~ saM S!4~) peu6!sep f\le~e!JdoJdde J! '6u!dwep leUO!~!ppe eP!l\oJd asIa ue~ pUB sf\e~s elqe~ Jo f\eJJe e4~ ueJJ!~s selqe~ 6u!Z!I!qe~s .sl\e~s elqe~ e4~ Jo spo!Jedue5!e e4~ I\J!POW I\leA!~Ue~sqns O~ eJoJeJe4~ SeM selqe~ 5u!Z!I!qe~s e4~ Jo esodJnd e41 ')j~ep e4~ Jo sepow leJnxelJ e4~ Jo ~e4~ se ewes e4~ 1\145noJ seM sl\e~s elqe~ e4~ JO uo!~eJq!A JO po!Jed le~uewepunJ e4~ ~e4~ pe~eln~le~ ueeq pe4 ~! eJe4M e5p!J8 e!pueWJON ep ~uOd e4~ uo pesn osle seM we~sl\s elqe~-5u!Z!I!qe~s 'if .sl\e~s elqe~ peUU!M~ JO 5u!dolle5 e)jeM ~ueAeJd O~ ueder U! pesn ueeq osle eAe4 l\e41 .selqe~ 5uOI JO uo!~eJq!A e4~ ~ueAeJd O~ ')jJewueo U! e5p!J8 OJe::l e4~ uo pesn ~SJ!JeJeM selqe~ 5u!Z!I!qe~s uo!}eJq!J\

l.e}S-8Iqe:)

JO SPU!)! 8WOS }U8J\8Jd

ue:) s8lQe:)

5U!}:)8UUO:)J8}U!

salqe:>

tjU!Z!I!qe~s

5u!lle}SUI

£"£"P

SJ\elS a/qea uo SUO!lepuawwoaaJ

d/:J

puol\eq

99

6U!SS8JjS8Jd jO 8JnjQ8Jj 8n6!j8.::/ :Ll' Oj04d

'pe!ldde ue4~ eJe e!Je~!J~ ses!lAJ UO/\ .>I~eJ~ e4~ Jo eseq e4~ ~e sseJ~s Jo uo!~eJ~ue~uo~ le~!J~ewoe6 e4~ 4~!M e~UepJO~~e U! pessesse eJe SeSSeJ~S en6!~eJ leqol6 e41 .pe~e!~!u! ueeq ApeeJle se4 ~e4~ >I~eJ~ e e~e6edoJd (se~JoJ 6U!A!Jp pUB ~~e~uo~ elqe!JeA '6u!pueq e~eUJe~le 'UO!SUe~ le!Xe AJO~ell!~SO) SeSSeJ~S en6!~eJ leqol6 e4~ '46noue ~eeJ6 S! 4~dep S!4~ JI .peU!e~~e eJe Sel~A~ JO Jeqwnu e~!U!J e ~e UO!~e!~!U!>I~eJ~ JOJ SUO!~!PUO~ e4~ 4~!4M ~e eJ!M e U!4~!M 4~dep WnW!XeW e S! eJe41

JO U!4~!M S! ~~e~uo~

UO!Je~!J~ uo!~e!~!u!-)j~eJ~ ~u!od I\ue ~e J.o 5u!pueq

eJ!M-Je~U!

e4~ 4~eeueq

~u!od

"(eW!~eJ!1 e~!U!JU! JO e~!U!J) ~!W!I en5!~eJ e4~ 4~ee Je4~e4M 5u!)j~e4~ seAIOAU! eJoJeJe4~

e41 "eJ!M l\Je~uewele e4~ Jo S~!~s!Je~~eJe4~ 4~5ueJ~s-en5!~eJ e4~ spee~xe pUB !JP.o 5U!A!Jp JO SSeJ~S eA!~elnWn~ e4~ Ue4M I\lle~ol pe~e!~!U! eJe s)j~eJ~ "J.o 'SS8JlS

8Jnd

f\q

P8!UBdwo:J:JB

S! SPUBJlS JO 6U!pu8q

IIBJ8AO

84l

'P8lB!A8P

S! 81qB:J 84l

"(8J!M 8418P!SU! JO 8~BjJnS

ue 6uole

841 IB UO!SS8JdWO~

dn PI!nq

"pe4S!n6u!~s!p e4~ pue

~

JO UO!SU81) !JP.o P810U8p

S8SS8JIS

S8lBJ8U85

U84M JB84S)

IBJnX81J

'UOrnppB

UI

!JP.l pUB (8J!M841

8~JOJ 5U!A!Jp

S!41

'eJ!M leUJe~U! ~e4~ Jo uo!~::>eJ!p e4~ U! e::>JoJ 6u!J\!Jp e Jo WJoJ e4~ U! eJ!M leUJe~U! Jef..el Je~no e4~ Jo SeJ!M leJeJ\eS JO 6u!sSOJ::> f..q peJepue6ue se::>JoJ leUO!~::>!JJe41 eq ue::> d!IS le!~ed

e::>JoJ lewJou

Jo seuoz

e4~ JI "Jef..el Je~no

pue

d!IS le~o~ Jo seuoz

'UMOU)j eJe UO!~::>!JJ JO ~Ue!::>!JJeo::>

e4~ Jo SeJ!M e4~ Jo eu!leJ~ue::>

e4~ 6uole

pe~::>eJ!p pue

se::>eJjns ~::>e~uo::>e4~ o~ ~ue6ue~ se::>JoJ leuo!~::>!JJ f..q SeJ!M e4~ Jo e::>eJjns e4~ ~e pe!uedwo::>::>e 'SJef..el eJ\!sse::>::>ns ueeM),eq 6u!P!IS eJ!M-Je~U! esne::> 6u!pueq e~euJe~le o~ enp eJn~e/\Jn::> elqe::> U! suo!~e!Jel\

'spueJ~S aJ!M-UaJ\aS JO SpUeJ~S Jal\el-!~lnW pal\el-lalleJed JOj JeaU!1 pUB 'SpUeJ~S Jal\el-!~lnW pal\el-SSOJ~ JOj ~U!Od e S!a~ejJns S!4~ ~SaJ!M uaaM~aq ~~e~uo~ jO a~ejJns a4~ O~Jeln~!puadJad a~JOj e S! ~ a~JOj ~ue~lnSaJ a41 .spUeJ~S JaMOI UO a~JOj le!peJ e ~axa SpUeJ~S Jaddn a4~ 'SaiPpeS JaJ\o dn pa>t~e~s aJe SpUeJ~S leJaJ\as Ua4M :~~aJJa dnoJ6 . 4~!4M pUB a6eJ04~Ue

JO alPpes

~::I a~JOj le!Xe jO ~uauodwo~ le!peJ puo~as e Sa~eJaua6 e I\q alqe~ aJ!~Ua a4~ uo pasodw! aq ~46!W ~e4~ aJn~e/\Jn~ I\ue

.

~(.~~a 'paUJa~UO~ Jal\el a4~ jOJaqwnu pUB 'SJal\el jO Jaqwnu .Ja~aWe!p aJ!M 'al6ue I\el) alqe~ a4~ jO S~!~S!Ja~~eJe4~ le~!J~awoa6leUJa~U! a4~ 4~!M pa~e!~OSSe S! ~uauodwo~ le!peJ aS04M '::I alqe~ a4~ jO a~JOj al!SUa~ le!Xe a4~ . UO!leU!qwo~

WOJJ SllnS8J II .SlU!od l~elUO~ 8J!M-J8lU! le p8lJ8X8 S! ~ 8~JOJ le!peJ 'v' UO!Jat!J:> uone6edoJd

pue UOnen!U! SAelS e/qea

>j:>eJ:)

~"£"t"g

uo suoflepueWwoaeJ

d/:J

pU8JjS :JO

..

CIP recommendations

on cable stavs

Photo 28: Wear at point of contact (contact between crossed wires in a cable stay)

6.4.3.2 Consequences

Photo 29: Crack at point of contact (wire in an inner layer of a cross-layed multi-layer-strand cable)

for cable design

The external parameters that limit initiation and propagation of fatigue cracks are: limitation of the maximum axial stress in service; increase in inter-wire contact areas, by increasing the lay length, by prestressing cables to a higher tension or by plastification of contact areas, or by preferring linear contact to point contact; limitation of variations of curvature and of the maximum curvature, by increasing the radius of saddles or by reducing the angles of deviation in anchorages; limitation of flexural stress variations, by damping vibration due to wind or traffic; reduction in coefficients of inter-wire friction, by using a lubricant whose effect can be maintained, or, on the contrary, by preventing any relative movement between wires and thus eliminating fretting fatigue and fretting corrosion phenomena. The experiments performed by Waterhouse, Patzak, and Siegert show that the 100 million cycle fatigue limit of multi-layer strands with bright or galvanized wires loaded to 50% of their breaking stress is about 100 MPa. For shorter lifetimes involving contact fatigue phenomena, the fatigue strength at 2 million cycles can attain 120 to 150 MPa. These values do not take account of the presence of an effective lubricant which might durably maintain the coefficient of inter-wire friction below 0.2 (value below which the fatigue strength increases).

6.4.4 Conclusion:

detailina

In practice the following detailing is recommended Abandon saddles and replace them by anchorages. If saddles are used all the same, ensure they provide a sufficiently large radius of curvature (see Article 14.7). Eliminate any unnecessary metal-on-metal contact between cables and parts of anchorages or saddles or deviators. Use flexible materials in zones of deviation: nylon, polychloroprene, zinc, aluminium alloy. Use a flexible guide to attenuate or even eliminate free bending of the cable where it leaves the anchorage, on both the bridge deck and the pylon. . Inject flexible lubricants to reduce the coefficient of inter-wire friction, and use cables made from galvanized wire. Galvanization is primarily associated with corrosion-protection of steel, but it also reduces coefficients of friction and the contact pressure between wires: the zinc is flattened and partially extruded around the edges of the contact areas.

66

~

Photo 30: Roof of Stade de France stadium on temporary supports

Conversely, if the deck of a concrete cable-stayed bridge were built on falsework, and if the deck were encastered into the pylon, when the falsework was removed there would be substantial sag of the main span, resulting in an unacceptable negative moment near the pylon (Figure 20). The solution for preventing this situation of course involves pretensioning the cable stays with a jack before removing the falsework. This means we are dealing with active structural elements. This is why, in most cases, cable-stayed structures require pre-tensioning. They are highly statically indeterminate, and pre-loading the cable stays by pre-tensioning is nothing other than introduction into the structure of a set of self-balanced forces. These forces-two equal and opposite forces at the two anchorages-induce no boundary forces overall, but are balanced by the distribution of forces in the structure (bending moments in the deck and pylon in the case of a cable-stayed bridge). This distribution of preloading forces enables the structure to take the effects of permanent loads with only very little bending. It is therefore natural to regard a cable stay as a preloaded2 structural element. Adjusting a cable stay then involves applying preloading of a given intensity.

7.1.2 Cable-stay

adiustment

from the desian point of view

During the design of a cable-stayed bridge, finding the right adjustment adjustments of cable-stay tension in order to achieve the following objectives:

involves

optimizing

.allowable stresses in the cable stays and in the structure, both during construction and after commissioning, under variable loads; .if at all possible, zero or very low bending moment in the structure under permanent loads (selfweight and any prestressing of concrete) in order to limit redistribution due to creep and to facilitate mid-span jointing.

2 Or 'prestressed',

but in civil engineering

this term is often considered

using tendons, as within a bridge deck, for instance.

68

to

8q

"lLl618MJ18S 6UIPJe68J 111M Allle8J

pUB

£L

s81::>eJn::>::>euI pUB SUO!l!PUO::> 8JmeJ8dw8l

18pOW

8L1l U88Ml8q

JO 8Sne::>8q

LI::>leW 8L1l 'SUOllIPUO::> 8llS

8AIl::>IJlS8J pUB p8lepdn SI 18pOW 8L1l JI U8A3 'UOlleJ8do lem::>e 8L1l JO UOIlelU8S8Jd8J l::>eX8 ue S8AI6 18pOW l::>8JJO::> UI llnS8J AIUO 111MJ8U61S8p UO p8lSnfpe 8Je SUOISU8l Aels-8Iqe::> "S81pmS 8q

s8nleA

6UIUOISU8l

uo

AIJeln::>llJed

p8::>eld

lU8WlSnfpe 8L1l 6u!Jnp le::>!J8WnU 8L1l J! SAelS

8Je

'l::>8Jj8dwl

SlU8W8Jlnb8J

6UII!eA8Jd SUOIl!PUO::> 8lqe::> JO 6u!peOl8Jd

8L1l Aq p8leln::>le::> UOISU8l leillul 8L1l JO UOlle::>lldde l::>8J!P :8l1S U8L1M lln::>IM!p 8JOW U8A8 SI pe8lSui UOISU8lleillui 8L1l 6u!sn lng

8L1l JO 8SJnO::> 8L1l U! 86ueLl::> Ol 6UIO6 SI WJOJ >j::>8P 6UII18AeJl

Ol 8AeLl

UO!SU8J leuy uo speol

8L1l lie

JOJ 'J8u6!S8P

8L1l Aq

8L1l JO lLl618M

>jJOM

snOIPllseJ

8L1l J! p8leln::>le::>8J JOJ S8>jew

S!LI.l

8J!S }O J.?8JJ3 :l'l' 8Jn6!::1

"6U!UO!SU8l Jo 8W!l 84l le SUO!l!PUO~ leJm~nJlS JO UO!l!U!J8P 8S!~8Jd e I\q P8lU8W8ldwo~ 8q 8JOJ8J84l lsnw elep UO!SU8l le!l!U! 841 "speOI 8l!S l\Jepuo~8S lno4l!M pue 4l!M lnO p8!JJe~ S! UO!leJ8do 84l u84M 8Jm~nJlS leu!J 84l uo Sl~8JJ8 8wes 84l 8~npoJd lOU S80p 8nleJ\ u8J\!6 e Ol J8J\81!lue~

~~ = ~~ 6U!UO!SU81

84l Jo PU8 84l le P8Jo4~ue I\els 8lqe~ e 6U!UO!SU8l

IO~

~

'8ldweX8 JoJ ~lU8WlSnfpe Sl! Jo ~!lS!J8l~eJe4~ ~!SU!JlU! ue lOU S! I\els 8lqe~ e Jo 8~JOJ

z~ 6U!UO!SU9.L

e S! sa5eJO4~Ue

6U!UO!SU8l

"aJeMijOS u5!sap ase4d-Aq-ase4d o~ a~JoJ e 5U!Aldde Aq suo!~eJado 5u!uo!sua~ 5u!~elnw!s

u5!sap a4~ ~e AIJeln~!lJed '5u!peOlaJd

84l

'J8J\8MOH

u! aJnpa~oJd pJepue~s asne~aq S! S!41 .a5e~s

Ae~s-alqe~ aq!J~Sap O~pasn AIUOWWO~ S! a~JoJ 5u!uo!sua~ a41

palle~SU! aJe SAe~S alqe:> uaLiM UO!Sua~ le!~!UI t"Z"L

uollarulsuoa

6UlJnp e6PlJ8 ewe£) ep oase/\ : J.f: OlOl/d

t

S/lelS a/qea uo SUO!lepUawwoaaJ d/:J

CIP recommendations

on cable stays

Photo 32: Uddevafla Bridge under construction

7.2.4 Deck saa Another restriction on using the initial tension for cable-stay adjustment comes to light in the case of flexible structures: the tension is determined by the pendulum rule (see § 7.1.2) and the vertical component is practically the same irrespective of cable length. This method results in irregular tension from stay to stay, an overtensioned cable stay being following by an undertensioned one, and soon. A means of overcoming this problem has been envisaged in the case of very flexible decks; it involves tensioning the cable stay until the correct deck sag is obtained at the end of the cable stay. This method cannot be used when the structure is rigid, especially not for adjusting the first cable stays of a cantilever end-fixed to a pylon. Nor is it very satisfactory to use both methods together, depending on whether a rigid or flexible part of the structure is being dealt with. Finally, deck sag does not directly characterize cable-stay preloading; on the contrary, it introduces unfortunate confusion between geometrical adjustment and adjustment of cable-stay preloading.

7.2.5 Cable lenath under no tension (neutrallenath) The neutral length of cable 10is the length of cable measured between two anchorages when the cable is not tensioned and rests on a support which cancels out the effects of selfweight. Like cable mass, 10is an intrinsic quantity that is independent of the conditions to which the cable stay is subject in the works. Cable-stay preloading is entirely determined by the following three things: .definition of a reference state (most commonly this involves the bridge geometry, which is defined by drawings and which is used to define the design model), .the distance I between anchorages fixed to the structure, when the structure is in its reference state, .the neutral length 10of the untensioned cable stay, which is shorter than distance I. It is theoretically possible to adjust cable stays on the basis of their neutral length, by accurately measuring cable-stay length 10 when they are made, and then tensioning them by appropriate means to tie the anchorages into the structure. This method is not affected by actual construction

74

pue

3 UO!~eWJOJ8p8Jd

:6u!peOI8Jd

9L

:!.q peU!Jep elqe!JeJ\ leUO!suew!pe

l\e~s-8Iqe~

JO UO!~eZ!J8~~eJe4~

UO!SU8~ 8:)U8J8j8J

e4~ s! 3 UO!~eWJ°.JapaJd

OJQldUO!SU8~ 8~U8J8J8J ~!SU!J~U! 8A!6 SUO!~OU OM~ J84~OU'v'

pue

UO!~eWJOj8p8Jd

9'Z'L "aJe:)

leJnpa~oJd Jo leap leaJ6 e saJ!nbaJ pUB Al!l!qeJnSeaw JO l!W!1 le~!U4~al a4l Ol asol~ S! A~eJn~:)e S!41 'uO!SUal JO SWJal U! A~eJn~~e JO aaJ6ap paJ!sap a4l U!elqo Ol /\Jessa~au S! lUaWaJnseaw 4l6ual JoJ '%900'0 JO '9-0~'9 Jo g A~eJn~~e aJ\!lelaJ e le4l pa~npap aq ue~ l! 'sa6p!Jq paAels-alqe:) JoJ £-O~'£ punoJe AileJaua6 S! 3 S'v' '(al~!lJe lxau aas) Aels alqe~ a4l JO uO!leWJOJapaJd a4l S! 3 aJaljM

( ~g)

.'IV

g

d

3

:pe4S!lqe~se ueeq se4 d!4SUO!~eleJ 6U!MOIIOJ e41 .uo!sue~ Ae~s-elqe~ leU!J e4~ JoJ %l o~ ~ U!4~!M o~ e~eJn~~e .:IV ~e6 o~ AJesse~eu °1/oIV = g 4~6uel Jo ~ueweJnseew Jo A~eJn~~e eA!~eleJ e4~ 6u!u!wJe~ep seAIOAU! p04~ew

4~6uel-leJ~neU

e4~ 'eJn~eJedwe~ e6p!Jg puoseJO

elqe~

pUB Se~UeJeIO~ 6U!UO!~!SOd e6eJ04~Ue

6U!JOU61

uo )fJOM J8 eU8JO 6U!J80/.::/ :£'£' OJOLfd

"aueJO Bu!leolJ e Bu!sn 'SJell!d /iJeJodwal uo )foap laals a41 Jo SuO!10aS Bu!Oeldilq 11!nq SeM 40!4M aBp!Je punsaJO a41 Jo silels alqeo a41 JoJ 'a,dwexa JOJ 'pasn SeM p041aw luawlsn(pe S!41

'se~UeJeIO~ ese4~ punoJe ~e6 o~ pesn eq o~ eAe4 spo4~ew ~~eJ!pu! pue 'seJ~ew!~ue~ MeJ e U!4~!M O~ AllenSn S! )j~ep e~eJ~UO~ e U! 6u!uo!~!sod e6eJO4~Ue Jo A~eJn~~e e41 °)jJOMeSleJ UO pelqwesse SeJn~~nJ~S lee~s JOJ pe6eS!AUe eq Sew!~eWOS ue~ ~nq 'e~!~~eJd U! e~ueJJn~~o eJeJ f.JeA e eJoJeJe4~ S! S!41 °seJ~ew!ll!w MeJ e U!4~!M O~-Ale~eJn~~e f.JeA UMOU)j S! I se6eJO4~Ue ueeM~eq e~Ue~S!p len~~e e4~ J! pesn eq AIUO ue~ pue 'Se~UeJeIO~ le~!J~ewoe6 o~ eA!~!SUeS S! ~uew~snrpe peseq-4~6uel 'JeAeMOH

elqe~

'eJmeJedwel

JOJ 6u!~seJe~u! ;;'IJeln~!1Jed S! ~I

'speol

.f\Jol~eJ e4l U! pele~!JqeJeJd SAelS'~le f\Jepuo~es eA!ldnJs!p) SUO!l!PUO~ SJ\elS 81qea uo suoilepu8WWOa8J

dl.J

£O~

~Ale/\!~::>edseJw/5)j ZL ~' ~ JO w/5)j 980" ~ :pueJ~s eJeq e4~ Jo ssew ::>!eU!lleu!wou ~Ale/\!~::>edseJzww 09 ~ JO zww Ov~ :uo!~::>es 5u!~s!seJ leu!wou ~(spueJ~s L"9 ~.l) ww L"9 ~ JO (spueJ~s Z'9 ~.l) ww Z'9 ~ :Je~ewe!p leU!wou

. . .

:s::>!~s!Je~::>eJe4::> 5U!MOIIOJ e4~ 4~!M pUB '( e~U!eJ~UO::>9Jd el ep elle!J9~S!U!WJe~UI UO!SS!WWO~) dl~ e4~ Aq pe/\oJdde '(OOOZ pes!/\eJ) 9£0-9£ 'v'.::IN pJepue~s 4::>ueJ.::I }O s~ueweJ!nbeJ e4~ o~ spueJ~s eJe sAe~s ~Sd Jo (S3.llf\J) s~uewele el!sue~ u!ew e4.l

S~UaWala

al!Sua~

U!ew

~ "Z"6

.wn!paw aA!~~a~oJd e 4~!M pa~~arU! ad!d !\e~s aA!~~aIIO~ JO 4~ea4s lenp!A!pU! ue pUB 6u!~eo~ le~aw e !\q pa~~a~oJd aJe SpUeJ~S a41 .spUeJ~S lalleJed paJO4~Ue !\llenp!A!pU! WOJJ apew aJe s!\e~s alqe~ pUeJ~S-!~ln~

SAV.lS 318V:> aN~.lS

"1noJ6 al./J se uofSuedxa)o soap

uouawoual./d

aq ueo 3dOH

Sfl./J 'Jal\aMOH

pUB JnoJ6 Juawao

JuafOfjjaoo

1311~Vd

awes

"1noJ6 Juawao al./J)o

e al\el./

:A~O~3.lV:> :>Sd

asal./J JO) 'sadfd

l./JfM paJoa[uf

uofSuedxa)o

sJuafofjjaoo

sadfd

/.eJs

/.els

,eJaw

Z.u 31:>1.l~V

l./JfM JnOOO Jou

Uf sJapJosfP

al./J uaaMJaq

)0 aOJnos

aOUaJajjfp

e

al./J '/.IJSe7

)S8) 8n6!)ej e 6u!Jnp U8>/OJq pUeJ)S :yC O)Ol/d

Je apfxo JnoJ6

UOJf)O

JU8W8:J

saaeJJ '/efJ8JeW

palea/laJ a:Jej.l8Juf

a/leLJ sJsaJ an6/Je.::l

"uo/SOJJo:J

ue jO 8/0J 8LJJ 6ufl.e/d

"8:Jej.l8JUf JnoJ6/31W 6u/JJaJ) aJe/Jfuf 'AJeJJuo:J aLJJ uo

8LJJ 'uea

WOJj Jej JeLJJ SMOLJS 8:JUafJ8dx8 'J81\08JOW "SnOnufJuo:J 8q OJ S8Se8:J UOfJ:J8JOJd

8LJJ pue 'sl.eJs 8/qe:J 8LJJ jO 6ufpuaq pue 86e,>/UfJLJS OJ anp s,>/:JeJ:J Jf JOj 'wnfpaw 8JefP8WJaJUf 8LJJ uf uofJe/n:JJf:J J8JeM 6UfJU81\8Jd jO sueaw al\fJ:J8Jj8 ue JOU sf adfd l.eJs e Uf JnoJ6 Juawa:J

lnoJ6

~uewe:) 4~!M pe~:)erU! eq ~OU ~snw ed!d f\e~s e f\q pe~:)e~oJd sf\e~s ~Md 'AeJS e/qeo

eLlJ}O uo/JoeJe

AeJs-e/qeo eLlJ U/ peJoe!u/ S/ /e/JeJew 6u///yu/ eLlJ 'sAeJs e/qeo u/ew peJonp A/e/\/Joe//oo eLlJ Jo.::/ 'JepueJJs JO JeMeJp eJ/M eLlJ}o 6u///yu/

eLlJ 'spueJJs

JeAe/-mnw

JO} pue

sAeJs

:JSd}O

spueJJs

Jeye

ells

uo JO 'dOllS

pUB ~Sd

uo/Jeo/Jqe}eJd

}O sedAJ JeLlJo }O sJuewe/e e//sueJ dOLlS>fJOM eLlJ U/ peJoe!u/ S/ /e/JeJew eJ/M-L

peLlJeeLls

N/enp//\/pu/

eLlJ JO.::/

'SJa!JJeq OM~ a4~ uaaM~aq UO!~eSUapuo~ S~uaAaJd Wa~SASe 4~ns 'Wa~SAS uo!~~a~oJd uo!~e~!l!P!Wn4ap alqe~ e 6u!sn 's~uawala al!sua~ u!ew a4~ pUnOJe MOil J!e A~!P!Wn4-paIIOJ~UO~ ~UauewJad e JO . ~(U!SaJJO 'aseaJ6 'xeM AlleJaua6) ~~npoJd 6U!II!lU! alqe~!nS e 6u!sn 'a~eds JelnUUe a4~ U! Wn!paW 6U!)j~Olq e Ja4~!a . st\els

a/qe:) uo SUO!lepuawwo:)aJ

d/.'J

CIP recommendations

on cable stavs

.protective metal coating of zinc or standard zinc/aluminium alloy applied at coverage of between 190 al:ld 350 g/m2 (mean thickness of 26 to 40 11mapproximately); . .strength class fclass1770 MPa or 1860 MPa; .strain under maximum load Agt at least 3.5%; .modulus of elasticity of the bundle of parallel strands of about 195 GPa :t 5%; .very low relaxation: no more than 2.5% at 1000 hours at 0.7 Fm( at 20°); .category B of French standard NF A 35-035 (revised 2000), i.e. MTEs with special capacities meeting the following test conditions: ~ fatigue strength: 2 million cycles with maximum stress of 0.45 FOUTS and stress variation of 300 MPa; ~ deflected tensile strength coefficient of no more than 20%. The nominal values and tolerances apply to coated products, i.e. they include for the metal coating. The strand lengths commonly produced can have welds made on individual wires before drawing, but may not be welded during or after drawing.

Photo 35: Detail of strand The project specifications may lay down more stringent requirements, the protective metal coating, within the scope given in § 9.1.2.1.

9.2.2 Individually

sheathed

multi-strand

particularly with respect to

cable stavs

A sheathed, waxed/greased galvanized strand is a product made especially for cable-stay applications. The individual sheath is made by extruding high-density polyethylene (HOPE) directly onto the strand previously coated with an infilling material. The use of strands sheathed permanent cable stays. Experimental French standard following requirements. 9.2.2.1

Individual

by threading a preformed

sheath over an MTE is prohibited

NF XPA 35-037 (currently being drafted) contains

for

most of the

sheath

The individual sheath is an very characteristics are specific to each conditions:

important factor in cable-stay durability. Its functional cable-stay system. It must meet at least the following "

104

CIP recommendations

on cable stavs

9.2.2.3 Outer sheath (stay pipe) The individually sheathed strands can be enclosed in an outer sheath, or stay pipe-which mayor may not be watertight-whose purpose is fulfil supplementary functions, in addition to corrosion protection. It is therefore not necessarily a barrier, but the recommendations of Article 9.5 apply

nonetheless. The outer sheath may consist of a one-piece stay pipe through which the strands are threaded, or it may consist of two split shells clipped to each other around the cable stay once it has been tensioned. It improves the aerodynamic behaviour of the cable stay, and possibly also its watertightness and its CBsthetics. The surface of the outer casing may be textured or carry other relief; such as spiral ridges for example, to counter the effects of rain & wind instability.

Photo36: Individually sheathedstrandsinsidea staypipe 9.2.2.4 Diagram illustrating waxed/greased strands

the principle

of PSC stays

1 made with

individually

sheathed,

Individual sheath -Optional

outer sheath

'""-A!L Figure 31.. Diagram of PSG stay with individual sheaths

9.2.3 Ducted multi-strand

cable stays

9.2.3.1 Stay pipe For the free length of a cable stay, the external barrier of ducted multi-strand stays is generally one of the following continuous stay pipes: .plastics stay pipe made of rigid or semi-rigid tubes (high-density polyethylene (HOPE) or similar); .steel stay pipe made from pipe sections welded together; they are either protected against corrosion or are made of stainless steel.

106

CIP recommendations

on cable stavs

The thickness of the sheath should be taken into account to determine the total volume of the MLS cable. Refer to the technical data sheets on the cable-stay system for more details.

Photos 37 and 38: MLS cables

Cables with round wires Oext of

bare cable (mm)

Resisting section

F GUTS

Locked-coil cables with round and Z-shaped wires

Lineic mass

(mm1

(kN)

20

219

316

1.8

30

530

766

40

942

50

1501

60

2125

3000

70

2936

80

Resisting section

F GUTS

Lineic mass

(mm1

(kN)

4.3

594

858

5.3

1362

7.6

1090

1580

9.8

2034

12.9

1801

2594

15.0

18.5

2502

3716

21.6

4100

25.3

3406

4946

30.5

3779

5327

31.9

4552

6604

40.2

(kg/m)

(kg/m)

90

4869

6625

40.8

5690

8454

49.0

100

5897

8179

50.9

7060

10316

61.2

110

7364

9854

60.3

8466

12441

72.8

120

8532

11844

72.8

9999

14497

85.8

130

12285

13819

86.3

11731

17004

101.5

140

11578

16405

97.6

13423

20170

115.1

150

13536

18850

115.8

15645

23314

133.9

Table 3: Common MLS cables

9.5.1 Watertiaht

outer orotection

For the free length of ducted PSG or PWG stays, the collective external barrier consists strong, watertight tube of regular shape throughout its entire length.

of a

The characteristics of this tube, especially its thickness and chemical composition, following requirements:

must meet the

.the

and MTEs;

materials

of which

it is made must not be aggressive

115

to the injection

materials

CIP recommendations

on cable stavs

If tube sections are to be welded together, the tube must be no less than 3 mm thick. Welds must comply with the terms of appropriate standards (e.g. NF P22-471, quality 1). The fatigue strength of welded joints must be substantiated. Steel stay pipes must have an external corrosion-protection system guaranteeing before rust index Ri 1 defined by the applicable standard is reached.

at least 6 years

At the time of publication of these Recommendations, the applicable standard is French standard NF T30-071, "Degradation des surfaces peintes". This level of guarantee of corrosion protection can be achieved by cleaning the surface to level OS 2.5 and painting the bare steel. Regular maintenance is required thereafter (every ten to fifteen years approximately). Alternatively, painted galvanized or stainless-steel tubes can be used.

9.5.2 Blockina comDound The filling material corrosion or fretting grout is prohibited. A flexible protective flow can be kept up

injected into the intermediate areas must not be a cause of wear (fretting fatigue) of the MTEs it is supposed to protect. It is for this reason that cement material is generally used to fill the inside of the duct. Alternatively, around the MTEs by means of a dehumidification system.

a dry air

Flexible protective products are generally pumpable petroleum products: .a

microcrystalline wax, i.e. a malleable crystallized solid consisting of saturated hydrocarbons which are injected in a liquid state (temperature between 80 and 120°C) [6]; or .a mineral-oil-based grease, i.e. a plastic lubricant obtained by dispersion of an insoluble thickener (such as complex metallic soap) in a lubricating fluid (mineral oil) to form a stabilized three-dimensional network; or .a resin or flexible polymer injected at an appropriate temperature. The filling material must not be aggressive to the MTEs or the material of which the stay pipe is made. The absence of aggressivity is determined by physical testing or by reference to previous projects. The filling material must retain its protective properties without interruption, and continue to protect the steel despite the extreme thermal loading to which it might be subject throughout the lifetime of the project.

Photo 39: Pump for injecting cable stays

Photo 40: Check of injection

118

OG~

(aaueJ::/) u/OJe7 U/ a6p/JQ100::/ : ~1701oLld

"(e~ueJ::I 'epeue~ 'pUeIJeZ~!MS 'wop6u!>I pe~!Un) ~I!nq 6u!eq eJe JO ueeq eJ\e4 s~~efoJd le~Uew!Jedxe Mej 'v' 'PIJOM e4~ ~n046noJ4~ euop 6u!eq AI~UeJJn~ s! 4~JeeseJ jO ~ol e pUB 'Sp04~eW UO!~~nJ~SUO~MeU seJ!nbeJ Jee4S JeU!WeIJe~U! O~ Sle!Je~eW ese4~ jO A~!J\!~!SUeSe4~ pUB nee~eld A~!I!~~np e jO e~uesqe e4~ 'JeJ\eMOH .ssew ~!j!~8dS MOI'4l6U8JlS 81!SU8lle!Xe le8J6 f.J81\ '4l6u8JlS 8n6!lej pUB 8~UelS!S8J UO!SOJJO~le8J6 :s86p!Jq JOj sf\els 8lqe~ U! 8Sn JOj S8Jnle8j el\!l~eJ»e 8WOS 81\e4 p!WeJe JO 'uoqJe~ '8Jq!j SSel6 uo p8seq SlU8W818 81!SU8l U!eW 8l!SOdWO~

s~uawala Sl~eMe LI~lOU pUB SUO!leJlUe~UO~ SSeJlS l!W!llSnW

al!SUa~ U!eW a~!soawo:>

£"9"6

"6u!e6e pUB en6!leJ elemUe~~e LI~!LlM SJeq JO eJm~eJnuew pUB u6!sep eLll 'sese~ lie UI

.se6P!Jq LlaJe-pe!J}o sell eLlJ JO} esea eLlJ sew!Jewos

eJn~eAJn~ pesodw!

S! S!Lll

.se5eJ04~ue e4~ ~e se5u!4 f\q pe~ueAeJd s! 10 )jS!J f\ue ue4M se!~ f\~!~ede~-Mol JO ~04s J01 elqe~!ns eq f\ew sJeq lee~s pello~

SABlS 91qB.? UO SUO!lBPU9WWO.?9J

dl.'J

CIP recommendations on cable stavs

10.1.4 Corrosion

protection

and watertiahtness

The design of anchorages must extend the two barriers defined in Chapter.9 without a break, to protect against corrosion and keep water out of the free length of the cable stay.

10.1.5 Removability Anchorage

design

ARTICLE

10.2

must

stated

same

of cables.

PROVISIONS

COMMON

TO ALL ANCHORAGE

TYPES

out anaular deviations

in Chapter

order

for renewal

GENERAL

10.2.1 Filterina As

allow

6, angular

of magnitude

deviation

as those

due

of cable to the

axial

stays

engenders

loads

and

can

stresses have

harmful

which

can

effects

be

of the

in terms

of

fatigue.

Appropriate deviations

systems should at the anchorage

therefore be provided to limit or eliminate head, i.e. to "filter out" changes in angle

the effect of cable-stay between the cable and

anchorage. There are two main techniques for this, the effects of which are quite similar: .stiffening the anchorage zone: this involves increasing the flexural stiffness of the cable stay. One means of achieving this is to attach a steel tube around the cable, near the anchorage, and mechanically fix the end of the tube to the anchorage head or to the structure. .guiding the cable: this involves partially or totally preventing transverse cable-stay movement, i.e. the movement of each of its component parts, using a guide system placed a certain distance from the anchorage. The effectiveness of such a guide system depends on its distance from the anchorage, as seen in § 6.2.4.1 The angular-deviation filtering system can also playa role in damping (absorption of vibrational energy by viscosity or friction). The design of a cable stay's guide system must take account of transverse resulting from cable deformations.

10.2.2 Directional Initial

directional

possible

by

anchorage by Such

the

adjustment

screw

a plastic

shaft,

suitable

hinge

stay

This

made or

and parts

with

the may

a spherical

shims,

a fork

or to a single

its

is achieved

connecting

anchorage

bicylindrical

is

the

to rotate.

connecting

surface, to

adjustment

inserting

between

adiustment

allowing

head

and flexural forces

parts structure. be

an

seating attached or double

etc.

In most cases, however, the systems for initial directional adjustment of stays cease to be very effective once the stay has been tensioned. They are useful above all during construction, and cannot be considered eliminate the effects of bending due cable-stay vibration.

I

to Photo 42: Bottom anchorage of a stay on the Pont de to Normandie Bridge, with hinged fork

122

PU8lX8

lsnw

6 J81de4:J

U!

P8U!J8P

£G~

"8UOZ 85eJO4~ue SJ8!JJeq JeeM

peu6!sep

s~ed

8J!IU8 841 45noJ41 f..lsnOnU!IUO~

UO!I~810Jd-uo!sOJJO~ pue

UO!SOJJO:>

f..Jelu8w8Idwo~

~SU!etje

UO!~:>e~OJd

OM} 841 "£"Z"O ~

.elqe~ e4~ 6u!6ewep ~nO4~!M (seeJ6ep £v. ~ +) sue!peJ!II!W 9Z + Jo UO!~e!Aep ~de~~e o~ eq ~snw ~'Z.O ~ U! o~ peJJeJeJ swe~sl\s ep!n6 e4~ JO se6eJO4~Ue 'eS!MJe4~O pe~e~s sselun

6U!l~8UUO~ 84l JO S8~UeJ810l UO!lellelSU! 84l JO SS8~X8 U! SUO!le!J\8p Jeln6ue

(~.V.G~88S) ~!lelS 6u!ld8~~e

Jo 8lqede~ 8q lSnW s86eJO4~Ue 841 .8Jm~nJlS p8peolun 84l Jo SUO!l!PUO~ 8~!J\J8S 84l J8pUn (AJeu8le~) lU8Wu6!le f,els-8Iqe~ le8p! 84l Jo luno~~e 8)jellsnw s~ed 6u!l~8UUO~ Jo UO!lelu8!JO 841

...J.ied 6ulJoauuoo paXI) -eaJO)/ UI a6pIJB pueJf) aeqoas uo I.els e )0 a6eJoqoue WO110B:yy °loqd }Jed 6u!Jaauuoa pax!) -pue,u!:i !>/o!sJn uo /ieJs e )0 a6eJo/.{aue wonoa

"JOJefl\ep sJf LlJfM /efxeoo eq JOU I/!M /ieJs uo pesn

seqnj

e/qeo

eLlJ sueew

eq JOU I/!M JO 'eJnjonJJs seqnj

>/JOMWJO] eLlJ ]0

>/JOMWJO] eLlJ ]0 Jno sewoo

e4~ U! pue e5eJO4~Ue e4~ Jo u5!sep Ue4M ~uew~snrpe "Iel\el

Jf eJeLlM e/qeo

eLlJ uo eJe/d 6UfJeeq Juewu6f/esfw eLlJ]o

/iU'rI

uofJoeJfp

U! a6P!Ja :Ctl' oJo/'{d

P'

sJf OJ Je/nofpuedJed "seJnjonJJs

eLlJ JO] eseo

eJeJOUOO eLlJ sf SfLli

'eJm~nJ~S e4~ U! stJed 5u!~~euuo~ e4~ Jo uO!~elle~SU! uo e~ueJelo~ e4~ U! ~uno~~e O~U! ue)je~ eq ~snw S!4~ 'pelle~SU! ~SJ!JeJe f\e4~

leUO!~~eJ!p JOJMolle ~ou op eJn~~nJ~s e4~ O~e5eJO4~Ue e4~ 5u!~~euuo~ stJed e4~ JI

46f4l.flueJsfSUO{)

oJ J{)e[qns

'e{)UeJsuf

e Je peufeJufew JOj 'speol

"SUOfJeJqfl\ l.{)uenbeJj-46f4

sf J{)eJuo{) e4J jO I.Jflenb

{)fjJeJJ WOJj 6umnseJ

'epnJfldwe-MOI

e4J jO el\fJ{)edseJJf

UOfJfPUO{) e{)ejJns

Uf peu6fsep

4JfM e{)uepJo{){)e

eq Jsnw

Jf Je4J 4{)nS ueyo

s6UfJeeq

e4J Je4J eJnsue

se 'uofJeJOJ lefJueJsqns

uo J{)ejJe

ou el\e4

e6pe-ejfU'>f

ueyo

JO sye4s

oJ ue'>feJ 6ufeq

Molle

UOfJenbe

ue{) l.e4J

sdeJs

'Jel\eMOH

SseJJs J{)eJUO{) s,zJ.JeH

4JfM JO se6Uf4

{)fJse,d

4JfM sweJsl.s

"sJ.Jed e4J jO Sf J{)eJuo{) uf sJ.Jed e4J jO uofJeJOJ I.ue Je4J peJepfSUO{)

'peJfqf4uf

eJe sesseJJs

J{)eJuo{) ,eWJoU

e4J 'uofsueJ

l.eJs-elqe{)

jO uofJ{)e

e4J JepUn

SAelS 8/qe.? UOsuo/lepu8wwo.?8J

d/:J

CIP recommendations on cable stavs

Abbreviation

Gripping

Category of cable concerned

c

Conical wedges (split-cone) gripped in the anchorage head *

PSC (sheathed or ducted)

5

Swaged sleeves bearing on the anchorage head *

PSC (sheathed or ducted)

Buttonheads bearing against a plate + possible conical socketing action by filling with Resin, etc. --

B or B+R

Fanning

F+R

out + conical

socketing

action

PWC

byI

MLS

filling the socket casing with Resin, etc.

* May be complemented

with a suitable rigid filling material to improve fatigue strength

Further distinctions can be made between the different kinds of anchorage: .live (or stressing) anchorage, where the cable is tensioned, and dead-end (or fixed) anchorage where no tensioning is performed; .bottom anchorage, on the deck, and top anchorage in the pylon. The bottom anchorage of a cable stay is particularly exposed to water running down the stay, and therefore requires special preventative measures,. .static anchorage, the head of which is static with anchorage, the head of which can be moved axially.

respect

to the structure,

and adjustable

There is an important difference between cable stays using type C anchorages and all the others: the unloaded length of a cable made up of parallel strands anchored by split-cone wedges can be changed during adjustment phases, unlike the other kinds of cable stays for which the unloaded length of the tensioned wire, strand, or cable is irreversibly fixed before jacking takes place.

ARTICLE 10.4

TYPE C ANCHORAGES FOR PARALLEL-STRAND CABLE STAYS

Type C anchorages are used for sheathed or ducted multi-strand cable stays.

10.4.1 Principle

of the system

Type C anchorages rely on wedging of each strand in a separate tapered hole in the anchorage head by means of jaws made up of two to four split-cone wedges. In some cable-stay systems the grip of the wedges is complemented by injecting the anchorage head with an appropriate rigid filling material such as resin with satisfactory fatigue performance. It would therefore be more appropriate to code these anchorages as type C + R.

Photo 45: Split-cone wedges

126

Photo Figure

CIP recommendations

on cable stavs

46: Anchorage of a cable stay for the Stade de France stadium

~14 FREE LENGTH

",:";'" TRANSITION ZONE

ZONE D'ANCRAGE

1 -Protection

cover

7 -Strand

deviation

2 -Sheathed

7 -wire strand

8 -Sealing

system

3 -Wedge

9 -Transition

4 -Anchorage

piece

10 -Deviator

block

5 -Fork 6 -Spacer

zones

tube

11 -Stay

pipe I transition

12 -Stay

pipe (where

38: Principle of type-C anchorages for sheathed strands -Static

piece joint

applicable)

anchorage on fork

The transition zone, which extends from the end of the free-length part of the cable stay to the anchorage proper is where the strands fan out from the free length to the anchorage head. The length of the transition zone depends on the number of strands and the technologies used to deviate them. The transition zone contains one or more deviators which convert(s) a bundle of parallel strands into a cone of divergent strands. Steps must be taken to prevent fretting corrosion and fatigue at critical points: at each deviation of the bundle of strands, where the strands enter the anchorage head, etc. These measures must take account of axial overtension of the cable stay and permanent or transient angular deviations of the cables.

128

~ ~

CIP recommendations

on cable stavs

The commonly used means connecting socket casings are follows (see Figures 41 and 42):

of as

INTERNALLY THREADED SOCKET CASING WITH THREADED

EXTENSION

:g>

.socket casing with threaded bore behind the socket: this threading takes a threaded transfer rod anchored to the structure by means of an adjustment and locking nut,. .socket casing with external threading taking an adjustment and locking nut; .socket casing with fork and pin transferring the cable-stay force to a knuckle plate welded to the structure; .socket casing with lugs taking several high-strength threaded rods with adjustment and locking nut.

~

Adjustement

1 -Socket 2 -Internally

3- MLS cable stay threaded

4 -Externally threaded transfer rod

socket casing

EXTERNALLY THREADED SOCKET CASING WITH ADJUSTEMENT

NUT

Adjustement

~

1- Socket 2 -Externally

3 -MLS threaded

socket casing

cable stay

4 -Adjustement

and locking

nut

Figure 41..Different kinds of adjustable type F+R socket casings for MLS cable stays

FORK-TYPE

SOCKET CASING @)

1 -Socket

4 -Knuckle pin

2 -Fork-type socket casing

5 -Knuckle plate

3 -MLS cable stay

SOCKET CASING WITH FIXING LUGS

..Photo

47: Top anchorage of a cable stay on

Seyssel Bridge

2 -Lug-type

Figure 42: Different kinds of adjustable type F+R socket casings for MLS cable stays (contd)

3 -MLS cable stay

1 -Socket socket

casing

4 -High-strength

threaded rods

134

CIP recommendations

on cable stavs

Each specimen tested should reflect actual conditions of use, and have all the actual anchorage systems used with the cable stays, corrosion-protection accessories, and any products injected into the cable stays. Appropriate measures should be taken to reproduce the actual conditions in which the anchorages work in the actual structures. If the cable-stay system uses different live and dead-end anchorages (dead-end anchorage with swaged sleeves and live anchorage with jaws, for instance), both anchorages should be tested simultaneously.

PWC and PSC cable-stay systems generally use a deviator a certain distance from the anchorage which allows the MTEs to fan out from the free length to the anchorage (see Chapter 10). MLS cable stays too are sometimes configured this way. On test specimens the deviator should be placed no further from the anchorage than the distance specified for the cable-stay system. In actual structures the deviator freedom of movement, as when damper. Since it is not reasonable structure for the qualification test, i.e. that with a totally free deviator

may be connected to the structure, either rigidly or with some it is connected to the structure by an elastic tube or viscous to attempt to reproduce exactly the particular conditions of each the most unfavourable transverse guide system should be used, without any damping.

11.2.2.2 Fatigue test procedure Once the specimen has been set up on the test bed, 5 to 10 cycles (possibly more, depending on the requirements of the party requesting the test) are carried out between O'max/2 and O'maxto stabilize the components of the system. These cycles are not counted in the two million test cycles.

Photo 48: LCPC fatigue test bed

142

1 2.

CIP recommendations

on cable stavs

anchorblock on side plate with transversejack

Figure 45: Watertightness

11.3.3 Watertiahtness

test rig

test procedure

11.3.3.1 Preparation of specimen The specimen tested is a cable-stay bottom anchorage under near-real conditions: unit with capacity of 7000 kN (i.e. 27 x 15 mm dia. strands in the case of a PSG stay) fitted with all its accessories. The top end is a live anchorage for tensioning the cable stay and connecting its stay pipe (where applicable). The top anchorage is placed on the tube centreline and the cable is threaded into the test rig and tensioned to 0.10 FOUTS.Moisture indicators of blotting paper are placed on each MTE and at any sensitive point in the local casing where water should not penetrate. All deviation and sealing systems are installed (caps, stay pipe and couplers, ring seals, etc. In the case of PWG or PSG stays, the deviator is placed at the minimum anchorage specified for the system, and is left free to move laterally.

distance

from the

The stay pipes of ducted PWG and PSG stays have watertight seals with both anchorages, creating a single watertight compartment over the full length of the cable. The test should reproduce the same seal conditions at both ends of the stay pipe of the specimen in order to check that temperature variation has no effect on the seals. However, it is not necessary to install the stay pipe of individually sheathed PSG stays if it is not intended to be a watertight barrier. 11.3.3.2 Mechanical and thermal ageing The following ageing sequence is applied for a period of about 6 weeks (see Figure 46): 10 loading and unloading cycles between 0.2 and 0.5 FGUTS, using a multistrand or annular jack on the top anchorage, at room temperature (20°C :t 5), for several hours. The cable any points with water anchorage

is stressed to 0.30 FOUTS and held at this stress for the rest of the test. After sealing of possible leakage between the anchorage and the bearing plate, the tube is filled to 100 mm below the top bearing plate (representing water pressure on the bottom of about 0.2 bar). Mains water (no salt) coloured red with a suitable dye is used.

148

6v~

e4~ u! punoJ S! 6u!JnOI°:) JO e:)eJ~ ou J! el\!~!sod eq o~ peweep

6u!JnOI0~ peJ Jo se~eJ~ AUe pUB ~ede

ue>je~ eJe s~ed e6eJ04~Ue

S! ~se~ e41

'pe~~e~ep eJe SJe>jJew e4~ Jo e4~ 'pe!Jp se4 Ae~S elqe~ e4~ Jeij'rj .e6BJOLj~UB

eLjl LjSBldS Ol lOU eJB~ 6U!)jBl

'peAOWeJ S! ABlS elqB~

eLjl 'peU!BJp

JS9J SS9UJ46!JJ9JeM

ueeq Jo

sell

eqm

JU9WSS9SSV

eLjl ueLjM t"t"t"

~~

8Jnp8':JOJd JS8J SS8UJ4b'!J18JeM :gv 8Jnb'!::/

elqe~ JO 6u!uo!sue~ep (9M

)j88M)

8JmeJ8dw8~

pUB e~uenbes

WOOJ ~e J8~eM II!~S 4~!M ')j88M

6u!e6e JO PU3

e JOj Y81 S! dn~8S 84.l

L 9

'~o9 =+= OL ~e sal:Jl'\:J 09G :9M )jaaM ~aJn~eJadwa~ WOOJ~e sal:Jl'\:J 09G :PM )jaaM ~~o9 =+= OL ~e sal:Jl'\:J 09G :£M )jaaM~aJn~eJadwa~ WOOJ~e sal:Jl'\:J 09G :GM )jaaM:aJn~eJadwa~ WOOJ~e pUB ~04 4~oq s! Ja~eM a4~ Ua4M ~no pa!JJe:J aJe Sal:Jl'\~ "(peJW 9G ~noqe JO UO!~e!Aap JO al5ue ue O~s~unowe 4:J!4M 'ww 00 ~ JO apn~!ldwe ue "a"!) ww DOG S! sal:Jl'\:J a4~ Jo a)joJ~s a41 "(Jn04 ue ~noqe sa)je~ sal:Jl'\:J Jo sa!Jas 4:Jea) )j:Jer aSJaASUeJ~ a4~ 5u!sn 'ZH ~.0 ~noqe Jo l'\:JuanbaJJ e ~e ')faaM 4:Jea ~no pa!JJe:J aJe sal:Jl'\:J UO!~e!Aap Jeln5ue 09G 'aw!~ awes a4~ ~\;j "SJnO4 VG JoJ ~og =+= OG ~e Ple4 eJn~eJedwe~ ~I\ep e Jle4 ~noqe JeAO doJp o~ peMOlle eJn~eJedwe~ ~SJnO4 VG JoJ ~og =+= OL ~e Ple4 eJn~eJedwe~ ~I\ep e Jle4 ~noqe JeAO eJn~eJedwe~ u! es!J

8JmeJ8dw8J

WOOJ Je pue

II!JS J8JeM 84J 4J!M ')f88M

e JOj ij81 S! dm8S

9

-

:()jeeM Jed sel~l\~ OM~) sel~l\~ I\ep g"£ u! ~oOg JO e5ueJ e JeAO pe!JeA S! eJn~eJedwe~ Je~eM e4~ 'S)jeeM JnoJ 5U!MOIIOJ e4~ J°::l ,( ~M )f88M)

841

sJ\e/s 8/qe.? UO suOI/epU8WWO.?8J

v £ d/:J

'6u!se:)

~pa~~afu!

"(pU!M

WnJp

punodwo~

Jad

£9~

UJn}

alq!xalJ

auo

'pauJn}

leUO!~!ppe

pue

pue

pauo!~!sod)

Ae~s

3dOH

s6u!se~ pue

O~U! papeaJ4~

:saJ!M

6U!MOIIOJ

pUnOM)

AI!JeJodwa~

spea4uo~~nq

~pawJoJ

~(Alle~!~aA

~ad!d

:pawJoJ

Jo alpunq

uo

spea4uo~~nq

:4~uaq :sa6e~s

a4~

WnJp

ue

saqn~

Ae~S

6u!II!JU!

a6eJ04~Ue o~ ~n~

u!saJ puo~as alpunq

punodwo~

4~6ual

U! pa~e~!JqeJaJd

alqe~

~!do~Sala~

O~U! paJnod a6eJ04~Ue

paddeJM-leJ!ds

pa!ldde palle~su!

uo

a4~

UO paJO~S

pa4~e~~e ~a)j~os palle~SU! pue

pue

~!~ewo~ne

U! d04S)jJOM

~SJ!J

SaJ!M aJe

laa~s

sAe~s

"g "L "9 "S "v "£ "l' "~ ~Md

:uo!~d!J~sao sAe~s

~Md

Jo

uo!~eJedaJd

Z" ~ "£"Z

~

.spee4 e6eJO4~Ue OM~ e4~ U! selo4 6u!4~~ew U! peJo4~ue eJe l\e4~ ~e4~ pUB 4~6uel J!e4~ ~nO46noJ4~ lelleJed eJe SpUeJ~S e4~ ~e4~ eJnSUe O~ ue)je~ eq Plno4s SeJnSeeW e~e!JdoJddV' "e6edd!IS pueJ~s f\ue S~ueAeJd ~e4~ we~sf\s 6u!6peM-eJd e~e!JdoJdde ue f\q 'f\e~s elqe~ e4~ Jo 6u!sseJ~s o~ Jo!Jd 'e~eld u! Ple4 eq ~snw Se6peM e4~ ese~ 4~!4M u! 'Se6peM eUO~-~!lds 4~!M sf\e~s elqe~ pUeJ~S-!~lnW 6u!)jew JOJ pesn eq ue~ eJnpe~oJd ewes e41. wn/pe1S 8aUeJ::J 8p 8pe1S 841 JO) s/ie1s 8/qea )0 uo/1eJed8Jd

aJa4M

'punodwo:)

6u!)j:)°IQ

alQ!xalJ e Jo uo!1:)a[u!

pue

'ad!d

:09 pue 6v SOl04d

lie~s :)!do:)sala~

Jo ~uaw4:)e~~e

:spueJ~s a4~ Jo spua a4~ o~uo saAaals JO 6u!6eMS-Plo:) OMI a4~ U! sal04

'alqe:)!ldde liJeJodwa~

IiQ paJ04:)ue

"v

spueJ~s

:spea4 a6eJ04:)ue a4~ 46noJ4~ pue (aIQe:)!ldde aJa4M) ad!d lie~s a4~ 46noJ4~ papeaJ4~ spueJ~s Jo alpunq ~4:)uaq uo!~eJedaJd e uo 4~6ual paJ!nbaJ o~ ~n:) spueJ~s liJe~uawala

:sa6e~s 6U!MOIIOJ a4~ U! d04S)jJOM a4~ U! paJedaJd

"£ "Z '~

aJe saAaalS pa6eMS 4~!M slie~s alqe:) pueJ~S-!~lnlAJ :uo!~d!J:)saa

sa6eJO4:>ue

ad1.t ~ JO S 4t!M s1.ets ~Sd lo uoneJedaJd

~. ~"£"Z ~

SAe~s alqe:> 10 aJn~:>elnuew-doLiS

sf.e~s ~Sd pelqwesse

~Sd

~ "£"Z ~

.se6peM eUO~-~!lds lj~!M peJolj~ue Jo ese~ elj~ U! e~!s uo f.1~~eJ!p JO 'sf.e~s pe~e~!JqeJeJd Jo ese~ elj~ U! 'dOljS>jJOM e U! pUB peJedeJd eq ue~ (.~~e 'Speelj e6eJolj~ue 'sed!d f.e~s 'S31ll\J) s~ueuodwo~ lenp!/\!pul

SA "V.lS 318"V~ ~O 3~n.l~"V~nN"V1I\I

.sl\e~s

Jo 8Se:) 84~ U! 'W8~SI\S 84~ JO SUO!~e:)!J!:)8ds ~(s~ed

:)!~8u6ew

'UO!~:)8dsu!

punOSeJ~ln)

lie JO UO!~:)8dsu! s6u!se:)

£"Z ~ 31~1.l~"V

84~ 4~!M sMef 86eJ04:)ue

:)!4deJ60!peJ-ewwe6

~8)j:)OS

JO s)j:)°lq

Jo 8:)ue!ldwo:)

JO 'UO!~:)8dsu!

86eJ04:)ue

81:)!~ed

84~ JO 1\~!J68~U! 84~

sl\els e/qea uo SUO!lepuewwoaeJ d/:J

..

CIP recommendations

on cable stavs

Appropriate measures should be taken to ensure that the wires are parallel throughout their length and that they are anchored in matching holes in the two anchorage heads.

.

Photo 51: Preparation of a PWC stay

12.3.1.3 Preparation

of MLS cable stays

Description: The MTEs of MLS cable stays are assembled in the workshop at the time of stranding, when a blocking compound is also applied to fill the wire interstices. . At least one of the two anchorage sockets of MLS cable stays is generally prepared at the same time. The second socket can be prepared on site. MLS cable stay prefabrication may also include extrusion of a sheath on the spun cable.

...Photo 52: Prefabricated sockets

MLS cable stay with anchorage

Photo 53: Preparation of anchorage sockets

154

eS!M4~6uel

Jo

uo!~eln~le~

99~

"ed!d Ae~S pe4s!u!J e4~ Jo ~uewel\ow u! seJn~eJedwe~ wnw!u!w pue wnw!xew Jo uo!~eJep!suo~'4~6uel o~ ~n~ S! ed!d Ae~S e4~ Ue4M eJn~eJedwe~ Jo uo!~eJep!suo~ ~Ae~Selqe~ pe~eldwo~

:suo!~e!Jel\ eJn~eJedwe~ 4~!M A~!I!q!~edwo~ . e4~ uo uo!~~e~oJd UO!SOJJO~Jo A~!nU!~UO~ .

~(peUO!SUe~ S! Ae~S elqe~ e4~ ue4M ~uewel\ow eS!M4~6uel) ~uew~snrpe JoJ pue '6u!uo!sue~ JoJ '(ed!d Ae~S e4~ Jo ep!su! e4~ o~ sse~~e) s31ll\J Jo u!-6u!peeJ4~ JoJ s~ueweJ!nbeJ e4~ 4~!M A~!I!q!~edwo~ .

O~U! pepeeJ4~

eJe s31.l/\J e4~ eJoJeq

Alq!SJel\eJJ!

peU!WJe~ep

:s~ueweJ!nbeJ S! pelle~SU!

6U!MOIIOJ e4~ ~eew ~snw ~I .~! eq O~ ed!d Ae~S JO 4~6uel e41.

6UfP{8M 818{d-l0H :yg 01°4'd

'SB:JUBJB)BJ Sno!/lBJd JO slsB1 /im!qe1!nS B/I/O/lU! /iew S!LI.L 'wB1s/is /ie1s-B/qe:J BLl1 )0 JB!/ddns BLl1 /iq pB1eJ1SUOWBP Bq 01 S! uo!un /e:J!UeLl:JBw JO 1u!of e )0 /i:JUB!:J!JJB BLI.L .uo!~~es lenp!l\!pu! ue JO ~e4~ %06 ue4~ Je~eeJ6 4~6ueJ~s el!SUe~ e ee~ueJen6 pUB 'UO!~~eS lenp!l\!pU! ue se SSeU~46!~e~eM 6u!pJe6eJ e!Je~!J~ ewes e4~ ~eew ~snw SUo!~~eUUO~ e4~ 'pue-o~-pue pelqwesse suo!~~es Jo dn epew S! ed!d f\e~s e4~ ue4M

AIQwasse

ad!d Ae~s £'£'Z~

.S31lAJ 6u!~~n~ JOj pe~!q!40Jd eJB se4~Jo~ lenjAXQ "(9"G"L § BaS) peJlnbeJ Sl (e/qe'J Buo/ W OOt. e JOj ww 9 "e"u %900"0 jO A'JeJn'J'Je el\lle/eJ 'Aels e/qe'J el/l jO l/lBue/ el/l BuIlsn[pe Aq lsn[ uoIsuel/eUlj el/l uo %G 01 t. jO A'JeJn'J'Je ulelqo 01 "4::>ueq elqe~!ns e uo 5u!uo!sue~-eJd

Jeye pe~snfpe eq ~snw sJ\e~s elqe::> SlV'J JO 4~5uel e41

'SUO!~!PUO~ uo!~~eJe pUB we~sl\s I\e~s-elqe~ e4~ JO I\~!~ede~ ~uew~snrpe e4~ 4~!M e~UepJO~~e U! ~S~S e4~ I\q peU!Jep eq Plno4s S4~6uel 3.lLI'J JO Je~~e~S pUB 4~6uel I\e~s-elqe~ e4~ JOJ Se~UeJeIO~ e4.l .e~UeJeIO~ U!e~e~ e U!4~!M eq ~snw SpUeJ~S JO SeJ!M JO S4~6uel eA!~~edseJ e4~ JO Je~~e~S e4~ . ~we~sl\s ~uew~snrpe e4~ 4~!M ~Ue~S!SUO~l\~eJn~~e JO eeJ6ep e U!4~!M O~ peJnSeeW eq ~snw I\e~s elqe~ pelqwesse e4~ JO se6eJO4~Ue e4~ ueeM~eq 4~6uel e4~ .

6UIMOIIOj e4lleew uollellelSul eJojeq

:SlueWeJlnbeJ Ol uoIl~edsul le~IJleWoe6 JOj sueew dn les Pln04s ~S~S e4.l "6UIUOlsuel pUB ells uo JO d04S)jJOM e4l U! pelsnfpe S! sl\els elqe~ pele~IJqejeJd jO 4l6uel e4.l JuawJsnipe

'S8Jnp8~OJd

UO!~~8dSU! pue

)jJOM p81!e~8p

O~ ~~8fqns

4Jljual

S! 8~!S UO JO dO4S 84~ U! uo!~eJed8Jd

Z"£"Z ~ ~8)j~OS

Sl\elS elqe~ uo SUO!lepUeWWo~ej dlO

CIP recommendations

These requirements

on cable stavs

generally call for use of telescopic systems or sleeves.

12.3.4 Site delivery Description: If the cable stays are not made up at the site of the project, they should be delivered to the site, ready for use, on drums whose weight and dimensions will be defined by the supplier of the cable-stay system, in accordance with transport and handling conditions and the characteristics of the cable stay. When the cable stays are not suitable for coiling, special handling resources have to be used to transport them from the workshop to the construction site.

Photo 55: Prefabricated

cable stay en route to site

The minimum radii of transport drums and the radii of curvature prefabricated cable stays should be adapted to: .prevent .preserve

imposed on the handling

of

any irreversible deformation of the MTEs and filling compound; the integrity of the stay pipe (where applicable).

For the usual kinds of multi-layer-strand cables, the minimum coiling diameter is about 30 times the outer diameter of the cable. For a greased/waxed and sheathed strand, the minimum coiling diameter is about 50 times the outer diameter of the strands, i.e. 900 mm. For ducted PWG or PSG stays, the minimum coiling diameter depends on the outer diameter, thickness, and temperature of the stay pipe, and on the time they will remain coiled. In the absence of more specific information, the coiling diameter should be no less than 50 times the outer diameter of the HOPE stay pipe.

ARTICLE 12.4

12.4.1 Erection

ERECTION OF CABLE STAYS

of connectina

parts

Cable-stay connecting parts-formwork tubes in the case of concrete decks or bearing plates in the case of steel decks-are generally fitted and adjusted by the main contractor or structural steelwork contractor. Adjustment procedures guaranteeing accuracy of positioning consistent with the possibilities of the cable-stay system should be used. Unless stated otherwise in the design documents, the connecting parts should be installed to within directional accuracy of :t 5 milliradians (:t 0.29 degrees).

156

L9~

:Je410UeJeye euo 'pUeJ1S4:)ee JO! . "415uel e1e!JdoJdde!o sJe5ue4 5u!sn 'elqe:) iiJe!I!Xne ue Aq pepuedsns eq JO pueJ1SlSJ!! e41 uo lSeJ ue:) 11"se5eJO4:)ue OMI e41 ueeM1eq pelle1SU! S! ed!d Ae1s pelqwesse AISnO!AeJde41 'elqe:)!ldde eJe4M . :sde1s 5U!MOIIO!e41!O SlS!SUO:) AileJeue5 uoneJedo S!41. "aWn e 1e pUeJ1Seuo pe1:)eJe ueyo eJe se5peM euo:)-l!lds 41!M peJO4:)ue sAe1s :)Sd :uond!J:)sea UOn:>aJa .se/ppes BUfMO//e

se/qe:J

e4~ o~ e6ewep

/eJe/les

pepunOJ)O

tfq pe//oJJuo:J

edeLJs

sweeq

eLJJ uf sJoJef/lep

BUfYf/ Bufsn

pUeJ~S-Aq-pUeJ~S

/iJeJodweJ

tfq Jew

ueyo

JO 'JuewJsn[pe eJe sJueWeJfnbeJ

£"P"Z ~ Je/nBue eseLJl

.s4~ee4S 3dOH 6U!p!OAe f.q f.IJeln::>!~ed 'sJe!JJeq uo!~::>e~oJd-uo!soJJo::>e4~ Jo f.~!J6e~u! e4~ eAJeseJd . ~eJn~eAJn::> f.e~s-elqe::> ~!W!I . :O~e6e~s S!4~ 6u!Jnp ue)je~ eq Pln04s seJnseew

e~e!JdoJdd'v'

SAelS 8/qe::J p81e::JIJQe)8Jd )0 UOll::J8J3 :L9 pue 99 SOI0l/d

"JaaU!DUa UD!Sap a4I Jo Suoll~nJISU! a4I 41!M a~uepJo~~e

U! palsnfpe

S! uO!Sual

"s

~Inu)j~ol e Jo sueaw liq IillUaUewJad pa4~ene pue )j~ef pUeJISlllnW JO Jelnuue ue 41!M pauO!SUal S! alqe~ ~1i1!JeJodwal pa4~ene pue )j~ap a4I uo slJed Dull~auuo~ a4~ DIU! papeaJ4I S! aDeJ04~Ue wonoq ~U!d JO Inu)j~ol e Jo sueaw pa4~ene pue 'UOllid a4I DIU! papeaJ4I 'aueJ~ JO 4~U!M liq pa1S!04 S! alqe~ a4I JO pua aDeJ04~Ue-dol ~pal!O~Un aJe salqe~ a4I 'aDP!Jq paliels-alqe~ e JO::l :SMOIIOJse IilleJaUaD S! aJnpa~oJd

4~ea Jo SUOIl!PUO~ a4I OI paldepe

aq OI aAe4 slielS

alqe~

paIe~!JqeJaJd

SAeJS alqe:>

a4I "v a4I "£ liq a4I "G a4I "~ l~afoJd

Jo DU!UO!SUal pue uollelle~su! a41 :uOlld!J~saa

paJe:>!JqejaJa

jO UO!J:>aJ3

Z.V.Z ~

.uo!~:)eJe I\e~s-elqe:) jO ~e~s e4~ eJojeq ~odeJ e4~ ueJ\!6 eq II!M :JS:JS e4.l 'dn UMeJp ueeq se4 ~odeJ uo!~:)edsu! ue Ue4M I\luo ~u!od Pl04 e4~ puol\eq ewnseJ ue:) )jJOM '6u!PleM JO 6u!~eJ:)uo:) eJojeq ~u!od Pl04 e s! s~ed 6u!~:)euuo:) I\e~s-elqe:) jO uo!~!sod e4~ jO uo!~:)edsul "6U!pBOllUeUBWJed Sl! 4l!M 'pesn I\IIBm~B S! l~eroJd e4l Ue4M I\BlS elqB~ e4l Jo UOijBlUe!JO e4l 4l!M lUelS!SUO~ S! SlJBd 6uij~euuo~ e4l Jo uOijBlUe!JO e4llB4l os (L "£'s ees) l~eJJe I\JBuelB~ Ol enp UOijB!J\ep JBln6uB JO pUB uOij~nJlSUO~ 6u!Jnp eJm~nJlS e4l JO UOijBWJOJep luenbesqns

JO ue>jBl eq Pln04s

lUnO~~V'

S/lB1S 81qBO UO suoflBPU8WWOO8;

d/~

CIP recommendations

on cable stavs

1. the strand is erected by being threaded up the stay pipe or hoisted with a telpher system. At the end of this phase the free length of the strand is approximately in its final position but its ends are not necessarily threaded through the anchorages. . 2. the ends of the strand are threaded through the appropriate holes in the two anchorage blocks and the split-cone wedges are fitted. 3. the strand is tensioned with a monostrand jack. stay tension is adjusted in accordance with the instructions of the design engineer.

Photo 58: Cable-stay strands being threaded into the stay pipe one by one (Vasco de Gama Bridge)

Close attention should be paid to special features of the cable stay (anchorages, guidance systems, and possibly saddles) while it is being threaded into place to avoid damaging the individual protection of strands. Appropriate measures should be taken to prevent the leading end of the strand damaging the stay pipe or the sheaths of the strands installed previously. Appropriate measures should be taken to ensure that the strands are parallel throughout their length and that they pass through matching holes in the two anchor blocks.

12.4.4 Corrosion

orotection

durina erection

Depending on the cable-stay system, not all the corrosion-protection systems for MTEs may have been put in place at the time the cable is installed on the structure. If the time to application of the definitive corrosion-protection system exceeds a few months, the SCSC should have an appropriate temporary corrosion-protection system applied.

ARTICLE 12.5

TENSIONING AND ADJUSTMENT

12.5.1 Oraanization

of adiustment

and verification

At the end of the erection operations, the cable stay may have been attached to its two anchorages temporarily (in the case of certain prefabricated cable-stay systems) or permanently, and tensioned to a given stress.

Tensioning and adjustment introduce the level of preloading specified by the designers into the cable stay. Depending on the sequencing of construction of the project, these operations may be carried out in one go or in a series of successive thresholds, in close collaboration with the designenginee Re-adjustments may also be necessary during the lifetime of the project (see Chapter 13).

158

CIP recommendations

on cable stavs

Photo 59: Annular jack

Photo 60: Erection of MLS cable stays on Seyssel Bridge -tensioning system

The design of the anchorage head must allow an amplitude of adjustment taking account of some or all of the following quantities, depending on the cable-stay technology used: .uncertainty on the unloaded position of the anchorages; .uncertainty on the loading of the structure at the moment of tensioning phases, and on the stiffness of the structure; .uncertainty on the unloaded length, tension, and temperature of the cable stay; .extension of the cable stay to attain the required preloading; .factors outlined in § 14.2.6; .safety factor. The amplitude of adjustment is defined once and for all after manufacture of the anchorage parts (length of peripheral threading on the anchorage head, length of threaded transfer rods, maximum height of shims that can be placed between the anchorage head and its bearing plate on the structure, etc.). It must therefore be correctly predicted. It is possible to make allowance for de tensioning of the cable stay by leaving a length of threading behind the concentric nut or behind the nuts on the threaded transfer rods, or by introducing shims between the anchorage head and its bearing plate right from the start. This requirement must also be correctly predicted. The design of the area where the anchorage is attached to the structure must take account of: .sufficient clearance around and behind the anchorage, for installation of jacks and other systems necessary for tensioning or adjustment; .means of access and handling systems suitable for heavy equipment. These geometrical conditions system given by the SCSC.

should be specified in the technical data sheet of the cable-stay

This point must be examined with extra special care when adjustment on the structure in service is not done in the same way as the initial tensioning and adjustment. If clamps are used to attach the adjustment systems directly to the cable, they must be designed so as not to damage the corrosion protection of the cable stay. It must be ascertained that the adjustment systems (concentric nuts, transfer rods, etc.) will remain in operating condition throughout the lifetime of the structure: threads protected against any damage, knife-edge bearings protected against corrosion, etc.

160

pueJJsouow

~9~

ss8aoJd UO!SU8JOS/ 8L1J6u!sn 'pueJJs >laB! e LIJ!M ~JS 8/qea e 6U!UO!SU8.L ..~9 oJoLld

"eJeJs/eu!6!Jo eJe!JdoJdde ue OJe/l!Je/eJ spueJJs sno!Je/l eLlJ )0 suo!sueJxe eLlJ 6u!Jedwoa Aq 'A/JaeJ!pU!JO . :(17"Lela!Jl'v' BaS)pe)snfpe pue peuo!sue) eJe /ieL() se spueJ)S snO!Je/l eL() }O SUo!sue) eL() 6u!Jedwoa /iq '/iI)aeJ!p JeL()!e . eq A//eJeue6 uea S!41 "(uo!sual %S"G ueLll ssal al\!lelaJ

ueaw

aLll Ol al\!lelaJ

Ol suO!SUal

aLlll~!JlSaJ

Ol spew

pueJlS

%SG" ~ =+= "a"!) leu!J JO Jane~s

aq plnoLls

UO!S!I\OJd "6Uf>t:Jef

pueJJs-/iq-pueJJs eLfJ uo Jeso/:J

6UfJnp

uofJewJOjuf e/low

/i/snof/leJd

se/lf6

se6eJOLf:Jue pe//eJsuf

eLfJ 'peuofsueJ

uofsueJ

jO

y"L e/:JfJ.l'v' eLfJ

spueJJs

sf pueJJs

se)

uofJn/o/le "(JeLfJe6oJ seLfsfufwfP

eLfJ

jO

/euofJfPpe

uofsueJ

Lf:Jee ueLfM

"Jeeu!5ue u5!sep e4~ 4~!M uo!~eJedo-o~ esol~ u! pe>l~e4~ pUB pe~snfpe eq PlnO4s pUeJ~S 4~ee U! SSeJ~S pUB uo!~e5uOle e4~ 'SUo!~eJedo ~uew~snfpe pUB 5U!uo!sUe~ 5u!Jno

01 AJesse:>eu ueyo peepuf

sf 1f 'sl.e1s e/qe:>}o

'sewf1/eJel\es uofSue1eJ pue dfJ6eJ 416ue/ e41 pue >f:>ef e41}0 e>f°J1S e41 uo 6UfpUedea

'suo!~eJado 6u!J04:Jue -aJ ald!llnW 6u!Jnp pueJ~s a4~ WOJJ padd!JlS lelaw 4~!M pa6601:J 6u!wo:Jaq Sa6paM a4~ Jo a:JeJjns 6u!dd!J6 leuJa~u! a4~ ~uaJ\aJd Aa4~ ~e4~ 4:Jns aq ~snw ~uawd!nba 6u!uo!sua~ pue Sa6paM auo:J -~!Ids a4~ Jo u6!sap a41

.sa6e~s leJaJ\as U! pueJ~s e 6u!uo!sua~ JO alqede:J aq ~snw pasn s)j:Jef a41 "6UfpeeJLflluef':JfJjns

sf

eJeLfl

JO pelJeSUf

ueeq

eAeLf

SWILls

6UfPfAOJd

'peeLf

e6eJOLf':Jue

eLfl

6uf':Jeldsfp

Aq

eq ue':J peJfnbeJ eq Aew leLfl sAels elqe':J jO 6Ufuofsuelep AU'v' "pueJlS eLfl jO Lfl6ue, uo yel eJeM AeLfl jf elemUf Plno':J s>/':JeJ':J en6nej Lf':JfLfM WOJj spueJlS eLfl uo s>/Jew Me! sABel 'pUeJlS se OS-6U!UO!SU8l8P JOj I\IUO p8Sn

8q

JOj J8J\8U pue-(31LAJ lSnw

6u!>\~ef-8J

84l

84l jO lJed

lnel

jO 6U!U8lJ04S

I\q lU8WlSnfpe

84l UO s>\JeW 86p8M

pUB UO!SU8l

jO P04l8W

84l

I\els

peAefLf':Je lnel eLfl se6peM

8J\e81 °llOU

p8Se8J~U!)

'UO!lellelSU!

6U!UO!SU8l8J

JOj p8Sn

U84M

O(4~5u81IeJ~n8U S~! O~8A!~eI8J) p8~np8J S! 4~5u81 8lqe~ 84~ pue '8Jn~~nJ~S 84~ O~ 8A!~eI8J 8AOW ~OU S80p 85eJO4~Ue 84~ '~"Gg°-Z ~ § U! pO4~8W ~u8w~snfpe 84~ O~l\JeJ~uo:J '>\~ef pueJ~S!~lnw e 5u!sn 8lqe~ 84~ !O 5U!UO!SU8~8J leqol5 I\q JO '>\~ef 5U!SS8J~S pueJ~SOUOW e 5u!sn 5U!UO!SU8~8J pUeJ~s-l\q-pUeJ~S I\q I\e~s 8lqe~ 84~ !O 4~5u81 pue 8~JO! 84~ ~snfpe o~ 8Iq!SSOd ~! S8>\eW 8JO!8J84~ 85eJO4~Ue !O 8dl\~ S!41 "II!!U! p!5!J e I\q p8~U8A8Jd ~OU S! pe84 85eJO4~Ue 84~ U! SpUeJ~S !O ~U8W8~elds!p ~e4~ pue »81 U88q Se4 4~5u81 eJ~X8 ~U8!~!#nS e ~e4~ UO!~!PUO~ uo

'p8>\~ef-8J

8q

O~ SpUeJ~S JO! SMOlle 8JO!8J84~ pue

'8IQ!SJ8A8J S! s85p8M

8UO~-~!ldS 5u!sn

6u!>t:>ef-aJ f.q JuawJsnfpe

85eJO4~U'l7' :UO!~d!J~S8a

pue 6U!uo!sua.L

SAejS Blqea

Z'Z'S'Z~

uo suOljepUBWWOaBJ

dl.'J

:pe/le!4ae

eq /few

pefJJea

eOpfJB

eLfJ uo deeJa

eJeJaUoa

oufUfeweJ

ewefj

ep oasel\

OUfJOlfUOW

fefaeds

JeAO sefJufeJjeaun

OJ MefA

e LflfM 'eoeJs

eLfJ JO} esea pue

'eSfaeJd

}O esneaeB uofsep

L9~

eLfJ SeM

SfLf.L "/ffeJeJnaae

lfJeA JOU Sf eoeJs

"efdwexe

uofsep

JO} '>{aep eJeJaUoa

eLfJ Je peUfWJeJep

sf OUfuofsueJeJ

"feonJjOd uf JeAfJ SnOe.L eJOW Jf eUfWJeJep OJ Jno eLfJ Je Jes eJep eLfJ 'sMef eLfJ uf slfWff /feJs-efqea

sseJJs

ufLflfM

}O eJep

eLf.L

.suo!~epuewwo~e~ ese4~ u! "~uew~snrpe-eJ" pelle~ s! uo!~eJedo S!41 .pez!l!qe~s se4 SAe~S elqe~ SlLt\J JO A~!~!~Sele JO snlnpow e4~ Ue4M JO 'e~Ue~SU! JOJ 'deeJ~ S~! Jo ~ed eUODJepUn se4 e~eJ~UO~ e4~ Ue4M 'e~!AJeS O~U! sewo~ ~! Jeije SJeeA ewos SAe~S elqe~ JO DU!UO!SUe~eJJOJ UO!S!AOJd e)feW AeW eJn~~nJ~S e JO UD!Sep le!~!U! e41 JuawJsn!pe

IN3WlSnra'v'

JOj paaN

A'v'lS-318'v':)

0

JueweaT3/del lfeL/J el0)eq

~ "t"t

~

t"t ~ 31:>ll~"V

Jsn! 'T3UfJUe61\i Uf e6pf18 OUT316/e8/T31eUe9 )0 S/lT3JSe/qT3a )0 UOfJfPUO:J :09 oJoL/d

"AelS elqe~ e JOluewe~eldeJ eleldwo~ JOle!lJed . ~ed!d AelS e JOluewe~eldeJ lelol JOle!lJed JOJ!edeJ . :pel~elep S! AleWOue Jofew AUe Uel.jM AlleJeUeD 'UO!Se~~Ouo 'peJ!nbeJ eq ogle Aew e~uenbesuo~ JeleeJD Jo )fJOMe~ueuelU!ell'J

UO!leJq!A 'Sl:)np punodwo:)

UO!l:)8l0Jd

6u!)j:)°lq

WS!lepUeA!lUe

JO )jJOMlu!ed

se

4:)ns

}O AIJeln:)!lJed

":)l8 'slJed 6u!4:)ene 'SJOle!A8p 'sJ8dwep SlU8Uodwo:) f\JepUO:)8S }O lU8W8:)eld8J

pUB 'UO!l:)8l0Jd

.

:(UO!l:)8fu! f\Jelu8w8Iddns) UO!SOJJO:) }O dn 6u!4:)nOl

.

~(£'£ ~ 81:)!lJ'v' 88S) SAelS 8lqe:) 8JOW JO 8UO }O 6U!UO!SU8l8P JO 6U!UO!SU8l8J . : UJ8:)UO:) SUO!leJ8do 8:)UeU8lU!eW UOWWO:) lSOW 84.L SUO!JeJaaO

aLlJ Jo 6u/AaJ\JnS

uo/J/sod

a:Jua6JaJ\/p

aLlJ pue

:J/J/:Jads-a/qe:J

a:>ueuaJU!ew

£"z"£~

"":JJa 'aJn}:JnJJs aLlJ uo suo/J:Je a/qe/JeJ\ JO daaJ:J Jo sJ:JaJja Lls/n6u/Js/p OJ se OS 6u/pJo:JaJ aJn}eJadwaJ pue sa6eJOLl:Jue Jo

/e:J/LldeJ60doJ

Aq pa/uedwo:J:Je

aq Jsnw

JuawaJnseaw

uo/suaJ

AeJS-a/qe:J

u! pal!eJap ale asn l!aL/J UO SUO!JeJ!W!1aL/J pUB spOL/Jaw asaL/J}O Sald!Gu!ld aL/.L "A/eJ8JnOO8 eJ!nb uo!sueJ e/q8o SeJnS8eW L/O!L/M'pOL/Jew AlOJ8Jq!1\ . :SWJ8/8 Je66!JJ U80 PU8 e68>t8eJq eJ!M }O seJ8p eL/J spJOoeJ L/O!L/M'6U!JoJ!UOW O!JsnOO8 .

SAelS elqea uo suoflepuewwoaeJ

dIG

"[pi

CIP recommendations

on cable stavs

Creep in concrete cable-stayed bridges generally results solely in shortening of the deck and pylons, which means the cable-stayed spans slump. This occurs practically without any variation in the tension of the cable stays. Special monitoring must therefore concentrate on deflection of the deck. Apart from this maintenance-related re-adjustment, unforeseen § 14.2.6 may also make cable-stay adjustment necessary.

13.3.2 Adiustment

factors such as those listed in

procedure

Re-adjustment generally involves displacing the anchorage head relative to its bearing point on the structure, using one or more high-capacity annular jacks capable of taking the force of the entire cable stay (see 12.5.2.1). Strand-by-strand retensioning of PSG stays anchored with split-cone wedges can be envisaged only if the cable-stay system is designed to allow this kind of operation (see 12.5.2.2), and under the following conditions: .there must be sufficient excess strand length; .there must be a flexible injection compound in the anchorage zone; .any deviators and dampers must be compatible with this sort of operation. In practice this method is seldom used for re-adjustment. The technical modalities for re-adjustment are similar to those for initial tensioning and adjustment described in Article 12.5. The order of retensioning of the different cable stays, together with adjustment parameters Uack pressure, extension, etc.) must be closely studied in relation to the provisions of the initial design or of the repair project (see example of Brotonne Bridge in § 7.1.3).

.ARTICLE

13.4

CABLE-STAY REPLACEMENT

The possibility of cable-stay replacement depends on the following two conditions: 1. performance of the structure with one cable stay or a pair of cable stays removed, possibly with traffic restrictions; 2. technological possibility of removing the cable stay and installing a new one, as recommended in § 10.1. To meet the first condition, the design studies of modern cable-stayed bridges examine the specific load case of replacement of a stay, in accordance with the recommendations in § 14.2.7. If the above condition is not met, however, a PSG stay can be replaced strand by strand, or temporary stays can be erected for the duration of replacement operations.

Photo 61: Temporary stays used during cable-stay replacement on Penang'Bridge

168

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF