Session 11 - Seismic Inversion (II)

Share Embed Donate


Short Description

invers...

Description

11-Geostatistical Methods for Seismic Inversion  Amílcar Soares CERENA-IST [email protected]

01 - Introduction Introducti on

Seismic and Log Scale

Seismic Data

Recap: basic concepts

Acoustic Impedance

Velocity

X

Density =

AI

Recap: basic concepts  Acoustic Impedance = Velocity X Density

Reflected wave Incident wave

Transmitted wave

Layer 1 impedance = Velocity(1) x Density(1) = Z1

Layer 2 impedance = Velocity(2) x Density(2) = Z2

“Since reflections are caused by changes in velocity and density, these two parameters are combined into a parameter called “impedance”. This is the product of velocity and density “

Recap: basic concepts

Reflection coefficient

Reflected wave Incident wave

R=

R=

R=

Reflected wavelet amplitude Incident wavelet amplitude Z2 - Z1 Z2 + Z1 (V2 x D2) - (V1 x D1) (V2 x D2) + (V1 x D1)

Transmitted wave

“ The ratio of the incident amplitude to the reflected amplitude is called the “Reflection Coefficient” . Reflection coefficient can be seen a measure of the impedance contrast at the interface.”

Recap: basic concepts

Reflection coefficient Layered earth

Impedance

Reflection Coefficients

Recap: basic concepts

Wavelet Land dynamite

Marine air gun

Time “A wavelet is a wave-like oscillation with an amplitude that start s out at zero, increases, and then decreases back to zero.” C-2

Recap: basic concepts

Wavelet

Minimum phase

Time (Sec.)

Zero phase

Time origin

Recap: basic concepts

Lithology

Low velocity density

High velocity density

Wavelet Impedance

Minimum phase

Zero phase

Recap: basic concepts

Lithology

High velocity density

Low velocity density

High velocity density

Wavelet Impedance

Zero phase wavelets

02 – S eis mic Invers ion Convolution Impedance = Velocity X Density

Reflected wave Incident wave

Transmitted wave

Layer 1 impedance = Velocity(1) x Density(1) = Z1

Layer 2 impedance = Velocity(2) x Density(2) = Z2

02 – S eis mic Invers ion Convolution

Reflection coefficient Reflected wave Incident wave

R=

R=

R=

Transmitted wave

Reflected wavelet amplitude Incident wavelet amplitude Z2 - Z1 Z2 + Z1 (V2 x D2) - (V1 x D1) (V2 x D2) + (V1 x D1)

Convolution Layered earth

Impedance

Reflection Coefficients

Principle of Seismic Inversion

Convolving the reflectivity coefficients c(x) with a given wavelet w, one obtain the synthetic seismic amplitudes a*(x)= c(x) *w

Convolution - Forward exercise Earth

Convolution - Forward exercise Earth

Impedance

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Wavelet Superposition

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Wavelet Superposition

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Wavelet Superposition

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Wavelet Superposition

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Wavelet Superposition

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Wavelet Superposition

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Wavelet Superposition

Recorded Trace

Convolution - Forward exercise Earth

Impedance

Reflection Coefficients

Wavelet

Wavelet Superposition

Recorded Trace

Seismic Section

Convolution - Inverse Exercise Seismic Section

Convolution - Inverse Exercise Seismic Section

Recorded Trace

Convolution - Inverse Exercise Seismic Section

Recorded Trace

Wavelet

Convolution - Inverse Exercise Seismic Section

Recorded Trace

Wavelet

 Reflection Coefficients

Convolution - Inverse Exercise Seismic Section

Recorded Trace

Wavelet

 Reflection Coefficients

Reflection Coefficients

Convolution - Inverse Exercise Seismic Section

Recorded Trace

Wavelet

 Reflection Coefficients

Reflection Coefficients

Low Frequency Model



Inverse Modeling is based on the physical relation: Convolving the reflectivity coefficients c(x) with a given wavelet w, one obtain the synthetic seismic amplitudes a*(x)= c(x) *w

1500.0000

1000.0000

*

-20

=

500.0000

    e      d     u      t      i      l     p     m     a

0.0000 -15

-10

-5

0

5

10

15

20

-500.0000

-1000.0000 ms

Typical Inverse Problem: one whish to know the acoustic impedances which give rise to the known real seismic.

Typical Inverse Problem: one wish calculate the parameters ( high resolution grid of acoustic impedance) that give rise to the solution we know (the real seismic) Outline of the iterative method

Space of the Parameters Change the set of parameters in order to make the process convergent

Solution for the set of parameters

Compare with the known real solution Is the match satisfactory ?

N

In this problem there is not a unique solution. One whish to find the set of solutions that accomplish the spatial requisites of the acoustic impedance grid: spatial continuity pattern, global CDfs, ...

Geostatistical Seismic Inversion The aim of geostatistical inversion of seismic is to produce high resolution of numerical models that have two properties:

•The numerical model honors a physical relationship (convolution model) with the actual data . •The numerical model reflects the spatial continuity and the global distribution functions .

Geostatistical Seismic (Trace-by-Trace)

Inversion (Bertolli et al, 1993): it is an iterative process based on the sequential simulation of trace values of acoustic impedances.

1500.0000

1000.0000

*

-20

0.0000 -15

-10

-5

0

5

10

15

-500.0000

-1000.0000

1- Choose randomly a trace to be generated. Simulation of N realizations of AI of that trace

Optimization algorithm

500.0000

    e      d     u      t      i      l     p     m     a

ms

2- Convolution with a known wavelet

20

= N Sinthetic trace realizations

4- return until all traces are simulated

3-Compare with the real seismic, choose and retain the best realization

GSI – Global Stochastic Inversion Geostatistical Inversion With Global Perturbation Method

Part I - Theory

GSI – Global Stochastic Inversion

The approach of Global Stochastic Inversion is based on two key ideas: •the use of the sequential direct cosimulation as the method of “transforming” 3D images, in a iterative process and •to follow the sequential procedure of the genetic algorithms optimization to converge the transformed images towards an objective function

1 – Simulation of Acoustic Impedance 2- Convolution of transformed Simulated  Acoustic Impedance

1500.0000

1000.0000

*

500.0000

    e      d     u      t      i      l     p     m     a -20

0.0000 -15

-10

-5

0

-500.0000

-1000.0000 ms

5

10

15

20

3 – Comparing the synthetic amplitudes a*(x) with the real seismic a(x) obtaining local correlation coefficients cc(x)

4 – From the N realizations, retain the traces with best matches and “compose” a best image of AI

5 – Return to step one to obtain a new generation of AI images until a given objective function is reached.

 An iterative inversion methodology is proposed based on a direct sequential simulation and co-simulation approaches:

•Several realizations of the entire 3D cube of acoustic impedances are simulated in a first step, instead individual traces or cells; •After the convolution local areas of best fit of the different images are selected and “merged” into a secondary image of a direct co-simulation in the next iteration; •The iterative and convergent process continues until a given match with objective function is reached. Spatial dispersion and patterns of acoustic impedances (as revealed by histograms and variograms) are reproduced at the final acoustic impedance cube. •In a last step, porosity images are derived from the seismic impedances and the uncertainty derived from the seismic quality is assessed based on the quality of match between synthetic seismogram obtained by seismic inversion and real seismic.

The use of Direct Sequential Co-Simulation for global transformation of images. Let us consider that one wish to obtain a transformed image Z t (x), based on a set of Ni images Z 1(x), Z 2(x),…Z Ni (x), with the same spatial dispersion statistics, e.g. variogram and global histogram: C (h) ,   (h) , F (z)

Direct co-simulation of Z t (x), having Z 1(x), Z 2(x),…Z Ni (x) as auxiliary variables, can be applied (Soares, 2001). The collocated cokriging estimator of Z t (x) becomes:  Ni

 Z t  ( x 0 ) *  mt  ( x 0 )       x 0  Z t  ( x )  mt  ( x  )     i  x 0  Z i ( x 0 )  mi ( x 0 )  

i 1

Colocated data of Ni secondary images

Variable Z1(x)

3 realizations from variable Z 2(x)

“Markov-type” approximation:

The crossed correlograms   12 (h) are calibrated by the correlation coefficient between variables Z 1(x) and Z2(x).   12 * (0):

  12 (h)    12 (0)* . 1 (h)

  12 ( h )



  1 2 ( 0)   12

 g lo b a l 

*

( 0)

*

  12

 g lob a l 

( h)

Simulation of variable Z 2(x)

Variable Z1(x)

=.95

=.80

=.60

Since the models  i (h), i=1, Ni, and t(h) are the same, the following approximation is, in this case, quite appropriated:   t ,i h     t ,i 0

  t  h    t  0 

the corregionalization models are totally defined with the correlation coefficients   t,i (0)  between Z t (x) and Z i (x).

Remarks: The affinity of the transformed image Z t (x) with the multiple images Z i (x) are determined by the correlation coefficients   t,i (0).

Hence, one can select the images which characteristics we wish to “preserve” in the transformed image Z t (x)

Local Screening Effect Approximation

 Assumption: to estimate Z t (x 0  ) the collocated value Z i (x 0  ) of a specific image Z i (x), with the highest correlation coefficient   t,i (0), screens out the influence of the effect of remaining collocated values Z  j (x0), j   i .

Hence, colocated co-kriging can be written with just one auxiliary variable : the “best” at location  x 0:  Z t  ( x 0 ) *  mt  ( x 0 ) 

     x0  Z  ( x )  m ( x  )     x0  Z  ( x0 )  m ( x0 ) t 



i

i

i

 

The “best” colocated data at x0.

 Ni

 Z t  ( x0 ) * mt  ( x0 )       x0  Z t  ( x )  mt  ( x  )    i  x0  Z i ( x 0 )  mi ( x0 ) i 1

 

...

 Z t  ( x0 ) * mt  ( x0 ) 

     x0  Z  ( x )  m ( x  )     x0  Z  ( x0 )  m ( x0 ) t 



i

i

i

 

The “best” colocated data at x0: highest Correlation Coeffificient   t,i (0) .

Outline of the proposed methodology GSI – Global Stochastic Inversion

i- Generate a set of initial images of acoustic impedances by using direct sequential simulation. ii- Create the synthetic seismogram of amplitudes, by convolving the reflectivity, derived from acoustic impedances, with a known wavelet. iii- Evaluate the match of the synthetic seismograms, of entire 3D image, and the real seismic by computing, for example local correlation coefficients.

iv - Ranking the “best” images based on the match (e.g. the average value or a percentile of correlation coefficients for the entire image). From them, one select the best parts- the columns or the horizons with the best correlation coefficient – of each image. Compose one auxiliary image with the selected  “best” parts, for the next simulation step. v- Generate a new set of images, by direct co-simulation, and return to step ii) until a given threshold of the objective function is reached.

03 – A lg orithm Des cription Algorithm Description N  stochastic simulations of AI based upon well data and variograms.

n iterations

Calculation of Coefficients of Reflection (CR) Calculation of the N  Synthetic cubes: convolution of CR cubes with a wavelet.

Wavelet

Calculation of Correlation Coefficient (CC) between the synthetics and the seismic cubes.

3D seismic cube

A new CC map (Best Correlation Map, BCM) and the corresponding AI secondary image (Best AI, BAI) are created:

AI from wells The highest CC of the N CC maps is allocated to each x0 location. The corresponding AI values are used to build the BAI cube to be used as secondary data set.

N stochastic co-simulations (DSco-S) of AI based upon well data and conditioned to BCM.

Algorithm Description

AI from wells

Variograms from wells

1  – DSS

2  – CR & SY

3  – CC

Direct S equential S imulation

4  – BCM & BAI

5  – DSco-S

AI

…N…

Simulated cubes of AI

Algorithm Description

1  – DSS

AI

…N…

2  – CR & SY

3  – CC

Cr (t ) 

CR

4  – BCM & BAI

 Ai(t  1)   Ai(t )  Ai(t   1)   Ai(t )

…N…

Convolution

Coefficient of Reflection cubes

Sy(t )  Cr (t )  wave( z )

120000

100000

80000

60000

40000

20000

5  – DSco-S

0 - 1 35

- 11 7

- 9 9

- 8 1

- 3 6

- 4 5

- 2 7

- 9

9

2 7

45

6 3

8 1

99

-20000

SY

…N…

Synthetic cubes

-40000

Wavelet

11 7

1 3 5

Algorithm Description SY

…N…

1  – DSS

2  – CR & SY

3  – CC    x, y 

Cov( X , Y )

  x    y

4  – BCM & BAI

CC cube

5  – DSco-S

CC

…N…

Real seismic cube Correlation cubes

Algorithm Description AI

…N… &

&

CC

&

&

&

&

…N…

1  – DSS

2  – CR & SY

3  – CC

4  – BCM & BAI

5  – DSco-S





N…

N…

BCM

BAI

Algorithm Description

AI from wells 1  – DSS

Variograms from wells BCM

BAI

2  – CR & SY

3  – CC

Dir ect S equential co-Simulation

4  – BCM & BAI

5  – DSco-S

AI

…N…

Simulated cubes of AI

Algorithm Description N  stochastic simulations of AI based upon well data and variograms.

n iterations

Calculation of Coefficients of Reflection (CR) Calculation of the N  Synthetic cubes: convolution of CR cubes with a wavelet.

Wavelet

Calculation of Correlation Coefficient (CC) between the synthetics and the seismic cubes.

3D seismic cube

A new CC map (Best Correlation Map, BCM) and the corresponding AI secondary image (Best AI, BAI) are created:

AI from wells The highest CC of the N CC maps is allocated to each x0 location. The corresponding AI values are used to build the BAI cube to be used as secondary data set.

N stochastic co-simulations (DSco-S) of AI based upon well data and conditioned to BCM.

04 – R es ults Seismic Data Set

Data extracted from a reservoir

Interpreted Horizons to quality control

Variograms

Histogram, basic statistics and Wavelet

Wells

From 19 only 2 had Velocity log

04 – R es ults Wells

04 – R es ults Wells

04 – R es ults Wells  – Histogram and Basic Statistics

 Acoustic Impedance

04 – R es ults Results from iteration 0 - Unconditional

 AI from Simulation 1

AI from Simulation 15

04 – R es ults Results from iteration 0 - Unconditional

SY from Simulation 1

SY from Simulation 15

04 – R es ults Results from iteration 0 - Unconditional

CC from Simulation 1

CC from Simulation 15

04 – R es ults Results from iteration 0 - Unconditional

 Average from Simulations

Standard Deviation from Simulations

04 – R es ults Results from iteration 0 - Unconditional

Best Acoustic Impedance cube

Best Correlation Cube

04 – R es ults Results from Process

1 0.9 0.85

0.8

 

0.87

 

0.88

0.80

0.7      n      o 0.6       i       t      a       l 0.5      e      r      r      o 0.4       C

0.62

0.3 0.2 0.1 0.08 0 0

1

2

3 Iterations

4

5

04 – R es ults Results from iteration 5

 AI from Simulation 3

AI from Simulation 28

04 – R es ul ultts Results from iteration 5

SY from Simulation 3

SY from Simulation 28

04 – R es ul ultts Results from iteration 5

CC from Simulation 3

CC from Simulation 28

04 – R es ul ultts Results from iteration 5

 Average from Simulations

Standard Deviation from Simulations

Good match with the horizons in the final AI cube

04 – R es ults

Synthetic Seismic

Real Seismic

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF