Selected Solutions to Ahlfors
Short Description
Ahlfors solution manual...
Description
Selected Solutions to Complex Analysis by Lars Ahlfors Matt Rosenzweig
1
Contents Chapter 4 - Complex Integration
Cauchy’s Integral Formula . . 4.2.2 Exercise 1 . . . . . 4.2.3 Exercise 1 . . . . . 4.2.3 Exercise 2 . . . . . Loca ocal Proper perties ies of Analytica ical 4.3.2 Exercise 2 . . . . . 4.3.2 Exercise 4 . . . . . Calculus of Residues . . . . . 4.5.2 Exercise 1 . . . . . 4.5.3 Exercise 1 . . . . . 4.5.3 Exercise 3 . . . . . Harmonic Functions . . . . . 4.6.2 Exercise 1 . . . . . 4.6.2 Exercise 2 . . . . . 4.6.4 Exercise 1 . . . . . 4.6.4 Exercise 5 . . . . . 4.6.4 Exercise 6 . . . . . 4.6.5 Exercise 1 . . . . . 4.6.5 Exercise 3 . . . . .
4
. . . . . . . . . . . . . . . . . . . . . . . . Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
Chapter 5 - Series and Pro duct Developments
Power Series Expansions . . . . . . 5.1.1 Exercise 2 . . . . . . . . 5.1.2 Exercise 2 . . . . . . . . 5.1.2 Exercise 3 . . . . . . . . Partial Fraction ions and Factorization 5.2.1 Exercise 1 . . . . . . . . 5.2.1 Exercise 2 . . . . . . . . 5.2.2 Exercise 2 . . . . . . . . 5.2.3 Exercise 3 . . . . . . . . 5.2.3 Exercise 4 . . . . . . . . 5.2.4 Exercise 2 . . . . . . . . 5.2.4 Exercise 3 . . . . . . . . 5.2.5 Exercise 2 . . . . . . . . 5.2.5 Exercise 3 . . . . . . . . Entire Functions . . . . . . . . . . 5.3.2 Exercise 1 . . . . . . . . 5.3.2 Exercise 2 . . . . . . . . 5.5.5 Exercise 1 . . . . . . . . Normal Families . . . . . . . . . . 5.5.5 Exercise 3 . . . . . . . . 5.5.5 Exercise 4 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
4 4 4 5 6 6 6 7 7 7 8 10 10 10 11 12 13 13 13 14
2
14 14 15 16 16 16 17 18 18 19 19 20 20 21 22 22 23 23 24 24 25
Conformal Mapping, Dirichlet’s Problem
27
The Riemann Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Exercise 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1.1 Exercise 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elliptic Functions
Weierstrass Theory . 7.3.2 Exercise 2 7.3.3 Exercise 1 7.3.3 Exercise 2 7.3.3 Exercise 3 7.3.3 Exercise 4 7.3.3 Exercise 5 7.3.3 Exercise 7 7.3.5 Exercise 1
27 27 27 28
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
3
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
28 29 29 30 30 31 31 32 32
Chapter 4 - Complex Integration Cauchy’s Integral Formula 4.2.2 Exercise 1 Applying the Cauchy integral formula to f ( f (z ) = e z ,
1 f (z ) 1 = f (0) f (0) = dz 2πi |z|=1 z
⇐⇒ ⇐ ⇒ 2πi 2 πi = =
|z|=1
ez dz z
Section 4.2.2 Exercise 2
Using partial fractions, fractions, we may express express the integrand integrand as z2
1 i = +1 2(z 2(z + i)
i − 2(z 2(z − i)
Applying the Cauchy integral formula to the constant function f ( f (z ) = 1,
1 1 i dz = dz = 2 2πi |z |=2 z + 1 2
1 2πi
|z|=2
1 dz z + i
−
i 2
1 2πi
1
|z|=2 z − i
dz = dz = 0
4.2.3 Exercise 1 1. Applying Cauchy’s Cauchy’s differentiation formula formula to f to f ((z ) = e z , (n − 1)! 1 = f − (0) = (n 1)
2πi
|z|=1
ez dz zn
2πi ez = dz (n 1)! |z|=1 z n
⇐⇒ ⇐ ⇒ −
2. We consider the following following cases: cases: (a) If n n 0, 0 , m 0, then it is obvious from the analyticity of z of z n (1 the integral is 0.
≥
(b) If n n
− z)
≥
m
and Cauchy’s theorem that
≥ 0, 0 , m < 0, then by the Cauchy differentiation formula,
z n (1 z )m dz = dz = ( 1)m
−
|z|=2
−
|z|=2
zn dz = dz = (z 1)|m|
−
0 ( 1)m 2πi ( m 1)! (n
− | |−
n! m +1)!
−| |
= (−1)|m| 2πi
(c) If n n < 0, 0 , m
zn
|z|=2
≥ 0, then by a completely analogous argument, 0 (1 − z ) | |− (1−z ) dz = dz = dz = dz =
m
|z|=2
m
z |n|
n
( 1) (n
−
1
2πi
| |−1)!
n m 1
| |−
n< m n m
m< n
m! |n|−1 2πi m −|n|+1)! = (−1) |n|−1
(m
| | − 1 m ≥ n
(d) If n n < 0, 0 , m < 0, then sincen sincen( z = 2, 0) = n( n ( z = 2, 1) = 1, we have by the residue formula that
||
|z |=2
(1
− z)
||
m n
z = 2πires( πires(f f ;; 0) + 2πi 2πires( res(f f ;; 1) =
|z|
4
= 12
(1
| | − 1 ≥ | |
− z)
m n
z dz + dz +
= 12
|z−1|
(1
− z)
m n
z dz
Using Cauchy’s differentiation formula, we obtain
(1
|z |=2
=
− z)
2πi ( n 1)!
m n
z dz = dz =
(1
− z)−|
|
m
z |n|
dz + dz +
z −|n| dz (1 z )|m|
|z −1|= 12 − ( |m| + |n| − 2)! ( −1)|m| 2πi ( −1)|m|−1 (|n| + |m| − 2)! |z|= 12
| | − 1)! + (|m| − 1)! · (|n| − 1)! |m| + |n| − 2 − |m| + |n| − 2 = 0 = 2πi 2 πi |n| − 1 |n| − 1 −4 3. If ρ ρ = 0, then it is trivial that | |= |z − a| |dz| = 0, so assume otherwise. If a If a = = 0, then | | − ·
(m
z
ρ
|z|=ρ
|z|−4 |dz| =
1
2πi ρ3
ρ−4 2πiρdt = πiρdt =
0
Now, assume that a that a = 0. Observe that
1
|z − a|
| − | − z
|z|=ρ
4 a − |dz | =
1
=
i
(ρe2πit
0
|z |=ρ (z −
1 2 a) (z
4
1
= (z
− a)2(z − a)2 1
− a)2 |dz| =
−
ρ2πie 4πit i dt = dt = a)2 (ρ ae2πit )2 ρ |z|=ρ (ρ
−
−
0
(ρe2πit
z
−
a 2 ρ z ) (z
− a)
−
1 2 a) (ρe−2πit
dz = dz = 2
−
−iρ 2
a
2πie 4πit ρ dt a)2 ie4πit z ρ2
|z|=ρ (z − a ) 2 (z − a)2
We consider two cases. First, suppose a > ρ. Then z Then z (z a)−2 is holomorphic on and inside 2 and ρa lies inside z = ρ = ρ . By Cauchy’s differentiation formula,
{| |
|z|=ρ
| |
}
|z − a|−4 |dz| = 2πi −aiρ2
(z
−
− a)−2 − 2z(z − a)−3
2
z = ρa
=
2πρ 2
a2 ( ρa
2 2 −2πρ( πρ (ρ2 + |a| ) 2πρ( πρ (ρ2 + |a| ) = 2 2 (ρ2 − |a| )3 (|a| − ρ2 )3 lies outside |z | = ρ = ρ,, so the function z (z −
dz
{|z| = ρ = ρ }
ρ2
− a)2 1 − 2 a( − a) ρ2 a
=
2
Now, suppose a < ρ. Then ρa inside z = ρ = ρ . By Cauchy’s differentiation formula,
| | {| | }
|z |=ρ
2 2 |z − a|−4 |dz| = 2πi −iρ2 (z − ρ ) −2 − 2z(z − ρ ) −3
a
−2πρ (a + = 2 (|a| − ρ2 )2 a −
a
ρ2 a ) ρ2 a
a
= z =a
ρ2 ) a
−2 is holomorphic on and
2πρ a2 (a
−
ρ2 2 a )
1
a
−2 − (a
ρ2 a )
2 2 − 2πρ( πρ(|a| + ρ2 ) 2πρ( πρ(|a| + ρ2 ) = = 2 2 (|a| − ρ2 )3 (ρ2 − |a| )3
4.2.3 Exercise 2 C be a holomorphic Let f : C holomorphic function function satisfying the following following condition: condition: there exists R > 0 and n N n such that f (z ) < z z R. R . For every every r R, R , we have by the Cauchy differentiation formula that for all m all m > n, n, n m! z m! (m) f f (a) dz 2π |z|=r z m+1 rm−n
→ | | | | ∀ | | ≥
Noting that m that m may write
∈
≥
≤ ≤
| | | | ≤ ||
− n ≥ 1 and letting r → ∞, we have that f that f (
m)
(a) = 0. Since f Since f is is entire, for every a
∈ C , we
f (n) (a) f ( f (z ) = f ( f (a) + f (a)(z )(z − a) + · · · + (z − a)n + f n+1 (z )(z )(z − a)n+1 ∀z ∈ C n!
where f where f n+1 is entire. entire. Since f Since f n+1 (a) = f (n+1) (a) = 0 and a Hence, f Hence, f is is a polynomial of degree at most n. n . 5
∈ C was arbitary, we have that f +1 ≡ 0 on C. n
Local Properties of Analytical Functions 4.3.2 Exercise 2
Let f Let f : C . Consider the function g function g((z ) = f z1 C be an entire function with a nonessential singularity at n n−1 at z = 0. 0. Let Let n N be minimal such that limz→0 z g (z ) = 0. Then Then the functi function on z g (z ) has an analytic continuation h( h (z) defined on all of C. By Taylor’s Taylor’s theorem, theorem, we may express express h( h (z ) as
→
∞
∈
h (0) h (0) 2 h (n−1) (0) n−1 − z g (z ) = h( h (z ) = h = h(0) (0) + z + z + ··· + z + hn (z )z n ∀z =0 n 1
1!
cn−1
where h where h n :
C
2!
− −
(n
cn−2
c0
→ C is holomorphic. Hence,
cn−1 cn−2 + n −2 + n 1 − z z
lim g (z )
z
→0
And
1)!
−
· · · + c0
= lim zh n (z ) = 0 z
→0
cn−1 cn−2 + n−2 + + c0 = lim f ( f (z ) = f (0) f (0) n − 1 z →∞ z →0 z z cn−1 2 since f f is entir entire. e. Note Note that we also obtain obtain that c0 = f (0). (0). Hence, Hence, g (z ) + zcnn− + c0 (we −2 + z n−1 are abusing notation to denote the continuation to all of C) is a bounded entire function and is therefore identically zero by Liouville’s theorem. Hence, lim g (z )
∀z = 0, f ( f (z ) = c
···
n 1z
−
−
···
n 1
− + cn−2 z n−2 + · · · + c0
Since f Since f (0) (0) = c = c 0 , we obtain that f that f is is a polynomial.
4.3.2 Exercise 4 C Let f Let f : C be a meromorphic meromorphic function function in the extended extended complex plane. plane. First, I claim that f f has finitely many many poles. Since the poles of f are f are isolated points, they form an at most countable subset ∞ ˜ pk k=1 of C. By definition, the function f ( f (z ) = f z1 has either a removable singularity or a pole at z = 0. ∞ In either case, there exists r > 0 such that f is f ˜ is holomorphic on D (0; r). Hence, Hence, pk k=1 D(0; D (0; r). Since Since ∞ this set is bounded, pk k=1 has a limit point p point p.. By continuity, continuity, f ( f ( p) p) = and therefore p is a pole. Since p Since p is an isolated point, there must exist N exist N N such that k N, N , pk = p. p . Our reasoning in the preceding Exercise 2 shows that for any pole pk = of order mk , we can write in a neighborhood neighborhood of p p k
∪ {∞ {∞}} → ∪{∞}
{ }
{ }
∈ ∈
∀ ≥
cmk cmk −1 f (z ) = + + (z pk )mk (z pk )mk −1
−
−
···
c1 + + c0 +gk (z ) z pk
−
f k (z )
where g where g k is holomorphic in a neighborhood of p p k . If p = p =
{ } ⊂
∞ ∞
∞ is a pole, then analogously, c 1 ∞ −1 · · · + + + c0 +˜ g∞ (z ) ∞ −1 z
cm cm f ( f ˜(z ) = m∞ + z ∞ zm
˜∞ (z ) f
where g˜∞ is holomorphic holomorphic in a neighborhood neighborhood of 0. For clarification, clarification, the coefficients coefficients cn depend on the pole, 1 ˜ but we omit the dependence for convenience. Set f ∞ (z ) = f ∞ z and
− n
h(z ) = f ( f (z ) − f ∞ (z )
f k (z )
k =1
I claim that h that h is (or rather, rather, extends extends to) an entire, entire, bounded function. function. Indeed, Indeed, in a neighborhood of each z k , n h can be written as h( h (z ) = gk (z ) f ( z ) and in a neighborhood of z z ∞ as h as h((z ) = g ∞ (z ) i k=1 f k (z ), =k k ˜ (z ) = h 1 is evidently bounded in a neighborhood of 0 since which are sums of holomorphic functions. h z the f the f k z1 are polynomials and f z1 f ∞ z1 = g˜∞ (z), which is holomorphic holomorphic in a neighborhood neighborhood of 0. By Liouville’s theorem, h theorem, h is a constant. It is immediate from the definition of h of h that f that f is is a rational function.
−
−
6
−
Calculus of Residues 4.5.2 Exercise 1 Set f ( f (z ) = 6z 3 and g (z ) = z 7 2z 2 z 5 z + 1. Clearl Clearly y, f, g are entire, entire, f ( f (z ) > g (z ) z = 1, and 7 5 3 f ( f (z ) + g + g((z ) = z 2z + 6z 6z z + 1. By Rouch´e’s e’s theorem, f and f + g + g have the same number of zeros, which is 3 (counted with order), in the disk z g (z ) z = 2. By Rouch´e’s e’s theorem, z 4 6z +3 has 4 roots (counted (counted with order) in the open disk z g (z ) z = 1. By Rouch´e’s e’s theorem, z 4 6z + 3 = 0 has 1 root in the in the open disk z > 0, >> 0,
−1 2
z √ √ √ )(z + √ 2i) − 3i)(z )(z + 3i)(z )(z − 2i)(z
γ 1 : [ R, R]
→ C, γ 1(t) = t; t ; γ 2 : [0, [0, π] → C, γ 2 (t) = Re
−
it
and let γ let γ be be the positively oriented closed curve formed by γ 1 , γ 2 . By the residue formula and applying iz the Cauchy integral formula to ze+ai to compute res(f res( f ;; ai), ai),
√
√
f ( f (z )dz = dz = 2πires( πi res(f f ;; 3i) + 2πi 2 πires( res(f f ;; 2i)
γ
It is immediate from Cauchy’s integral formula that
√
√ √ √ √ √ √ · 3π − − √ 3|= √ √ √ z 2 (z + i 2)−1 (z 2 + 3)−1 (i 2)2 √ √ √ · − dz = dz = 2 πi = 2π (z − i 2) ((i ((i 2)2 + 3)(2i 3)(2i 2) | − √ 2|=
|
2πires( πi res(f f ;; 3i) =
z i
√
2πires( πires(f f ;; 2i) =
z
i
(i 3)2 z 2 (z + i 3)−1 (z 2 + 2)−1 dz = dz = 2πi = (z i 3) ((i ((i 3)2 + 2)(2i 2)(2i 3)
Using the reverse triangle inequality, we obtain the estimate
γ 2
Hence, 2
∞
0
f (z )dz
≤ |
R2
πR 3 3 R2
0 , R → ∞ − | | − 2| → 0,
∞ x2 x2 = dx = dx = ( 3 x4 + 5x 5x2 + 6 5x2 + 6 −∞ x4 + 5x
√ √ − 2)π 2)π ⇒
8
∞
0
√ − √
x2 dx ( 3 2)π 2)π = 4 2 x + 5x 5x + 6 2
(e) We may write cos(x cos(x) eix = Re 2 x2 + a2 ( x + a2 ) eiz z 2 +a2 ,
So set f set f ((z ) =
which has simple poles at
±ai. ai. First, suppose that a that a = 0. For R For R >> 0, >> 0, define [0, π] → C, γ 2 (t) = Re γ 1 : [−R, R] → C, γ 1 (t) = t; t ; γ 2 : [0, it
and let γ let γ be be the positively oriented closed curve formed by γ 1 , γ 2 . By the residue formula,
i(ai)
f ( f (z )dz = dz = 2πires( πi res(f f ; ai) ai) = 2πi
γ
π
f ( f (z )dz =
0
γ 2
π
≤
since e since e −R sin(t)
eiR[cos(t)+i sin(t)] it Re dt = R2 e2it + a2 Re−R sin(t) R2
0
≤ 1 on [0, [0, π]. Hence,
−
a2
dt
−a
πe · e(2ai = (2ai)) a
π
eiR cos(t) e−R sin(t) it Re dt R2 e2it + a2
0
≤ R2πR 0 , R → ∞ − a2 → 0,
∞ cos(x cos(x)
1 ∞ eix πe−a = Re dx = dx = x2 + a2 2 −∞ x2 + a2 2a 0 If a a = 0, then the integral does not converge. log(z ) (h) Define f Define f ((z ) = (1+ [ π2 , 32π ). For R For R >> 0, >> 0, z 2 ) , where we take the branch of the logarithm with arg( z ) define 1 1 −it 1 it γ 1 : [ R, ] t ; γ 2 : [, π] e ; γ 3 : [ , R] t ; γ 4 : [0, [0, π] C, γ 1 (t) = t; C, γ 2 (t) = C, γ 3 (t) = t; C, γ 4 (t) = Re R R R and let γ let γ be be the positively oriented closed curve formed by the γ i .
∈ −
− − →
−
→
≤ | | ≤ | | −| | − log R
π
f (z )dz
0
γ 2
→
3π
R(log |R| + 2 ) ≤ π 0 , R → ∞ 1 |R2 − 1| → 0, R 1 log R + it R(log |R| + π) → 0, Rdt ≤ π 0 , R → ∞ 2 R 1 R2 − 1 dt
R2
π
f ( f (z )dz
0
γ 4
−1 + 3π 2 1
→
By the residue formula and applying the Cauchy integral formula to f ( f (z )/(z + i) to compute res(f res( f ;; i),
π
f ( f (z )dz = dz = 2πires( πi res(f f ;; i) = 2πi
γ
2
log(z ) π 2 · (log(z | = = = 2πi · z + i) 2i 2 z i
Hence, π2 = 2
− 1 log(te log(teiπ ) f ( f (z )dz+ dz + f ( f (z )dz = dz = dt+ dt+ γ 1 γ 3 −R 1 + t 2
R
=2
1
R
R
log(t log(t) +π 1 + t2
R
1
R
R
1
R
1
− R log( t ) log(t log(t) dt = dt = dt+ dt+ 1 + t2 −R 1 + t2
1 dt = dt = 2 1 + t2
R
1
R
||
R
1
R
log(t log(t) π 2 + 1 + t2 2
∞ where we’ve used 0 1+1t2 dt = dt = limR→∞ arctan(R arctan(R) − arctan(0) = π2 . Hence, R ∞ log(t log(t log(t) log(t)
1
R
1 + t2
⇒
dt = dt = 0
0
Lemma Lemma 1. Let U, V
1 + t2
dt = dt = 0
⊂ C be open sets, F : U → V V a holomorphic function, and u : V → C a harmonic → C is harmonic. function. Then u u ◦ F : U → Proof. Since u Since u ◦ F is F is harmonic on U on U if and only if it is harmonic on any open disk contained contained in U in U about about every point, we may assume without loss of generality that V V is an open disk. Then there there exists a holomorphic holomorphic function G : V → C such that u = Re(G Re(G). Hence, Hence, G ◦ F : U → C is holomo holomorph rphic ic and Re (G ◦ F ) F ) = u ◦ F , F , which shows that u that u ◦ F F is harmonic. In what follows, a conformal map f : Ω → C is a bijective holomorphic map. 9
1
−R 1 log(t log(t) dt+ dt + π dt 1 + t2 −R 1 + t 2
Harmonic Functions 4.6.2 Exercise 1 Let u : D (0; ρ) bounded. I am going to cheat a bit and assume Schw Schwarz’s arz’s theorem theorem R be harmonic and bounded. for the Poisson Poisson integral integral formula, formula, even though Ahlfors discusses it in a subsequen subsequentt section. section. Let
→
1 P u (z ) = 2π
2π
Re
0
reiθ z u(reiθ )dθ iθ re + z
−
denote the Poisson integral for u on some circle of fixed radius r < ρ. Sinc Sincee u is continuous, P u (z ) is a harmonic function in the open disk D(0; D (0; r) and is continuous on the boundary z = r = r . We want to show that u that u and and P P u agree on the annulus, so that we can define a harmonic extension of u of u by by setting u setting u(0) (0) = P = P u (0). Define g(z ) = u( u (z ) P u (z )
{| |
}
−
and for for > 0 define g (z ) = g( g (z ) + log
| | ∀ z r
0 < z
| | ≤ r
Then g is harmonic in D (0; r) and continu continuous ous on the boundary boundary.. Further urthermor more, e, since since u is bounded by hypothesis and P u is bounded by construction on D(0; r), we have that g is bounded on D(0; r). g (z ) is harmonic in D in D (0; r) and continuous on the boundary since both its terms are. Since log r−1 z ,z 0, we have that limsup g (z ) 0 such that 0 < z δ g (z ) 0. 0. Sinc Sincee g is harmonic on the closed annulus δ z r , we can apply the maximum principle. Hence, g Hence, g assumes its maximum in z = δ = δ z = r = r . But, g But, g (z ) 0 z = δ = δ , by our choice of δ δ , and since u, since u, P u agree on z = r = r , we have that g that g (z ) = 0 z = r = r.. Hence, g (z ) 0 0 < z r
| | ≤ ⇒ ⇒
{ ≤ ≤ | | ≤ } ≤ ∀ | |
≤
{| |
{| |
}
}∪{| } ∪{| | } ∀| |
≤ ∀ | | ≤ Letting Letting → 0, we conclude that g (z ) ≤ 0 ∀0 < |z | ≤ r, r , which shows that u that u ≤ P on the annulus. annulus. Applying Applying the same argument to h = P = P − u, we conclude that u = P on 0 < |z | ≤ r. r . Setting u(0) = P = P (0) defines a u
u
u
u
harmonic extension of u of u on the closed disk.
4.6.2 Exercise 2 If f f : Ω = r1 < z < r2 identically zero, then there is nothing to prove. prove. Assume Assume otherwise. otherwise. Since C is identically the annulus is bounded, f bounded, f has has finitely many zeroes in the region. Hence, for λ R, the function
{
| |
}→
∈
g(z ) = λ log z + log f ( f (z )
||
|
|
is harmonic in Ω a1 , , an , where a1 , , an are the zeroes of f . f . Applying Applying the maximum maximum principle to g (z ), we see that g (z ) takes its maximum in ∂ Ω. ∂ Ω. Hence,
\ { ··· } ··· | | λ log |z | + log |f ( f (z )| = g = g((z ) ≤ max {λ log(r log(r1 ) + log(M log(M (r1 )), )), λ log(r log(r2 ) + log(M log(M (r2 ))} ∀z ∈ Ω \ {a1 , · · · , a } |z| = r Thus, if | = r,, then we have the inequality λ log(r log(r) + log log (M (r)) ≤ max {λ log(r log(r1 ) + log(M log(M (r1 )), )), λ log(r log(r2 ) + log(M log(M ((r2 ))} We now find λ find λ ∈ R such that the two inputs in the maximum function are equal. r1 M (r2 ) λ log(r log(r1 ) + log(M log(M (r1 )) = λ log(r log(r2 ) + log(M log(M (r2 )) ⇒ λ log = log r2 M (r1 ) n
≤
Hence, λ Hence, λ = = log
M (r)
M (r2 ) M (r1 )
log
r1 r2
−1
. Exponentiatin Exponentiatingg both sides of the obtained obtained inequality inequality,
exp log(M log(M ((r2 )) + log
M (r2 ) M (r1 )
log
r2 r
log
r1 r2
10
= exp log(M log(M (r2 ) + log
M (r1 ) M (r2 )
α
= M ( M (r1 )α M (r2 )1−α where α where α = log
r2 r
−1
r2 r1
log
. I claim that equality holds if and only if f if f ((z ) = az λ , where a where a
∈ C, λ ∈ R.
It is obvious that equality holds if f ( f (z ) is of this form. Suppose quality holds. Then by Weierstrass’s extreme value theorem, for some z0 = r = r,, we have
| |
|f ( f (z0 )| = M = M ((r ) =
r1 r
λ
M (r1 )
⇒
z0λ f ( f (z0 ) = r = r 1λ M (r1 )
But since the bound on the RHS holds for all r1 < z < r2 , the Maximum Modulus Principle tells us that z λ f ( f (z ) = a C r1 < z < r2 . Hence, Hence, f (z ) = az −λ . But λ is an arbitrary real parameter, from which the claim follows.
∈ ∀
| |
| |
4.6.4 Exercise 1 We seek a conformal mapping of the upper-half plane
H+
φ(z ) = i is a conformal map of D onto inverse is given by
H+
onto the unit disk
D.
lemma The map φ map φ given by
1+z 1 z
−
and is a bijective continuous map of ∂ of ∂ D onto φ−1 (w) =
R
∪{∞}, where 1 → ∞. Its
w i w + i
−
Proof. The statements about conformality and continuity follow from a general theorem about the group of linear fractional transformations of the Riemann sphere (Ahlfors p. 76), so we just need to verify the images. For z or z D, 2 1 + z 1 z 1 z Im(φ Im(φ(z )) = Im i = 2 > 0 1 z 1 z 1 z
∈
− −| | · − − | − | ⇐⇒ ⇒ z ∈ ∂ D. In particular, φ since |z | 0. > 0. Furthermore, observe that φ−1 (w) = 1 ⇐ Im( w) = 0. ˜ = U ◦ ◦ φ : ∂ D → C is a piecewise continuous function since U is U U is bounded and we therefore can ignore the fact that φ(1) φ (1) = ∞. By Poisson’s formula, the function
1 P U ˜ (z ) = 2π is a harmonic function in the open disk
D.
2π
eiθ + z ˜ iθ Re iθ U ( U (e )dθ e z
−
0
By Lemma 1, the function
2π
1 P U = P ˜ ◦ φ−1 (z ) = U (z ) = P U
2π
Re
0
eiθ + φ−1 (z ) ˜ iθ U ( U (e )dθ eiθ φ−1 (z )
−
is harmonic in H+ . Fix w Fix w 0 D and let x let x 0 + iy0 = z0 = φ −1 (w0 ). Let P Let P w0 (θ) denote the Poisson kernel. We − 1 iθ apply the change of variable t = ϕ = ϕ (e ) to obtain
∈
1 dθ 1 P w0 (θ) = 2π dt 2π
=
2 π (z0
− 1
− −
z0 i z0 +i
| −
z0 i z0 +i
−
− · −
−
2
t i t+i
1
2
y0 i)(t )(t + i) (t
t i t+i
− 2 t−i
2
=
t+i
2
− − i)(z )(z0 + i)|
1 2π
=
11
2 |z0 + i|2 − |z0 − i|2 · ((t (( t + i) − (t − i)) 2 − 2 |t + i|2 (z0 − i) − − ( z + i ) 0 + t i t i
2 y0 1 2 = π 2 z0 t π (x0
· | − |
· − yt)02 + y2 0
Hence,
1 ∞ P U ( x, y ) = U π −∞ (x
−
y U ( U (t)dt t)2 + y2
˜ (z) at the points is a harmonic function in H+ . Furthermore, since the value of P of P U U ˜ (z ) for z = 1 is given by U ( of continuity and since φ since φ −1 (∂ D) = R , we conclude that
| |
∪{∞} ˜ ◦ ◦ φ−1(x, 0) = U ( P (x, 0) = P ˜ ◦ φ−1 (x, 0) = U U (x, 0) at the points of continuity x ∈ R. U U
U
4.6.4 Exercise 5 I couldn’t figure out how to show that log f ( f (z ) satisfies the mean-value property for z 0 = 0, r = 1 without π first computing the value of 0 log log sin(θ sin(θ )dθ. dθ.
|
Since sin(θ sin(θ ) θ θ [0, [0 , π2 ], 1 origin. Hence, for δ for δ > 0,
≤ ∀ ∈
π
2
0
|
θ
π
≥ sin( ) is continuous on [0, [0, 2 ], where we’ve removed the singularity at the θ
| −
θ log dθ = dθ = lim δ →0 sin(θ sin(θ )
π
2
δ
θ log dθ = dθ = sin(θ sin(θ) π
By symmetry, it follows that the improper integral exists. Again by symmetry, π
2
0
1 log sin( sin(θ)dθ = dθ = 2
π
2
0
π
2
π
log(sin(θ log(sin(θ ))dθ ))dθ = =
2
0
π
2
π
log θ dθ
| | − lim →0
0
δ
2
log sin(θ sin(θ ) dθ
|
δ
|
log sin(θ sin(θ) dθ exists and therefore
|
log cos( cos(θ)dθ, dθ, hence π
2
1 1 sin(2θ sin(2θ) dθ = dθ = 2 2
log
0
π
0
where we make the change of variable ϑ = 2θ to obtain the last equality. Since we conclude that π log sin( sin(θ )dθ = dθ = π log(2)
−
0
π
0
π
2
sin(2θ sin(2θ)dθ
0
log sin(θ sin(θ ) dθ
|
|
− π4 log(2)
π log(2) 4
sin(ϑ sin(ϑ)dϑ
2
0
1 log sin( sin(θ) cos( cos(θθ)dθ = dθ = 2 1 = 4
π
π
sin(θ)dθ = dθ = 2 0 log sin(
π
log sin( sin(θ )dθ, dθ,
2
0
We now show that for f ( f (z ) = 1 + z, + z, log f ( f (z ) satisfies the mean-value property for z0 = 0, r = 1. Observ Observee that
|
|
1 1 1 log 1 + eiθ = log (1 (1 + cos(θ cos(θ ))2 + sin2 (θ) = log 1 + 2 cos( cos(θ) + cos2 (θ) + sin2 (θ) = log 2 + 2 cos( cos(θ ) 2 2 2
2π
2π
log 1 + e
0
1 1 + cos(θ cos(θ) = log 2 + log 2 2
||
Substitutin Substitutingg and making the change change of variable variable 2ϑ 2 ϑ = θ = θ,, iθ
dθ = dθ =
0
1 log log 2 + log cos cos2 (θ ) 2
π
dθ = dθ = 2π log log 2+
0
|
|
|
1 + cos(2ϑ cos(2ϑ) log dϑ = dϑ = 2π log log 2+ 2
π
0
By symmetry symmetry,, integrat integrating ing log cos2 (θ) over [0, [0, π] is the same as integrating log sin sin2 (θ) over [0, [0, π]. Hence, 2π
π
log sin2 (ϑ) dϑ = dϑ = 2π log log 2 + 2
log 1 + eiθ dθ = dθ = 2π log log 2 +
0
0
12
π
log sin(ϑ sin(ϑ) dϑ = dϑ = 0
0
|
log log cos cos2 (ϑ)dϑ
4.6.4 Exercise 6 C be an entire holomorphic function, and suppose that z −1 Re(f Let f Let f : C Re(f ((z )) formula (Ahlfors (66) p. 168), we may write
→ 0, 0 , z → ∞. By Schwarz’s
→
1 ζ + + z dζ f ( f (z ) = Re(f Re(f ((ζ )) )) 2πi |ζ |=R ζ z ζ
|f ( f (z ) Fix z Fix z
∈ C and let
R
2
∀ |z| < R
∀ ≥ ∀ ≤ | | || − ≤ |≤ −| | { | |} | | − ≤ ≤ · − | |
Let Let > 0 be given and R and R0 > 0 > 0 such that R By Schwarz’s formula,
− −
R
R 0 ,
Re(f (z )) z
< . Let R Let R be be sufficiently large that R that R >
R
2
> R 0.
z < R,
2
R 2π
2π
Reiθ + z dθ Reiθ z
0
2π
R 2π
0
R + z R + R dθ = dθ = R R = 4R R z R R2
· −
> max R0 , z . By Cauchy’s differentiation formula, 1 f (z ) = 2π
R
|w|= 2
f (w) dw (w z )2 2π
1 R 4R 2π 2
1
R
0
2
1 2π
−
2π R 2
iθ f ( R 2e )
R iθ e
0
z
2
2 dθ
R2 dθ = 8 2 dθ = (R 2 z )2 z
− ||
Letting R Letting R , we conclude that f (z ) 8 8 . Since z Since z C was arbitrary, we conclude that f (z ) 8 z Since Since > 0 was arbitrary, we conclude that f (z) = 0, which shows that f that f is is constant.
→ ∞
|
|≤
∈
| ∀ ∈ C.
|
4.6.5 Exercise 1 Let f : C C be an entire holomorphic function satisfying f ( f (R) R and f (i R) f ( f (z ) f ( f (z ) vanishes on the real axis. By the limit-point uniqueness theorem that
−
→
· ⊂ i · R. Since f Since f ((R) ⊂ R ,
⊂
f ( f (z ) = f = f ((z ) z
Since f Since f ((iR)
∀ ∈ C
⊂ iR, f ( f (z ) + f ( f (−z ) vanishes anishes on the imaginary imaginary axis. By the limit-point limit-point uniqueness uniqueness theorem that f ( f (z ) = −f ( f (−z ) ∀z ∈ C
Combining these two results, we have f ( f (z ) =
−f (−z) = −f ( f (−z ) = −f ( f (−z ) ∀z ∈ C
4.6.5 Exercise 3 Let f : D f (z ) = 1 z = 1. 1. Let Let φ : C be holomorphic and satisfy f ( fractional transformation z i φ(z ) = z + i
→
|
|
∀ | | −
C
∪ {∞ {∞}} → C ∪{∞} be the linear
◦ ◦ ◦ + → | | ∀| ∀ | |
C. By the maximum Consider the function g = φ −1 f φ : H maximum modulus principle, principle, f ( f (z ) 1 z 1. + + − 1 ˜ Hence, g Hence, g : H f (z ) = 1 z = 1, φ 1, φ (f (z )) R z = 1. Hence, f ( f (R) R. By the Schwarz H . Since f ( C satisfying g Reflection Principle, g Principle, g extends to an entire function g : C satisfying g (z ) = g( g (z ). Define f ˜ = φ g φ−1 : C C
→
| ⊂
∈ ∀| ∀ | | → ◦ ◦ → Then f f ˜ is meromorphic in C since φ has a pole at z = − i and φ−1 has a pole at z = 1.
| ≤ ∀ | | ≤
In partic particula ular, r, ˜ f f has finitely many poles. We proved proved in Problem Problem Set 1 (Ahlfors (Ahlfors Section 4.3.2 Exercise Exercise 4) that a function meromorphic in the extended complex plane is a rational function, so we need to verify that f doesn’t f ˜ doesn’t have an essential singularity at . But in a neighborhood of 0,
∞
◦
1+ 1 f ˜ = φ = φ g i z 1
1
z
−1 z
◦
= φ = φ g i
z + 1 z 1
−
which which is evidently evidently a meromorp meromorphic hic function. Alternativ Alternatively ely,, we note that
∀ |z| ≥ 1,
−
− onto H . So the image of f ˜ in in a suitable neighborhood of is not dense in theorem then tells us that f cannot f ˜ cannot have an essential singularity at .
∞ ∞
H
13
∞
C.
≥ f ( f ˜(z )
1 since g maps
The Casorati-Weierstrass
Chapter 5 - Series and Product Developments Power Series Expansions 5.1.1 Exercise 2 We know that in the region Ω = z : Re(z Re(z ) > 1 > 1 , ζ (z ) exists since
{
}
1 1 1 1 = Re(z) Im(z)i = Re(z) log(n)Im(z )i = Re(z) z n n n n n e
∞
and therefore n=1 n1z is a convergent harmonic series; absolute convergence implies convergence by comN 1 pleteness. Define ζ Define ζ N Clearly, ζ N N (z ) = N is the sum of holomorphic functions on the region Ω. I claim n=1 nz . Clearly, ζ that (ζ (ζ N ζ on any compact subset K Ω. Since Since K is K is compact and z Re(z Re( z ) N )N ∈N converge uniformly to ζ on is contin continuous, uous, by Weierstrass eierstrass’s ’s Extreme Extreme Value Theorem Theorem z0 K K such that Re(z Re( z0 ) = inf z∈K Re(z Re( z ). In 1 1 1 particular, Re(z Re(z0 ) > 1 > 1 since z since z 0 Ω. Hence, z . So by the Triangle Inequality, n nRe(z) nRe(z0 )
∈
N
∀z ∈
1 Ω, Ω , nz n=1
≤ ≤ ∃ ≤ ≤ N
n=1
By Weierstrass’s M-test, we attain that ζ n holomorphic in Ω and
N
1 nz
n=1
∈
⊂ ⊂
1
nRe(z0 )
<
→
∞
n=1
→ ζ ζ uniformly on K .
1 nRe(z0 )
<
∞
Therefore Therefore by Weierstrass’s eierstrass’s theorem, theorem, ζ is
N N ∞ − log(n − log(n log(n) log(n) − log(n)z − ζ (z ) = lim lim ζ N (z ) = lim lim log(n log(n)e = li m = N →∞ N →∞ N →∞ nz nz n=1 n=1 n=1
Section 5.1.1 Exercise 3 Lemma 2. Set an = ( 1)n+1 . If
−
∀z ∈ C with Re (z) ≥ Re (z0).
∞
an n=1 nz converges
for some z0 . Then Then
∞
an n=1 nz converges
Proof. If n∞=1 nazn0 conveges, there exists an M > 0 which bounds the partial sums. Let m Let m summation summation by parts, parts, we may write N
N
an an 1 1 = = z −z0 z z z − z 0 0 n n n N n=m n=m
Hence,
N
an nz n=m
Observe that
1 (n + 1)z −z0
1
−n−
≤ |
z z0
M
1 N z−z0
− | | −
m 1
− a n
n=1
nz0
−
n
n=m
k=1
N 1
1
| + M n −
= e− log(n+1)(z−z0 )
N 1
z z0
+ M
−
n=m
e− log(n)(z−z0 )
14
ak kz0
1 (n + 1)z −z0
1 (n + 1)z−z0
1
−n−
z z0
− −
1 = z z0
≤ N ∈ ∈ N. Using 1
−n−
z z0
log(n+1)
log(n)
uniformly on
e−t(z−z0 ) dt
1
log(n+1)
≤ |z − z0|
|Re(z Re(z ) − Re(z Re(z0 )| − log(n+1)(Re(z)−Re(z0 )) − e− log(n)(Re(z)−Re(z0)) e−t(Re(z)−Re(z0 )) dt = dt = e |z − z0|
log(n)
≤ e− log( )(Re( )−Re( )) − e− log( +1)(Re( )−Re( n
z
z0
n
z
z0 ))
1
=
nRe(z) Re(z0 )
−
− (n + 1)Re(1 )−Re( z
z0 )
Since this last expression is telescoping as the summation ranges over n, n , we have that
N
an nz n=m
≤
M N Re(z)−Re(z0 )
2M
≤ mRe( )−Re( z
Corollary 3. If
of Re (z )
mRe(z)−Re(z0 )
N an n=1 nz−z0 are
Hence, the partial sums of
∞
mRe(z)−Re(z0 )
M
+
z0 )
+
M
an n=1 nz converges
m N
+ M
1 N Re(z)−Re(z0 )
− ≤
Re(z ) Re(z0 )
−
1
1
− mRe( )−Re( z
4M mRe(z)−Re(z0 )
z0 )
→ 0, 0 , m → ∞
Cauchy and therefore converge by completeness.
for some z some z = z = z0 , then
∞
an n=1 nz conveges
uniformly on compact subsets
≥ Re (z0)}. ⊂ {Re(z Proof. Let K Let K ⊂ Re(z ) ≥ Re(z Re( z0 )} be compact. Since z Since z → Re(z Re(z ) is continuous, there exists z exists z 1 ∈ K such K such that ∞ Re(z Re(z ) ≥ Re(z Re(z1 ) ∀z ∈ K . Sinc Sincee Re( Re(z1 ) ≥ Re(z Re(z0 ), conver con verges. ges. The proof of the preceding lemma lemma =1 { {
shows that we have a uniform bound
N
an nz n=m
≤
an nz1
n
4M mRe(z)−Re(z0
4M ≤ ) mRe( )−Re( z1
z0 )
where M where M depends depends only on z on z 0 . The claim follows immediately from the M the M -test -test and completeness.
Since the series f ( f (z ) = n∞=1 annz converges if we take z R>0 (the well-known alternating series), we have by the lemma that n∞=1 annz converges Re(z Re(z ) > 0. > 0. We now show that this series is holomorphic holomorphic on the region Re(z Re(z ) > 0 > 0 . Define a sequence of functions (f ( f N N )N ∈N by
{
}
∈
∀
N
( 1)n+1 f N N = nz n=1
−
C : Re(z It is clear that f that f N Re(z ) > 0 > 0 N is holomorphic, being the finite sum of holomorphic functions. Set Ω = z and let K let K Ω be compact. Since the f N are just the partial sums of the series, we have by the corollary to N the lemma that f that f N f f uniformly on K on K .. By Weierstrass’s theorem, f is f is holomorphic in Ω. N ∞ an 1−z To see that (1 2 )ζ (z ) = n=1 nz on Re(z Re(z ) > 1 > 1 , observe that
{ ∈
⊂ ⊂
−
→
− − N
1 z
(1 − 2 − )
{
N
}
N
( 1)n+1 1 = z n nz n=1 n=1
1 nz n=1
}
N
1 2 (2n (2n)z n=1
−
N
( 1)n+1 1 =2 z n nz N 0 given.
5.1.2 Exercise 2
−
Differentiating 1
2αz + αz + z 2
− 12
with respect to z to z , we obtain p1 (α) =
2α 2z 3 2(1 2αz + αz + z 2 ) 2
−
−
| =0 = α z
−
To compute higher order Legendre polynomials, we differentiate 1 obtain the equality α (1
−z
− 2αz + αz +
3 z2) 2
=
∞
n=1
n 1
nP n (α)z −
α z = (1 1 2αz + αz + z 2
⇒ √ − − 15
2αz + αz + z 2
− 12
2
− 2αz + αz + z )
and its Taylor series to
∞
n=1
nP n (α)z n−1
Hence,
∞
αP n (α)z
n
n=0
∞
−
P n (α)z
n+1
∞
=
n=0
n 1
nP n (α)z −
n=0
∞
−
n
2αnP n (α)z +
n=0
∞
nP n (α)z n+1
n=0
Invoking elementary limit properties and using the fact that a function is zero if and only if all its Taylor coefficients are zero, we may equate terms to obtain the recurrence αP n+1 (α)
− P (α) = (n + 2)P 2)P +2 (α) − 2α(n + 1)P 1)P +1 (α) + nP (α) n
n
n
n
⇒ P +2(α) = n +1 2 [(2n [(2 n + 3)αP 3)αP +1 (α) − (n + 1)P 1)P (α)] n
n
So,
− − − − − − P 2 (α) =
1 3
P 3 (α) = P 4 (α) =
1 4
1 3α2 2
n
1 5α (3α (3α2 2
1)
3α)
1 3 (3α (3α2 2
1 7α (5α (5α3 2
1
1 5α3 2
2α =
1) =
− 3α
1 (35α (35α4 8
− 30 30α α2 + 3)
5.1.2 Exercise 3 Observe that
∞
∞
sin(z sin(z ) 1 ( 1)n 2n+1 ( 1)n 2n = z = z z z n=0 (2n (2n + 1)! (2n (2 n + 1)! n=0
−
−
− − − − − − −
So, sin(z ) = 0 in some open disk about z about z = 0. Hence, the function z function z log sin(z ) is holomorphic in an open disk about z about z = 0, where we take the principal branch of the logarithm. Substituting, z
log
sin(z sin(z ) = log 1 z
1
∞
=
sin(z sin(z ) z
1 2 3! z
=
1 2 3! z
( 1)n 2n n=0 (2n+1)! z
∞
1
∞
1 4 5! z
1 6 + 7! z m
−
m
m
m=1
m=1
Set P Set P ((z ) =
z
→
[z 8 ]
m
− 5!1 z4. Then log
− − − sin(z sin(z ) = z
=
z2 3!
z 6 P ( P (z ) + [z [ z 8 ] P ( P (z )2 + [z [z 8 ] P ( P (z )3 + [z [z 8 ] + + + 7! 1 2 3
z 4 z 6 1 + + 5! 7! 2
z4 (3!)2
−
2z 6 (3!)(5!)
z6 + + [z [z 8 ] 3(3!)3
1 4 1 6 −16 z2 − 180 [z 8 ] z − z + [z 2835
=
Partial Fractions and Factorization 5.2.1 Exercise 1 From Ahlfors p. 189, we obtain for z 1. > 1. So it suffices to consider the case ˜hc = 2hc 1. Then
≥
→ ∞
→ ∞ −
∞ >
| |
∞
n=1
1
|b | n
˜ c +1 h
=
∞
1
2hc 1+1
−
|b | n
n=1
=
∞
1
|a | n
n=1
hc
But this shows that the genus of the canonical product associated to ( an ) is at most h most hc 1, which is obviously a contradiction. Taking f Taking f to to be a polynomial shows that this bound is sharp. I claim that the genus of f is f ˜ is bounded from above by 2 h +1. Indeed, 2h 2h + 1 2deg(g 2deg(g (z )) = deg(g deg(g (z 2 )), and we showed above that ˜hc 2h 2 hc + 1 2h 2 h + 1. This bound is also sharp since we can take
−
≤
≥
≤
f ( f (z ) =
∞
− ⇒ z n2
1
n=1
f ( f (z 2 ) =
− 1
n=0 =0
z z en n
f ( f (z ) is clearly an entire function of genus 0, and the genus of the canonical product associated to ( n)n∈Z is 1, from which we conclude the genus of f of f ((z 2 ) is 1 .
5.2.4 Exercise 2 Using Legendre’s Legendre’s duplication duplication formula formula for the gamma function (Ahlfors (Ahlfors p. 200), Γ
1 = 6
√ πΓ 2 · 1 6
Γ
1 6
6
π πz ) (Ahlfors
Applying the formula Γ(z Γ(z )Γ(1
− z) = sin( √ 1 = π2 Γ 2 3
2
Γ
3
3
p. 199), we obtain
· 3
−1 √ 2 1 1 1 1 2 − · 6 2 Γ + = π2 3 Γ Γ 1 2
1 sin π 3 π 19
1 3
1 = 2− 3
1 2
3 π
Γ
1 3
2
2hc +1
5.2.4 Exercise 3 It is clear from the definition of the Gamma function that for each k
∈ Z≤0,
1 + kz Γ(z Γ(z ) k = 0 z Γ(z Γ(z ) k = 0
f ( f (z ) =
extends to a holomorphic function in an open neighborhood of k of k.. We abuse notation and denote the extension z >0 also by 1 + k Γ(z Γ(z ) and z and z Γ(z Γ(z ). lemma For any k Z ,
∈
Γ(z Γ(z ) =
Γ(z Γ(z + k )
k + j j =1 (z + j
− 1)
∀z ∈/ Z
Proof. Recall that Γ(z Γ(z ) has the property that the Γ( z + 1) = zΓ( z Γ(zz ). We proceed by induction. The base case Γ(z +k) is trivial, so assume that Γ(z Γ( z ) = k (z+j −1) for some k some k N. Then
∈
j =1
Γ(z Γ(z + (k ( k + 1))
k +1 + j j =1 (z + j
− 1)
=
Γ((z Γ((z + k) + 1)
=
k+1 + j j =1 (z + j
− 1)
∈ Z≤0,
(z + k )Γ(z )Γ(z + k)
=
k +1 + j j =1 (z + j
− 1)
Γ(z Γ(z + k )
k + j j =1 (z + j
− 1)!
= Γ(z Γ(z )
Corollary 4. For any k
lim (z
z
→k
−
( 1)k k )Γ(z )Γ(z ) = k!
− ||
∈ Z≤0. Immediate from the preceding lemma is that Γ(z Γ(z + |k | + 1) Γ(1) (−1) lim (z + |k |)Γ(z )Γ(z ) = lim (z + |k |) +1 = = |k|! →−| | →−| | (−1) (−2) · · · (− |k |) j | − 1) =1 (z + | j
Proof. Fix k Fix k
k
z
Let k Let k
k
z
∈ Z≤0. Then
k
k j
(1 kz )Γ(z )Γ(z ) 1 1 1 (z k) Γ(z Γ(z ) res(Γ; k ) = Γ(z Γ(z )dz = dz = dz = dz = dz z 2πi |z−k|= 12 2πi |z−k|= 12 1 k 2πi |z−k|= 12 z k
Since the function 1 + integral formula,
z k
−
−
−
−
Γ(z Γ(z ) extends to a holomorphic function in a neighborhood of k , by Cauchy’s
1 (z k ) Γ(z Γ(z ) dz = dz = (z 2πi |z−k|= 12 z k
−
−
−
( 1)k k) Γ(z Γ(z ) z=k = k!
|
− ||
where use the preceding lemma to obtain the last equality. Thus, res (Γ; k ) =
( 1)k k!
− ∀k ∈ Z≤0 ||
5.2.5 Exercise 2 Lemma 5.
∞
log
0
1
−
1 e−2πx
dx = dx =
π 12
Proof. Let 1 >> 1 >> δ > 0. > 0. Consider the function log(1z−z) , which which has the power power series representation log(1 z
− z) = − 1 z
∞ 1
n n=1
∞ 1 z = z n−1 n
n n=1
20
∀ |z| 0
∈ R
∞
2π
log(1
0
1 e−2πx
1
0
For x or x
2πe −2πx dx = dx =
e−2πx
0
∞
e−2πx )
∞
dx = dx =
− e−2
πx
e−2πx dx = dx =
log 1
0
)dx
π 12
, Stirling’s formula (Ahlfors p. 203-4) for Γ(z Γ( z ) tells us that Γ(x Γ(x) =
where
1 J (x) = π
The preceding lemma tells us that 1 1 J (x) = x π
·
∞
0
where we’ve used 0 < 0 <
x2 log x2 + η 2 x2 x2 +η 2
1
∞
0
1 e−2πη
−
≤ 1 ∀η. Set
1
2πx x− 2 e−x eJ (x)
x log η 2 + x2
1 1 x π
dη
≤ ·
1
−
1 e−2πη
∞
log
0
1
dη
1 e−2πη
−
dη = dη =
1 1 π 1 = x π 12 12 12x x
· ·
θ(x) = 12xJ 12xJ (x)
It is obvious that θ (x) > 0 and θ(x) < 1 since inequality is strict. We thus conclude that Γ(x Γ(x) =
√
√
x2 x2 +η 2
< 1 almost everywhere, and therefore the preceding θ(x)
1
2πxx− 2 e−x e 12x 0 < θ (x) > 0, >> 0, define γ 1 : [0, [0, R]
π → C, γ 1(t) = t; t ; γ 2 : [0, [0, ] → C, γ 2 (t) = Re 4
it
iπ 4
; γ 3 : [0, [0, R]
→ C, γ 3(t) = (R − t)e
and let γ let γ be be the positively oriented closed curve defined by the γ i .
γ 2
f ( f (z )dz =
≤
π
π
4
0
≥ 2t 2 t (this is immediate from
π
4
0
e−R cos(2t) Rdt
0
Since cos(2t cos(2t) is nonnegative and cos(2t cos(2 t) π for t for t [0, [0 , 4 ], we have
∈
4
e−R cos(2t)−iR sin(2t) Rieit dt
π
e−R cos(2t) Rdt ≤
4
e−2Rt Rdt = Rdt =
0
21
−12
π
e−R 2
d cos(2t cos(2t) dt
=
π
−2 sin(2 sin(2t) ≥ −2 on [0, [0, 4 ])
− 1 → 0, 0 , R → ∞
Since f Since f is is an entire function, by Cauchy’s theorem, 0=
f (z )dz = dz =
γ
and letting R letting R
f (z )dz + dz +
γ 1
f ( f (z )dz + dz +
γ 2
f ( f (z )dz
γ 3
→ ∞,
∞
R
2 e−x dx = lim lim ei 4 R→∞
iπ
R
2 2 e−(R−t) e 2 dt = lim lim ei 4 e−i(R−t) dt = dt = e e i 4 R →∞ 0 0 0 √ 2 ∞ e−x dx = where we make the substitution y = R = R − t. Substituting dx = 2−1 π, π
π
π
∞
2
e−iy dy
0
0
∞
2
cos(x cos(x )dx
0
−
∞
i
∞
2
sin(x sin(x )dx = dx =
0
√
2 π e−ix dx = dx = e e −i 4 = π
2
0
√ π √ π √ − i 2√ 2 2 2
Equating real and imaginary parts, we obtain the Fresnel integrals
√ π cos(x cos(x )dx = dx = √ 2 2 0 √ π ∞ 2 sin(x sin(x )dx = dx = √ 2 2
∞
2
0
Entire Functions 5.3.2 Exercise 1 We will show that the following two definitions of the genus of an entire function f are f are equivalent: 1. If m g(z )
f ( f (z ) = z e
∞
− 1
n=1
z an
h 1 j =1 j
e
( azn )
j
where h is the genus of the canonical product associated to ( an ), then the genus of f of f is is max max (deg(g (deg(g(z )), )), h). If no such representation exists, then f is f is said to be of infinite genus. 2. The genus genus of f is f is the minimal h minimal h
∈ Z≥0 such that m g(z )
f ( f (z ) = z e
∞
− 1
n=1
z an
h 1 j =1 j
e
( azn )j
where deg(g deg(g(z ))
≤ h. h. If no such h exists, then f then f is is said to be of infinite genus.
Proof. Suppose f Suppose f has has finite genus h 1 with respect to definition definition (1). If h h 1 = h, h , then deg(g deg(g(z )) h 1 . Hence, f is f is of a finite genus h genus h 2 with respect to definition (2), and h 2 h 1 . Assume otherwise. By definition of the genus genus of the canonical product, the expression expression
≤
≤
∞
h1
n=1 j =h+1
1 j
z an
h1
j
=
j =h+1
1 j
∞ 1
j n=1 an
zj
defines a polynomial of degree h 1 . Hence, we may write f ( f (z ) = z e
h 1 j h+1 j
−∞=1 =1
m g(z )
n
( azn )j
∞
−
n=1
1
z an
h1 1 j=1 j
e
( azn )j = z m eg˜(z)
∞
−
n=1
1
z an
h1 1 j =1 j
e
( azn )j
where we ˜g(z ) is a polynomial of degree h degree h 1 . Hence, f Hence, f is is of finite genus h genus h 2 with respect to definition (2) and h2 h1 . Now suppose that f has f has finite genus h2 with respect to definition (2). Reversing Reversing the steps of the previous argument argument,, we attain that f f has finite genus h1 with respect respect to definit definition ion (1), and h1 h2 . It fol follo lows ws immediately that definitions (1) and (2) are equivalent if f f has finite genus with respect to either (1) and (2), and by proving the contrapositives, we see that (1) and (2) are equivalent for all entire functions f . f .
≤
≤
22
5.3.2 Exercise 2 lemma Let a Let a
∈ C and r > 0. Then inf |z − |a|| = |r − |a|| and and | |= z
sup sup z
r
|z |=r
| − |a|| = r = r + + |a|
Proof. By the triangle inequality and reverse inequality, we have the double inequality
|r − |a|| = ||z| − |a|| ≤ |z − |a|| ≤ |z| + |a| = r = r + + |a| Hence, Hence, inf |z − |a|| ≥ |r − |a|| and sup |z − |a|| ≤ r + r + |a|. But these values are attained at z = r = r and z and z = −r,
respectively.
By Weierstrass’s extreme value theorem, f and g attain both their maximum and minimum on the circle z = r = r at z at z M,f , zM,g and zm,f , zm,g , respectivel respectively y. The preceding lemma shows shows that zM,g = r and zm,g = r. r . Consider the expression
{| |
| |
}
− − −
−
| − | | − | || − | | − | | | | || −| | || || || ≤ | ≤| | | − | − | | ≥ | − | || ∀ ∈ | − | ≥ | − | | − | || | − |
We have
| |
zm
f (z ) = g (z ) zm
∞
n=1
∞
n=1
1
1
z an
=
z
∞
n=1
|a | n
∞
z z
an an
∞
reiθM,f an rei(θM,f −arg(an )) f ( f (zM,f ) f (zM,f ) = = = g (zM,g ) g( r) r + an r + an n=1 n=1
∞ sup |z|=r z
r + an
n=1
Hence, f ( f (zM,f )
|
=
∞ r + a n
n=1
r + an
an = rei(θm,f −arg(an ))
an
r
∞
f ( f (zm,f ) f ( f (zm,f ) zm,f an = = g (zm,g ) g (r ) r an n=1
Hence, f ( f (zm,f )
|
=1
g(zM,g ) . Since zm,f
we have that
an
an
| ≥ |g(z
m,g )
an
n
∞ z m,f
n=1
N
an =1 an
zm,f
|.
5.5.5 Exercise 1 Let Ω be a fixed region and be be the family of holomorphic functions f : Ω I claim that is is normal. Consider the family of functions
→ C with Re(f Re(f ((z )) > )) > 0 0 ∀z ∈ Ω.
F
F
G = Since Re(f Re(f ((z )) > )) > 0 0 f
∀ ∈ ∈ F , we have
→ C : g = g = e e−
g : Ω
f
for some f some f
≤
∈ ∈ F
e−f (z) = e−Re(f (z))−iIm(f (z)) = e−Re(f (z))
1
Hence, is uniformly bounded bounded on compact compact subsets subsets of Ω and is therefore therefore a normal normal family. family. Fix a sequence sequence − f n (f n )n∈N , and consider the sequence g sequence gn = e = e . (gn ) has a convergent subsequence (g ( gnk ) which converges converges to a holomorphic holomorphic function function g on compact sets (Weierstrass’s (Weierstrass’s theorem). Since gnk is nonvanishing for each k each k,, g is either either identicall identically y zero or nowhere zero by Hurwitz theorem. theorem. If g g is identically zero, then it is immediate D that f nk tends to uniform uniformly ly on compact sets. Now, Now, suppose that g is nowhere zero. g(K ) 0 is compact by continuity continuity.. By the Open Mapping Theorem, Theorem, for each each z K , there exists r > 0 such that D(g (z ); r) g(Ω) g (Ω) D 0 . The disks D disks D((g(z ); 4−1 r) form an open cover of g of g((K ), ), so by compactness,
G ⊂ F ⊂
∞ ⊂ \ { } n
⊂
g(K )
i=1
∈
n
D(g(zi ); 4−1 ri ) ⊂
⊂ \ { }
i=1
n
D(g (zi ); 2−1 ri ) ⊂ 23
i=1
D(g (zi ); ri )
⊂ D \ {0}
On each D each D((g(zi ); ri ), we can choose a branch of the logarithm such that log( z ) is holomorphic on D on D((g (zi ); ri ), − 1 and in particular uniformly continuous on D( D (g (zi ); 2 ri ). For each i each i,, choose δ choose δ i > 0 > 0 such that w, w
∈ D( D (g (z ); r ) |w − w | < δ ⇒ |log(w log(w) − log(w log(w )| < ∀z ∈ K . Set δ Set δ = = min1≤ ≤ δ , choose k choose k 0 ∈ N such that k that k ≥ k 0 ⇒ |g (z ) − g (z )| < δ ∀ K . Then for 1 ≤ i ≤ n, n, ∀k ≥ k0 log log e− ( ) − log(g log(g(z )) < ∀z ∈ g −1 D(g(z ); 2−1 r ) It is not a not a priori true priori true that log(e log(e− ( ) ) = −f (z ); the imaginary parts differ by an integer multiple of 2 πi. πi . But the function given by 21 log(e log(e− ( ) ) + f (z ) is continuous and integer-valued on any open disk about each z each z in Ω, and therefore must be a constant m ∈ Z in that disk as a consequence of connectedness. Taking a new covering of g( g (K ), ), if necessary, such that D that D((g (z ); r ) is contained in the image under g under g of of such a disk (which we can do by the Open Mapping Theorem), we may assume that for each z ∈ g −1 (D(g (z ); r )), i n
i
i
i
i
nk
f nk z
f nk z
nk
f nk z
πi
i
nk
i
i
i
i
i
| − −
i
2πmi = lim log e−f nk (z) + f nk (z ) = log(g log(g (z )) + lim f nk (z ) k
→∞
Taking k Taking k 0
k
→∞
∈ N larger if necessary, we conclude that ∀k ≥ k0 log e− ( ) − log(g log(g (z )) = f (z ) [ log(g log(g (z )) + 2πm 2πm ]| < ∀z ∈ g −1 D(g (z ); 2−1 r ) ⊂ =1 g−1 D(g(z ); 2−1r ) , we conclude from the uniqueness of limits that f (z) converges to Since K ⊂
f nk z
n i
nk
i
limk→∞ f nk (z) uniformly on K on K ..
i
i
i
i
nk
Suppose in addition that Re(f Re(f ) : f is uniformly bounded on compact sets. I claim that is is then locally bounded. Let K Let K Ω be compact, and let L > 0 be such that Re(f Re( f )( )(zz ) L z K f . Then
⊂ ⊂
{
∈ ∈ F}
ef (z) = e = e Re(f (z))
F ≤ ∀ ∈ ∀ ∀ ∈ ∈ F
L
≤ e ∀z ∈ K ∀ ∀f ∈ ∈ F
Hence, g = e = e f : f is a locally bounded family family, and therefore therefore its derivativ derivatives es are locally bounded. Since Re(f Re(f )) > 0 > 0 f , we have that f (z ) f f (z )ef (z) = g (z )
∈ ∈ F ∀ ∈ ∈ F
| | ≤ | | ∈ ∈ F} ⊂ ⊂ ⊂ ∀ ∈ ⇒ | | ≤
which shows that f : f is a locally bounded family. family. Since K is K is compact, there exist z1 , n r i and r and r 1 , , rn > 0 such that K that K and D((zi ; ri ) Ω. By Cauchy’s theorem, i=1 D (zi ; 2 ) and D
···
{
r i f (z )dz z D zi ;
f ( f (z ) =
2
[zi ,z ]
f ( f (z )
M i ri z
∀ ∈ D
n
zi ;
r i 2
∈ ∈ F} on D( D (z ; 2−1 r ).
where [z, [z, zi ] denotes the straight line segment, and M i is a uniform bound for f : f Setting M Setting M = = max1≤i≤n M i and r and r = max1≤i≤n ri , we conclude that
{
· · · , z ∈ K
i
i
|f ( ∀f ∈ ∈ F f (z )| ≤ M r ∀z ∈ K ∀ Normal Families 5.5.5 Exercise 3 Let f Let f : C
→ C be an entire holomorphic function. Define a family of entire functions F by F = {g : C → C : g( g (z ) = f ( f (kz) kz ), k ∈ C} Fix 0 ≤ r1 < r2 ≤ ∞. I clai claim m that that F is normal normal (in the sense sense of Definit Definition ion 3 p. 225 225)) in the annulu annuluss r1 < |z | < r2 if and only if f is f is a polynomial. Suppose f Suppose f = a 0 + a + a1 z + · · · + a z is a polynomial, where a = 0. By Ahlfors Ahlfors Theore Theorem m 17 (p. 226 226), ), it suffices to show that the expression 2 |g (z )| ρ(g ) = 2 g ∈ F 1 + | g (z )| n
n
n
24
is locally bounded. bounded. Since g(z ) = f ( f (kz) kz ) for some k The function F function F ((z ) given by
∈ C, it suffices to show that 1+2|| (( ))|| is bounded on C.
2 f f z −1
f z f z
2 a1 z 2n + 2a 2a2 z 2n−1 +
2
· · · + na z +1 F ( F (z ) = = |z|2 + |a0z + a1z −1 + · · · + a |2 1 + |f ( f (z −1 )|2 is continuous in a neighborhood of 0 with F (0) F (0) = +∞ since a = 0. Hence, Hence, | F ( F (z )| ≤ M 1 ∀ |z | ≤ δ , which shows that 2 |f (z )| 1 2 ≤ M 1 ∀ |z | ≥ δ 1 + |f ( f (z )| 2| ( )| is contin continuou uouss on the compact compact set D(0; 1 ) and therefor thereforee bounded bounded by some M 2 . Takin akingg M = 1+| ( )| max {M 1 , M 2 }, we obtain the desired result. Now suppose that F is is normal in r in r 1 < |z | < r2 . If f is f is bounded, then we’re done by Liouville’s theorem. Assume otherwise. Let (f ( f ) ∈ ⊂ F be be a sequence given by f (z ) = f ( f (κ z ) for some κ ∈ C where κ → ∞, n → ∞. Sinc Sincee F is normal, (f (f ) has a subsequence (f (f ) ∈ which either tends to ∞ , {r1 < |z| < r2}, or converges to some limit function g in likewise fashion. uniformly on compact subsets of { ≤ |z| ≤ r2 − δ }. If f → g, then I claim that f Fix δ > 0 small and consider the compact subset {r1 + δ ≤ is bounded on C, which gives us a contradictio contradiction. n. Indeed, Indeed, fix z0 ∈ C. Sinc Sincee (f (f ) converges uniformly on {r1 + δ ≤ ≤ |z| ≤ r2 − δ }, (f ) is uniformly bounded by some M > 0 on this set. Let |κ (r1 + δ )| ≥ |z0|. By the Maximum Modulus Principle, |f ( f (z )| is bounded on the disk D(0; D (0; |κ (r1 + δ )|) by some |f (w)| for some n
n
n
n
n
n
n
f z f z
2
δ
n n
N
n
n
n
n
n
nk k
N
nk
nk
nk
nk
nk
w on the boundary. Hence,
|f ( f (z0 )| ≤ |f ( f (w)| = |f
nk (z )
| ≤ M M for some z some z ∈ {|z | = r = r 1 + δ }
Since z Since z 0 was arbitrary, we conclude that f is f is bounded. I now claim that f that f has has finitely many zeroes. Suppose not. Let (a ( an )n∈N be the sequence of zeroes of f of f ordered ordered − 1 by increasing modulus, and consider the sequence of functions f n (z ) = f n (r an z ), where r1 < r < r2 is fixed. Our preceding preceding work shows shows that (f ( f n ) has a subsequence (f ( f nk ) which tends to on the compact set z = r = r . But this is a contradiction since f since f nk (r) = 0 k N. If we can show that f f has a pole at , then we’re done by Ahlfors Section 4.3.2 Exercise 2 (Problem Set 1). 1). Let Let f n (z ) = f ( (f nk )k∈N be a subsequence which tends to on compact compact sets. sets. Let M > 0 f (nz), nz), and let (f N such that for be given. given. Fix r1 < r < r 2 . Then Then f nk uniformly on z = r = r , so there exists k0 k k 0 , f nk (z ) > M z = r. r . Taking k0 larger if necessary, we may assume that f (z ) > 0 z rn r nk0 . Let z Let z C, z rn r nk0 , and choose k choose k so that n k r > z . By the Minimum Modulus Modulus Principle, Principle, f assumes its minimum on the boundary of the annulus nk0 r w rn k . But
{| |
}
≥ | | ∈ | | ≥
∀ ∈
∞
→∞
∀ ∀ | |
{| |
| | ≤ | | ≤
{
min
∞
inf
|w|=n
k0 r
|f ( f (w)| , |
inf
}
w =nk r
|
}
∞
|
|f (w)
∈ | | ∀ | | ≥ | |
> M
and therefore,
|f ( |f (w)| > M f (z )| ≥ inf ≤| |≤ ∀ |z| ≥ r n . Since Since z was arbitrary, we conclude that |f ( f (z )| > M ∀ Since M > 0 was arbitrary, we conclude that f that f has has a pole at ∞. nk0 r
w
nk r
k0
5.5.5 Exercise 4 Let be a family family of meromo meromorph rphic ic function functionss in a given given region region Ω, which which is not normal normal in Ω. By Ahlfors Ahlfors Theorem 17 (p. 226), there must exist a compact set K Ω such that the expression
F
⊂ ⊂
ρ(f )( f )(zz ) =
2 f (z )
|
| f ∈ 2 ∈ F 1 + |f ( f (z )| 25
is not locally bounded on K on K .. Hence, we can choose a sequence of functions (f ( f n ) such that 2 f n (zn ) ,n 2 1 + f n (zn )
⊂ F and and of points (z (z ) ⊂ K n
|
| ∞ → ∞ | | Suppose for every z every z ∈ Ω, there exists exists an open disk D disk D((z ; r ) ⊂ Ω on which F is is normal, equivalently ρ equivalently ρ((f ) f ) is lo− − 1 1 cally bounded. Let M Let M > 0 bound ρ bound ρ((f ) f ) on the closed disk D disk D((z ; 2 r ). The collection D(z ; 2 r ) : z ∈ K forms an open cover of K . By compactness, compactness, there exist finitely finitely many disks D(z1 ; 2−1 r1 ), · · · , D(z ; 2−1 r ) z
z
such that
z
z
n
n
n
K
⊂ ⊂
i=1
D(zi ; 2−1 ri ) and i = 1,
∀
· · · , n |ρ(f )( ∈ F f )(zz )| ≤ M ∀z ∈ D( D (z ; 2−1 r) ∀f ∈ i
i
Setting M Setting M = = max1≤i≤n M i , we conclude that
|ρ(f )(z ∀z ∈ K ∀ ∀f ∈ ∈ F )(z )| ≤ M ∀ This is obviously a contradiction since lim →∞ ρ(f )(z )(z ) = +∞. We conclude that there must exist z 0 ∈ Ω such that F is is not normal in any neighborhood of z of z 0 . n
n
n
26
Conformal Mapping, Dirichlet’s Problem The Riemann Mapping Theorem 6.1.1 Exercise 1 Lemma Lemma 6. Let f : Ω
function g : Ω
→ C be a holomorphic function on a symmetric region Ω (i.e.
Ω = Ω). Then Then the the
→ C, g(z) = f ( f (z ) is holomorphic.
Proof. Writing z Writing z = x = x + iy, iy , if f ( f (z ) = u( u(x, y) + iv( iv(x, y), where u, where u, v are real, then g then g((z ) = u( u(x, y) iv( iv (x, y) = 1 u ¯(x, y) + i + i¯ v¯(x, y). It is then evident evident that that g is continuous and u, v have C partials. partials. We verify verify the CauchyCauchyRiemann equations. ∂ ¯ ∂ u ¯ ∂u ∂ ¯ ∂ u ¯ ∂u (x, y) = (x, y ); (x, y) = (x, y) ∂x ∂x ∂y ∂y
− −
−
∂ v¯ (x, y) = ∂x
−
∂v − ∂x (x, −y );
−
−
∂ v¯ ∂v (x, y) = (x, y ) ∂y ∂y
−
The claim follows immediately from the fact that u, v satisfy the Cauchy-Riemann equations. D be the unique conformal Let Ω C be simply connected symmetric region, z 0 Ω be real, and f and f : Ω map satisfying f satisfying f ((z0 ) = 0, f (z0 ) > 0 > 0 (as guaranteed by the Riemann Mapping Theorem). Define g( g (z ) = f ( f (z ). D is holomorphic by the lemma and bijective, being the composition of bijections; hence, g is Then g Then g : Ω conformal. Furthermore, g urthermore, g((z0 ) = 0 since z since z 0 , f ( f (z0 ) R. Since
⊂ →
∈
→
∈
∂u ∂u 0 < f (z0 ) = (z0 ) = (z0 ) = g (z0 ) ∂x ∂x we conclude by uniqueness that f that f = g. g . Equivalently Equivalently,, f ( f (z ) = f = f ((z ) z
∀ ∈ Ω.
6.1.1 Exercise 2 Suppose now that Ω is symmetric with respect to z 0 (i.e. z
∈ Ω ⇐ ⇐⇒ ⇒ 2z 2 z0 − z ∈ Ω). I claim that f f satisfies f ( f (z ) = 2f ( f (z0 ) − f (2 f (2zz0 − z ) = −f (2z (2z0 − z ) Define g Define g : Ω → D by g (z ) = −f (2z (2z0 − z ). Clearly, Clearly, g is conformal, being the composition of conformal maps, and g (z0 ) = 0. Further urthermo more, re, by the chain chain rule, g (z0 ) = f (z0 ) > 0. We conclu conclude de from the unique uniquenes nesss statement of the Riemann Mapping Theorem that g( g (z ) = f ( f (z ) ∀z ∈ Ω.
27
Elliptic Functions Weierstrass Theory 7.3.2 Exercise 1
Let f Let f be be an even elliptic function periods ω 1 , ω2 . If f is f is constant then there is nothing to prove, so assume otherw otherwise ise.. First, First, suppose suppose that 0 is neither neither a zero zero nor a pole of f . f . Observe Observe that that since f f is even, its zeroes and poles poles occur in pairs. pairs. Since Since f is f is elliptic, f has f has the same number number of poles as zeroes. zeroes. So, let a1 , , an , and b1 , , bn denote the incongruent zeroes and poles of f f in some fundamental parallelogram P a , where ai aj mod M mod M,, bi bj mod M mod M i, j and where we repeat for multiplicity. Define a function g by
≡ −
···
···
≡ −
∀
n
g(z ) = f ( f (z )
℘(z ) ℘(z )
k =1
− ℘(a ) − ℘(b ) k
k
−1
and where ℘ is the Weierstrass p-function with respect to the lattice generated by ω1 , ω2 . I claim claim that that g is a holomorphi holomorphicc elliptic function. function. Since ℘(z ) ℘(ak ) and ℘(z ) ℘(bk ) have double poles at each z M for all k , g has a removable singularity at each z M . M . For each each k , ℘(z ) ℘(bk ) has the same poles as ℘ and is therefore therefore an elliptic elliptic function of order 2. Since b Since b k = 0 and and ℘ is even, it follows that ℘(z ) ℘(bk ) has zeroes of order 1 at z = bk . From our conventio convention n for repeating repeating zeroes and poles, we conclude conclude that g has a removable singularity at bk . The argum argumen entt that g has removable singularity at each ak is completely analogous. Clearly, Clearly, g(z + ω1 ) = g( g (z + ω2 ) = g( g (z ) for z for z / a i + M bi + M M
−
−
∈
−
± ±
∈
∈
∪ ∪
−
∪ ∪
so by continuity, we conclude that g is a holomorphic elliptic function with periods ω1 , ω2 and is therefore equal to a constant C . C . Hence, n ℘(z ) ℘(ak ) f ( f (z ) = C ℘(z ) ℘(bk )
− −
k=1
Since f Since f is even, its Laurent series series about the origin only has nonzero nonzero terms with even powers. powers. So if f if f vanishes or has a pole at the origin, the order is 2m, 2 m, m N. Suppose Suppose that that f vanishes f vanishes with order 2m 2m. The functi function on given by f ( f ˜(z ) = f ( f (z ) ℘(z )m is elliptic with periods ω periods ω 1 , ω2 . f has f ˜ has a removable singularity at z = 0, since ℘ since ℘((z )k has a pole of order 2k 2 k at z = 0. Hence, Hence, we are reduced to the previous case of elliptic elliptic function, so applying applying the preceding preceding argument, argument, we conclude that n n ℘(z ) ℘(ak ) C ℘(z ) ℘(ak ) ˜ f ( f (z ) = C f ( f (z ) = m ℘(z ) ℘(bk ) ℘(z ) k ℘(z ) ℘(bk ) k
∈
·
=1
− −
⇒
=1
− −
If f has 2 m at the origin, then the function given by f has a pole of order 2m f ( f (z ) f ( f ˜(z ) = ℘(z )m
is elliptic with periods ω1 , ω2 and has a removable removable singularity singularity at the origin. origin. From the same argument, argument, we conclude that n ℘(z ) ℘(ak ) f ( f (z ) = C℘ C ℘(z )m ℘(z ) ℘(bk )
k =1
28
− −
7.3.2 Exercise 2 Let f be f be an elliptic function with periods ω1 , ω2 . By Ahlfors Ahlfors Theor Theorem em 5 (p. 271 271), ), f has f has the same number of zeroes and poles counted counted with multiplicit multiplicity y. Let a1 , , an , b1 , , bn denote the incongruent zeroes and n poles of f , f , respectively, where we repeat for multiplicity. By Ahlfors Theorem p. 271, k=1 bk ak M , M , so n n replacing a replacing a 1 by a by a 1 = a 1 + k=1 bk ak , we may assume without loss of generality that ak = 0. k=1 bk Define a function function g g by
···
···
−
n
g(z ) = f ( f (z )
k =1
σ (z σ (z
−a ) −b ) k
k
−1
− ∈ −
where σ where σ is the entire function (Ahlfors p. 274) given by σ (z ) = z
−
z 1 z 2 z ew+2(w) ω
1
ω =0 =0
g has removable singularities at a at a i + M, + M, bi + M + M for 1 Recall (Ahlfors p. 274) that σ satisfies σ (z + ω1 ) = where η where η 2 ω1
−σ(z)e−
η1 (z +
ω1
2
≤ i ≤ n. n . I claim that g is elliptic with periods ω periods ω 1 , ω2 .
) and σ and σ((z + ω2 ) =
−σ(z)e−
η2 (z +
ω2
2
) z
∀ ∈ C
− η1ω2 = 2πi ≡ b + M, a + M , πi (Legendre’s relation). Hence, for z for z M , i
n
g(z + ω1 ) = f ( f (z + ω1 )
k =1
σ (z σ (z
−1
− a + ω1) − b + ω1) k
k
= e
n k=1 a k
−b f ( f (z ) k
− − − n
= f ( f (z )
σ (z
k=1
σ (z σ (z
−
ak ) bk )
ω1
2
)
ω1 k+ 2
)
η 1 ( z ak +
− η1 (z −b
− a )e σ (z − b )e
k =1
n
η1
i
k k
−1
−1
= g( g (z )
By continuity, we conclude that g( g (z + ω1 ) = g( g (z ) z
∀ ∈ C. Analogously, for z ≡ b + M, a + M , for z
n
g(z + ω2 ) = f ( f (z + ω2 )
k =1
σ (z σ (z
i
−1
− a + ω2) − b + ω2) k
k
= e
n k=1 a k
−b f ( f (z ) k
n
= f ( f (z )
σ (z
k=1
σ (z σ (z
−
ak ) bk )
η 2 ( z ak +
− η2 (z −b
− a )e σ (z − b )e
k =1
n
η2
− − −
i
k k
ω2
2
ω2 k+ 2
) −1 )
−1
= g( g (z )
By continuity, we conclude that g that g((z + ω2 ) = g( g (z ) z C. Since g Since g is an entire elliptic function, it is constant by Ahlfors Theorem 3 (p. 270). We conclude that for some C C,
∀ ∈ n
f ( f (z ) = C
k=1
∈ ∈
σ (z σ (z
−a ) −b ) k
k
7.3.3 Exercise 1 Fix a rank-2 lattice M lattice M
⊂ ⊂ C and u ∈/ M . M . Then σ(z − u)σ(z + u) ℘(z ) − ℘(u) = − σ (z )2 σ (u)2
Proof. I first claim that the RHS is periodic with respect to M . M . Let ω1 , ω2 be generators of M M and let η1 ω2 η2 ω1 = 2πi. πi . For z For z / M , M ,
−
−
∈
σ (z + ω1 u)σ (z + ω1 + u) = σ(z + ω1 )2 σ (u)2
−
−
σ (z
η1 (z u+
− u)e
ω1
σ (z + u)eη1 (z+u+ ω1 σ (z )2 e2η1 (z+ 2 ) σ (u)2
−
2
)
u) −σ(zσ−(zu)2)σσ((uz + = f ( f (z ) 2 )
=
29
ω1
2
)
=
−
ω1
σ (z u)σ(z + u)e2η1 (z+ 2 ω1 σ (z )2 σ (u)2 e2η1 (z + 2 )
−
)
The argument for ω for ω 2 is completely analogous. The RHS has zeroes at the same reasoning used above, we see that ℘(z )
±u and a double pole at 0. Hence, by
u) − ℘(u) = −C σ(zσ−(zu)2)σσ((uz + ∈ C for some C some C ∈ 2 )
To find conclude that C = C = 1, we first note that ℘(z ) ℘( ℘(u) has a coefficient of 1 for the z −2 term in its Laurent Laurent expansion. expansion. If we show that the Laurent expansion expansion of the f the f ((z ) also has a coefficient of 1 for the z −2 , then it follow follow from the uniquenu uniquenuess ess of Laurent Laurent expansions expansions that C that C = = 1.
−
−
−u + 1 ( z−u )2
− − − − − − − − − · − (z 2
− u2 ) −
σ (z u)σ(z + u) = σ(z )2 σ(u)2
−
ω =0 =0
=
1
z
z
1
ω =0 =0
−u e ω
z
z 2 σ (u)2
−u e ω
z
2
σ(u)2
ω
z ω
1
ω =0 =0
ω =0 =0
ω =0 =0
eω+2(ω)
z +u ω
1
z
e
z
z +u 1 ω +2
2
e
z +u 1 ω +2
( z+ωu )2
2
( z+ωu )
2
2
2
eω+2(ω) z
1
z
z ω
1
z +u ω
1
ω
1
ω =0 =0
−u + 1 ( z−u )2 ω
2
ω
g1 (z )
2 1 u + 2 z
z
1
ω =0 =0
−u e ω
z
−u + 1 ( z−u )2 ω
σ (u)2
2
1
ω=0 =0
z +u ω
1
ω
ω =0 =0
z ω
eω+2(ω) z
1
z
2
e
z +u 1 ω +2
( z+ωu )2
2
g2 (z )
Observe that both g1 (z ) and g2 (z ) are holomorphic in a neighborhood of 0 since we have eliminated the double double pole at 0. Hence, Hence, the coefficient of the z −2 in the Laurent expansion of f of f ((z ) is given by g2 (0). (0). But since σ since σ is an odd function, it is immediate that g 2 (0) = 1.
7.3.3 Exercise 2 With the hypotheses hypotheses of the preceding problem, problem, ℘ (z ) = ζ ( ζ (z ℘(z ) ℘(u)
−
− u) + ζ (z + u) − 2ζ (z)
Proof. For z or z = u + M , M , we can choose a branch of the logarithm holomorphic in a neighborhood of ℘ of ℘((z ) ℘(u). Taking the derivative of the log of both sides and using the chain rule,
−
℘ (z ) ∂ = log( σ (z ℘(z ) ℘(u) ∂z
−
− u) + σ (z + u) − 2σ 2 σ (z ) ζ (z − u) + ζ (z + u) − 2ζ (z ) − u) σ(z + u) σ(z) = ζ ( ( ) ζ (w) ∀w ∈ C (Ahlfors p. 274). ( ) = ζ ( =
where we’ve used
σ (z σ (z
− − u)) + log(σ log(σ(z − u)) − log(σ log(σ (u)2 σ(z )2 )
σ w σ w
7.3.3 Exercise 3 With the same hypotheses as above, for z =
−u + M ,
ζ (z + u) = ζ ( ζ (z ) + ζ (u) +
1 ℘ (z ) 2 ℘(z )
− ℘ (u) − ℘(u)
Proof. Since the last term has a removable singularity at z = u = u + M , by continuity, we may also assume that z = u + M . First, First, observe observe that by replacing replacing switching switching u u and z and z in the argument for the last identity, we have that ℘ (u) = [ζ (u z ) + ζ (z + u) 2ζ (u)] = ζ ( ζ (z u) ζ (z + u) + 2ζ 2 ζ (u) ℘(z ) ℘(u)
−
−
−
−
30
− −
where we’ve used the fact that σ (z ) is odd and therefore ζ ( ζ (z ) = ℘ (z ) ℘ u = (ζ (z ℘(z ) ℘(u)
− −
σ (z ) is σ (z )
also odd. Hence,
− u) + ζ (z + u) − 2ζ (z)) − (ζ (z − u) − ζ (z + u) + 2ζ 2 ζ (u)) = 2ζ 2ζ (z + u) − 2ζ (z ) − 2ζ (u)
The stated identity follows immediately.
7.3.3 Exercise 4 By Ahlfors Section 7.3.3 Exercise 3,
− ℘ (u) − ℘(u) Differentia Differentiating ting both sides with respect to z to z and using −ζ (w) = ℘( ℘(w) ∀w ∈ C \ M , M , we obtain ( ℘ (z ) − ℘ (u))℘ ))℘ (z ) −℘(z + u) = −℘(z) + 12 ℘(z℘) −(z℘)(u) − (℘ (℘(z ) − ℘(u))2 We seek an expression for ℘ (z) in terms of ℘ of ℘((z ). For z For z = 2 , 2 , + + M , 2 g 2 ℘ (z )2 = 4℘(z )3 − g2 ℘(z ) − g2 ⇒ 2℘ 2 ℘ (z )℘ (z ) = 12℘ 12℘(z )2 ℘ (z ) − g2 ℘ (z ) ⇒ ℘ (z ) = 6℘(z )2 − 2 1 ζ (z + u) = ζ ( ζ (z ) + ζ (u) + 2
℘ (z ) ℘(z )
ω1 ω 2 ω 1
We conclude from continuity that ℘ (z ) = 6℘(z )2 1 ℘(z ) + 2
−℘(z + u) = −
g2
2 .
−
ω2
Substituting this identity in,
6℘(z )2 g22 ℘(z ) ℘(u)
− − (℘ ( ℘ (z ) − ℘ (u))℘ ))℘ (z ) − (℘(z ) − ℘(u))2
Applying the same arguments as above except taking u to be variable, we obtain that 1 ℘(u) + 2
−℘(z + u) = −
−
6 p( p(u)2 g22 (℘ ( ℘ (z ) ℘ (u))℘ ))℘ (u) + p( p(z ) p( p(u) (℘(z ) ℘(u))2
−
−
−
−
Hence, 2 − ℘(u)2) − (℘ ( ℘ (z ) − ℘ (u))2 1 = 2℘ 2 ℘(z )+2℘ )+2℘(u)− 2 − ℘(u) (℘(z ) − ℘(u)) 2 2 1 ℘ (z ) − ℘ (u) ⇒ ℘( ℘ (z + u) = −℘(z ) − ℘(u) + 4 ℘(z ) − ℘(u)
1 ℘(z )+ ℘(u)+ 2
−2℘(z+u) = −
−
6(℘ 6(℘(z )2 ℘(z )
7.3.3 Exercise 5 Using the identity obtained in the previous exercise, we have by the continuity of ℘ of ℘ that ℘(2z (2z ) = lim ℘(z + u) = lim u
= lim u
→z
−
→z
u
℘(u) −
where we use the continuity of w w
1 ℘(z ) + 4
→z
−℘(z) −
℘ (z ) z ℘(z ) z
−℘ (u) −u −℘(u) −u
1 ℘(u) + 4
− ℘(u) − ℘(u)
2
1 = −2℘(z ) + 4
→ w 2 to obtain the last expression.
31
℘ (z ) ℘(z )
2
℘ (z ) ℘ (z )
2
℘ (z ) ℘(z )
− ℘(u) − ℘(u)
2
7.3.3 Exercise 7 Fix u Fix u,v ,v / M such M such that u = v , and define a function f : C M
∈
f ( f (z ) = det
\ → → C by
| | | |
− − − − −
℘(z ) ℘(u) ℘(v )
℘ (z ) 1 ℘ (u) 1 = ℘ (v) 1
℘ (z )(℘ )(℘(u)
= (℘ ( ℘ (u) + ℘ (v )) ℘(z ) + (℘ ( ℘(v ) A
℘(v)) + ℘ (u)(℘ )(℘(z )
℘(u)) ℘ (z ) +
− ℘(v)) + ℘ (v)(℘ )(℘(z ) − ℘(u))
(℘ (u)℘(v) + ℘ (v )℘(u))
B
C
where we use Laplace expansion expansion for determina determinants nts.. By our choice choice of u, v and the fact that the Weierstrass function is elliptic of order 2, B = 0. Hence, Hence, f f ((z ) is an elliptic function of order 3 with poles at the lattice points of M . M . Since the determinant of any matrix with linearly dependent rows is zero, f has f has zeroes at u, at u, v . Since f Since f has has order 3, it has a third zero z, z , and by Abel’s Theorem (Ahlfors p. 271 Theorem 6),
−
u
− v + z ≡ 0
We conclude that det
mod M
⇒ z = v ⇒ = v − u
℘ (z ) 1 ℘ (u) 1 = 0 ℘ (u + z ) 1
℘(z ) ℘(u) ℘(u + z )
−
7.3.5 Exercise 1 Since λ Since λ is invariant under Γ(2) and Γ Γ(2) is generated by the linear fractional transformations τ τ + τ + 1 1 1 − − and τ τ , it suffices to show that J (τ + + 1) = J (τ ) τ ) and J ( τ ) = J (τ ). τ ). Recall Recall that that λ satisfies the functional equations λ(τ ) τ ) 1 λ(τ + + 1) = and λ and λ = 1 λ(τ ) τ ) λ(τ ) τ ) 1 τ
\
→ −
−
−
−
So, J (τ + + 1) =
→
−
4 (1 λ(τ + + 1) + λ(τ + + 1)2 )3 4 (1 λ(τ )( τ )(λ λ(τ ) τ ) 1)−1 + λ(τ ) τ )2 (λ(τ ) τ ) 1)−2 )3 (λ ( λ(τ ) τ ) = 2 2 2 27 λ(τ + + 1) (1 λ(τ + + 1)) 27 λ(τ ) (λ(τ ) τ ) τ )2 (λ(τ ) τ ) 1)−2 (1 λ(τ )( τ )(λ λ(τ ) τ ) 1)−1 )
−
−
τ ) 4 (λ(τ ) = 27 and J
−
− −
−
−
·
− 1)6 − 1)6
3 − 1)2 − λ(τ )( τ )(λ λ(τ ) τ ) − 1) + λ(τ ) τ )2 4 (1 − λ(τ ) τ ) + λ(τ ) τ )2 )3 = = J ( J (τ ) τ ) λ(τ ) τ )2 (λ(τ ) τ ) − 1)2 27 λ(τ ) τ )2 (λ(τ ) τ ) − 1)2
− −
Observe that
−
−
3 − λ(τ )) τ ))2 4 = 2 − − λ(τ ))) τ ))) 27
τ )) + (1 1 4 1 (1 λ(τ )) = 2 τ 27 (1 λ(τ )) τ )) (1 (1
−
−
−
τ ) + λ(τ ) τ )2 4 1 λ(τ ) J (τ ) τ ) = 27 λ(τ ) τ )2 (1 λ(τ )) τ ))2
− π
So, J (τ ) τ ) assumes the value 0 on λ −1 e±i 3 of order 3. We proved in Problem Set 8 that g2 =
3
1 λ(τ ) τ ) + λ(τ ) τ )2 λ(τ ) τ )2 (1 λ(τ )) τ ))2
−
π
3
= J ( J (τ ) τ )
π
4 (λ(τ ) τ ) ei 3 )3 (λ(τ ) τ ) e−i 3 )3 = 27 λ(τ ) τ )2 (1 λ(τ )) τ ))2
−
−
. Since λ is a bijection on Ω
−
∪ Ω, J (τ ) τ ) has two zeroes, each
−4(e 4(e1 e2 + e1 e3 + e2 e3 ) = 0
2π
2π
for τ for τ = e i 3 . So using the identit identity y for J (τ ) τ ) proved below, J (ei 3 ) = 0. Using the invarian invariance ce of J ( J (τ ) τ ) under π i3 Γ, we see that J that J ((e ) = 0. the λ i are the roots of degree 6 the polynomial J (τ ) τ ) assumes the value 1 on λ −1 ( λ1 , , λ6 ), where the λ
{ ···
}
p( p(z ) = 4(1 It is easy to check that e3 = ℘ = ℘
− z + z2)3 − 27 27zz 2 (1 − z )2
− 1+i ; i = 2
℘
i+1 ; i = 2
32
−e3 ⇒ e3 = 0
Since e Since e 1 + e2 + e3 = 0 (see below for argument), we have e 1 = λ(i) =
e3 e1
−e2 and therefore
− e2 = 1 − e2 2
Since each point in H+ is congruent modulo 2 to a point in Ω Ω , λ maps this fundamental conformally onto C 0, 1 , and J and J ((τ ) τ ) is invariant under Γ, we conclude J ( J (τ ) τ ) assumes the value 1 at τ = i, 1 + i, + i, i+1 2 . I claim that these these are these are the only possible points up to modulo 2 congruenc congruence. e. Suppose J (τ ) τ ) = 1 for i +1 τ / i, 1 + i, 2 . If we let S let S 1 , , S 6 denote the complete set of mutually incongruent transformations, then
∪
\{ }
∈
∈ iπ 3
···
i 23π
since τ since τ / e , e (otherwise J (otherwise J ((τ ) τ ) = 0), S 0), S 1 τ, , S 6 τ Ω Ω are distinct, hence the λ( λ (S i τ ) τ ) are distinct roots of p( p(z), and we obtain that p that p((z ) has more than 6 roots, a contradiction. Moreover, this argument shows that the polynomial p( p (z ) has three roots, which by inspection, we see are given by 1, 21 , 2 . I claim that J ( J (τ ) τ ) assumes the value 1 with order 2 at τ = i, 1 + i, + i, i +1 2 . We need to show that the zeroes of p( p(z ) are each of order 2. Indeed, one can verify that
∈ ∈ ∪
−
p( p(z ) = 4(1 Substituting λ Substituting λ = =
···
e3 e1
− z + z2)3 − 27 27zz 2 (1 − z )2 = (z ( z − 2)2 (2z (2z − 1)2 (z + 1) 2
−e2 , we have −e2
− − − − −
4 = 27 Since 4z 3
3 − e2)−1 + (e (e3 − e2 )2 (e1 − e2 )−2 − e2)−2(e1 − e3)2(e1 − e2)−2 3 )(e1 − e2 ) + (e ( e3 − e2 )2 4 (e1 e2 )2 (e3 − e2 )(e = 27 (e3 − e2 )2 (e1 − e3 )2 (e1 − e2 )2 3 e21 − 2e1 e2 + e22 − e3 e1 + e3 e2 + e2 e1 − e22 + e23 − 2e3 e2 + e22 (e3 − e2 )2 (e1 − e3 )2 (e1 − e2 )2
4 1 (e3 J (τ ) τ ) = 27 (e3
e2 )(e )(e1 e2 )2 (e1
− g2z − g3 = 4(z 4(z − e1 )(z )(z − e2 )(z )(z − e3 ) = 4(z 4(z 2 − (e1 + e2 )z + e1 e2 )(z )(z − e3 ) = 4(e 4(e1 + e2 + e3 )z 2 + · · ·
we have that e that e 1 + e2 + e3 = 0 and so, 0 = (e ( e1 + e2 + e3 )2 = e 21 + e22 + e23 + 2e 2 e1 e2 + 2e 2 e1 e3 + 2e 2 e2 e3
⇒ e21 + e22 + e33 = −2 (e1e2 + e1e3 + e2e3)
Substituting this identity in, 3
4 ( 2(e 2(e1 e2 + e2 e3 + e1 e3 ) (e1 e2 + e2 e3 + e1 e3 )) J (τ ) τ ) = = 27 (e3 e2 )2 (e1 e3 )2 (e1 e2 )2
−
−
− −
−
−
33
3
(e1 e2 + e2 e3 + e1 e3 ) 4 (e3 e2 )2 (e1 e3 )2 (e1 e2 )2
−
−
−
View more...
Comments