Selectivity and Backup
Short Description
ghfjgjfgj...
Description
A
B
C
D
E
selectivity and back-up section contents 406 Definition of selectivity 416 Back-up protection 417 Selectivity tables 432 Back-up tables
CONTENTS
405 405
SELECTIVITY AND BACK-UPTECHNICAL TECHNICALGUIDE GUIDE TICONTROL
Selectivity between electrical safety devices ■ DEFINITION OF SELECTIVITY Selectivity between electrical safety devices is necessary to guarantee maximum continuity of the electric system. The aim of selectivity is to ensure that in case of fault, the necessary repair tripping will only affect the safety devices immediately upstream the fault, rather than the general ones, thus maintaining service continuity for the branches of the system not affected by the fault. Selectivity between electric safety devices is obtained through correct coordination of the individual electric features. In general, selectivity is required in terms of: • overload; • short circuit; • earth fault (earth leakage). Selectivity between two circuit breakers installed in cascade can be total when the downstream circuit breaker (B) trips for all overcurrent values up to its breaking capacity, or partial when both circuit breakers trip (A and B), when certain values are exceeded.
A
C
B
D
E
In this second case, a “selectivity limit” (ls) is set. This us the current value below which only the downstream circuit breaker will trip, and above which botch circuit breakers will. In accordance with IEC 60947-2 and IEC 60898 standards, selectivity can be assessed comparing the various tripping and energy curves provided by the manufacturers.
total selectivity
A no tripping tripping
B Total selectivity: only B trips for all Icc values up to its breaking capacity Icc
partial selectivity
A
Is (selectivity limit)
no tripping tripping
B
Partial selectivity: B is selective compared to A for Icc values up to the Is. Above this value, selectivity is not guaranteed for Icc>Is, and both circuit breakers may trip. Icc
406
Selectivity AND BACK-UP
■ OVERLOAD AMPEREMETER SELECTIVITY To ensure selectivity coordination of various devices, the tripping curves of all selected circuit breakers must be compared using a bi-logarithmic scale (Icc/t). Graphically, selectivity is achieved when the curve of the upstream circuit breaker (A) is on the right of the curve of the downstream circuit breaker (B). The intersection point of the magnetic curves is the selectivity limit (Is). Below this point, only the downstream circuit breaker trips, while both will trip when this value is exceeded. Overload selectivity is always guaranteed if the tripping time delay of the upstream circuit breaker is longer than the opening time of the downstream circuit breaker for any overload current.
By selecting circuit breakers with nominal current ratios equal or over 2, overload selectivity is always guaranteed. Overload selectivity can also be improved if devices with adjustable tripping thresholds are used. This type of selectivity is ensured using quick circuit breakers without a device for the adjustment of the release time delay. This solution normally ensures partial selectivity.
t (s) A
A
B
B
Is Only B opens
Both A and B open
Icc (kA)
GENERAL FEATURES Selectivity AND BACK-UP TECHNICAL GUIDE
407 407
Selectivity between electrical safety devices ■ Short circuit amperemeter selectivity
By superimposing the line passing through the maximum non activation value of the curve of the specific power let through by the downstream circuit breaker, the new Is limit value can be determined. This must be higher than the magnetic tripping threshold of the upstream circuit breaker.
To ensure an efficient selectivity level between two automatic circuit breakers in series, it will be necessary to select them with instantaneous (magnetic) tripping thresholds as far away as possible from each other. Total selectivity is ensured when the short circuit current is below the magnetic tripping threshold of the upstream circuit breaker (IccIs), selectivity can only be obtained if the downstream circuit breaker specific feed through power is not enough to cause tripping of the upstream circuit breaker. In this case, the specific feed-through power curves of the circuit breakers must be compared, taking into account a tolerance of ±20% on the magnetic tripping value.
I2t (A s) 2
A
A
B
B maximum non activation power value
Is Only B opens
408
Selectivity AND BACK-UP
Both A and B open
Icc (kA)
■ Chronometric selectivity In order to guarantee total selectivity also in short circuit conditions, it is necessary that the downstream circuit breaker trips in the presence of short circuit currents before the upstream circuit breaker does. This means that the magnetic curves of the circuit breakers must be graphically separated. They cannot be superimposed for any of the estimated short circuit current values. The separation between the curves is obtained by setting such a magnetic tripping time delay on the upstream circuit breaker that should a fault occur, it will be the downstream circuit breaker that will
trip. By carefully selecting the current thresholds and the tripping time delays on the various devices, the selectivity concept can be extended to several electric safety levels. This type of selectivity is obtained by installing upstream circuit breakers with adjustable tripping time delays, such as selective electronic “E”, “S” and “T” type MEGATIKER Mccb’s (classed as belonging to category B), and installing downstream circuit breakers of the same type, or thermal magnetic, with fixed time delay, depending on system requirements. MEGATIKER electronic Mccb’s provide two different types of adjustments: • magnetic tripping time delay adjustment • adjustment with constant I2t
Time adjustment In a short circuit, chronometric selectivity is achieved by using circuit breakers capable of tripping with an intentional time delay, either fixed or set by the user. This tripping time delay provides the possibility of distancing the magnetic curves, creating a step in relation to the downstream circuit breaker. In this way, selectivity is guaranteed because, should a short circuit occur, the circuit breaker with the shortest time delay will trip first. When only “E” type electronic MEGATIKER Mccb’s are used, the fixed time delay is equal to 0.05 s.
With the “S” or “T” types, this value can adjusted to four different levels: 0 - 0.1 - 0.2 - 0.3 s. In general, for this type of adjustment, the specific power fed through by the circuit breaker increases proportionally, based on the set delay. Circuit breakers that trip with an intentional delay during a short circuit, loose all limitation features. It is therefore necessary to ensure that they are able to withstand any electric and mechanical stresses which may be caused by the passage of the short circuit currents.
t (s) A
A
B
B
tA tB = instantaneous Is = instantaneous fixed Only B opens Both A and B open
Icc (kA)
tA = fixed to 0.05s for “E” type MEGATIKER, adjustable to 0-0.01-0.2-0.3s for “S” and “T” type MEGATIKER. GENERAL FEATURES Selectivity AND BACK-UP TECHNICAL GUIDE
409 409
Selectivity between electrical safety devices Adjustment with constant I2t The second type of adjustment can be performed by maintaining a constant value of the circuit breaker specific feed through power. In this case, the adjustment ensures that the circuit breaker tripping curve assumes the trend shown on the figure. The elimination of the bottom bend, obtained by adjusting the constant l2t tripping time, provides an advantage for selectivity.
t (s) A
A B
B Adjustment with constant l2t Standard adjustment
tB = instantaneous Is = instantaneous fixed Only B opens Both A and B open
410
Selectivity AND BACK-UP
Icc (kA)
■ LOGIC SELECTIVITY Logic selectivity is an advancement on chronometric coordination. It ensures selectivity also for current values higher than the instantaneous tripping value. Logic selectivity is an “intelligent” type of logic. It is performed through an exchange of information among electronic MEGATIKER devices wired in cascade and connected to each other using a pilot cable. The advantages of logic selectivity are: • reduction of thermal and electromechanic stresses on cables and busbars; • total selectivity also for circuit breakers of the same size; • selectivity on several levels.
In practice, logic selectivity is ensured by using MEGATIKER electronic Mccb’s with “S” or “T” type releases, connected in cascade, and interconnected to each other by a cable on the removable terminal strip, located at the side of the circuit breaker. This circuit is operated by an external 12Vd.c. power supply. In addition, the selector on the electronic release of the circuit breakers must be set low for MEGATIKER circuit breakers set on the lowest selectivity logic, and High for all other circuit breakers upstream. Logic selectivity is not possible for adjustments with constant I2t.
out High
SEL
in
Low
SEL = High
High
High
SEL
SEL
Low
Low
SEL = High
SEL = High
High
High
High
SEL
SEL
SEL
SEL
Low
Low
Low
Low
SEL = Low
SEL = Low
SEL = Low
High
SEL = Low
The connection of the pilot cable to same level circuit breakers can also be performed in parallel between them, and not necessarily with the upstream circuit breaker. The fundamental condition is that in both circuit breakers the cable is connected on the out terminal. GENEraL FEaTUrES Selectivity AND BAcK-UP TECHNICAL GUIDE
411 411
Selectivity between electrical safety devices Operating principle In case of short circuit, the circuit breakers detecting the fault send a signal, through the connection cable, to the upper level circuit breaker/s, while at the same time checking for a signal from one or more lower level circuit breakers. The circuit breaker within the logic selectivity chain that detects the short circuit, and does not receive any signal from downstream circuit breakers, trips immediately, resetting any set time delays to zero. The circuit breaker detecting the fault, but also the presence
of a signal from a downstream circuit breaker, stays closed, and complies with the set time delays.
A High
SEL Low
SEL = High
Fault 1
B
High
High
SEL
SEL
Low
Low
SEL = High
SEL = High
Fault 2
High
High
High
SEL
SEL
SEL
SEL
Low
Low
Low
Low
SEL = Low
FAUlt 1 The A circuit breaker detects a fault. When no signal is received from the lower level circuit breakers, A immediately trips, resetting any set time delays to zero.
412
SELECTIVITY aND BaCK-Up
SEL = Low
SEL = Low
High
SEL = Low
FAUlt 2 A and B circuit breakers detect the fault. Circuit breaker A receives a signal from the downstream circuit breaker B and therefore remains closed, complying with the set time delays. Circuit breaker B does not receive any signal from lower level circuit breakers, and therefore trips immediately, resetting any set time delays to zero.
■ DYNAMIC Selectivity Dynamic selectivity is a special type of combination used for increasing chronometric selectivity. It is performed on two levels, with electronic “E”, “S” and “T” MEGATIKER devices installed upstream, and MEGATIKER (electronic “E”, “S” and “T”, thermal magnetic) or BTDIN devices installed downstream. This solution is recommended with systems featuring high short circuit current values, when the circuit breakers coordinated in dynamic selectivity are within the same distribution board or at a maximum distance of 3m from each other. It is also recommended that the line (if in cable) is installed with double insulation. In practice, dynamic
t (s)
Operating zone overload selectivity
selectivity is achieved by adjusting the two-position selector on the circuit breaker release on Low when standard selectivity levels are required, and on High when high selectivity levels are needed. Dynamic coordination can be set for current values higher than the instantaneous tripping value after checking, through graphic analysis, the standard overload and short circuit selectivity as shown in the figure. Dynamic selectivity coordination applies in fact to high short circuit current values, which must be equal or higher than the fixed instantaneous tripping values.
Operating zone circuit selectivity
Operating zone dynamic selectivity
Is = instantaneous fixed I/Ir
GENERAL FEATURES Selectivity AND BACK-UP TECHNICAL GUIDE
413 413
Selectivity between electrical safety devices Operating principle Standard selectivity (“low”) When “low” is selected, both on the upstream and the downstream circuit breakers, chronometric or amperemeter selectivity, as normally set using the standard criteria, is maintained.
High
SEL Low
SEL = Low
High
SEL Low
SEL = Low w
Dynamic selectivity (“High”) Selecting “High” on the upstream circuit breaker, and “low” on the downstream one, the relay of the starting circuit breaker is set to selective mode, increasing the coordination(of a selective type), between the two circuit breakers.
High
SEL Low
SEL = High
High
SEL Low
SEL = Low w
414
SELECTIVITY aND BaCK-Up
■ EARTH LEAKAGE SELECTIVITY Earth fault selectivity is achieved using earth leakage circuit breakers. The necessary conditions to ensure an appropriate level of selectivity are: • selecting circuit breakers with different rated earth leakage currents, with a minimum ratio of at least 3 times (for example 30 mA downstream circuit breakers and 100 mA upstream circuit breaker). • the tripping time delay of the upstream circuit breaker must be longer than the total opening time of the downstream circuit breaker. Earth leakage selectivity can be split into two types: Horizontal earth leakage selectivity
This is achieved with earth leakage circuit breakers that individually protect one line of users. This ensures service continuity, but not protection upstream the circuits.
Example of horizontal selectivity
id
id IΔn = 0.03A
Vertical earth leakage selectivity
IΔn = 0.03A
Example of vertical selectivity
This is achieved with earth leakage circuit breakers installed in cascade. This guarantees maximum protection, including of the circuits upstream the individual earth leakage circuit breakers. In order to optimize selective coordination, circuit breakers with very different tripping thresholds must be used (minimum ratio 3), or selective, or delayed devices. The IEC 60364-5 standard prescribes that in order to ensure selectivity between two earth leakage devices, both the above conditions must be met.
id
IΔn = 1A Δt = 1s
IΔn = 0.3A Δt = 0.6s (type S)
id
IΔn = 0.03A not delayed
id
GENERAL FEATURES Selectivity AND BACK-UP TECHNICAL GUIDE
415 415
Back-up protection users or designers of electric systems. To resolve this problem, Bticino provides a series of tables for coordination at the various voltages. This type of device effectively exploits the limitation capabilities of the electrical safety devices in series.
■ COORDINATION BETWEEN FUSES UPSTREAM AND CIRCUIT BREAKER DOWNSTREAM
■ COORDINATION BETWEEN UPSTREAM AND DOWNSTREAM CIRCUIT BREAKERS
When creating back-up coordination between a fuse and a circuit breaker, as shown in the figure, the respective power curves can be compared and superimposed. This type of comparison may identify an intersection point P between the two curves near a current value “Ib”, called “switching current”. This value is the current value below which only the circuit breaker trips, and above which also the support fuse trips. On the other hand, if considering the curves represented below, for the bands delimited by the minimum and maximum breaking limits around the lb value, one would obtain an area of possible tripping of the two devices at the same time, with two arcs in series forming at the same time. For currents definitely superior to Ib, the circuit breaker may also not trip, and be totally protected by the fuse.
In case of back-up coordination between two circuit breakers in series, the analysis on the power curves show that there are no intersecting points. The two curves extend up to the breaking capacity limits of the individual circuit breakers. The power curve resulting from the coordination between the two devices is certainly lower than the curves of each single circuit breaker taken on its own. This is because of the limitation effect due to the in series impedance of the circuit breakers. From this consideration, it results that the breaking capacity of the association of two circuit breakers is higher than the one of the downstream circuit breaker, and that such breaking capacity can reach the short circuit current value with which the specific feed through power of the association, is the same as the maximum that can be withstood by the device downstream.
I2t (A2s)
I2t (A2s)
Back-up protection is the condition, contemplated by IEC 60364-5 standard, which is achieved when in a system, a safety device (fuse or circuit breaker) with breaking capacity lower than the estimated short circuit current is used, provided that upstream the device itself, another one is installed, capable of acting as a support. Back-up coordination between electrical safety devices must be confirmed through specific lab tests, which cannot certainly be performed by the
A
A
A
B B
A
Ib
416
Selectivity AND BACK-UP
Icc (kA)
A
Breaking capacity limit of A
Association breaking capacity
B Breaking capacity limit of B
B
Breaking capacity limit of A
B P
+
Ib
Icc (kA)
Selectivity tables section contents 418
Reading and understanding the selectivity tables
419
Selectivity with fuses upstream and BTDIN downstream
420
MEGATIKER and gG fuses
421
MEGATIKER upstream and BTDIN downstream (230V a.c.)
422
MEGATIKER upstream and BTDIN downstream (400V a.c.)
423
Thermal magnetic MEGATIKER upstream and downstream (230V a.c.)
424
Thermal magnetic MEGATIKER upstream and downstream (400V a.c.)
425
Thermal magnetic MEGATIKER upstream and downstream (500V a.c.)
426
Electronic MEGATIKER with SEL on Low upstream and MEGATIKER downstream (230V a.c.)
427
Electronic MEGATIKER with SEL on Low upstream and MEGATIKER downstream (400V a.c.)
428
Electronic MEGATIKER with SEL on Low upstream and MEGATIKER downstream (500V a.c.)
429
Electronic MEGATIKER with SEL on High upstream and MEGATIKER downstream (400V a.c.)
430
MEGABREAK upstream and MEGATIKER downstream
431
BTDIN upstream and motor protectors downstream
CONTENTS Selectivity AND BACK-UP TECHNICAL GUIDE
417 417
Reading and understanding the selectivity tables Below are the various tables showing the selectivity between Bticino automatic circuit breakers in accordance with IEC 60947-2 standard requirements. The coordination tables at the various power supply voltages in three-phase and one-phase systems have been included: • 230V a.c. • 400V a.c. • 500V a.c. The values shown represent the selectivity limit starting from the instantaneous (expressed as a kA value), which can be reached from the downstream device, taking into account the breaking capacities of the upstream and downstream devices in compliance with IEC 60947-2 standards. The letter “T” indicates total selectivity up to the breaking capacity limit of the downstream device. “O” indicates that the selectivity limit corresponds to the Magnetic tripping value of the upstream device. In situations of coordination with devices fitted with magnetic tripping threshold adjustment, the data shown in the tables refer to the maximum settable values. In case of coordination with devices fitted with tripping time delay adjustment, the data shown on the table must be considered with the time delay set to “0” (instantaneous tripping). Unless otherwise stated, the coordination tables with BTDIN Mcb’s refer to C type circuit breakers, with magnetic tripping threshold between 5 and 10 In.
The selectivity between BTDIN Mcb’s is an amperemeter type selectivity, which can be assessed taking into account the corresponding magnetic tripping. Where coordination with circuit breakers with selectivity limits higher than 20 kA is concerned, time adjustment has no effect and does not improve selectivity itself. Time adjustments between electronic circuit breakers can be performed with benefits to selectivity, in case of short circuit currents lower than 20 kA. Example of selectivity check
In order to better understand how to use the selectivity tables see the following example. The aim is to determine the selectivity limit in the coordination between an upstream MEGATIKER Mccb ME125B with In = 125 and a BTDIN Mcb 60 with In = 32A, in a 230V a.c. one-phase system. Refer to the coordination table on page 419. Go to the ME125B circuit breaker and look for the 125A value. Scroll through the 125A value column, until the intersection with the BTDIN Mcb 60 at 32A is found. The value found is 8kA. This is the coordination selectivity limit, below which only the BTDIN Mcb 60 will trip, and above which both the BTDIN Mcb 60 and the MEGATIKER Mccb ME125B will trip.
Selectivity between fuses and BTDIN Mcb’s
400V a.c.
Downstream In (A) Mcb’s Btdin 60 6 D curve 10 16 20 25 32 40 50 63 Btdin 100 6 D and K curve 10 16 20 25 32 40 50 63
418
In (A) Downstream fuses 2 (Icn=100 kA) 4 5 8 10 16
BTDIN 45/60/100/250 C curve upstream 6 10 16 T T T – T T – – T – – – – – – – – –
aM fuses upstream 32 40 50 63 80 100 125 1.2 1.6 2.2 4 4.2 8 T – 1.4 2 3 3.5 6 9.5 – 1.2 1.5 2.4 3 5 7.5 – 1 1.3 2 2.5 4.2 6 – – 1.2 1.8 2.1 3.7 5 – – 1 1.5 1.8 3 4 – – – – 1.7 2.6 3.5 – – – – 1.4 2 3 – – – – – 2 3 1.2 1.6 2.2 4 4.2 8 14 – 1.4 2 3 3.5 6 9.5 – 1.2 1.5 2.4 3 5 7.5 – 1 1.3 2 2.5 4.2 6 – – 1.2 1.8 2.1 3.7 5 – – 1 1.5 1.8 3 4 – – – – 1.7 2.6 3.5 – – – – 1.4 2 3 – – – – – 2 3
Selectivity AND BACK-UP
gG fuses upstream 32 40 1.4 2 1 1.5 – 1.3 – 1.2 – 1 – – – – – – – – 1.4 2 1 1.5 – 1.3 – 1.2 – 1 – – – – – – – –
20 T T T T – –
50 2.7 2.2 1.8 1.6 1.5 1.1 – – – 2.7 2.2 1.8 1.6 1.5 1.1 – – –
25 T T T T T –
32 T T T T T T
63 80 100 125 5.5 T T T 4.5 7 T T 3.5 6.5 8 T 3 4.7 6.5 T 2.7 4 5.5 9 2.1 3.5 4.7 7.5 1.8 1.7 3 6 1.8 2.5 3.5 5.5 – 2.5 3.5 5.5 5.5 T T T 4.5 7 11 T 3.5 6.5 8 15 3 4.7 6.5 12 2.7 4 5.5 9 2.1 3.5 4.7 7.5 1.8 2.8 4 6 1.8 2.5 3.5 5.5 – 2.5 3.5 5.5
Selectivity: fuses upstream and BTDIN downstream (three-phase system) 400V a.c. Downstream In (A) Mcb’s Btdin 45 6 C curve 10 16 20 25 32 40 50 63 Btdin 60 6 C curve 10 16 20 25 32 40 50 63 Btdin 100 6 C curve 10 16 20 25 32 40 50 63 80 100 125 Btdin 250 6 C curve 10 16 20 25 32 40 50 63 Btdin 250H 25 C curve 32 40 50 63
aM fuses upstream 25 32 40 1 1.6 2.1 – 1.1 1.7 – 1 1.4 – – 1.3 – – 1.1 – – – – – – – – – – – – 1 1.6 2.1 – 1.1 1.7 – 1 1.4 – – 1.3 – – 1.1 – – – – – – – – – – – – 1 1.6 2.1 – 1.1 1.7 – 1 1.4 – – 1.3 – – 1.1 – – – – – – – – – – – – – – – – – – – – – 1 1.6 2.1 – 1.1 1.7 – 1 1.4 – – 1.3 – – 1.1 – – – – – – – – – – – – – – 1.1 – – – – – – – – – – – –
50 3.2 2.5 2.1 1.8 1.6 1.3 – – – 3.2 2.5 2.1 1.8 1.6 1.3 – – – 3.2 2.5 2.1 1.8 1.6 1.3 – – – – – – 3.2 2.5 2.1 1.8 1.6 1.3 – – – 1.6 1.3 – – –
63 80 100 125 160 T T T T T T T T T T 4 T T T T 3.4 T T T T 3 T T T T 2.4 3.8 T T T 2.1 3.1 4.2 T T 2 2.9 3.7 T T – 2.8 3.5 T T 6.2 T T T T 5 7.8 T T T 4 6 9 T T 3.4 5.1 7 T T 3 4.5 6 9.3 T 2.4 3.8 5 7.7 9 2.1 3.1 4.2 6.4 7 2 2.9 3.7 6 6 – 2.8 3.5 5.5 6 6.2 T T T T 5 7.8 12 T T 4 6 9 T T 3.4 5.1 7 14 T 3 4.5 6 9.3 14 2.4 3.8 5 7.7 10 2.1 3.1 4.2 6.4 7 2 2.9 3.7 6 6 – 2.8 3.5 5.5 6 – – 3 6 8 – – – 4 5 – – – – 4 6.2 15 25 25 T 5 7.8 12 25 T 4 6 9 21 T 3.4 5.1 7 14 20 3 4.5 6 9.3 14 2.4 3.8 5 7.7 10 2.1 3.1 4.2 6.4 8 2 2.9 3.7 6 7 – 2.8 3.5 5.5 7 3 4.5 6 9.3 14 2.4 3.8 5 7.7 10 2.1 3.1 4.2 6.4 8 2 2.9 3.7 6 7 – 2.8 3.5 5.5 7
gG fuses upstream 32 40 50 1.3 1.9 2.5 – 1.6 2.2 – 1.4 1.8 – 1.2 1.5 – – 1.3 – – 1.2 – – – – – – – – – 1.3 1.9 2.5 – 1.6 2.2 – 1.4 1.8 – 1.2 1.5 – – 1.3 – – 1.2 – – – – – – – – – 1.3 1.9 2.5 – 1.6 2.2 – 1.4 1.8 – 1.2 1.5 – – 1.3 – – 1.2 – – – – – – – – – – – – – – – – – – 1.3 1.9 2.5 – 1.6 2.2 – 1.4 1.8 – 1.2 1.5 – – 1.3 – – 1.2 – – – – – – – – – – – 1.3 – – 1.2 – – – – – – – – –
63 4 3.2 2.6 2.2 2 1.7 – – – 4 3.2 2.6 2.2 2 1.7 – – – 4 3.2 2.6 2.2 2 1.7 – – – – – – 4 3.2 2.6 2.2 2 1.7 – – – 2 1.7 – – –
80 T 3.6 3 2.5 2.2 1.9 1.7 1.6 – 4.6 3.6 3 2.5 2.2 1.9 1.7 1.6 – 4.6 3.6 3 2.5 2.2 1.9 1.7 1.6 – – – – 4.6 3.6 3 2.5 2.2 1.9 1.7 1.6 – 2.2 1.9 1.7 1.6 –
100 T T T T 4.1 3.5 3 2.6 2.4 T 7 5.6 4.6 4.1 3.5 3 2.6 2.4 11 7 5.6 4.6 4.1 3.5 3 2.6 2.4 3 – – 11 7 5.6 4.6 4.1 3.5 3 2.6 2.4 4.1 3.5 3 2.6 2.4
125 T T T T T T 4 3.5 3.3 T T 8 6.3 5.5 4.5 4 3.5 3.3 T 11 8 6.3 5.5 4.5 4 3.5 3.3 3 3 – 25 11 8 6.3 5.5 4.5 4 3.5 3.3 5.5 4.5 4 3.5 3.3
160 T T T T T T T 4.5 4.5 T T T T 9 8 6 5 5 T T 14 10 7 6 5 4 4 4 3.5 3.5 T 20 15 10 8 7 5 4.5 4.5 8 7 5 4.5 4.5
SELECTIVITY TABLES Selectivity AND BACK-UP TECHNICAL GUIDE
419 419
Selectivity: Megatiker and gG fuses (three-phase system) 400V a.c. Downstream Mccb’s In (A) MA125 125 ME125B 125 ME125N 125 ME160B/N/H 160 ME250B/N/H 250 MA/MH160 160 MA/MH/ML250 250 MA/MH/ML250E 250 MA400 400 MH/ML400 400 MA/MH/ML400E 400 MA/MH/ML630E 630 MA/MH/ML630MT 630 MA/MH630 630 ML630 630 MA/MH/ML800 800
gG fuse In (A) downstream 50 80
GG fuses upstream 200 6 – – – – – – – – – – – – – – –
Megatiker upstream Icu = 16-25kA MA ME ME 125 125B 160B 125 125 160 16 25 – – – 25
250 – 7.5 10 – – – – – – – – – – – – –
400 – – 10 10 10 10 10 10 – – – – – – – –
gG fuse In (A) downstream 80 125
ME 250B 250 – 25
Megatiker upstream Icu = 36kA ME125N ME160N ME250N MA160 gG fuse In (A) 125 160 250 160 downstream 50 36 – – – 80 – 36 36 36 125 – – – – 250 – – – – 310 – – – –
Megatiker upstream Icu = 70kA MH160 MH250 MH250E gG fuse In (A) 160 250 downstream 50 – – 80 70 – 125 – 70 250 – – 310 – –
gG fuse In (A) downstream 125 250 310
420
Megatiker upstream Icu = 100kA ML250 ML400 ML250E ML400E 250 400 100 – – 100 – –
Selectivity AND BACK-UP
800 – – – – – – – – 10 25 25 – – – – –
1000 – – – – – – – – – – – 40 40 50 60 60
Megatiker upstream Icu = 50kA ME ME MA 160H 250H 630 160 250 630 50 50 – 50 50 –
MA250 MA250E 250 – – 36 – –
MA 800 800 – –
MA400 MA400E 400 – – – 36 –
MA630MT MA630E 630 – – – – 36
MH400 MH400E 400 – – – 70 –
MH630MT MH630E 630 – – – – 70
MH630
MH800
630 – – – – 70
800 – – – – 70
ML630MT ML630E 630 – – 100
ML630
ML800
630 – – 100
800 – – 100
Selectivity: Megatiker upstream and Btdin downstream (one-phase system) 230V a.c.
The table refers to upstream circuit breakers on a 400-415V a.c. three-phase line, and downstream circuit breakers on a 230V a.c. one-phase line (for all tripping curves B - C - D - K - Z).
MA125 ME125B ME125N In (A) 40 63 100 125 40 63 100 125 Btdin 6 to 25 T T T T T T T T 45 32 4 4 T T 4 4 T T 40 – 3.5 T T – 3.5 T T 50 – – T T – – T T 63 – – T T – – T T Btdin 6-10 T T T T T T T T 60 16 9 9 T T 9 9 T T 20 6 6 T T 6 6 T T 25 5 5 10 10 5 5 10 10 32 – 4 8 8 – 4 8 8 40 – 3.5 6 6 – 3.5 6 6 50 – – 5 5 – – 5 5 63 – – 4.5 4.5 – – 4.5 4.5 Btdin 6 T T T T T T T T 100 16 9 9 T T 9 9 T T 20 6 6 T T 6 6 T T 25 5 5 10 10 5 5 10 10 32 – 4 7 7 – 4 7 7 40 – 3.5 5.5 5.5 – 3.5 5.5 5.5 50 – – 5 5 – – 5 5 63 – – 4.5 4.5 – – 4.5 4.5 80 – – – 2 – – – 2 100 – – – – – – – – 125 – – – – – – – – Btdin 6 – – – – T T T T 250 10 – – – – T T T T 16 – – – – 9 9 T T 20 – – – – 6 6 17 17 25 – – – – 5 5 10 10 32 – – – – – 4 7 7 40 – – – – – 3.5 5.5 5.5 50 – – – – – – 5 5 63 – – – – – – 4.5 4.5 Btdin 25 – – – – 5 5 10 10 – – – – – 4 7 7 250H 32 40 – – – – – 3.5 5.5 5.5 50 – – – – – – 5 5 63 – – – – – – 4.5 4.5
In (A) Btdin 45 6 to 63 Btdin 60 6 to 63 Btdin 100 6 to 125 Btdin 250 6 to 63 Btdin 250H 25 to 63
MA400 MH400 ML400 250 320 400 T T T T T T T T T T T T T T T
MA630MT MH630MT ML630MT 500 630 T T T T T T T T T T
ME160B ME160N ME160H 100 160 T T T T 4 T – T – T T T T T T T 4 T 4 T 4 T – T – T T T 8 T 6 T 6 10 4 8 3 6 3 6 2 5 – 5 – 4 – 2 T T 9 T 7 T 6 20 4 10 4 10 2.5 7 – 7 – 7 4 10 4 10 2.5 7 – 7 – 7
MA400-630E MH400-630E ML400-630E 160 250 400 630 T T T T T T T T T T T T T T T T T T T T
ME250B MA160 ME250N MH160 ME250H 100 160 250 63 100 160 T T T T T T T T T 4 4 T 4 T T 3.5 3.5 T 2 T T – 3 T – T T – 3 T T T T T T T T T T T T T T T T 5 5 T 4 T T 4.5 4.5 T 4 T T 4 4 T 4 T T 3.5 3.5 T 2 T T – 3 T 2 T 7 – 3 T T T T T T T 8 T T 9 T T 6 T T 5 8 T 6 10 T 4.5 6 T 4 8 T 4 6 T 3 6 T 4 6 T 3 6 9 – 6 8 2 5 8 – 3 8 – 5 7 – – 8 – 4 6 – – 6 – 2 5 – – 3 T T T T T T T T T T T T 9 T T 9 12 T 9 T T 5 10 T 7 10 T 4.5 8 T 5 8 T 4 6 T 4 6 12 3.5 6 12 3 6 9 – 6 8 3 6 7 – 6 8 7 10 T 4.5 8 T 5 8 T 4 6 T 4 6 12 3.5 6 12 3 6 9 – 6 8 3 6 7 – 6 8
MA250-250E MH250-250E ML250-250E 100 160 T T 4 T 3.5 T 3 T 3 T T T T T 5 T 4.5 T 4 14 3.5 9.5 3 7 3 6 T T T T 8 T 6 T 6 T 6 T 6 8 3 8 – 8 – 6 – 3 T T T T 12 T 10 T 8 T 6 T 6 12 6 10 6 10 8 T 6 T 6 12 6 10 6 10
MA630 to 1250 MH630 to 1250 ML630 to 1250 500 630 800 1000 1250 T T T T T T T T T T T T T T T T T T T T T T T T T
800 T T T T T
250 T T T T T T T T T T T T T T T T T T T T T T T 8 T T T T T T T T T T T T T T
MA630 to 1600ES MH630 to 1600ES 630 T T T T T
1250 T T T T T
1600 T T T T T
SELECTIVITY TABLES Selectivity AND BACK-UP TECHNICAL GUIDE
421 421
Selectivity: Megatiker upstream and Btdin downstream (three-phase system) 400V a.c. MA125 ME125B ME125N In (A) 40 63 100 125 40 63 100 125 Btdin 6-10 T T T T T T T T 45 16-20 T T T T T T T T 25 T T T T T T T T 32 3 3 4 4 3 3 4 4 40 – 3 3 3 – 3 3 3 50 – – 3 3 – – 3 3 63 – – 3 3 – – 3 3 Btdin 6 T T T T T T T T 60 10 5 5 T T 5 5 T T 16 4 4 T T 4 4 T T 20 4 4 5 5 4 4 5 5 25 3 3 4.5 4.5 3 3 4.5 4.5 32 3 3 4 4 3 3 4 4 40 – 3 3 3 – 3 3 3 50 – – 3 3 – – 3 3 63 – – 3 3 – – 3 3 Btdin 6 6 6 T T 6 6 T T 100 10 5 5 6 6 5 5 6 6 16 4 4 6 6 4 4 6 6 20 3 3 5 5 3 3 5 5 25 3 3 4.5 4.5 3 3 4.5 4.5 32 – 2 4 4 – 2 4 4 40 – 2 3 3 – 2 3 3 50 – – 3 3 – – 3 3 63 – – 3 3 – – 3 3 80 – – – 2 – – – 2 100 – – – – – – – – 125 – – – – – – – – Btdin 6 – – – – 6 6 13 13 250 10 – – – – 5 5 7.5 7.5 16 – – – – 4 4 6 6 20 – – – – 3 3 5 5 25 – – – – 3 3 4.5 4.5 32 – – – – – 2 4 4 40 – – – – – 2 3 3 50 – – – – – – 3 3 63 – – – – – – 3 3 Btdin 25 – – – – 3 3 4.5 4.5 250H 32 – – – – – 2 4 4 40 – – – – – 2 3 3 50 – – – – – – 3 3 63 – – – – – – 3 3 In (A) Btdin 45 6 to 63 Btdin 60 6 to 63 Btdin 100 6 to 125 Btdin 250 6 to 63 Btdin 250H 25 to 63
422
MA400 MH400 ML400 250 320 400 T T T T T T T T T T T T T T T
Selectivity AND BACK-UP
MA630MT MH630MT ML630MT 500 630 T T T T T T T T T T
ME160B ME160N ME160H 100 160 T T T T 4 T 3.5 T 2.5 T 2 T – T T T T T T T 5 T 4 T 3.5 T 2.5 T 2 5.5 – 5 T T 7 T 6 T 5 T 4 8.5 3.5 7 2.5 6 2 5.5 2 5 – 5 – 4 – 2 12 T 7 T 6 18 5 12 4 8.5 3.5 7 2.5 6 2 5.5 – 5 4 8.5 3.5 7 2.5 6 2 5.5 – 5
ME250B MA160 ME250N MH160 ME250H 100 160 250 63 100 160 T T T T T T T T T 4 T T 4 T T 3 T T 3.5 T T 2 T T 2.5 T T 2 T T 2 T T – 4 T – T T – 4 T T T T T T T T T T 5 T T 8 T T 4 T T 6 T T 4 T T 5 T T 3 T T 4 T T 2 5 T 3.5 T T 2 5 T 3 5.5 T – 4 T 2 5 5 – 4 T T T T 6 T T T T T 5 T T 8 T T 4 T T 6 T T 4 8 T 5 8.5 T 3 6 T 4 7 T 2 5 T 3.5 6 T 2 5 T 3 5.5 7 – 4 8 – 5 5 – 4 8 – 5 5 – – 8 – 4 4 – – 6 – 2 3 – – 3 T T T 6 T T T T T 5 15 T 8 T T 4 10 T 6 T T 4 8 T 5 8.5 T 3 6 T 4 7 T 2 5 T 3.5 6 10 2 5 10 3 5.5 7 – 4 8 2 5 5 – 4 8 5 8.5 T 3 6 T 4 7 T 2 5 T 3.5 6 10 2 5 10 3 5.5 7 – 4 8 2 5 5 – 4 8
MA250-250E MH250-250E ML250-250E 100 160 T T T T T T T T T T 4 T 4 T T T T T T T T T T T 5 T 5 T 4 T 4 T T T T T T T 8 T 6 T 5 T 5 T 4 8 4 8 – 8 – 6 – 3 T T 15 T 10 T 8 T 6 T 5 T 5 10 4 8 4 8 6 T 5 T 5 10 4 8 4 8
MA400-630E MH400-630E ML400-630E 160 250 400 630 T T T T T T T T T T T T T T T T T T T T
MA630 to 1250 MH630 to 1250 ML630 to 1250 500 630 800 1000 1250 630 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
MA630 to 1600ES MH630 to 1600ES 800 T T T T T
1250 T T T T T
250 T T T T T T T T T T T T T T T T T T T T T T T T T T T 8 T T T T T T T T T T T T T T
1600 T T T T T
Selectivity: thermal magnetic Megatiker upstream and downstream (one-phase system) 230V a.c. MEGATIKER downstream In (A) MA125 16 ME125B/N 25 40 63 100 125 ME160B/N/H 25 ME250B/N/H 40 63 100 160 250 MA/MH160 25 MA/MH/ML250 40 63 100 160 250 MA/MH/ML250E 40 63 100 160 250 MA/MH/ML400 250 MA/MH/ML630MT 320 400 500 630 MA/MH/ML400E 160 MA/MH/ML630E 250 400 630 MA/MH/ML 500 630 to 1250 630 800 1000 1250
MEGATIKER upstream MA125 ME125B ME125N 40 63 100 to 125 0.8 1 1.2 0.8 1 1.2 – 1 1.2 – – 1.2 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
ME160B ME160N ME160H 40 63 – 0.6 – – – – – – – – – – 0.4 0.6 – 0.6 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
ME250B MA160 ME250N MH160 ME250H 100 160 250 63 100 1 1.6 2.5 0.6 1 1 1.6 2.5 – 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – 1.6 2.5 – – – 1.6 2.5 – – 1 1.6 2.5 0.6 1 1 1.6 2.5 0.6 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – – 2.5 – – – – – – – – – – 0.6 1 – – – 0.6 1 – – – – 1 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA250 MH250 ML250 160 250 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 – 2.5 – – 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 – 2.5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA400 MH400 ML400 250 320 400 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 – 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 – 3.2 4 – – 4 – – 4 – – 4 – – 4 – – 4 – 3.2 4 – – 4 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA630MT MH630MT ML630MT 500 630 6 8 6 8 6 8 6 8 6 8 6 8 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 – 6.3 – – – 6.3 – 6.3 – 6.3 – – – – – – – – – – – –
MA630 MH630 ML630 500 630 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 – – – – 5 6.3 5 6.3 5 6.3 – – – 5 – – – – – – – –
MA800 MH800 ML800 800 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 – – 8 8 8 8 8 8 – – –
MA1250 MH1250 ML1250 1000 1250 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 – – – – 6 8 6 8 6 8 6 8 – 7.5 – 7.5 – – – 7.5 – –
SELECTIVITY TABLES Selectivity AND BACK-UP TECHNICAL GUIDE
423 423
Selectivity: thermal magnetic MEGATIKER upstream and downstream (three-phase system) 400V a.c. MEGATIKER downstream In (A) MA125 16 25 40 63 100-125 ME125B 16 ME125N 25 40 63 100-125 ME160B/N/H 25 ME250B/N/H 40 63 100 160 250 MA/MH160 25-40 MA/MH/ML250 63 100 160 250 40 to 250 MA250E 40 to 250 MH/ML250E MA/MH/ML400 250 MA/MH/ML630MT 320 400 500 630 MA/MH/ML400E 160 MA/MH/ML630E 250 400 630 MA/MH/ML 500 630 to 1250 630 800 1000 1250
424
MEGATIKER upstream MA125 ME125B ME125N 40 63 100-125 0.8 1 1.2 0.8 1 1.2 – 1 1.2 – – 1.2 – – – 0.8 1 1.2 0.8 1 1.2 – 1 1.2 – – 1.2 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Selectivity AND BACK-UP
ME160B ME160N ME160H 40 63 – 0.63 – – – – – – – – – 0.63 – – – – – – – – 0.4 0.63 – 0.63 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
ME250B MA160 ME250N MH160 ME250H 100 160 250 63 100 1 1.6 2.5 0.63 1 1 1.6 2.5 – 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – 1.6 2.5 – – 1 1.6 2.5 0.63 1 1 1.6 2.5 – 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – 1.6 2.5 – – 1 1.6 2.5 0.63 1 1 1.6 2.5 0.63 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – – 2.5 – – – – – – – – – – 0.63 1 – – – – 1 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA250 MH250 ML250 160 250 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 – 2.5 – – 1.6 2.5 1.6 2.5 1.6 2.5 – 2.5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA400 MH400 ML400 250 320 400 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 – 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 – 3.2 4 – – 4 – 3.2 4 – 3.2 4 – – 4 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA630MT MH630MT ML630MT 500 630 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 – 6.3 – – – 6.3 – 6.3 – 6.3 – – – – – – – – – – – –
MA630 MH630 ML630 500 630 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16 10 10 10 10 10 10 – 10 – – 5 6.3 5 6.3 5 6.3 – – – 5 – – – – – – – –
MA800 MH800 ML800 800 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 10 10 10 10 10 8 8 8 8 8 8 – – –
MA1250 MH1250 ML1250 1000 1250 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 10 10 10 10 6 7.5 6 7.5 6 7.5 6 8 6 8 6 8 6 8 – 7.5 7.5 7.5 7.5 7.5 – 7.5 – –
500V a.c. MEGATIKER downstream In (A) MA125 16 ME125B 25 40 63 100-125 ME125N 16 25 40 63 100-125 ME160B/N 25 ME250B/N 40 63 100 160 250 ME160H 25 ME250H 40 63 100 160 250 MA/MH160 25 MA/MH/ML250 40 63 100 160 250 MA/MH/ML250E 40 63 100 160 250 MA/MH/ML 250 400 to 630MT 320 400 500 630 MA/MH/ML400E 160 MA/MH/ML630E 250 400 630 MA/MH/ML 500 630 to 1250 630 800 1000 1250
MEGATIKER upstream MA125 ME125B ME125N 40 63 100-125 0.8 1 1.2 0.8 1 1.2 – 1 1.2 – – 1.2 – – – 0.8 1 1.2 0.8 1 1.2 – 1 1.2 – – 1.2 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
ME160B ME160N ME160H 40 63 – 0.6 – – – – – – – – – 0.6 – – – – – – – – 0.4 0.6 – 0.6 – – – – – – – – 0.4 0.6 – 0.6 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
ME250B MA160 ME250N MH160 ME250H 100 160 250 63 100 1 1.6 2.5 0.6 1 1 1.6 2.5 – 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – 1.6 2.5 – – 1 1.6 2.5 0.6 1 1 1.6 2.5 – 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – 1.6 2.5 – – 1 1.6 2.5 0.6 1 1 1.6 2.5 0.6 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – – 2.5 – – – – – – – 1 1.6 2.5 0.6 1 1 1.6 2.5 0.6 1 1 1.6 2.5 – 1 – 1.6 2.5 – – – – 2.5 – – – – – – – – – – 0.6 1 – – – 0.6 1 – – – – 1 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA250 MH250 ML250 160 250 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 – 2.5 – – 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 – 2.5 – – 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 – 2.5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA400 MH400 ML400 250 320 400 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 4 4 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 – 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 – 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 2.5 3.2 4 – 3.2 4 – – 4 – – 4 – – 4 – – 4 – – 4 – 3.2 4 – – 4 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA630MT MH630MT ML630MT 500 630 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 5 6.3 – – – – – 6.3 – 6.3 – 6.3 – – – – – – – – – – – –
MA630 MH630 ML630 500 630 T T T T T T T T T T 12 12 12 12 12 12 12 12 12 12 T T T T T T T T T T T T 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 – – – – 5 6.3 5 6.3 5 6.3 – – – 5 – – – – – – – –
MA800 MH800 ML800 800 T T T T T 12 12 12 12 12 T T T T T T 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 – – 8 8 8 8 8 8 – – –
MA1250 MH1250 ML1250 1000 1250 T T T T T T T T T T 12 12 12 12 12 12 12 12 12 12 T T T T T T T T T T T T 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 – – – – 6 8 6 8 6 8 6 8 – 7.5 – 7.5 – – – 7.5 – –
SELECTIVITY TABLES Selectivity AND BACK-UP TECHNICAL GUIDE
425 425
Selectivity: electronic Megatiker with SEL on Low upstream and Megatiker downstream 230V a.c. MEGATIKER downstream In (A) MA125 16-25 ME125B/N 40 63 100-125 ME160B/N/H 25 ME250B/N/H 40 63 100 160 250 MA/MH160 25 MA/MH/ML250 40 63 100 160 250 MA/MH/ML250E 40 63 100 160 250 MA/MH/ML400 250-320 MA/MH/ML630MT 400 MA/MH/ML400E 160 MA/MH/ML630E 250 400 630 MA/MH/ML630 500 to 1250 630 800-1000 1250 MA/MH630ES (E–S–T) 630 MA/MH800ES (E–S–T) 800 MA/M1250ES (E–S–T) 1250
426
MEGATIKER upstream MA250E MH250E ML250E 40 63 100 160 250 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 – – – – 3.5 – – – – – 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 – – – – 3.5 – – – – – – 0.63 1 1.6 2.5 – – 1 1.6 2.5 – – – 1.6 2.5 – – – – 2.5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Selectivity AND BACK-UP
MA400E MH400E ML400E 160 250 400 8 8 8 6 6 6 6 6 6 6 6 6 8 8 8 8 8 8 6 6 6 6 6 6 – 6 6 – – 6 8 8 8 8 8 8 6 8 8 6 8 8 – 8 8 – – 6 8 8 8 6 6 6 6 6 6 – 6 6 – – 6 – – 6 – – – – 5 5 – – 5 – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA630E MH630E ML630E 630 8 6 6 6 8 8 6 6 6 6 8 8 8 8 8 6 8 6 6 6 6 6 6 5 5 5 – – – – – – – –
MA630 to 800ES (E) MA800ES (E–S–T) MA1250ES (E–S–T) MA1600ES (E–S–T) MH630 to 800ES (E) MH800ES (E–S–T) MH1250ES (E–S–T) MH1600ES (E–S–T) 630 16 16 16 16 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 – 20 – – – – – –
800 16 16 16 16 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 – – 20 – –
630 T T T T T T T T T T 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 – 30 – – – – – –
800 T T T T T T T T T T 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 30 30 – – 20 – –
1250 T T T T T T T T T T 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 30 30 30 – 20 20 –
1600 T T T T T T T T T T 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 30 30 30 30 20 20 20
400V a.c. MEGATIKER downstream In (A) MA125 16-25 ME125B 40 63 100-125 ME125N 16-25 40 63 100-125 ME160B/N/H 25 ME250B/N/H 40 63 100 160 250 MA160 25 MA250 40 63 100 160 250 MH/ML160 25 MH/ML250 40 63 100 160 250 MA250E 40 63 100 160 250 MH/ML250E 40 63 100 160 250 MA400–630MT 250-320 400 500 630 MH/ML400 250-320 MH/ML630MT 400 500 630 MA400E 160 MA630E 250 400 630 MH/ML400E 160 MH/ML630E 250 400 630 MA/MH/ML630 500 to 1250 630 800-1000 1250 MA/MH630ES (E–S–T) 630 MA/MH800ES (E–S–T) 800 MA/MH1250ES (E–S–T) 1250
MEGATIKER upstream MA250E MH250E ML250E 40 63 100 160 250 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 – – – – 3.5 – – – – – 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 – – – – 3.5 – – – – – 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 – – – – 3.5 – – – – – – 0.63 1 1.6 2.5 – – 1 1.6 2.5 – – – 1.6 2.5 – – – – 2.5 – – – – – – 0.63 1 1.6 2.5 – – 1 1.6 2.5 – – – 1 2.5 – – – – 2.5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA400E MH400E ML400E 160 250 400 8 8 8 6 6 6 6 6 6 6 6 6 8 8 8 6 6 6 6 6 6 6 6 6 8 8 8 8 8 8 6 6 6 6 6 6 – 6 6 – – 6 8 8 8 8 8 8 6 8 8 6 8 8 – 8 8 – – 6 8 8 8 8 8 8 6 8 8 6 8 8 – 8 8 – – 6 8 8 8 6 6 6 6 6 6 – 6 6 – – 6 8 8 8 6 6 6 6 6 6 – 6 6 – – 6 – – 6 – – – – – – – – – – – 6 – – – – – – – – – – 5 5 – – 5 – – – – – – – 5 5 – – 5 – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA630E MH630E ML630E 630 8 6 6 6 8 6 6 6 8 8 6 6 6 6 8 8 8 8 8 6 8 8 8 8 8 6 8 6 6 6 6 8 6 6 6 6 6 6 – – 6 6 – – 5 5 5 – 5 5 5 – – – – – – – –
MA630 to 800ES (E) MA800ES (E–S–T) MA1250ES (E–S–T) MA1600ES (E–S–T) MH630 to 800ES (E) MH800ES (E–S–T) MH1250ES (E–S–T) MH1600ES (E–S–T) 630 T T T T 25 25 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 15 15 10 – 15 15 10 – 15 15 15 – 15 15 15 – 15 – – – – – –
800 630 T T T T T T T T 25 T 25 T 25 T 25 T 20 T 20 T 20 T 20 T 20 T 20 T 20 T 20 T 20 T 20 T 20 T 20 T 20 30 20 30 20 30 20 30 20 30 20 30 20 T 20 T 20 T 20 T 20 T 20 30 20 30 20 30 20 30 20 30 15 20 15 20 10 20 10 15 20 15 20 10 20 10 15 20 15 20 15 20 15 – 15 15 15 15 15 20 15 – 15 10 15 – – – – – 15 – – – – –
800 T T T T T T T T T T T T T T T T T T T T 30 30 30 30 30 30 T T T T T 30 30 30 30 30 20 20 20 20 20 20 20 20 20 20 20 20 15 15 20 20 15 20 – – 15 – –
1250 T T T T T T T T T T T T T T T T T T T T 30 30 30 30 30 30 T T T T T 30 30 30 30 30 20 20 20 20 20 20 20 20 20 20 20 20 30 30 20 30 15 20 20 – 15 15 –
1600 T T T T T T T T T T T T T T T T T T T T 36 36 36 36 36 36 T T T T T 36 36 36 36 36 T T T T 36 36 36 36 T T T T 36 36 36 36 20 20 20 20 20 20 20
SELECTIVITY TABLES Selectivity AND BACK-UP TECHNICAL GUIDE
427 427
Selectivity: electronic Megatiker with SEL on Low upstream and Megatiker downstream 500V a.c. MEGATIKER downstream In (A) MA125 16-25 40 63 100-125 ME125B 16-25 40 63 100-125 ME125N 16-25 40 63 100-125 ME160B/N 25 ME250B/N 40 63 100 160 250 ME160H 25 ME250H 40 63 100 160 250 MA/MH160 25 MA/MH/ML250 40 63 100 160 250 MA/MH/ML250E 40 63 100 160 250 MA/MH/ML400–630MT 250-320 400 500 630 MA/MH/ML400E 160 MA/MH/ML630E 250 400 630 MA/MH/ML630 500 to 1250 630 800-1000 1250 MA/MH630–800ES (E) 630 800 MA/MH630ES (E–S–T) 630 MA/MH800ES (E–S–T) 800 MA/MH1250ES (E–S–T) 1250
428
MEGATIKER upstream MA250E MH250E ML250E 40 63 100 160 250 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 – – – – 3.5 – – – – – 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 – – – – 3.5 – – – – – 3.5 3.5 3.5 3.5 3.5 – 3.5 3.5 3.5 3.5 – – 3.5 3.5 3.5 – – – 3.5 3.5 – – – – 3.5 – – – – – – 0.63 1 1.6 2.5 – – 1 1.6 2.5 – – – 1.6 2.5 – – – – 2.5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Selectivity AND BACK-UP
MA400E MH400E ML400E 160 250 400 T T T 6 6 6 6 6 6 6 6 6 8 8 8 6 6 6 6 6 6 6 6 6 8 8 8 6 6 6 6 6 6 6 6 6 8 8 8 8 8 8 6 6 6 6 6 6 – 6 6 – – 6 8 8 8 8 8 8 6 6 6 6 6 6 – 6 6 – – 6 8 8 8 8 8 8 6 8 8 6 8 8 – 8 8 – – 6 8 8 8 6 6 6 6 6 6 – 6 6 – – 6 – – 6 – – – – – – – – – – 5 5 – – 5 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
MA630E MH630E ML630E 630 T 6 6 6 8 6 6 6 8 6 6 6 8 8 6 6 6 6 8 8 6 6 6 6 8 8 8 8 8 6 8 6 6 6 6 6 6 – – 5 5 5 – – – – – – – – – –
MA630 to 800ES (E) MA800ES (E–S–T) MA1250ES (E–S–T) MA1600ES (E–S–T) MH630 to 800ES (E) MH800ES (E–S–T) MH1250ES (E–S–T) MH1600ES (E–S–T) 630 T T T T T T T T 12 12 12 12 T T T T T T 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 – – 12 12 12 – 12 – – – – – – – –
800 T T T T T T T T 12 12 12 12 T T T T T T 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 10 – – 12 12 12 12 12 12 – – 12 – 20 – –
630 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T – – T T T – T – – – – – – – –
800 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T – – T T T T T T – – 20 – 20 – –
1250 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T – – T T T T T T T – 20 20 20 20 –
1600 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T – – T T T T T T T T 20 20 20 20 20
Selectivity: electronic Megatiker with SEL on High upstream and Megatiker downstream 400V a.c. MEGATIKER MEGATIKER upstream downstream MA400E MA630E MA630 to 800ES (E) MA800ES (E–S–T) MH400E MH630E MH630 to 800ES (E) MH800ES (E–S–T) ML400E ML630E In (A) 160 250 400 630 630 800 630 800 ME125B 16 to 125 T T T T T T T T ME125N 16 to 125 T T T T T T T T ME160B/N/H* 25 to 160 T T T T T T T T ME250B/N/H* 250 – – T T T T T T MA160 25 to 160 T T T T T T T T MA250 250 – – T T T T T T MH/ML160 25 to 160 36 36 36 36 36 36 36 36 MH/ML250 250 – 36 36 36 36 36 36 36 MA250E 40 to 160 T T T T T T T T 250 – T T T T T T T MH/ML250E 40 to 160 36 36 36 36 36 36 36 36 250 – 36 36 36 36 36 36 36 MA400–630MT 250 – – 25 25 T T T T 320 to 500 – – – 25 T T T T 630 – – – – – T T MH/ML400 250 – – 25 25 36 36 36 36 MH/ML630MT 320 to 500 – – – 25 36 36 36 36 630 – – – – – 36 36 MA400E 160-250 – 25 25 T T T T MA630E 400 – – – 25 T T T T 630 – – – – – T – T MH/ML400E 160-250 – 25 25 36 36 36 36 MH/ML630E 400 – – – 25 36 36 36 36 630 – – – – – 36 – 36 MA/MH/ML630 to 1250 500-630 – – – – – T – T 800-1000 – – – – – – – – 1250 – – – – – – – – MA/MH630ES (E–S–T) 630 – – – – – 36 – 36 800 – – – – – – – – MA/MH800ES (E–S–T) 630 – – – – – 36 – 36 800 – – – – – – – – MA/MH1250ES (E–S–T) 1250 – – – – – – – – * For ME160H and ME250H, selectivity, with MEGATIKER upstream up to MA/MH/ML/630E, is equal to 36.
MA1250ES (E–S–T) MA1600ES (E–S–T) MH1250ES (E–S–T) MH1600ES (E–S–T) 1250 T T T T T T 36 36 T T 36 36 T T T 36 36 36 T T T 36 36 36 T T – 36 36 36 36 –
1600 T T T T T T 36 36 T T 36 36 T T T 36 36 36 T T T 36 36 36 T T T 36 36 36 36 36
SELECTIVITY TABLES Selectivity AND BACK-UP TECHNICAL GUIDE
429 429
Selectivity: Megabreak upstream and Megatiker downstream (three-phase system) 500V a.c. Selectivity: Megabreak upstream and Megatiker downstream (three-phase system)
Downstream Mccb In (A) MA125 16 to 125 ME125B/N 16 to 125 ME160B/N/H 25 to 160 ME250B/N/H 100 to 250 MA/MH160 63 to 160 MA/MH/ML250-250E 100 to 250 MA/MH/ML400 320-400 MA/MH/ML400E 160 to 400 MA/MH/ML630E 630 MA/MH/ML630-630MT 500-630 MA/MH/ML800 800 MA/MH/ML1250 1000 1250 MA/MH630ES 630 MA/MH800ES 800 MA/MH1250ES 1250 MA/MH1600ES 1600
Upstream Acb M08 800 T T T T T T T T T T – – – T – – –
M10 1000 T T T T T T T T T T T – – T T – –
M12 1250 T T T T T T T T T T T T – T T – –
M16 1600 T T T T T T T T T T T T T T T T –
M20 2000 T T T T T T T T T T T T T T T T T
M25 2500 T T T T T T T T T T T T T T T T T
M32 3200 T T T T T T T T T T T T T T T T T
M40 4000 T T T T T T T T T T T T T T T T T
Megabreak upstream and downstream (three-phase system)
Downstream Acb In (A) MA08 800 MA10 1000 MA12 1250 MA16 1600 MA20 2000 MA25 2500 MA32 3200 MA40 4000
430
Selectivity AND BACK-UP
Upstream Acb MH10 ML10 1000 T – – – – – – –
MH12 ML12 1250 T T T – – – – –
MH16 ML16 1600 T T T T – – – –
MH20 ML20 2000 T T T T T – – –
MH25 ML25 2500 T T T T T T – –
MH32 ML32 3200 T T T T T T T –
MH40 ML40 4000 T T T T T T T T
Selectivity: Btdin upstream and MS32 motor protectors downstream (three-phase system) 400V a.c. Selectivity between motor protectors MS32 downstream and BTDIN 250 upstream, magnetic only, in a three-phase system
In (A) 1.6 2.5 4 6.3 10 MS32 0.1 to 1 T T T T T 1 to 1.6 – 100 200 550 1.6 to 2.5 – – 150 330 2.5 to 4 – – – 200 4 to 6.5 – – – – 6.3 to 10 – – – – – 9 to 14 – – – – – 13 to 18 – – – – – 17 to 23 – – – – – 20 to 25 – – – – – 24 to 32 – – – – – = the selectivity limit corresponds to the magnetic tripping value of the circuit breaker T = total selectivity
12.5 T 1100 500 320 250 – – – – –
16 T 8000 550 400 300 260 – – – –
25 T T 1600 720 550 480 420 – –
40 T T T 1600 1200 880 750 700
63 T T T 6400 2400 1600 1300 1250 1200 1000
Selectivity between motor protectors MS32 downstream and BTDIN upstream in a three-phase system
MS32
In (A) 0.5 0.1 to 0.16 T 0.16 to 0.25 0.25 to 0.4 0.4 to 0.63 – 0.63 to 1 – 1 to 1.6 – 1.6 to 2.5 – 2.5 to 4 – 4 to 6.5 – 6.3 to 10 – 9 to 14 – 13 to 18 – 17 to 23 – 20 to 25 – 24 to 32 –
1 T – – – – – – – – – – –
2 T T – – – – – – – – –
3 T T T – – – – – – – –
4 T T T – – – – – – – –
6 T T T – – – – – – –
10 T T T T 200 170 120 – – – – – –
16 T T T T T 350 200 160 – – – –
20 T T T T T 550 320 230 160 – – –
25 T T T T T 1200 400 300 230 – –
32 T T T T T T 550 360 320 270 –
40 T T T T T T 800 480 400 360 320
50 T T T T T T 1600 750 550 480 400 350
63 T T T T T T 4800 1100 800 640 550 450
80 T T T T T T 9000 1500 1200 900
100 T T T T T T T 3000 2000 1300 1300 1300 1200 1200
125 T T T T T T T 6000 2500 1800 1700 1600 1500 1400 1300
Selectivity between earth leakage circuit breakers Example
The tables below show the types of selectivity coordination that can be achieved using MEGATIKER or BTDIN circuit breakers, or earth leakage modules. Selectivity is indicated by the orange dots.
A 300 mA earth leakage circuit breaker with tripping time adjusted to 1 second, is selective when compared to an instantaneous 30 mA earth leakage device.
Circuit breakers Delay Upstream circuit breakers I∆ (A) downstream (s) 0.01 0.03 0.3 0.5 1 I (A) 0 0 HPI(1) 0 0.06(2) 0.3 1 3 0 0 0.06(2) 0.3 1 3 0.01 0 – – – – – 0.03 0 – – – – – – HPI – – – – – – 0.3 0 – – – – – – – – – – S – – – – – – – – – – – – 0.3 – – – – – – – – – – – – 1 – – – – – – – – – – – – – 3 – – – – – – – – – – – – – – 0.5 0 – – – – – – – – – – 1 0 – – – – – – – – – – – – – – S – – – – – – – – – – – – – – 0.3 – – – – – – – – – – – – – – 1 – – – – – – – – – – – – – – 3 – – – – – – – – – – – – – – (1) “HPI” type means BTDIN earth leakage modules with tripping features that protect them from atmospheric disturbances. (2) S type earth leakage circuit breakers
3 0 – – – – – – – – – – – – – –
0.3 – – – – – – –
1 – – – –
3 – –
SELECTIVITY TABLES Selectivity AND BACK-UP TECHNICAL GUIDE
431 431
back-up TABLES
432
Selectivity AND BACK-UP
section contents 434 Reading and understanding back-up tables, and back-up on three levels 435 Back-up between fuses and automatic circuit breakers 436 Back-up between BTDIN and MS32 motor protectors 437 Back-up between MEGATIKER upstream and BTDIN downstream (230V a.c.) 439 Back-up between MEGATIKER upstream and BTDIN downstream (400V a.c.) 441 Back-up between MEGATIKER upstream and downstream (230V a.c.) 443 Back-up between MEGATIKER upstream and downstream (400V a.c.) 445 Back-up between MEGATIKER upstream and downstream (500V a.c.) 447 Back-up between MEGABREAK upstream and MEGATIKER downstream (400V a.c.)
CONTENTS Selectivity AND BACK-UP TECHNICAL GUIDE
433
Reading and understanding back-up tables, and back-up on three levels Reading and understanding back-up tables
The tables show the possible combinations that can be implemented for back-up purposes, using Bticino circuit breakers. All values shown relate to the breaking capacities of the devices in accordance with IEC 60947-2 standard. The switching current values are in kA. The “I” symbol means that backup coordination is not necessary (see tables with MS32 with Icu = ). The tables show the only possible combinations. Types of coordination not shown in the tables are not allowed, or do not satisfy the back-up conditions.
Example for the verification of backup coordination
In order to better understand how to use the tables, see the following example. The aim is to ensure back-up coordination between an upstream Megatiker Mccb ME125B with In = 125A and a Btdin Mcb 60 with In = 32A, in a 400V a.c. three-phase system. Refer to the coordination table on page 435. Look for the ME125B circuit breaker, value 125A. Scroll the 125A column until the value corresponding to the intersection with the 32A BTDIN Mcb 60 is found. The value found is 16kA (it is reminded that the breaking capacity of a fourpole 32A Btdin 60 according to IEC 60947-2 standard is 10 kA). This value represents the breaking capacity of the association between the two circuit breakers. In an hypothetic system, where short circuit current is calculated in 16kA, it is therefore possible to install 32A divisional four-pole Btdin 60 Mcb’s, provided that at least one 125A Megatiker ME125B is installed upstream.
Back-up on three levels
Back-up can be achieved on more than 2 levels. If this type of coordination is needed, one of the following two conditions must be met: 1
Condition 1 The device upstream (no.1) must have a breaking capacity that ensures suitable protection of both downstream devices (no. 2 -3). In this case, it is enough that the association between circuit breakers 1+2 and 1+3 have a breaking capacity suitable for the system short circuit currents. Condition 2 In this case coordination is between pairs of devices. Circuit breaker no. 1 must have a breaking capacity that ensures suitable protection of the next downstream circuit breaker no. 2. The second circuit breaker must then be capable of protecting the third one. Back-up coordination is guaranteed in spite of the fact that the ideal coordination conditions are not present between the first and the last device.
434
Selectivity AND BACK-UP
2
3
Back-up between fuses and automatic circuit breakers 400V a.c. Back-up: up stream gG fuses and downstream three-phase BTDIN Mcb’s
Downstream Mcb’s In (A) BTDIN 45 0.5 BTDIN 60 1 BTDIN 100 2 BTDIN 250 4 BTDIN 250H 6 10 16 20 25 32 40 50 63 80 100 125
Upstream gG fuses 4 6 10 16 20 25 100 100 100 100 100 – 100 100 100 100 100 100 – 100 100 100 100 100 – – 100 100 100 100 – – – 100 100 100 – – – – – 100 – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
30 – – 100 100 100 100 100 – – – – – – – – –
40 – – 100 100 100 100 100 100 – – – – – – – –
50 – – – 100 100 100 100 100 100 – – – – – – –
60 – – – – – – 100 100 100 100 – – – – – –
80 – – – – – – – 100 100 100 100 100 – – – –
100 – – – – – – – – – 100 100 100 100 – – –
125 – – – – – – – – – – – 100 100 100 – –
160 – – – – – – – – – – – – – 100 100 100
400V a.c. Back-up: up stream gG fuses and downstream three-phase Mccb’s
Downstream Mccb’s In (A) MA125 100-125 ME125B 125 ME125N 125 ME160B/N/H 160 ME250B/N/H 250 MA160 160 MH160 160 MA250-250E 250 MH250-250E 250 MA/MH400 400 MA/MH400E 400 MA/MH630 630 MA/MH630E 630 MA/MH630MT 630 MA/MH800 800
Upstream gG fuses 200 250 100 70 – 100 – 100 – 100 – 100 – 100 – 100 – – – – – – – – – – – – – – – –
315 70 70 100 100 100 100 100 100 100 – – – – – –
400 70 70 100 100 100 100 100 100 100 – – – – – –
630 50 50 70 70 70 70 – 70 – 100 100 – – – –
800 50 50 70 70 70 – – 70 – 100 100 100 100 100 –
1000 – – – – – – – – – – – 100 100 100 100
Back-up: AMONG Btdin MCB’S in ThREE-PHASE AND ONE-PHASE SYSTEMS Downstream Mcb’s Upstream Mcb’s In (A) 230V a.c. * 400/440V a.c. Btdin60 Btdin100 Btdin250-250H Btdin60 Btdin100 0.5 to 63 0.5 to 32 40 to 125 0.5 to 32 40 to 63 0.5 to 63 0.5 to 32 40 to 125 Btdin45 0.5 to 63 10 20 15 25 20 10 15 10 Btdin60 0.5 to 63 – 35 15 50 25 – 15 10 Btdin100 0.5 to 63 – – – 50 25 – – – Btdin250-250H 0.5 to 63 – – – – – – – – * Values valid for three-phase/one-phase systems (400/230V a.c.) and one-phase/one-phase systems (230/230V a.c.)
Btdin250-250H 0.5 to 32 40 to 63 20 12.5 20 12.5 20 12.5 – –
Back-up tables Selectivity AND BACK-UP TECHNICAL GUIDE
435 435
Back-up between Btdin and MS32 motor protectors 400V a.c. Back-up between Btdin100 upstream and MS32 motor protectors downstream in a three-phase system
In (A) 0.5 1 2 3 4 6 MS32 0.1 to 0.16 0.16 to 0.25 0.25 to 0.4 0.4 to 0.63 – 0.63 to 1 – – 1 to 1.6 – – 1.6 to 2.5 – – – 2.5 to 4 – – – – – 4 to 6.5 – – – – – – 6.3 to 10 – – – – – – 9 to 14 – – – – – – 13 to 18 – – – – – – 17 to 23 – – – – – – 20 to 25 – – – – – – 24 to 32 – – – – – – = not necessary combination (motor protector breaking capacity =100 kA)
10 – – – – – –
16 35 – – – –
20 35 35 – – –
25 35 35 35 – –
32 35 35 35 35 –
40 35 35 35 35 35
50 35 35 35 25 25
63 35 35 35 25 25
400V a.c. Back-up between Btdin250-250H upstream and MS32 motor protectors downstream in a three-phase system
In (A) 0.5 1 2 3 4 6 MS32 0.1 to 0.16 0.16 to 0.25 0.25 to 0.4 0.4 to 0.63 – 0.63 to 1 – – 1 to 1.6 – – 1.6 to 2.5 – – – 2.5 to 4 – – – – – 4 to 6.5 – – – – – – 6.3 to 10 – – – – – – 9 to 14 – – – – – – 13 to 18 – – – – – – 17 to 23 – – – – – – 20 to 25 – – – – – – 24 to 32 – – – – – – = not necessary combination (motor protector breaking capacity =100 kA)
436
Selectivity AND BACK-UP
10 – – – – – –
16 50 – – – –
20 50 50 – – –
25 50 50 50 – –
32 50 50 50 50 –
40 50 50 50 50 50
50 50 50 50 40 40
63 50 50 50 40 40
Back-up: MEGATIKER upstream and Btdin downstream (one-phase system) 230V a.c. The table refers to upstream circuit breakers on a three-phase line at 400V a.c. and downstream circuit breakers on a one-phase line at 230V a.c. Downstream Mcb In (A) Btdin 45 6 to 25 32-40 50-63 Btdin 60 6 to 32 40-50 63 Btdin 100 6 to 63 80 100 125 Btdin 250 6 to 63 Btdin 250H 25 to 63
Upstream Mccb Icu = 16-25kA MA125 40 63 100 125 16 16 16 16 – 16 16 16 – – 16 16 16 16 16 16 – 16 16 16 – – 16 16 16 16 16 16 – – 16 16 – – – 16 – – – – – – – – – – – 25
Downstream Mcb In (A) Btdin 45 6 to 25 32-40 50-63 Btdin 60 6 to 40 50-63 Btdin 100 6 to 32 40-50 63 80 100 125 Btdin 250 6 to 32 40-50 63 Btdin 250H 25 to 63
Upstream Mccb Icu = 36kA ME125N 40 63 100 125 20 20 20 20 – 20 20 20 – – 20 20 20 20 20 20 20 20 20 20 25 25 25 25 – 25 25 25 – – 25 25 – – 25 25 – – – 25 – – – – 25 25 25 25 – 25 25 25 – – 25 25 – – 25 25
Downstream Mcb In (A) Btdin 45/60 6 to 63 Btdin 100 6 to 40 50-63 80 100-125 Btdin 250 6 to 40 50 63 Btdin 250H 25 to 63
Upstream Mccb Icu = 36kA MA250-250E 100 160 250 25 25 25 30 30 30 36 30 30 25 25 25 – 25 25 36 36 36 36 36 30 36 30 30 36 30 30
ME125B 40 63 100 125 20 20 20 20 – 20 20 20 – – 20 20 20 20 20 20 – 20 20 20 – – 20 20 25 25 25 25 – – 25 25 – – – 25 – – – – 25 25 25 25 25 25 25 25
ME160N 63 100 160 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 30 30 30 30 30 25 – 30 25 – 25 25 – – 25 – – 25 36 36 36 36 36 36 – 36 30 – 36 30
MA400 250 320 400 25 25 25 30 30 30 36 30 30 25 25 25 25 25 25 36 36 36 30 30 30 30 30 30 30 30 30
ME160B 63 100 160 25 25 25 25 25 25 – 25 25 25 25 25 25 25 25 – 25 25 25 25 25 – 25 25 – – 25 – – 25 25 25 25 25 25 25
ME250N 100 160 250 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 – 25 25 – 25 25 36 36 36 36 36 36 36 30 30 36 30 30
ME250B 100 25 25 25 25 25 25 25 25 – – 25 25
MA160 63 25 25 25 25 – 30 30 30 – – – 36 36 36 36
MA400E-630E 160 250 400 630 25 25 25 25 30 30 30 30 36 30 30 30 25 25 25 25 25 25 25 25 36 36 36 36 30 30 30 30 30 30 30 30 30 30 30 30
160 25 25 25 25 25 25 25 25 25 25 25 25
100 25 25 25 25 25 30 30 30 25 – – 36 36 36 36
MA630MT 500 25 30 30 25 25 36 30 30 30
250 25 25 25 25 25 25 25 25 25 25 25 –
160 25 25 25 25 25 30 30 30 25 25 25 36 36 30 30
630 25 30 30 25 25 36 30 30 30
Back-up tables Selectivity AND BACK-UP TECHNICAL GUIDE
437 437
Back-up: MEGATIKER upstream and Btdin downstream (one-phase system) 230V a.c. Downstream Mcb In (A) Btdin 45/60 6 to 50 63 Btdin 100 6 to 50 63 80 100-125 Btdin 250 6 to 40 50 63 Btdin 250H 25 to 63
Downstream Mcb In (A) Btdin 45 6 to 50 63 Btdin 60 6 to 40 50-63 Btdin 100 6 to 40 50 63 80 100-125 Btdin 250 6 to 40 50 63 Btdin 250H 25 to 63
438
Upstream Mccb Icu = 50 kA ME160H 63 100 160 25 25 25 – 25 25 30 30 30 – 30 25 – 25 25 – – 25 45 45 45 36 36 36 – 36 30 – 36 30
Upstream Mccb Icu = 70-100 kA MH160 MH/ML250 63 100 160 100 160 250 25 25 25 25 25 25 – 25 25 25 25 25 25 25 25 25 25 25 – 25 25 25 25 25 30 30 30 30 30 30 30 30 30 36 30 30 – 30 30 36 30 30 – 25 25 25 25 25 – – 25 – 25 25 45 45 45 45 45 45 45 36 36 45 36 30 – 36 30 45 30 30 – 36 30 45 30 30
Selectivity AND BACK-UP
MH/ML400 250 320 400 25 25 25 25 25 25 25 25 25 25 25 25 30 30 30 36 30 30 36 30 30 25 25 25 25 25 25 45 45 45 30 30 30 30 30 30 30 30 30
ME250H 100 160 250 25 25 25 25 25 25 30 30 30 30 25 25 – 25 25 – 25 25 45 45 45 36 36 30 36 30 30 36 30 30
MH/ML400-630E 160 250 400 630 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 30 30 30 30 36 30 30 30 36 30 30 30 25 25 25 25 25 25 25 25 45 45 45 45 30 30 30 30 30 30 30 30 30 30 30 30
MH/ML630MT 500 630 25 25 25 25 25 25 25 25 30 30 30 30 30 30 25 25 25 25 45 45 30 30 30 30 30 30
Back-up: MEGATIKER upstream and Btdin downstream (three-phase system) 400V a.c. Downstream Mcb In (A) Btdin 45 6 to 25 32 40 50-63 Btdin 60 6 to 32 40 50 63 Btdin 100 6 to 32 40 50 63 80 100 125 Btdin 250 6 to 32 40 50 63 Btdin 250H 25 to 63
Upstream Mccb Icu = 16-25kA MA125 40 63 100 125 16 16 16 16 – 16 16 16 – 16 16 16 – – 16 16 16 16 16 16 16 16 16 16 – 16 16 16 – – 16 16 16 16 16 16 16 16 16 16 – 16 16 16 – – 16 16 – – 16 16 – – – 16 – – – – – – – – – – – – – – – – – – – – – – – –
Downstream Mcb In (A) Btdin 45 6 to 25 32 40 50 63 Btdin 60 6 to 32 40 50 63 Btdin 100 6 to 32 40 50 63 80 100 125 Btdin 250 6 to 32 40 50 63 Btdin 250H 25 to 63
Upstream Mccb Icu = 36-50kA ME125N 40 63 100 125 16 16 16 16 – 16 16 16 – 16 16 16 – – 16 16 – – 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 20 20 20 20 20 20 20 20 – 20 20 20 – – 20 20 – – 20 20 – – – 20 – – – – 25 25 25 25 – 25 25 25 – 25 25 25 – – 25 25 – – 25 25
ME125B 40 63 100 125 16 16 16 16 – 16 16 16 – 16 16 16 – – 16 16 16 16 16 16 16 16 16 16 – 16 16 16 – – 16 16 20 20 20 20 20 20 20 20 – 20 20 20 – – 20 20 – – 20 20 – – – 20 – – – – 25 25 25 25 – 25 25 25 – 25 25 25 – – 25 25 – – 25 25
ME160N/H 63 100 160 16 16 16 16 16 16 16 16 16 – 16 10 – 16 10 16 16 16 16 16 16 16 16 10 16 16 10 20 20 20 20 20 20 20 20 15 – 20 15 – 20 20 – – 20 – – 15 25 25 25 25 25 25 25 25 20 – 20 15 – 25 25
ME160B 63 100 160 16 16 16 16 16 16 16 16 16 – 16 10 16 16 16 16 16 16 16 16 16 – 16 10 20 20 20 20 20 20 20 20 15 20 20 15 – 20 20 – – 20 – – 15 25 25 25 25 25 25 25 25 20 – 20 15 – 25 25
ME250N/H 100 160 250 16 16 16 16 16 16 16 16 10 16 10 10 16 10 10 16 16 16 16 16 10 16 10 10 16 10 10 20 20 20 20 20 15 20 15 15 20 15 15 20 20 20 – 20 20 – 15 15 25 25 25 25 25 20 25 20 15 20 15 15 25 25 25
ME250B 100 16 16 16 16 16 16 16 16 20 20 20 20 20 – – 25 25 25 20 25
MA160 63 16 16 16 16 – 16 16 16 – 20 20 20 – – – – 25 25 25 – –
160 16 16 16 10 16 16 16 10 20 20 15 15 20 20 15 25 25 20 15 25
100 16 16 16 16 10 16 16 16 10 20 20 20 15 20 – – 25 25 25 20 25
250 16 16 10 10 16 10 10 10 20 15 15 15 20 20 15 25 20 15 15 25
160 16 16 16 10 10 16 16 10 10 20 20 15 15 20 20 15 25 25 20 15 25
Back-up tables Selectivity AND BACK-UP TECHNICAL GUIDE
439 439
Back-up: MEGATIKER upstream and Btdin downstream (three-phase system) 400V a.c. Downstream Mcb In (A) Btdin 45 6 to 32 40 50 63 Btdin 60 6 to 32 40 50-63 Btdin 100 6 to 32 40 50-63 80 100 125 Btdin 250 6 to 32 40 50 63 Btdin 250H 25 to 63
Upstream Mccb Icu = 36kA MA250 100 160 250 16 16 16 16 16 10 16 10 10 16 10 10 16 16 16 16 16 10 16 10 10 20 20 20 20 20 15 20 15 15 20 20 20 20 20 20 15 15 15 25 25 25 25 25 20 25 20 15 20 15 15 25 25 25
Downstream Mcb In (A) Btdin 45 6 to 32 40 50 63 Btdin 60 6 to 32 40 50 63 Btdin 100 6 to 32 40 50 63 80 100 125 Btdin 250 6 to 32 40 50 63 Btdin 250H 25 to 63
Upstream Mccb Icu = 50 to 100kA MH160 MH/ML250 63 100 160 100 160 250 16 16 16 16 16 16 16 16 16 16 16 10 16 16 10 16 16 10 – 10 10 16 10 10 16 16 16 16 16 16 16 16 16 16 16 10 16 16 10 16 10 10 – 10 10 16 10 10 20 20 20 20 20 20 20 20 20 20 20 15 20 20 15 20 15 15 – 15 15 20 15 15 – 20 20 20 20 20 – – 20 – 20 20 – – 15 – 15 15 25 25 25 25 25 25 25 25 25 25 25 20 25 25 20 25 20 15 – 20 15 20 15 15 – 25 25 25 25 25
440
Selectivity AND BACK-UP
MA400 250 320 400 16 16 16 10 10 10 10 10 10 10 10 10 16 16 16 10 10 10 10 10 10 20 20 20 15 20 15 15 15 15 20 20 20 20 20 20 15 15 15 25 25 25 20 20 20 15 15 15 15 15 15 25 25 25
MA400E-630E 160 250 400 630 16 16 16 16 10 10 10 10 10 10 10 10 10 10 10 – 16 16 16 16 10 10 10 10 10 10 10 10 20 20 20 20 15 15 15 15 15 15 15 15 20 20 20 15 – 20 20 15 15 15 10 – 25 25 25 25 20 20 20 20 15 15 15 15 15 15 15 15 25 25 25 25
MH/ML400 250 320 400 16 16 16 10 10 10 10 10 10 10 10 10 16 16 16 10 10 10 10 10 10 10 10 10 20 20 20 15 20 15 15 15 15 15 15 15 20 20 20 20 20 20 15 15 15 25 25 25 20 20 20 15 15 15 15 15 15 25 25 25
MH/ML400E-630E 160 250 400 630 16 16 16 16 10 10 10 10 10 10 10 10 10 10 10 – 16 16 16 16 10 10 10 10 10 10 10 10 10 10 10 10 20 20 20 20 15 15 15 15 15 15 15 15 15 15 15 15 20 20 20 15 20 20 20 15 15 15 15 10 25 25 25 25 20 20 20 20 15 15 15 15 15 15 15 15 25 25 25 25
MA630MT 500 16 10 10 10 16 10 10 20 15 15 20 15 10 25 20 15 15 25
630 16 10 10 – 16 10 10 20 15 15 15 – – 25 20 15 15 25
MH/ML630MT 500 630 16 16 10 10 10 10 10 – 16 16 10 10 10 10 10 10 20 20 15 15 15 15 15 15 15 15 15 15 10 10 25 25 20 20 15 15 15 15 25 25
Back-up: MEGATIKER upstream and downstream (three-phase system) 230V a.c. Upstream Mccb Downstream Mccb Icu (kA) MA125 22 ME125B 35 ME125N 40 ME160B 40 ME160N 50 ME250B 40 ME250N 50 MA160 to 250E 60 MA400 to 630E 60
Icu = 35 to 40kA ME125B ME160B 35 40 – – – – – – – – – – – – – – – –
Upstream Mccb Downstream Mccb Icu (kA) MA125 22 ME125B 35 ME125N 40 ME160B 40 ME160N 50 ME250B 40 ME250N 50 MA160 to 250E 60 MA400 to 630E 60
Icu = 65-80kA ME160H 65 65 65 65 65 – – – –
ME250B 40 – – – – – – – –
ME250H 65 65 65 65 65 65 65 – –
Icu = 40 to 60kA ME125N ME160N ME250N MA160 MA250 to 250E MA400 630E 40 50 50 60 60 60 40 50 50 60 60 60 – – – – – – – 50 50 60 60 60 – – – – – – – – – 50 60 60 – – – – – – – – – – – – – – – – – – MA630 to 1250 65 65 65 65 65 65 65 80 80
Upstream Mccb Icu = 70-100kA Downstream Mccb Icu (kA) MH160 MH250 MH400 MH630 MH630 MH800 MH1250 MH630ES to 250E to 400E to 630E (E) MA125-ME125B 22/35 65 65 65 65 65 65 65 50 ME125N 40 70 70 70 70 70 70 70 50 ME160B/N 40/50 70 70 70 70 70 70 70 65 ME160H 60 70 70 70 70 70 70 70 – ME250B/N 40/50 – 70 70 70 70 70 70 65 ME250H 60 – 70 70 70 70 70 70 – MA160 60 100 100 100 100 100 100 100 100 MH160 100 – – – – – – – – MA250-250E 60 – 100 100 100 100 100 100 100 MH250-250E 100 – – – – – – – – MA400-400E 100 – – 100 100 100 100 100 100 MH400-400E 100 – – – – – – – – MA630MT-630E 60 – – – 100 100 100 100 100 MH630MT-630E 100 – – – – – – – – MA630 80 – – – – 100 100 100 100 MH630 100 – – – – – – – – MA800 80 – – – – – 100 100 – MH800 100 – – – – – – – – MA1250 80 – – – – – – 100 – MH1250 100 – – – – – – – – MA630ES (E) 60 – – – – – 100 100 100 MA800ES (E) 60 – – – – – 100 100 – MA630ES (S-T) 60 – – – – 100 100 100 100 MA800ES (S-T) 60 – – – – – 100 100 – MA1250ES 60 – – – – – – – – MA1600ES 60 – – – – – – – –
MA630-800ES (E) 50 50 50 65 65 65 70 70 70
MH800ES (E) 50 50 65 – 65 – 100 – 100 – 100 – 100 – 100 – 100 – – – 100 100 100 100 – –
MH630ES (E-S-T) – – 65 – 65 – 100 – 100 – 100 – 100 – 100 – – – – – 100 – 100 – – –
to
MA630 to 1600ES (E-S-T) – – – 65 65 65 70 70 70
MH800ES (E-S-T) – – 65 – 65 – 100 – 100 – 100 – 100 – 100 – 100 – – – 100 100 100 100 – –
MH1250ES MH1600ES (E-S-T) (E-S-T) – – – – – – – – – – – – 100 100 – – 100 100 – – 100 100 – – 100 100 – – 100 100 – – 100 100 – – 100 100 100 100 100 100 100 –
100 100 100 100 100 100
Back-up tables Selectivity AND BACK-UP TECHNICAL GUIDE
441 441
230V a.c. Upstream Mccb Downstream Mccb Icu (kA) MA125-ME125B 22/35 ME125N 40 ME160B/N 40/50 ME160H 60 ME250B/N 40/50 ME250H 60 MA160 60 MH160 100 MA250-250E 60 MH250-250E 100 MA400-400E 100 MH400-400E 100 MA630MT-630E 60 MH630MT-630E 100 MA630 80 MH630 100 MA800 80 MH800 100 MA1250 80 MH1250 100
442
Selectivity AND BACK-UP
Icu = 170kA ML250-250E ML400 to 400E ML630 to 630E ML630 ML800 ML1250 65 65 65 65 65 65 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 70 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 170 – 170 170 170 170 170 – 170 170 170 170 170 – – 170 170 170 170 – – 170 170 170 170 – – – 170 170 170 – – – 170 170 170 – – – – 170 170 – – – – 170 170 – – – – – 170 – – – – – 170
Back-up: MEGATIKER upstream and downstream (three-phase system) 400V a.c. Upstream Mccb Downstream Mccb MA125 ME125B ME125N ME160B ME160N ME250B ME250N MA160 to 250E MA400 to 630E
Icu (kA) 16 25 36 25 36 25 36 36 36
Icu = 25kA ME125B ME160B 25 25 – – – – – – – – – – – – – – – –
ME250B 25 – – – – – – – –
Icu = 36kA ME125N ME160N ME250N MA160 to 250E MA400 to 630E 36 36 36 36 36 36 36 36 36 36 – – – – – – 36 36 36 36 – – – – – – – 36 36 36 – – – – – – – – – – – – – – –
Upstream Mccb Downstream Mccb Icu (kA) MA125 16 ME125B 25 ME125N 36 ME160B 25 ME160N 36 ME250B 25 ME250N 36 MA160 to 250E 36 MA400 to 630E 36
Icu = 50kA ME160H 50 50 50 50 50 – – – –
Upstream Mccb Downstream Mccb Icu (kA) MH160 MA125-ME125B 16/25 65 ME125N 36 70 ME160B/N/H 25/36/50 70 ME250B/N/H 25/36/50 – MA160-250 36 70 MH160-250 70 – MA250E 36 – MH250E 70 – MA400-400E 36 – MH400-400E 70 – MA630MT-630E 36 – MH630MT-630E 70 – MA630 50 – MH630 70 – MA800 50 – MH800 70 – MA1250 50 – MH1250 70 – MA630ES (E) 50 – MA800ES (E) 50 – MA630ES (S-T) 50 – MA800ES (S-T) 50 – MA1250ES 50 – MA1600ES 50 – * with upstream electronic version only
Icu = 70kA MH250 MH400 MH630 MH630 MH800 MH1250 MH630ES MH800ES MH630ES MH800ES MH1250ES MH1600ES to 250E to 400E to 630E (E) (E) (E-S-T) (E-S-T) (E-S-T) (E-S-T) 65 65 65 65 65 65 50 50 – – – – 70 70 70 70 70 70 50 50 – – – – 70 70 70 70 70 70 60 60 60 60 – – 70 70 70 70 70 70 60 60 60 60 – – 70 70 70 70 70 70 70 70 70 70 70 70 – – – – – – – – – – – – 70 70 70 70 70 70 70 70 70 70 70 70 – – – – – – – – – – – – – 70* 70 70 70 70 70 70 70 70 70 70 – – – – – – – – – – – – – – 70* 70 70 70 70 70 70 70 70 70 – – – – – – – – – – – – – – – 70 70 70 70 70 70 70 70 70 – – – – – – – – – – – – – – – – 70 70 – 70 – 70 70 70 – – – – – – – – – – – – – – – – – 70 – – – – 70 70 – – – – – – – – – – – – – – – – 70 70 70 70 70 70 70 70 – – – – 70 – 70 – 70 70 70 – – – 70 70 70 70 70 70 70 70 70 – – – – 70 – 70 – 70 70 70 – – – – – – – – – – 70 70 – – – – – – – – – – – 70
ME250H 50 50 50 50 50 50 50 – –
MA630 to 1250 50 50 50 50 50 50 50 50 50
MA630-800ES (E) 40 40 40 50 50 50 50 50 50
MA630 to 1600ES (E-S-T) – – – 50 50 50 50 50 50
Back-up tables Selectivity AND BACK-UP TECHNICAL GUIDE
443 443
400V a.c. Upstream Mccb Icu = 100kA Downstream Mccb Icu (kA) ML250 MA125-ME125B 16/25 65 ME125N 36 70 ME160B/N/H 25/36/50 70 ME250B/N/H 25/36/50 70 MA160-250 36 100 MH160-250 70 100 MA250E 36 – MH250E 70 – MA400-400E 36 – MH400-400E 70 – MA630MT-630E 36 – MH630MT-630E 70 – MA630 50 – MH630 70 – MA800 50 – MH800 70 – MA1250 50 – MH1250 70 – * with upstream electronic version only ** with downstream thermal magnetic version only
444
Selectivity AND BACK-UP
ML250E 65 70 70 70 100 100 100 100 – – – – – – – – – –
ML400 to 400E 65 70 70 70 100 100 100 100 100** 100** – – – – – – – –
ML630 to 630E 65 70 70 70 100 100 100 100 100 100 100 100* – – – – – –
ML630 65 70 70 70 100 100 100 100 100 100 100 100 100 100 – – – –
ML800 65 70 70 70 100 100 100 100 100 100 100 100 100 100 100 100 – –
ML1250 65 70 70 70 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Back-up: MEGATIKER upstream and downstream (three-phase system) 500V a.c. Upstream Mccb Downstream Mccb Icu (kA) MA125 8 ME125B 12 ME125N 14 ME160B 10 ME160N 12 ME250B 10
Icu = 10-12kA ME125B ME160B 12 10 – – – – – – – – – –
Upstream Mccb Downstream Mccb Icu (kA) MA125 8 ME125B 12 ME125N 14 ME160B 10 ME160N 12 ME250B 10 ME250N 12 MA250 25 MA250 to 250E 25 MA400 to 630E 25
Icu = 15-35kA ME160H 15 15 15 15 15 – – – – –
ME250H 15 15 15 15 15 15 15 – – –
ME250B 10 – – – – –
Icu = 12-14-25kA ME125N ME160N ME250N MA160 MA250 to 250E MA400 to 630E 14 12 12 25 25 25 14 – – 25 25 25 – – – – – – – 12 12 25 25 25 – – – – – – – – 12 – 25 25
MA250E 30 30 30 30 30 30 30 30 – –
MA630 to 1250 30 30 30 30 30 30 30 30 30 30
MA630-800ES (E) 30 30 30 30 30 30 30 30 30 30
MA630 to 1600ES (E-S-T) – – – 30 30 30 30 30 30 30
Upstream Mccb Icu = 40-45kA Downstream Mccb Icu (kA) MH160 MH250 MH400 MH630 MH630 MH800 MH1250 MH630ES MH800ES MH630ES MH800ES MH1250ES to 250E to 400E to 630E (E) (E) (E-S-T) (E-S-T) (E-S-T) MA125-ME125B 8/12/14 35 35 35 35 35 35 35 35 35 – – – ME160B/N/H 10/12/15 35 35 35 35 35 35 35 35 35 35 35 – ME250B/N/H 10/12/15 – 35 35 35 35 35 35 35 35 35 35 – MA160 25 40 40 40 40 45 45 45 45 45 45 45 45 MH160 40 – – – – – – – – – – – – MA250-250E 25 – 40 40 40 45 45 45 45 45 45 45 45 MH250-250E 40 – – – – – – – – – – – – MA400-400E 25 – – 40 40 45 45 45 45 45 45 45 45 MH400-400E 40 – – – – – – – – – – – – MA630MT-630E 25 – – – 40 45 45 45 45 45 45 45 45 MH630MT-630E 40 – – – – – – – – – – – – MA630 35 – – – – 45 45 45 45 45 45 45 45 MH630 45 – – – – – – – – – – – – MA800 35 – – – – 45 45 – 45 – 45 45 MH800 45 – – – – – – – – – – – – MA1250 35 – – – – – – 45 – – – – 45 MH1250 45 – – – – – – – – – – – – MA630ES (E) 35 – – – – – 45 45 45 45 45 45 45 MA800ES (E) 35 – – – – – – 45 – 45 – 45 45 MA630ES (S-T) 35 – – – – 45 45 45 45 45 45 45 45 MA800ES (S-T) 35 – – – – – – 45 – 45 – 45 45 MA1250ES 35 – – – – – – – – – – – 45 MA1600ES 35 – – – – – – – – – – – –
MH1600ES (E-S-T) – – – 45 – 45 – 45 – 45 – 45 – 45 – 45 – 45 45 45 45 45 45
Back-up tables Selectivity AND BACK-UP TECHNICAL GUIDE
445 445
500V a.c. Upstream Mccb Downstream Mccb Icu (kA) MA125-ME125B 8/12/14 ME160B/N/H 10/12/15 ME250B/N/H 10/12/15 MA160 25 MH160 40 MA250-250E 25 MH250-250E 40 MA400-400E 25 MH400-400E 40 MA630MT-630E 25 MH630MT-630E 40 MA630 35 MH630 45 MA800 35 MH800 45 MA1250 35 MH1250 45
446
Selectivity AND BACK-UP
Icu = 45-55kA ML250E ML400 to 400E ML630 to 630E ML630 ML800 ML1250 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 45 45 45 55 55 55 45 45 45 55 55 55 45 45 45 55 55 55 45 45 45 55 55 55 – 45 45 55 55 55 – 45 45 55 55 55 – – 45 55 55 55 – – 45 55 55 55 – – – 55 55 55 – – – 55 55 55 – – – – 55 55 – – – – 55 55 – – – – – 55 – – – – – 55
Back-up: Megabreak upstream and MEGATIKER downstream (three-phase system) 400V a.c. Downstream Mccb MA160-250 MA400 to 630E
Upstream Acb Icu = 50kA MA08 MA10 50 50 50 50
MA12 50 50
MA16 50 50
MA20 50 50
MA25 50 50
MA32 50 50
MA40 50 50
Downstream Mccb MA160-250 MA400 to 630E MA630E-630ES MA800-800ES MA1250-1250ES MA1600ES
Upstream Acb Icu = 50kA MH08 MH10 65 65 65 65 65 65 – 65 – – – –
MH12 65 65 65 65 – –
MH16 65 65 65 65 65 –
MH20 65 65 65 65 65 65
MH25 65 65 65 65 65 65
MH32 65 65 65 65 65 65
MH40 65 65 65 65 65 65
Downstream Mccb MA160-250 MA400 to 630E MA630-630ES MA800-800ES MA1250-1250ES MA1600ES
Upstream Acb Icu = 100kA ML08 ML10 65 65 65 65 65 65 – 65 – – – –
ML12 65 65 65 65 – –
ML16 65 65 65 65 65 –
ML20 65 65 65 65 65 65
ML25 65 65 65 65 65 65
ML32 65 65 65 65 65 65
ML40 65 65 65 65 65 65
Downstream Mccb MH160-250 MH400 to 630E MH630-630ES MH800-800ES MH1250-1250ES MH1600ES
Upstream Acb Icu = 100kA ML08 ML10 100 100 100 100 100 100 – 100 – – – –
ML12 100 100 100 100 – –
ML16 100 100 100 100 100 –
ML20 100 100 100 100 100 100
ML25 100 100 100 100 100 100
ML32 100 100 100 100 100 100
ML40 100 100 100 100 100 100
Back-up tables Selectivity AND BACK-UP TECHNICAL GUIDE
447 447
View more...
Comments