Semana 1 Cinematica

October 5, 2022 | Author: Anonymous | Category: N/A
Share Embed Donate


Short Description

Download Semana 1 Cinematica...

Description

 

Cinemática

SEMANA 1 1. CONCEPTO: El móvil describe una trayectoria rectilínea, avanzando distancias iguales en intervalos de tiempos iguales. El cuerpo se mueve con velocidad constante  constante  (módulo y dirección). 

Y

T

T

T

T

X 0 d

d

d

d

El movimiento rectilíneo uniforme, es el movimiento más simple de la materia.

2. VELOCIDAD CONSTANTE La partícula se mueve con velocidad constante en módulo y dirección. Es decir la trayectoria es rectilínea siempre. 

V (m/s)

25 El móvil recorre 25 metros en cada segundo, equivalente a 90 km/h. El área bajo la recta representa el cambio de posición.

T(s) 0

1

1

2

3

4

 

Cinemática

3. CARACTERÍSTICAS DE LA VELOCIDAD EN EL M.R.U. La velocidad instantánea es constante. La velocidad media es constante. La velocidad instantánea es igual a la velocidad media. La velocidad  es una cantidad física vectorial, es decir tiene módulo y dirección. La rapidez es el módulo de la velocidad.  

d V = Cálculo de la rapidez:   t   Cálculo de la distancia:  d = V. t   Cálculo del tiempo transcurrido: 

t=

d V

 

d V Unidades:   d : metros ;

t

t : segundos ;

V : m/s

4. ECUACIÓN DEL MOVIMIENTO (M.R.U.) La posición final de la partícula es igual a la adición de la posición inicial más el desplazamiento.

x F = x 0 + V. t

El signo positivo o negativo representa la dirección de la cantidad vectorial. De otro modo, se reemplaza en la ecuación en signo de cada cantidad física vectorial.

Y (m)

t x f   : Posición final 

V X (m)

x 0  : Posición inicial 

0

X0

V  : Velocidad

d XF

t: ttiempo iempo transcurrido

2

 

Cinemática

5. EQUIVALENCIA Un kilómetro equivale a mil metros. Una hora equivale a 3 600 segundos. Una hora equivale a 60 minutos. Un minuto equivale a 60 segundos.  

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

9,5 km/h = 2,5 m/s 18 km/h = 5 m/s 36 km/h = 10 m/s 54 km/h = 15 m/s 72 km/h = 20 m/s 90 km/h = 25 m/s 108 km/h = 30 m/s 144 km/h = 40 m/s 1 hora = 3 600 s 1 km = 1 000 m

6. TIEMPO DE ENCUENTRO Dos cuerpo A y B se encuentra separados una distancia d, salen al encuentro simultáneamente simultáneamen te con rapidez constante en direcciones direcciones opuestas.

d A

d B

VA

VB



d  

d = VA .T+VB ..T T 

d = d A +dB Tencuetro =



d   V A +VB

EJEMPLO 01: Don móviles A y B se encuentran separados inicialmente 120 metros, salen simultáneamente al encuentro con rapidez de simultáneamente de 20 m/s y 10 m/s respectivamente. ¿Cuánto ¿Cuánto tiempo demoran encontrarse en un mismo punto?

Resolución . Los móviles A y B van al encuentro sobre una misma trayectoria. La distancia de separación inicial es 120 metros. Aplicamos la regla práctica.

Tencuentro =

d V A +VB

Þ

Te =

120 = 4 s  20 + 10

Respuesta:  Los móviles A y B se encuentran después de 4 segundos.

3

 

Cinemática

7. TIEMPO DE ALC ALCANCE ANCE Dos cuerpo A y B se encuentra separados una distancia d, salen simultáneamente en la misma dirección con rapidez constante.

d A

d B VA

VB



d



d  

d B

T alcance

= =

dA

Þ

d

=

VA .T

VB .T  

d  V A

 

V B

EJEMPLO 01: Dos móviles A y B se encuentran separados inicialmente 120 metros, salen simultáneamente en la misma dirección con rapidez de 40 m/s y 10 m/s respectivamente. ¿Cuánto tiempo demora el más veloz en alcanzar al más lento?

Resolución El móvil A con rapidez de 40 m/s es más veloz que el móvil B. La distancia de separación inicial es 120 metros. Aplicamos la regla práctica.



120

= 4 s V A   V B 40 10 Respuesta:  El móvil A alcanza al móvil B en 4 segundos.

Talcance

=

Þ

Ta

=

8. TIEMPO D DE EC CRUCE RUCE EN DIRECCIONES OPUESTAS Dos cuerpos rígidos A y B de largo apreciable como ocurre con los trenes, camiones, puentes, túneles, automóviles. Los cuerpos se mueven en direcciones opuestas.

VA

VB

d B

d A

T cruce

=

d A

 

d B

V A

 

V B

4

 

Cinemática

EJEMPLO 01: Un camión de 40 m de largo, marcha a 72 km/h por una carretera paralela a la vía del tren. ¿Cuánto tiempo invertirá el camión cruzarse íntegramente con un tren de 260 metros de largo que marcha a 36 km/h en dirección opuesta?

Resolución Transformando tenemos que el camión de 40 m tiene rapidez de 20 m/s y el tren de 260 m de largo con rapidez de 10 m/s. El tiempo que demora en cruzarse el camión con el tren es:

T  =

 Lcamion + Ltren

 

Vcamion + V tren

40 m + 26 2 60 m 300 m = =10 se s egundos   20 m/s + 10 m/s 30 m/s Respuesta:  El tiempo que demora en cruzarse el camión con el tren es 10 10 segundos.

Reemplazando tenemos:

T=

9. TIEMPO DE CRUCE EN DIRECCIONES IGUAL IGUALES ES Dos cuerpos rígidos A y B de largo apreciable como ocurre con los trenes, camiones, puentes, túneles, automóviles. Los cuerpos se mueven en direcciones iguales.

VA

VB

d B

d A

T cruce

=

d A

 

d B

V A

 

V B

EJEMPLO 01: Un camión de 40 m de largo, marcha a 72 km/h por una carretera paralela a la vía del tren. ¿Cuánto tiempo invertirá el camión en pasar íntegramente a un tren de 260 metros de largo que marcha a 36 km/h en la misma dirección?  

Resolución Transformando tenemos que el camión de 40 m tiene rapidez de 20 m/s y el tren de 260 m de largo con rapidez de 10 m/s. El tiempo que demora en adelantar el camión al tren es:

T  =

 Lcamion + Ltren Vcamion - V tren

 

Reemplazando tenemos: T =

40 m + 260 m

=

300 m

= 30 segundos   20 m / s - 10 m / s 10 m / s Respuesta:  El tiempo que demora en adelantar el camión al tren es 30 segundos.

10. SONIDO Y ECO El eco es un fenómeno acústico. El sonido en una onda mecánica. El sonido necesita para propagarse un medio diferente al vacío. En el aire se propaga con una rapidez promedio de 340 m/s. El eco se produce cuando el observador percibe el mismo sonido por segunda vez debido al rebote de la onda sonora en algún obstáculo (montaña, cerro, pared, muro, etc.).

5

 

Cinemática

La rapidez del sonido en el aire seco a 0 ºC es de unos 330 m/s. La presencia de vapor de agua en el aire incrementa ligeramente dicha rapidez. Un aumento de la temperatura del aire también aumenta la rapidez del sonido. La rapidez del sonido en aire aumenta en 0,6 m/s por cada grado centígrado. La rapidez del sonido en un material dado no depende de la densidad material, sino de su elasticidad . El acero en un material elástico. Los átomos de un material   elástico están relativamente juntos. El sonido se propaga unas quince veces más a prisa en el acero que en el aire, y unas cuatro veces más a prisa en agua que en el aire. La ecuación muestra la variación de la rapidez del sonido en el aire debido al cambio de la temperatura en grados Celsius.

V T 

330

=

0,6.T

m s

Û

T

>

0 0C    

EJEMPLO 01:   Un hombre que se encuentra frente a una montaña emite un grito. Si la rapidez del sonido en el aire es 340 m/s, ¿después de qué intervalo de tiempo escuchará el eco?

850 m

 

Resolución  

Eco es aquel fenómeno en el cual sonido percibe el obstáculo hombre por segunda vez, esto ocurre cuando el sonido (onda sonora) seel refleja debido a un (montaña). Cálculo del tiempo que demora el sonido en llegar a la montaña:

t=

d

=

VSONIDO

850 m 340 m / s

= 2,5 2, 5 s  

Entonces el sonido invierte 5,0 segundos en ir y regresar de la montaña.

Respuesta:  El eco se escucha luego de 5 segundos. PROBLEMAS RESUELTOS 1. Se muestra un ciclista y un camión camión se mueven con velocidad velocidad constante. Si inicialmente inicialmente están juntos, determine la distancia de separación (en m) después de 20 segundos. 

Resolución   En cada segundo el camión avanza 12 m y el ciclista 5 m, por consiguiente en cada segundo se separan en 12 – 5 = 7 m. La separación luego de 20 segundos será: 7 veces 20 = 140 m.

d =V relativa

.t = (12 - 5).( 20) = 140 m  

En 20 segundos se separan en 140 metros.

6

 

Cinemática

2. Un piloto de MIG-29 prepara su nave para cumplir una misión aérea, después de 20 minutos en el aire logra recorrer 24 km en 0,5 minuto. Determine el valor de la velocidad en este tramo (en m/s):

Resolución Después de 20 minutos el avión alcanza un movimiento uniforme, recorriendo 24 000 metros en 30 segundos. La rapidez en este último tramo es:

d

2 4 00 0 m

V  = t =

30 s

m

= 800 s

 

3. Un tren de 200 m de largo se mueve mueve en línea recta con rap rapidez idez constante. Si demora demora en pasar frente al poste 8 segundos y en atravesar el túnel 24 segundos. Determine el largo del túnel. tunel

 

Resolución   La rapidez es constante: V  =

 LTREN

LTREN + LTUNEL

T1

200 Reemplazando los datos:

=

8 =

T 2

 

200 + LTUNEL  

24

Resolviendo Resolviendo tenemos:  LTUNEL = 400 m  

Respuesta:  el largo del túnel es 400 m. 4. Dos autos que parten simultáneamente d de e una ciu ciudad dad A en dirección a la ciudad B, con rapidez de 50 km/h y 60 km/h. Si llegan a la ciudad B con un intervalo de 20 minutos, ¿cuál es la distancia entre las ciudades A y B?

Resolución La distancia que recorren ambos móviles son iguales, entonces la velocidad y el tiempo empleado son inversamente proporcionales.

d1 = d 2 Þ V1.T1 = V2 .T2    Sabemos que 20 minutos es un tercio de hora. 1ù é Reemplazando tenemos que:   50.T = 60. êT - ú   3û ë Resolviendo: T = 2 horas km .2 hora = 100 km   La distancia entre A y B es: d AB = 50 hora Respuesta:  La distancia entre las ciudades A y B es 100 km.

7

 

Cinemática

EJERCICIOS 1.-

"En el movimiento........... el desplazamiento desplazamiento y la velocidad velocidad son siempre.................".  A) rectilíneo, perpendiculares perpendiculares B) rectilíneo, colineales colineales C) desacelerado, desacelerado, codirigidos codirigidos D) E) curvilíneo, acelerado, iguales opuestas

2.-

Identifique Identif ique la veracidad (V) o falsedad (F) de las siguientes proposiciones: I. Una partícula tiene velocidad constante cuando su rapidez es constante. II. Cuando una partícula partícula se mueve con MRU la trayectoria trayectoria y el desplazamiento so son n iguales. III. La velocidad apunta en la dirección del desplazamiento.  A) B) C) D) E)

3.-

FFF VFF FVV VFV FVF

Dadas las siguientes proposiciones: proposiciones : ( ) ( ) ( )

El desplazami desplazamiento ento es un vector. El cambio de posición de un móvil viene dado por el desplazamiento. desplazamient o. La longitud longitud del vector desplazamiento desplazamiento nos nos indica indica la distancia distancia existente entre el punto punto de partida y el punto de llegada.

Señale verdadero (V) o falso (F) según corresponda.  A) B) C) D) E) 4.-

VFF VFV VVV FVV FFF

Identifique la(s) proposición(es) proposición(es) incorrecta (s) I. La velocidad mide los cambios de posición de un móvil a través del tiempo. II. Un móvil en reposo puede presentar una velocidad no nula. III. En el M.R.U. la la velocidad velocidad es variable. variable.  A) B) C) D) E)

5.-

I II III II y III I y III

Una partícula realiza un M.R.U. M.R.U. con V = +5m/s. Si en to = 0, se tiene xo  = 10 m, halle el tiempo transcurrido cuando la distancia recorrida es 30 m.  A) 5s B) 6 C) D) 4 3 E) 2

8

 

Cinemática

6.-

Un cuerpo cuerpo realiza realiza un M.R.U. Si en los cuatro primeros primeros segundos segundos recorre 6 m más que en el tercer segundo. Determine la rapidez del auto.  A) 1m/s B) 2 C) 3 D) 4 E) 6

7.-

Un ciclista ciclista que se desplaza desplaza en en una pista rectilínea rectilínea pasa frente a un poste poste con una rapidez rapidez constante de 6 m/s. Si luego de 10s pasa frente al poste un automóvil con una rapidez constante de 20 es m/salcanzado y en la misma tiempo el ciclista por el dirección automóvil.que el ciclista. Determine luego de cuanto  A) 3,3 s B) 2,3 s C) 4,3 s D) 6,3 s E) 8,3 s

8.-

A partir del del instante instante que se muestra, determine el tiempo tiempo de encuentro encuentro de los los autos "A" y "B", sabiendo que el auto "A" y el atleta se encuentran al transcurrir 2 s desde las posiciones que se muestran. Todos los móviles realizan M.R.U.

 A) 3 s 9.-

B) 2

C) 1

D) 5

E) 4

Dos partículas partículas se mueven con M.R.U., M.R.U., la partícula "A" tiene tiene una rapidez de 20 m/s según según el eje "x" y pasa por el origen en t = 0 s, la partícula "B" tiene una rapidez de 30 m/s según el eje "y" y se dirige al origen pasando por y = 30 m en t = 0 s. ¿A qué distancia se encuentran entre sí a los 0,5 s?  A) 5 13 m B) 2 13 C) 3 13 D) 5 5 E) 10 13

10.- Dos móviles "A" y "B" están separados 20 m. El móvil "A" parte en t = 0 s, con una velocidad V = 4 m/s hacia el móvil "B". El segundo móvil parte en la misma dirección con una V = 2 m/s, en t = 2 s. ¿Para qué instante el primero alcanza al segundo?  A) 8 s B) 1 C) 12 D) 6 E) 10 11.- Dos móviles se desplazan desplazan en la misma pista con una rapid rapidez ez constante, luego de 10 s el móvil "A" cambia su dirección en 180° manteniendo constante su rapidez. ¿Qué tiempo emplearon en encontrarse desde las posiciones indicadas?

 A) 5 s

B) 10

C) 15

D) 20

E) 25

12.- Un helicóptero y el auto experimentan un M. R. U. a partir del instante mostrado, determine la distancia que los separa transcurrido 1 segundo.

 A) B) C) D) E)

30 m 40 50 60 45

9

 

Cinemática

13.

Dos personas personas "A" y "B" están separadas separadas una una distancia "x", en cierto cierto instante "A" dispara una bala con una velocidad de 170 m/s en dirección del blanco que se encuentra junto a "B". Si "B" escucha el disparo y 3 s después percibe el impacto en el blanco, determine "x". Rapidez del sonido = 340 m/s.  A) 1 020 m B) 340 C) 680 D) 850 E) 1200

14.- La figura muestra el instante instante t = 0 s, en que dos móviles se mueven a lo largo del eje "x" con velocidades constantes,separados determine100 la posición (en "m") del móvil "A" cuando ambos nuevamente se encuentran m.  A) +70 m

C) +140

B) +210

D) +180

E) +105

15.- Una motocicleta se mueve mueve con una velocidad velocidad constante de 50 km/h hacia hacia un automóvil que se encuentra en reposo pero cuando se encuentra a 600 m del automóvil, este parte con una velocidad constante de 20 km/h. Halle a partir de ese momento el tiempo que tarda en alcanzar el automóvil.  A) 1,8 min B) 0,6 C) 1,2 D) 2 E) 2,4 16.- Dos móviles "A" y "B" se están moviendo en sentidos opuestos con velocidades constantes V A  y VB  en t = 0 s se encuentran separados 120 m, si los móviles se cruzan después de 10 s, calcule después de que tiempo a partir del encuentro estarán separados 60 m.  A) 5 s B) 10 C) 15 D) 20 E) 25 17.- Dos móviles parten simultáneamente desde un mismo punto siguiendo trayectorias rectilíneas perpendiculares entre sí, con rapidez de 6 m/s y 8 m/s respectivamente. Halle la distancia de cada móvil hacia el origen, en el instante que su separación mutua es de 200 m.  A) 400 m; 300 m B) 120; 160 C) 140; 210 D) 60; 80 E) 150; 200 18.- Un bus de 10 m de longitud que realiza realiza un M.R.U. con una rapid rapidez ez de 20 m/s cruza un puente en "t" segundos, si duplicara su rapidez se demoraría 2 s menos. ¿Cuál es la longitud del puente?  A) 100 m

B) 80

C) 70

D) 60

E) 50

19.- Dos trenes corren en sentidos contrarios con velocidades V1 = 36 km/h y V2 = 54 km/h. Un pasajero del primer tren (el de V1) nota que el tren 2 demora en pasar por su costado 6 segundos. ¿Cuál es la longitud del segundo tren? (se supone que el pasajero esta inmóvil en el primer tren mirando a través de la ventana).  A) 100 m B) 150 C) 200 D) 250 E) 300 20.- Un avión se dirige de "B" hacia "C", el ruido de dell motor emitido en "B" alcanza al observador en "A" en el instante en que el avión llega a la posición "C". Sabiendo que la velocidad del sonido es de 340 m/s, m/ s, determine la velocidad constante del avión.  A) B) C) D) E)

238 m/s 119 476 272 136 

10

 

Cinemática

M.R.U.V. MOVIMIENTO RECTILÍNEO UNIFORMEMENTE VARIADO 1. CONCEPTO: Es aquel movimiento donde el móvil describe una línea recta y además en intervalos de tiempo iguales los cambios de velocidad son iguales y las distancias recorridas son diferentes. Tiene aceleración constante. 

1s

1s

1m/s

3m/s

1s

5m/s

7m/s x

DV=2m/s

DV=2m/s

DV=2m/s

Los cambios de velocidad son iguales en tiempos iguales.   La trayectoria o camino de la partícula es una línea recta.   El móvil recorre distancias diferentes en tiempos iguales.  iguales. 

2. ACELERACIÓN LINEAL O TANGENC TANGENCIAL. IAL. La aceleración lineal mide la rapidez de cambio de la velocidad en módulo. En el M.R.U.V. la aceleración lineal es constante, es decir no cambia la dirección ni el módulo de la aceleración.

Unidad de la aceleración  en el S.I.: m/s² o m.s -2 

D a=

a=

V    t 

VF  - V 0 t 

…. (1)   

…. (2) 

VF  = V0 + a.t    …. (3)

3. VELOCIDAD ME MEDIA DIA EN EL M.R.U.V. Dado que la velocidad varía linea linealmente lmente, la velocidad media es igual a la semisuma de las velocidades inicial y final en cierto intervalo de tiempo. La velocidad media, es una velocidad constante en intervalo de tiempo “t” donde el móvil recorre una distancia “d”, cumpliéndose la siguiente ecuación:

11

 

Cinemática

d = Vm .t   (V + V F ) .t   d= 0

…. (4) …. (5) 

2

V (m/s)  VF

VMEDIA

V0 t (s)  0 



Reemplazando (3) en (5):

d=

(V0 + VF ) 2

Obtenemos:

.t Þ d =

(V0 + V0 + a.t )   .t   2

d = V0 .t + 12 a.t 2  

De (2): VF  - V0 = a.t   

+

=

De (5): VF  V 0

… (6) … (7)

2d  t   

…. (8)

Multiplicado Multiplica do miembro a miembro (7) y (8):

V F  - V0 = 2ad     2

Despejando tenemos que: VF2   = V02 + 2ad  

…. (9)

De (3): VF  = V0 - a.t   

… (10)

d=

Reemplazando (10) en (5) Obtenemos:

 

(V0 + V F  ) 2

(V - a.t + VF  )    .t Þ   d = F .t   2

d = V .t - 1 a.t    2



2

2

12

 

 

Cinemática

Cuando aumenta la veloci Cuando velocidad dad  Acel  Ac elera era   = V0 .t + 12 a.t 2   VF  = V0 + a .t   

1)  d

Cua Cuando ndo dis dismin minuye uye la velocidad velocid ad Desacelera  = V0 .t - 12 a.t 2   VF  = V0 - a.t   

1)  d

VF 2 = V02 + 2a.d    (V + V F  ) d= 0 .t   2

VF 2 = V02 - 2a.d    (V + V F  ) .t   d= 0 2

PROBLEMA 01: Un móvil que tiene M.R.U.V. inicia su movimiento, desde el reposo, tal que su rapidez aumenta a razón de 10 m/s cada 5 segundos. ¿Qué distancia recorre en el primer minuto de su movimiento?

Resolución Nos dan como dato la variación de la velocidad en cada intervalo de tiempo . Cálculo del módulo de la aceleración:

a = DV = 10 m / s = 2 m / s 2   5s Dt La velocidad inicial es nula. El intervalo de tiempo es 60 segundos. Aplicamos la fórmula para determinar la distancia.

d = V0 .t + 12 a.t 2   Reemplazando los datos tenemos que:

d = 0 x 60 + 12 .2.(60) = 3 600 m   2

Respuesta:  en un minuto recorre 3,6 km.

PROBLEMA 02: Un automóvil que tiene M.R.U.V. disminuye su rapidez a razón de 4 m/s cada 2 segundos. ¿Cuántos metros recorrió recorr ió en el último segundo de su movimiento?

Resolución Cálculo del módulo de la desaceleración:

a=

DV 4 m / s = = 2 m / s2   2s Dt

En el último segundo, la velocidad final es nula. Aplicamos la fórmula en función de la velocidad final.

d = VF .t + 12 a.t 2 Þ d = 0 x1 + 12 .2.(1) 2 = 1 m  

Respuesta:  en el último segundo recorre un metro.

13

 

Cinemática

4. SIGNOS DE LA ACELERACIÓN Si la velocidad aumenta en módulo decimos que el movimiento es acelerado, en cambio si la velocidad disminuye en módulo decimos que el movimiento es desacelerado .

VF  = V0 ± a .t     V0 : velocidad inicial (+) : Movimiento acelerado

VF : velocidad velocidad final (-) : Movimiento desacelerado

Y (m) 

a  V0

VF X (m) 

t  En el movimiento acelerado   la aceleración y la velocidad tienen la misma dirección. En cambio si el movimiento es desacelerado   la aceleración tiene dirección opuesta (sentido opuesto) a la velocidad. velocidad.

EJEMPLO 01: Wall dispone de un minuto para pasearse en una moto recorriendo un tramo sobre el eje X, desde A hasta B y luego de regreso desde B hasta A. ¿Qué distancia máxima podrá alejarse con velocidad constante de 20 i  m/s?, si debe regresar de B hacia A desde el reposo con aceleración de – 8 i m/s2.

Resolución El tramo AB (ida) recorre con MRU. En cambio el ttramo ramo BA (regreso) con MRUV, acelerado. Igualando las distancias, obtenemos la siguiente ecuación.

d AB M ..R R.U . V .t1

20.T

V0 .t2

1   2

d BA M ..R R.U ..V V. 2

.a.t 2

4 60   T

2

20.T

Þ

Þ

5.T

=

=

0

  1 2

2

.8. 60 T   2

60 T  

Resolviendo la ecuación: T = 45 segundos. Cálculo de la distancia:

d

20.45 = 900 m  

 AB

Respuesta:  La distancia entre A y B es 900 metros. 14

 

Cinemática

5. NÚME NÚMEROS ROS DE GALIL GALILEO EO GALIL GALILEI. EI. Galileo Galilei nació el 15 de febrero de 1564 en Pisa, Italia. El inició el método científico experimental. experimental. Isaac Isaac Newton ut ilizó una de l as descripc iones matemáticas de Galileo, Ga lileo, “ la ley de la Inercia” Inercia” , como fun dación para su primera ley ley del movim iento. Galileo fall eció en 1642, 1642, el año de nacimi ento de Isaac Newton.  Analicemos el movimiento rectilíneo uniformemente acelerado, acelerado, cuando tiene velocidad inicial diferente de cero.

d = V0 .t + 12 a.t 2   Para. t = n

d1 = V0 .n + 12 a.n  

Para. t = n-1

d 2 = V0 .( n - 1) + 12 a.( n - 1) 2  

2

d n = d1 - d 2  

Restando:

Obtenemos que: d n = V0 + 12 a.(2n - 1)  

V0 = 0 t=0

a t=1s

t=2s

K

t=3s

3K

5K

CASO PARTICULAR Si la partícula inicia su movimiento desde el reposo , con M.R.U.V., entonces el móvil recorre en cada segundo distancias directamente proporcionales a números los impares. Cuando V 0  = 0  

d n = 12 a.(2n - 1) Þ d n = K .(2n - 1)   Donde el valor de K es la mitad del valor de la aceleración. K   =

a

2

 

EJEMPLO 01:   Un móvil que tiene M.R.U.V. inicia su movimiento, desde el reposo, con aceleración 5 i   (m/s2). Determine la distancia que recorre en el quinto segundo de su movimiento.

Resolución La velocidad inicial es nula. Quinto segundo, entonces n = 5. Aplicamos la fórmula práctica.

=1 n

-

Þ

=1 n

-

=

 

d a.(2n 1) d .5.(2 x5 1) 22, 5 m Respuesta:  El móvil recorre 22,5 metros en el quinto segundo. 2

2

15

 

Cinemática

6. DESPLAZ DESPLAZAMIENTO AMIENTO EN EL EN ENÉSIMO ÉSIMO SEGUNDO  Analicemos el caso, cuando el cuerpo acelera. acelera. El enésimo segundo  está comprendido entre los instantes t = n - 1 y t = n. Entonces la distancia que recorre en el enésimo segundo se determina restando, las distancias que recorre el móvil en los primeros n segundos y en los (n - 1) segundos. 

d1 d2

V0

t=0

dn

t = n-1

a

t=n

d = V0 .t + 12 a.t    2

d1 = V0 .n + 12 a.n 2  

Para. t = n:

d 2 = V0 .( n - 1) + 12 a.( n - 1) 2  

Para. t = n-1:

d n = d1 - d 2  

Restando: Obtenemos que:

d n = V0 + 12 a.(2n - 1)  

CASOS PARTIC PA RTICULARES ULARES a) Cuando

el

cuerpo c uerpo

d n = 12 a.( 2n - 1)

 

acelera

desde

el

reposo

(V 0  = 0 ) ,

se

cumple

que:

 

d n = V0 - 12 a.( 2n - 1)  

b) Cuando el cuerpo desacelera:

* Si dn es positivo el cuerpo se aleja del punto de lanzamiento. * Si dn es negativo el cuerpo se aleja del punto de lanzamiento en la dirección opuesta. * Si dn es cero el cuerpo regresa al punto inicial.  

EJEMPLO 01:   Un móvil que tiene M.R.U.V. inicia su movimiento con velocidad V 0 = 8 i   (m/s) y aceleración 5 i  (m/s2). Determine la distancia que recorre en el quinto segundo de su movimiento.

Resolución La rapidez inicial es 8 m/s. Quinto segundo, entonces n = 5. Es un MRUV acelerado.  Aplicamos la fórmula práctica.

= n

+1

-

Þ

= +1 n

-

=

 

d V a.(2n 1) d 8 .5.(2 x5 1) 30, 5 m Respuesta:  El móvil recorre 30,5 metros en el quinto segundo.  0

2

2

16

 

Cinemática

7. POSIC POSICIÓN IÓN DE LA PARTÍCULA EN EL EJE X  Analizamos el movimiento de la partícula con aceleración constante, sobre el eje X, respecto de un sistema de referencia.

Y d X

X0

XF

Cambio de posición:  d = X F  - X 0  

… (1)

La posición final:  X F  = X 0 + d  

… (2)

Para el MRUV: d

= V0 .t + 12 a.t 2  

… (3)

Reemplazando (3) en (2) tenemos 2 1 . .  X = X + V t + a t    : 0 0 F  2

 X F   =

 X 0 .t 0

0!

+

V0 .t 1   a.t 2

1!

+

2!

 

t=0

t >0

d

EJEMPLO 01: Un cuerpo tiene la siguiente ley del movimiento:  X  (t)

3   4.t

2

t  , donde t

se mide en segundos y X se mide en metros. Determine la distancia que recorre entre los instantes t = 2 s y t = 5 s.

Resolución Determinamos previamente la posición en el instante t = 2 s

 X(t)

3   4.t

t

2

Þ

X(t) = 3

4.2

22

=

15 m  

Determinamos ahora la posición en el instante t = 5 s

 X(t)

3   4.t

t2

Þ

X(t) = 3

4.5

52

=

48 m  

La distancia que recorre el cuerpo se obtiene mediante la diferencia: d = 48 - 15 = 33m  

Respuesta:  El cuerpo recorre 33 metros metros en el intervalo intervalo 2 s < t < 5 s . 17

 

Cinemática

8. SONIDO Y ECO El eco es un fenómeno acústico. El sonido necesita para propagarse un medio diferente al vacío. En el aire desarrolla una rapidez promedio de 340 m/s. El eco se produce cuando el observador percibe el mismo sonido por segunda vez debido al rebote de la onda sonora en algún obstáculo (montaña, cerro, pared, muro, etc.).   ALBERT  AL BERT EINSTEIN KOCH KOCH,, físico de origen judío, recibió el premio nobel de Física en 1921 por su explicación del Efecto Foto Eléctrico. Se sabe que este genial científico tocaba el violín casi como un

. profesional    A

EJEMPLO 01:  Un automóvil que parte del reposo se mueve con MRUV con aceleración de módulo constate de 1 m/s2, en dirección a una montaña. Al partir el chofer toca la bocina y cuando ha recorrido 32 metros escucha el eco. Determine la distancia de separación inicial entre el auto y la montaña. Rapidez del sonido en el aire 340 m/s.

Resolución El intervalo de tiempo empleado por el auto en recorrer 32 m, es el mismo tiempo que emplea la onda sonora en ir desde el punto A hasta la montaña y regresar a la nueva posición del auto en B.

S

o

n

i

d

Montaña

o

B C

A

32 m

(x - 32) m 2

Para el auto (MRUV): d = V0 .t +

a.t 

2

Reemplazando los datos: 32 = 00.t +

 

1.t 2 2

Þ 64 = t 2  

Resolviendo: t = 8 segundos Para el sonido (MRU):

eSONIDO = VSONIDO .T Þ X + ( X -  32 ) = 340.8  

Resolviendo: X = 1 376 m

Respuesta:  la distancia de separación inicial entre el auto y la montaña es 1,376 km.

18

 

Cinemática

EJERCICIOS DE MRUV 1.-

Para un móvil que desarrolla un M.R.U.V. indique verdadero (V) o falso (F). I. II. III.

Su aceleración es constante. La dirección de la aceleración siempre es igual a la velocidad. Su aceleración es perpendicular perpendicular a su desplazamiento. desplazamiento.

 A) VFF 2.-

II. III.

( ) ( )

D) FFF

E) WF

B) VFF

C) FVF

D) FFF

E) FVV

La velocidad velocidad al final de un móvil que recorre 100 m en línea recta es 35 m/s. Si su aceleración es constante e igual a 3 m/s 2, calcule la velocidad de partida en m/s. B) 26

C) 25

D) 30

E) 27

Un automóvil tiene rapidez de 18 m/s, luego reduce su rapidez a razón constante de 3 m/s cada 2 segundos. Si el automóvil tiene M.R.U.V.; determine la distancia que recorre hasta que se detiene.  A) 27 m

B) 155

C) 108

D) 105

E) 18

Un móvil que realiza un M.R.U.V. triplica su rapidez luego de recorrer 8 metros en 2 segundos. Determine el valor de la aceleración.  A) 1 m/s2 

B) 0,5

C) 2

D) 1,5

E) 4

Un auto se desplaza desplaza en una pista rectilínea rectilínea observándose observándose que su rapidez rapidez disminuye disminuye en 4 m/s cada 2 segundos. Determine su recorrido un segundo antes de detenerse, si su rapidez inicial es 10 m/s.  A) 1 m

8.-

C) FVF

Si un cuerpo posee un movimiento movimiento rectilíneo rectilíneo uniformemente uniformemente retardado, entonces cuando su velocidad llega a cero su aceleración es nula.

 A) 38 m/s

7.-

B) FW

Si un cuerpo tiene una aceleración constante entonces el módulo de su velocidad va en aumento. En el M.R.U.V. la velocidad y aceleración pueden ser perpendiculares. perpendicular es.

 A) VVF

6.-

E) FFF

Marque verdadero (V) o falso (F). ( )

5.-

D) FW

En el M.R.U.V. la velocidad permanece constante y la aceleración varía uniformemente. En el M.R.U.V. la aceleración es constante y la velocidad velocidad varía uniformemente. uniformemente. Si la velocidad de un cuerpo es cero, entonces su aceleración también es cero.

 A) VFF

4.-

C) VFV

Marque verdadero (V) o falso (F). I.

3.-

B) WF

B) 2

C) 3

D) 5

E) 4

Un móvil móvil se desplaza con rapidez rapidez constante constante igual a 2 m/s, durante 10 s, luego acelera acelera 2 uniformemente con a = 1 m/s  durante 5 segundos y después desacelera uniformemente con 2 m/s2. Determine el intervalo de tiempo en el cual la velocidad llega a cero y dar como respuesta la distancia recorrida.  A) 12,2 m B) 32,2

C) 48,2

19

D) 54,75

E) 25,2

 

Cinemática

9.-

Un ciclista ciclista inicia su movimiento con una aceleración constante de módulo 4 m/s2, determine: I) Su rapidez luego de 4 s de iniciado su movimiento. movimient o. II) Su recorrido en los 4 primeros segundos.  A) 16m/s, 28m B) 12m/s, 14m

C) 16 m/s, 32 m D) 16m/s, 18m

E) 12 m/s, 64 m

10.- Dos móviles "A" y "B" en cierto instante están separado separados s tal como indica la figura. Determine cuanto tiempo transcurre hasta que se encuentran, si "A" experimentó un MRU y "B" un MRUV con aceleración de módulo 2 m/s2.  A) 1s C) 4 E) 3 B) 2 D) 2,5 11.- Un móvil parte del reposo reposo con una aceleración aceleración constante logrando logrando recorrer 20 m en los primeros 5 segundos. Calcule la velocidad del móvil a los 10 s de haber iniciado su movimiento.  A) 4 m/s B) 8 C) 12 D) 16 E) 20 12.- Dos partículas "A" y "B" se encuentran separados separados 1 200 m. Si parten simultán simultáneamente eamente uno hacia el otro se encuentran luego de 10 s. Si "A" parte del reposo y acelera a razón de 4 m/s2 y "B" mantiene una velocidad constante V B . Determine "VB ".  A) 120 m/s B) 200 C) 150 D) 100 E) 80 13.- Un ciclista ciclista va con movimiento uniforme uniforme a una una velocidad velocidad de 10 m/s. Al entrar entrar a una 2 pendiente adquiere una aceleración de 0,4 m/s . Si la longitud de la pendiente es 1,0 km, el tiempo en segundos, en recorrer la longitud de la pendiente es:  A) 50 B) 200 C) 100 D) 25 E) 150 14.- Un auto experimenta experimenta un M.R.U.V. M.R.U.V. al pasar por por un punto "P" tiene una rapidez de 5 m/s. Si 25 m más adelante su rapidez es de 20 m/s, ¿qué distancia recorre luego de 4 s de pasar por "P"?  A) 100 m B) 60 C) 40 D) 80 E) 20 15.- Dos autos inician sus movimientos simultáneamente en direcciones contrarias con aceleraciones constantes de módulo 2 m/s 2  y 4 m/s2  en pistas paralelas, ¿Qué rapidez tienen enparalela el instante que de empiezan distancia a la pista 48 m? a cruzarse, si inicialmente están separados una  A) 6m/s, 12m/s

B) 8m/s, 16m/s

C) 4m/s, 8m/s

20

D) 8m/s, 18m/s

E) 8m/s, 24m/s

 

Cinemática

CAÍDA L IBRE VE VERT RTIC ICA AL  1. CONCEPTO. Es aquel tipo de movimiento rectilíneo uniformemente variado (M.R.U.V.) cuya trayectoria es una línea recta vertical y que se debe a la presencia del campo de gravedad. La única fuerza que actúa sobre el cuerpo es su propio peso, ya que no considera la resistencia del aire. Este tipo de movimiento se obtiene, cuando un cuerpo es lanzado hacia arriba, hacia abajo, o simplemente es soltado. En las ecuaciones cinemáticas no se considera la masa ni la fuerza resultante. La cinemática en general estudia as propiedades geométricas del movimiento.   GALILEO GALILEI (1564 - 1642) gran físico y astrónomo italiano que por primera vez empleo el método experimental de investigación en la ciencia. Galileo introdujo el concepto de inercia; estableció la relatividad del movimiento; estudio las leyes de caída de los cuerpos y del movimiento de estos por un plano inclinado; las leyes del movimiento, al lanzar uno objeto formando cierto ángulo con el horizonte; aplicó el péndulo simple para la medida del tiempo. 

2. CONSIDERACIONES DEL MOVIMIENTO DE CAÍDA LIBRE   * * * *

*

No se considera la resistencia del aire. La altura máxima alcanzada alcanzada es suficientemente suficientemente pequeña como para para despreciar despreciar la variación de la aceleración de la gravedad. La velocidad máxima alcanzada por el cuerpo es suficientemente suficient emente pequeña para despreciar la resistencia del aire. La altura alcanzada es suficientemente suficientemente pequeña para considerar considerar un campo campo gravitatorio gravitatorio homogéneo y uniforme. El valor o módulo de la aceleración de la gravedad es: g

= 9, 8

m s2

= 9, 8

N  kg

 

3. ECUACIONES DEL M MOVIMIENTO OVIMIENTO DE CAÍDA LIB LIBRE RE VERTICAL  Analíticamente el movimiento de caída libre es un caso es especial del MRUV, donde la distancia se reemplaza por la altura y la aceleración lineal por la aceleración de la gravedad.  

Cuando Cua ndo BAJA  

Cuando SUBE 

1)  h = V0 .t +

1 2

g .t 2  

1)  h = V0 .t -

2) h = VF .t -

1 2

g .t 2  

2) h

3) VF 

3) VF 

= V02 + 2 g.h  

4) VF 

2

5) h =

(V0 + V F  ) 2

.t  

= V0 - g.t   

2

5) h

21

g .t 2  

= VF .t + 12 g .t 2  

= V0 + g.t   

4) VF 

1 2

=

= V02 - 2 g .h   (V0 + V F  ) 2

.t  

 

Cinemática

4. TIEMPO DE VUELO Consideremos un cuerpo lanzado verticalmente hacia arriba. Cuando el cuerpo alcanza la altura máxima su velocidad es nula. De la ecuación:

VF  = V0 - g .t   

VF = 0

reemplazando los datos:

0 = V0 - g.T   





Despejando:

T  =

V 0 g

 

V0

Tiempo de subida:  t SUBIDA =

Tiempo de vuelo:

V 0 g

= T  

tVUELO = 2.V 0 = 2T    g

EJEMPLO 01: Desde el piso es lanzado verticalmente hacia arriba un cuerpo con una rapidez de 50 m/s. Determine el tiempo de vuelo. (g = 10 m/s 2)

Resolución  Aplicando la la fórmula práctica: 2.V 0 2(50) tVUELO = Þ TVUELO = = 10 s   10 g

Respuesta:  el tiempo que demora en regresar al punto de lanzamiento es 10 segundos. EJEMPLO 02: Desde el piso es lanzado verticalmente hacia arriba un cuerpo luego de 8 segundos regresa al punto de lanzamiento. Determine la rapidez de lanzamiento. (g = 10 m/s2)

Resolución  Aplicando la la fórmula práctica:

t VUELO =

2.V0 g

Þ 8=

Resolviendo: V0 = 40 m / s  

Respuesta:  La rapidez de lanzamiento es 40 m/s. 

22

2(V 0 ) 10

 

 

Cinemática

5. EL INTER INTERVAL VALO OD DE E TIEMPO DEPENDE DE LA AL ALTURA TURA Todos los cuerpos que se dejan caer simultáneamente con la misma velocidad inicial cero desde una altura, utilizan el mismo intervalo de tiempo para llegar al suelo.

h = V0 .t + 12 .g .t 2  

V0 = 0

Reemplazando los datos tenemos:

 H = 0 + 12 .g .T 2  

g  T

H

el intervalo de tiempo de caída es:

T  =

 H  2. H  g

 

VF EJEMPLO 01:   Desde una altura de 80 metros se abandona (velocidad nula) una esfera de hierro. Determine el intervalo de tiempo que demora en llegar al piso. (g = 10 m/s 2)

Resolución    Aplicando la la regla práctica: práctica:

T=

2. H  g

Þ T=

2.(80) 10

= 16 = 4 s  

Respuesta:  el tiempo transcurrido es 4 segundos. EJEMPLO 02:   Desde una altura de 45 metros metros se deja caer caer (velocidad n nula) ula) una piedra. piedra. Determine el intervalo de tiempo que demora en llegar al piso. (g = 10 m/s 2)

Resolución    Aplicando la la regla práctica: práctica:

T=

2. H  g

Þ T=

2.( 45) 10

= 9 = 3s  

Respuesta:  el tiempo transcurrido es 3 segundos.

23

 

Cinemática

6. ALTURA MÁXIMA Un cuerpo que es lanzado verticalmente hacia arriba alcanza su altura máxima cuando su velocidad final en el punto más alto es igual a cero.

VF = 0

 Aplicando la la ecuación:

VF 2 = V02 - 2 g .h   Reemplazando los datos:

g  H

0 = V02 - 2 g.H   

V0

2

 H  =

V 0

2g

 

EJEMPLO 01:   Desde el piso es lanzado verticalmente hacia arriba un cuerpo con una rapidez de 50 m/s. Determine la altura máxima que alcanza el cuerpo. (g = 10 m/s 2)

Resolución Reemplazando en la fórmula práctica:

 H =

V 02

2g

ÞH =

(50)2 2.(10)

= 125 m  

Respuesta:  La altura máxima es 125 metros. EJEMPLO 02:  En la tierra, un objeto lanzado verticalmente hacia arriba con cierta rapidez alcanza una altura máxima “H”, determine la altura máxima que alcanza en la Luna, si la aceleración de la gravedad es la sexta parte de la terrestre y la rapidez de lanzamiento la misma. (g = 10 m/s2)

Resolución   Reemplazando en la fórmula práctica: En la Tierra: H =

V02 2g

 

æ V02 ö V02 = 6ç En la Luna: H1 = ÷ = 6.H   æ g ö   è 2g ø 2ç ÷ è 6ø

Respuesta:  La altura máxima que alcanza en la Luna es 6H.

24

 

Cinemática

7. CAMBIO D DE E LA ACELERACIÓN DE LA GRAVEDAD La intensidad de la gravedad no es el mismo para todos los lugares de la Tierra, depende de la altura sobre el nivel del Mar y de la latitud. El movimiento de caída libre plantea la misma aceleración para todos los cuerpos cualquiera que sea su masa, a esta aceleración se le llama aceleración de la gravedad normal, cuyo valor es 45° de latitud:

= g

m

9, 8 s 2



=

9, 8 kg  

* En los polos: g = 9,83 m/s² (Máxima)  * En el Ecuador: g = 9,78 m/s² (Mínima)

8. CAMPO GRAVITACION GRAVITACIONAL AL No sólo la Tierra atrae a los cuerpos, también el Sol, la Luna y todo astro. Se entiende por “gravedad” a la región de espacio que rodea a un astro gracias al cual atrae a los cuerpos. Todos los planetas (Tierra) y satélites (Luna) generan a su alrededor un campo de gravedad.   g Tierra   gLuna = 6

9. INTENSIDAD DEL CAMPO GRAVITA GRAVITATORIO TORIO  La aceleración de la gravedad “g” depende de la masa y el radio terrestre. Es decir la aceleración de la gravedad depende de la forma  que tiene el cuerpo creador del campo gravitatorio.

Donde: g = G G: G= MT  RT 

MT R2T

 

Constante de gravitación universal. 6,67.10-11 N.m2.kg-2  = Masa de la tierra = 5,9.1024 kg = Radio de la tierra = 6 400 km

25

 

Cinemática

10. NÚMEROS DE GALILEO Si abandonamos un cuerpo de cierta altura, entonces la altura que recorre en cada segundo es directamente proporcional a los números impares. Primer segundo

1K = 5 m

Segundo segundo

3K = 15 m

Tercer segundo

5K = 25 m

Cuarto segundo

7K = 35 m

Quinto segundo

9K = 45 m

Sexto segundo

11K = 55 m

Sétimo segundo

13K = 65 m

Octavo segundo

15K =75 m

V0 = 0

h = V0 .t + 12 g .t 2  

t=0s K

Para. t = n 2 h1 = V0 .n + 12 g .n  

t=1s

Para. t = n - 1 1 h2 = V0 .( n - 1) + 2 g .( n - 1) 2  

3K Restando: hn = h1 - h2   Obtenemos que: hn = V0 + 12 g .(2n - 1)  

t=2s

CASO PARTICULAR Cuando V 0  = 0  

hn = 12 g.(2n - 1)   h = K .( 2n - 1)   n

g

Donde el valor de K es la mitad del valor de la aceleración. g K   = = 5

5K

2

Considerando: Consideran do: g = 10 m/s2. En el primer segundo recorre 5 metros. En el segundo segundo recorre 15 metros. En el tercer segundo recorre 25 metros. En el cuarto segundo recorre 35 metros. En el quito segundo recorre 45 metros. En el enésimo segundo recorre 5(2n - 1) metros.

26

t=3s

 

Cinemática

11. CUANDO EL CUERPO ASCIENDE (DESACELERA)  Analicemos el movimiento movimiento de subida subida respecto respecto de un sistema de referencia.

Ecuaciones: 1) h = V0 .t - 12 g .t    2

VF

Y (m)

2

1

2) h = VF .t + 2 g .t    3) VF  = V0 - g .t    4) VF  = V0 - 2 g .h   2

5) h =

2

(V0 + V F  ) 2

g

h

.t  

6) hn = V0 - 12 g .( 2n - 1)  

V0 X (m) EJEMPLO 01:  Se muestra el lanzamiento vertical de una esfera en el punto A con rapidez V0 = 30 m/s. Determine la rapidez de la esfera cuando pasa por el punto B. (g = 10 m/s2)  B

40m V0= 30 30m/ m/ss A

 

Resolución  Aplicamos la siguiente siguiente ecuación ecuación del movimiento: movimiento:

VF 2 = V02 - 2 g .h   V  B  = (30) - 2(10).(40 (40)   2

2

V B = 100 Þ 2

VB = 10 m / s  

Respuesta:  La rapidez de la esfera en B es 10 m/s.

27

 

Cinemática

12. CUANDO EL CUERPO DESCIENDE (ACELERA)  Analicemos el movimiento movimiento de bajada bajada respecto de un sistema de referencia. referencia. 

Ecuaciones:

X (m)

1)  h = V0 .t + 12 g .t    2

2) h = VF .t - 12 g .t 2  

V0

3) VF  = V0 + g .t   

h (+)

4) VF  = V0 + 2 g .h   2

5) h =

2

(V0 + V F  ) 2

g

.t  

6) hn = V0 + 12 g .( 2n - 1)  

Y (m)

VF

EJEMPLO 01:   En cierto planeta una partícula en caída libre duplica su rapidez luego de recorrer 30 m en 2 segundos. Determine la aceleración de la gravedad (en m/s 2). V

30 m

2V

 

Resolución Cálculo de la rapidez V:

h=

(V0 + V F  ) 2

   (V + 2V ) .t  Þ 30 = .( 2 )   2

Resolviendo: V = 10 m/s  Resolviendo: Cálculo del módulo de la aceleración de la gravedad:

g=

V B - V A t 

=

20 - 10 2

= 5 m / s2  

Respuesta:  el módulo de la aceleración de la gravedad en este planeta es 5 m/s 2.

28

 

Cinemática

13. TIEMPO DE ALCANCE  Cuando dos partículas son lanzadas simultáneamente, en la misma dirección, de diferentes posiciones, en una misma línea vertical; el tiempo de alcance es:

Del gráfico tenemos la siguiente ecuación:

P

 H A - H B = H   

HB

(V A .T - 12 gT 2 ) - (VB .T - 12 gT 2 ) = H   

g

simplificando tenemos:

HA

VB

V A .T - VB .T = H   despejando obtenemos:

 H 

T encuentro =

V A - V B

 

H VA

EJEMPLO 01:   Se muestra el lanzamiento vertical de dos esferas simultáneamente con rapideces de V A  = 80 m/s y VB  = 30 m/s. ¿Después de cuántos segundos las esferas se encuentran a la misma altura? (g = 10 m/s 2)  V  B

100 m  V 

 A 

 

Resolución   Los móviles están separados inicialmente 100 metros en la vertical. Aplicando la fórmula práctica:   H  100 Talcance = Þ Talcance = = 2s   V A - V B 80 - 30

Respuesta:  Las esferas estarán a la misma altura después de 2 segundos.

29

 

Cinemática

14. TIEMPO DE ENCUENTRO  Cuando dos partículas son lanzadas, simultáneamente, en direcciones opuestas, de diferentes posiciones en una misma línea vertical; el tiempo de encuentro es: Del gráfico ecuación:

tenemos

la

VA

siguiente

g

HA

 H A + H B = H   

H

(V A .T + 12 gT 2 ) + (VB .T - 12 gT 2 ) = H    simplificando tenemos: V A .T + VB .T = H  

P

despejando obtenemos:

T encuentro =

HB

 H  V A + V B

 

VB

EJEMPLO 01:  Dos objetos que se encuentran en la misma vertical separados una distancia vertical de 200 m, si uno de ellos se suelta libremente mientras el otro es lanzado hacia arriba con una rapidez de 40 m/s. Determine el intervalo de tiempo que demoran en encontrarse.

Resolución   Los móviles están separados inicialmente 200 metros en la vertical. Aplicando la fórmula práctica:

Tencuentro =

 H  V A + V B

Þ Tencuentro = 200 = 5 s   0 + 40

Respuesta:  Las esferas estarán a la misma altura después de 5 segundos. EJEMPLO 02:  Dos objetos que se encuentran en la misma vertical separados una distancia vertical de 160 m, si uno de ellos se lanza hacia abajo con rapidez de 5 m/s mientras que el otro es lanzado hacia arriba con una rapidez de 35 m/s. Determine el intervalo de tiempo que demoran en encontrarse.

Resolución   Los móviles están separados inicialmente 160 metros en la vertical. Aplicando la fórmula práctica:  H  160 Tencuentro = Þ Tencuentro = = 4s   V A + V B 5 + 35

Respuesta:  Las esferas estarán a la misma altura después de 5 segundos. 30

 

Cinemática

15. LA ALTURA A LTURA ES DESPLAZAMIENTO VERT VERTICAL ICAL   Si lanzamos un cuerpo verticalmente hacia arriba respecto de un sistema de referencia.  Ahora analizamos analizamos el movimiento de cuerpo en caída libre en forma vectorial , es decir considerando los signos. Entonces la altura tendrá signos positivo o negativo: (1) Si la altura tiene signo positivo  significa que el cuerpo se encuentra sobre el nivel de referencia, subiendo o bajando. (2) Si la altura tiene signo negativo   significa que el cuerpo se encuentra debajo de la línea de referencia descendiendo. (3) Si la altura es cero   significa que el cuerpo ha regresado o está pasando en ese instante por el nivel de referencia (N.R.).

Y (+)

g  V2

V3 h (+) V1 h=0  N.R.

X (+) V4

h (-)

Y (-) V5

31

 

Cinemática

 

EJEMPLO 01:   Se muestra el lanzamiento de una partícula, con rapidez V = 20 m/s desde una altura h = 300 m. ¿Después de cuántos segundos llegará a la superficie terrestre?  V  (g = 10 m/s2)  A 

h

Resolución El desplazamiento de la piedra finalmente es 300 metros vertical hacia abajo (signo negativo).  Aplicamos Aplicamos la la ecuación del movimiento que que relaciona la la posición y el tiempo: tiempo:

h = V0 .t - 12 g .t 2   Remplazando Remplazan do tenemos: -300 = 20.t - 12 (10).t    2

Resolviendo la ecuación: -60 = 4.t - t 2 Þ t = 10 s   Respuesta: La partícula llegará al piso después de 10 segundos.

EJEMPLO 02:   Desde un globo a 75 m sobre el suelo, que asciende verticalmente con rapidez de 10 m/s, se suelta un saco de lastre, determine el intervalo de tiempo que le toma llegar al suelo. (g = 10 m/s 2)

Resolución La velocidad inicial del saco es 10 m/s hacia arriba (por inercia) respecto de nuestro observador ubicado en la Tierra.   Aplicamos la ecuación del movimiento que relaciona la posición y el tiempo:

h = V0 .t - 12 g .t 2   Remplazando Remplazan do tenemos: -75 = 10.t - 12 (10).t    2

Resolviendo la ecuación: -15 = 2.t - t

2

Þ t = 5s  

Respuesta: La partícula llegará al piso después de 5 segundos. EJEMPLO 03:  Un globo se encuentra subiendo con velocidad de 5  j  (m/s) y en el instante

que se encuentra a 360 m del piso, desde el globo se deja caer una piedra. ¿Qué tiempo tarda la piedra en llegar a la superficie terrestre? (g = 10 m/s 2)

Resolución La velocidad inicial de la piedra es 5 m/s hacia arriba (por inercia) respecto de nuestro observador ubicado en la Tierra.   Aplicamos la ecuación del movimiento que relaciona la posición y el tiempo:

h = V0 .t - 12 g .t 2   Remplazando Remplazan do tenemos: -360 = 5.t - 12 (10).t    2

Resolviendo la ecuación: -72 = t - t 2 Þ t = 9 s  

Respuesta: La partícula llegará al piso después de 9 segundos.

32

 

Cinemática

16. DISTANCIA QUE RECORRE EN EL ENÉSIMO SEGUNDO  Analicemos el caso, cuando el cuerpo es lanzado verticalmente hacia abajo.  El enésimo segundo  está comprendido entre los instantes t = n - 1 y t = n. Entonces la distancia que recorre en el enésimo segundo se determina restando las distancias que recorre el móvil en los primeros n segundos y en los (n - 1) segundos. 2 1   0 2

h = V .t + g .t  

Para. t = n h1 = V0 .n + 12 g .n 2  

t=0

Para. t = n-1 h2 = V0 .( n - 1) + 12 g .( n - 1) 2  

V0 

Restando: hn = h1 - h2  

g

h2 

Obtenemos que:

hn = V0 + 12 g .( 2n - 1)  

h1  CASOS PARTIC PA RTICULARES ULARES a) Cuando el cuerpo c uerpo es abandonado, soltado o dejado caer (V 0  = 0 ) , se cumple

t = n-1

que:

hn = 12 g .( 2n - 1)

 

hn 

b) Cuando el cuerpo es lanzado verticalmente hacia ARRIBA, el cuerpo inicia su movimiento en contra del campo de gravedad, es decir desacelera.

t=n

hn = V0 - 12 g .( 2n - 1)   * * *

Si hn es positivo el cuerpo se desplaza verticalmente hacia arriba. Si hn es negativo el cuerpo se desplaza verticalmente hacia abajo. Si hn es cero el cuerpo regresa al punto inicial.

EJEMPLO 01: Un cuerpo se deja caer desde lo alto de una torre, ¿qué distancia recorre en el tercer segundo de su movimiento? (g = 10 m/s2)

Resolución El cuerpo sale del reposo ( V 0  = 0 ).   Aplicamos la regla práctica.  En el tercer segundo, entonces n = 3. 1 2

1 2

h = g.(2n - 1) Þ h = .10.(2 x 3 - 1) = 25 m   n

n

Respuesta:  el cuerpo se desplaza 25 metros, vertical hacia abajo. 33

 

Cinemática

EJERCICIOS EJERCICIO S DE CAÍDA LIB LIBRE RE VERT VERTICAL ICAL 1.-

Señale verdadero (V) o falso (F) según como corresponda: ( ) Todo cuerpo en caída libre tiene movimiento uniforme. ( ) Sólo existe gravedad en la Tierra. ( ) La aceleración de caída libre depende del tamaño de los cuerpos.  A) VFV

2.-

B) C

D) VVV

E) VFF

C) D

D) B

E) A

Si lanzamos una moneda al aire y verticalmente hacia arriba: ( ) El tiempo de subida es igual al tiempo de bajada. ( ) En la parte más alta de su trayectoria la velocidad es nula. ( ) La velocidad de retorno es igual a la velocidad de lanzamiento. Indicar verdadero (V) o falso (F):  A) FVV B) FFV

4.-

C) FFF

Con relación relación a la aceleración aceleración de de caída libre de de los cuerpos en en la superficie de la Tierra, no es cierto que:  A. Depende del peso peso de los cuerpos. cuerpos. B. Es independiente independiente de su volumen. volumen. C. Es la misma a toda altura. D. Es mayor en la Tierra que en la Luna. E. Se considera constante en la superficie superficie de la Tierra.  A) E

3.-

B) FFV

C) VFF

D) VVF

E) VVV

Un cuerpo que cae libremente, librement e, paso justo al punto "A" con rapidez "V". ¿Con qué rapidez pasará junto al punto "B", si este se ubica a una distancia "h" debajo de "A"?  A)

v 2 + 2gh  

B)

v 2 - 2gh  

C) 2v 2 - gh  

5.-

D)

v 2 + gh  

E)

v 2 - gh  

Desde un helicóptero helicópter o que está descendiendo a una velocidad uniforme de 3 m/s, se deja caer una pelota verticalmente. Calcule la velocidad de la pelota en m/s al final del primer segundo. No considere la resistencia del aire. (g = 9,8m/s2)  A) 3 m/s

6.-

D) 16,6

E) 22,6

B) 120

C) 130

D) 135

E) 140

Se suelta un objeto desde una altura de 250 m. Determine a qué altura del piso se encuentra luego de 6 s de ser soltada. (g = 10 m/s 2)  A) 40 m

8.-

C) 12,8

Desde un edificio muy alto, un niño niño suelta un un coco; 3 segundos segundos después después suelta suelta el siguiente coco, ¿cuál será la separación entre los cocos, 3 s más tarde?  A) 100 m

7.-

B) 6,8

B) 60

C) 70

D) 80

E) 90

Un proyectil proy es disparado hacia arriba. arriba. De termine la rapidez rapidez de disparo, si luego deectil ascender 25 m suverticalmente velocidad es de 20 m/s. (g =Determine 10 m/s 2) la  A) 10 m/s

B) 20

C) 30

34

D) 35

E) 40

 

Cinemática

9.-

¿Desde qué altura se debe soltar una canica para para que en en el último segundo segundo de su caída 2 libre recorra 25 m? (g = 10 m/s )  A) 45 m

B) 25

C) 40

D) 20

E) 30

10.- Desde lo alto de un edificio edificio se lanza verticalmente verticalmente hacia arriba una una piedra con una rapi rapidez dez de 40 m/s, ¿qué tiempo permanece la piedra en el aire y con qué rapidez llega al piso?  A) 5s; 30 m/s B) 10s; 60 m/s C) 15s; 30 m/s D) 20s; 30 m/s E) 25s; 40 m/s

11.- Desde la azotea de un edificio se suelta una una piedra. Si en los 60 últimos metros de su recorrido (justo antes de impactar con el piso) su rapidez se duplica, halle la altura del edificio.  A) 40 m B) 60 C) 80 D) 120 E) 200

12.- En el diagrama mostrado, mostrado, determine determine que tiempo demora demora el proyectil en en ir de "A" hasta "B". 2 (g =10 m/s )

 A) 1 s B) 2 C) 3 D) 4 E) 5

13.- Una pequeña esfera es lanzada verticalmente hacia arriba desde la azotea de un edificio para impactar en la base del mismo, luego de 10 s, con una rapidez de 70 m/s. Determine la altura del edificio. (g =10m/s2)  A) 100 m

B) 200

C) 150

D) 145

E) 250

14.- Se deja caer un objeto desde la azotea azotea de un edificio. Cuando pasa jun junto to a una ventana de 2,2 m de altura, se observa que el objeto invierte 0,2 segundo en recorrer la altura de la ventana. ¿Qué distancia existe entre la cima del edificio y la parte superior de la ventana?  A) 15 m

B) 20

C) 25

D) 5

E) 10

15.- Un globo se eleva eleva verticalmente desde desde la superficie superficie terrestre a rapidez rapidez constante de 5 m m/s. /s. Cuando se encuentra a una altura de 360 m se deja caer una piedra desde el globo. El tiempo en segundos que tarda la piedra en llegar a la superficie terrestre es: (g =10 m/s2)  A) 6 s

B) 9

C) 12

35

D) 15

E) 18

 

Cinemática

GUÍA DE CLASE CLA SE N° 1

 

1. Un piloto de MIG-29 p prepara repara su nave para cumplir una misión aérea, después de 20 minutos en el aire logra recorrer 24 km con M.R.U. en 0,5 minuto. Determine el valor de la velocidad en este último tramo (en m/s):  A) 200 m/s B) 820 m/s C) 800 m/s D) 500 m/s E) 600 m/s

6.

2.

7.

Un cuerpo parte del reposo con M.R.U.V., y avanza 54 m en los 6 primeros segundos. ¿Cuántos metros avanza en los 4 segundos siguientes?  A) 81 m B) 92 m C) 73 m D) 96 m E) 85m

8.

Un móvil que tiene M.R.U.V. M.R.U.V. inicia su

3.

4.

B) C) D) E)

Un h hombre ombre se encuentra a 3,4 km de una montaña, en cierto instante instante grita. Si la rapidez del sonido en el aire es 340 m/s, ¿Después de cuántos segundos escucha el eco?  A) 10 B) 20 C) 30 D) 5 E) 50 Un niño encuentra entre montañas, en ciertoseinstante silva, el dos primer eco lo recibe después de 3 segundos y el segundo correspondiente a la otra montaña luego de 3,6 segundos Si la rapidez del sonido en el aire es 340 m/s, ¿Cuál es la distancia de separación entre las montañas?  A) 1,0 km B) 1,122 km C) 3,0 km D) 5,0 km E) 50,75 km

 A) B) C) D) E)

9.

pared debido al orificio en la pared “R”. R 

6 cm/min 9 cm/min 12 cm/min 15 cm/min 18 cm/min 20 cm

5.

x = 100 m x = 200 m x = 300 m x = 400 m x = 260 m

y a V 0

x

Un automóvil que tiene M.R.U.V. disminuye su rapidez a razón de 4 m/s cada 2 s. ¿Cuántos metros recorrió en el último segundo de su movimiento?  A) 1 m a B) 2 m C) 3 m V D) 4 m E) 5m

10. Un cuerpo parte del reposo M.R.U.V, si al transcurrir “t” segundos posee una rapidez “V” y luego de recorrer 15 m en 3 s su rapidez es “4V”. Determine “t”.  A) 1 s B) 2 s C) 3 s D) 4 s E) 5 s

60 cm

Un pájaro se mueve con velocidad de 30 i   (m/s) detrás de un tren de 200 metros de largo que se desplaza con velocidad 20 i   (m/s). ¿Cuántos segundos demora el pájaro en adelantar completamente al tren?  A) 2 B) C) D) E)

120 100 m m 80 m 60 m

movimiento en x = 40 m (t = 0 s), con velocidad de 6 i (m/s) y aceleración 4 i 2 (m/s ). Determine la posición del móvil en los primeros 10 segundos.

Se muestra una vela que se consume con rapidez de 4 cm/ min. Determine la rapidez de la zona iluminada proyectada en la

 A) B) C) D) E)

De lo alto de un edificio un cuerpo es lanzado con velocidad 20  j   (m/s). ¿A qué distancia del nivel de lanzamiento se encuentra el cuerpo después de 8 2 segundos? (g = 10 m/s )  A) 160 m

20 10 50 40

36

x

 

Cinemática

GUÍA DOMICILIARIA N° 1   1.

6.

Una partícula se lanza verticalmente hacia arriba con rapidez de 20 m/s. ¿Después de cuantos segundos alcanza la altura máxima? ¿Qué altura máxima alcanza? 2 (g = 10 m/s ) V =0 F

 A) 1 s y 20 m B) C) D) E) 2.

2s 3s 4s 5s

y 20m y 30 m y 30 m y 10 m

t

V0

D) 50,5 s E) 1,5 min

H

7.

Un cuerpo es lanzado con velocidad velocidad 60  j   (m/s). ¿A qué distancia del nivel de lanzamiento se encuentra el cuerpo 2 después de 4 segundos? (g = 10 m/s )  A) 60 m B) 120 m C) 100 m D) 180 m E) 160 m

3. Un cuerpo es lanzado verticalmente hacia arriba desde la azotea de un edificio, si luego de 6 segundos su rapidez se duplica, determine la velocidad de lanzamiento.

Un pájaro se mueve con velocidad de 20 i (m/s) al encuentro de un tren de 200 metros de largo que se desplaza con

5.

 A) B) C) D)

5 4 3 2

E)

5 2m

4 20 50 12 15

3 m/s

20 m

15 m

4 m/s

Dos móviles A y B salen de un mismo mismo punto en direcciones perpendiculares con velocidades de 3 i   (m/s) y 4  j   (m/s). ¿Cuántos metros estarán separados luego de 20 segundos?  A) 105 B) 505 C) 100 D) 500 E) 400

9.

Se muestra una araña que desciende verticalmente con una rapidez de 6 cm/s. Determine la rapidez de la sombra de la araña proyectada en la pared.  A) B) C) D) E)

velocidad -30 ¿Cuántos demora el i   (m/s). pájaro en segundos cruzarse completamente con el tren?  A) B) C) D) E)

Dos esferas se mueven en direcciones perpendiculares con velocidades de 3 i   (m/s) y 4  j  (m/s). ¿Cuántos metros estarán separados luego de 5 segundos?

8.

2

(g = 10 m/s )  A) 15 j  (m/s) B) 20 j  (m/s) C) 30 j  (m/s) D) 40 j  (m/s) E) 25 j  (m/s) 4.

Un autobús de 50 m de largo se mueve en línea recta con rapidez de 72 km/h. ¿En cuánto tiempo logrará atravesar completamente un puente de 400 metros?  A) 10,5 s  B) 20,5 s C) 22,5 s

60 cm/s 12 cm/s 18 cm/s 15 cm/s 20 cm/s 2 0 cm

4 0 cm

10. Una persona se encuentra en un globo aerostático en reposo, desde una altura H suelta una piedra y después de 8,75 segundos escucha el impacto con el piso, Despreciando la resistencia del aire y considerando la rapidez del sonido en el aire 300 m/s, determine la rapidez de la piedra (en m/s) en el instante de chocar 2 con el piso. (g = 10 m/s )

Un tren de 200 m de largo se mueve en línea recta con rapidez de 36 km/h. ¿En cuánto tiempo logrará atravesar completamente un túnel de 400 metros?  A) 10 s  B) 20 s C) 40 s D) 50 s E) 1 min

 A) B) C) D) E)

37

22,8 31,6 54,6 77,5 89,3

 

Cinemática

11. Un ciclista que tiene M.R.U.V. inicia su

16. Un macetero cae de una ventana tocando el suelo con velocidad 30  j   (m/s). Determine el tiempo que demora en recorrer los últimos 40 metros. (g = 10 2 m/s )  A) 1 s B) 2 s C) 3 s D) 4 s E) 5 s

movimiento con velocidad 2 i   (m/s), después de 2 segundos recorre 12 m. ¿Qué distancia recorre el ciclista en el tercer segundo?  A) 8 m B) 9 m C) 30 m D) 12 m E) 24 m

12. Un auto parte del reposo con M.R.U.V. y recorre entre dos puntos de su trayectoria la distancia de 1 km durante 10 s, si al pasar por el punto B su rapidez es el triple de la que tuvo en el punto A. Determine la distancia que recorre entre el punto de partida y el punto A.  A) 80 m B) 92 m C) 100 m D) 96 m E) 125m

17. Un globo globo aerostático sube con velocidad 10  j   (m/s) y cuando se encuentra a una altura de 75 m respecto del suelo desde el globo se deja caer una piedra. ¿Qué tiempo demora la piedra en llegar al suelo? 2 (g = 10 m/s )  A) 1 s B) 2 s C) 3 s D) 4 s E) 5 s

13. Un móvil que tiene M.R.U.V. se mueve en el eje X, pasa por el punto A con velocidad 40 i   (m/s), pero 50 segundos después su

18. Un cuerpo se deja caer desde lo alto de una torre, ¿qué distancia recorre en el tercer segundo de su movimiento? (g = 10 m/s2)  A) 5 m B) 15 m C) 25 m D) 35 m E) 45 m

velocidad es del 60 i  reposo, (m/s). Sabiendo que el móvil parte ¿qué distancia recorre desde el punto de partida hasta el punto A?  A) 1 km B) 2 km C) 3 km D) 4 km E) 5 km

19. Un cuerpo se lanza desde lo alto de una torre con velocidad -5  j (m/s), ¿qué distancia recorre en el tercer segundo de 2 su movimiento? (g = 10 m/s )  A) 10 m B) 20 m C) 25 m D) 30 m E) 40 m

14. Un cuerpo de lanza des desde de la superficie superf icie terrestre verticalmente hacia arriba con rapidez 40 m/s. Un segundo después se lanza otro, desde el mismo punto de manera que cuando de crucen ambos tienen la misma rapidez. Determine la altura máxima (en m) que alcanza el segundo cuerpo. 2 (g = 10 m/s )  A) 10 B) 20 C) 40 D) 80 E) 90

20. Un automóvil que tiene M.R.U.V, se mueve en el eje X con aceleración 2 i   (m/s), después de 5 s de pasar por un punto “P” posee una velocidad 20 i   (m/s). ¿Qué velocidad tenía el auto cuando le faltaban 9 m para llegar al punto P?  A) 5 i  (m/s) B) 2 i  (m/s) C) 3 i  (m/s) D) 4 i  (m/s) E) 8 i  (m/s)

15. Desde la azotea de un edificio de 20 m de altura, una pelota A es lanzada verticalmente hacia arriba con rapidez de 15 m/s. Al mismo instante se lanza una pelota B verticalmente hacia abajo con igual rapidez. ¿Cuál es el intervalo de tiempo entre las llegadas de las 2 pelotas al nivel del piso? (g = 10 m/s )

1–B 6–C 11 – D 16 – B

 A) 4 B) C) 3 2

D) 1 E) 5

38

2–E 7–E 12 – E 17 – E

3–B 8–C 13 – B 18 – C

4–A 9–C 14 – D 19 – D

5–E 10 – D 15 – B 20 – E

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF