January 5, 2017 | Author: HerrMeier4221 | Category: N/A
Download Seismic Design of Steel Buildings...
ETABS manual Seismic design of steel building accordance to Eurocode 3 and 8 -‐Worked examples – Hand calculations
Valentinos Neophytou BEng, MSc
JULY 2013
ABOUT THIS DOCUMENT
This publication provides a concise compilation of selected rules in the Eurocode 8, together with relevant Cyprus National Annex, that relate to the design of common forms of concrete building structure in the South Europe. It id offers a detail view of the design of steel framed buildings to the structural Eurocodes and includes a set of worked examples showing the design of structural elements with using software (CSI ETABS). It is intended to be of particular to the people who want to become acquainted with design to the Eurocodes. Rules from EN 1998-1-1 for global analysis, type of analysis and verification checks are presented. Detail design rules for steel composite beam, steel column, steel bracing and composite slab with steel sheeting from EN 1998-1-1, EN1993-1-1 and EN1994-1-1 are presented. This guide covers the design of orthodox members in steel frames. It does not cover design rules for regularities. Certain practical limitations are given to the scope. Due to time constraints and knowledge, I may not be able to address the whole issues. Please send me your suggestions for improvement. Anyone interested to share his/her knowledge or willing to contribute either totally a new section about Eurocode 8 or within this section is encouraged.
For further details: My LinkedIn Profile: http://www.linkedin.com/profile/view?id=125833097&trk=hb_tab_pro_top Email:
[email protected] Slideshare Account: http://www.slideshare.net/ValentinosNeophytou
Page 2
List of contents
1.1 DESIGN AND ANALYSIS EXAMPLE OF STEEL FRAME WITH CONCENTRIC BRACING ................................................................................................................................. 7 1.1 LAYOUT OF STRUCTURE............................................................................................... 7 1.2 PRELIMINARY DESIGN................................................................................................... 9 1.2.1 PRELIMINARY DESIGN OF COLUMNS AND BEAMS ............................................ 9 1.3 MATERIAL PROPERTIES .............................................................................................. 11 1.3.1 MATERIAL PROPERTIES OF CONCRETE ............................................................... 11 1.3.2 MATERIAL PROPERTIES OF STEEL ........................................................................ 12 1.3.3 MATERIAL PROPERTIES OF STEEL AND CONCRETE AS DEFINE IN ETABS 13 1.3.4.1 MODELING REQUIREMENTS OF EC8 FOR CONCRETE MEMBERS............... 15 1.3.4.2 MODELING REQUIREMENTS OF EC8 FOR FLOOR DIAPHRAGMS ................ 15 1.3.4.3 MESHING OF SLABS ................................................................................................ 16 1.4 JOINT MODELING (EN1993-1-1,CL.5.1.2) ................................................................... 17 2.0 MODAL RESPONSE SPECTRUM ANALYSIS ............................................................. 20 2.1 STRUCTURAL TYPES AND BEHAVIOR FACTOR ACCORDING TO EN1998-11,CL.6.3 ................................................................................................................................... 20 2.2 DEFINE DESIGN HORIZONTAL RESPONSE SPECTRUM ........................................ 24 2.2.1 VERTICAL RESPONSE SPECTRUM (EN1998-1-1,CL.3.2.2.3) ................................ 24 2.2.2 HORIZONTAL RESPONSE SPECTRUM (EN1998-1-1,CL.3.2.2.5) .......................... 24 2.2.3 PARAMETERS OF ELASTIC RESPONSE SPECTRUM (EN1998-1-1,CL.3.2.2.5).. 25 2.2.3.1 GROUND INVESTIGATION CONDITIONS ........................................................... 29 2.2.3.2 IMPORTANCE FACTOR ........................................................................................... 29 2.2.3.3 DUCTILITY CLASS ................................................................................................... 30 2.3 ANALYSIS TYPES .......................................................................................................... 31 2.3.1 MODAL RESPONSE SPECTRUM ANALYSIS .......................................................... 31 2.3.1.1 ACCIDENTAL ECCENTRICITY .............................................................................. 32 2.3.2 LATERAL FORCE ANALYSIS REQUIREMENTS .................................................... 34 2.3.4 ESTIMATION OF FUNDAMENTAL PERIOD T1 ...................................................... 35 2.3.5 AUTOMATIC LATERAL FORCE ANALYSIS USING ETABS ................................ 36 2.3.6 USER LOADS - LATERAL FORCE ANALYSIS USING ETABS ............................. 38 Page 3
2.3.7 TORSIONAL EFFECTS ................................................................................................ 45 2.3.8 SUMMARY OF ANALYSIS PROCESS IN SEISMIC DESIGN SITUATION........... 46 3.0 DEFINE STATIC LOADS ................................................................................................ 47 4.0 SEISMIC MASS REQUIREMENTS ACCORDING TO EC8 ......................................... 48 4.1 MASS SOURCE OPTION ................................................................................................ 49 5.0 WIND LOADING ON STRUCTURE (EN1991-1-4:2004).............................................. 51 5.1 CALCULATION OF WIND LOAD ACCORDING TO EN1991-1-4:2004 .................... 51 5.2 APPLICATION OF WIND LOADING USING ETABS ................................................. 54 6.0 LOAD COMBINATION ................................................................................................... 59 7.0 DESIGN PREFERENCES ................................................................................................ 61 8.0 ANALYSIS AND DESIGN REQUIREMENTS FOR CONCENTRICALLY BRACED FRAMES ACCORDING TO EN1998-1-1,CL.6.7.2 .............................................................. 64 8.1 STEPS OF THE DESIGN DETAIL OF CONCENTRIC STEEL FRAMES ................... 65 8.2 CLASSIFICATION OF STEEL SECTIONS .................................................................... 66 8.3 DESIGN OF COMPOSITE SLAB UNDER GRAVITY LOADS .................................... 68 8.4 DESIGN OF COMPOSITE BEAM (WITH STEEL SHEETING) UNDER GRAVITY LOADS .................................................................................................................................... 72 8.5 DETAIL DESIGN OF STEEL COLUMNS UNDER GRAVITY LOADS...................... 79 8.6 DETAIL DESIGN RULES OF STEEL CONCENTRIC BRACED FRAMES (CBF) ACCORDING TO EUROCODE 8.......................................................................................... 87 8.6.1 DETAIL DESIGN RULES OF STEEL BRACING ACCORDING TO EUROCODE 8 .................................................................................................................................................. 87 8.7 DETAIL DESIGN RULES OF STEEL COLUMNS AND BEAMS ACCORDING TO EUROCODE 8 ......................................................................................................................... 88 8.8 DETAIL DESIGN RULES OF STEEL COMPOSITE MEMBERS ACCORDING TO EUROCODE 8 ......................................................................................................................... 89 8.9 DETAIL DESIGN RULES OF STEEL MOMENT RESISTANCE FRAMES (MRF) ACCORDING TO EUROCODE 8.......................................................................................... 90 8.9.1 DETAIL DESIGN RULES FOR MRF - DESIGN CRITERIA .................................... 90 8.9.2 DETAIL DESIGN RULES OF STEEL BEAM FOR MRF ........................................... 90 8.9.3 DETAIL DESIGN RULES OF STEEL COLUMN FOR MRF ..................................... 91 9.0 DESIGN OF STEEL FRAMES ......................................................................................... 92 9.1 DESIGN OF STEEL MEMBER OVERWRITES DATA................................................. 92
Page 4
9.2 DESIGN OF COLUMNS / BEAMS USING ETABS – GRAVITY LOAD ANALYSIS ONLY ...................................................................................................................................... 97 9.3 DESIGN OF STEEL COLUMN (GRAVITY DESIGN SITUATION) – HAND CALCULATIONS ................................................................................................................. 105 9.4 DESIGN OF STEEL COLUMN (SEISMIC DESIGN SITUATIONN) ......................... 118 9.4.1 DESIGN OF STEEL COLUMN (SEISMIC DESIGN SITUATION – HAND CALCULATION) .................................................................................................................. 124 9.5 DESIGN OF COMPOSITE BEAMS - HAND CALCULATIONS ................................ 128 9.5 DESIGN OF STEEL BRACING ..................................................................................... 145 9.5.1 MAIN CONFIGURATION OF DESIGN OF STEEL BRACING .............................. 145 9.5.2 SIMPLIFIED DESIGN OF FRAMES WITH X BRACING (EXTRACT FROM DESIGN GUIDANCE TO EC8) ........................................................................................... 147 9.5.3 MODEL IN ETABS ..................................................................................................... 148 9.5.4 DESIGN OF STEEL BRACING (GRAVITY/SEISMIC DESIGN SITUATION) – HAND CALCULATION....................................................................................................... 156 10.0 MODAL RESPONSE SPECTRUM ANALYSIS ......................................................... 170 10.1 SET THE ANALYSIS OPTIONS ................................................................................. 170 10.2 EVALUATE THE ANALYSIS RESULTS OF THE STRUCTURE ACCORDING TO THE MODAL ANALYSIS REQUIREMENTS ................................................................... 171 10.2.1 ASSESS THE MODAL ANALYSIS RESULTS BASED ON THE EN1998 ........... 172 11.0 SECOND ORDER EFFECTS (P – Δ EFFECTS) ACCORDING TO EN1998-11,CL.4.4.2.2 ........................................................................................................................... 173 11.1 DISPLACEMENT CALCULATION ACCORDING TO EN1998-1-1,CL.4.4.2.2 ..... 174 11.2 INTERSTOREY DRIFT................................................................................................ 174 11.3 CALCULATION OF SECOND ORDER EFFECT USING ETABS ........................... 175 11.3.1 INTERSTOREY DRIFT DISPLACEMENT ............................................................. 176 11.3.2 TOTAL GRAVITY LOAD PTOT ................................................................................ 178 11.3.2 TOTAL SEISMIC STOREY SHEAR VTOT ............................................................... 180 12.0 DAMAGE LIMITATION ACCORDING TO EN1998-1-1,CL.4.4.3 .......................... 184 12.1 CALCULATION OF DAMAGE LIMITATION .......................................................... 185 ANNEX - A .......................................................................................................................... 186 ANNEX A.1 - ASSUMPTIONS MADE IN THE DESIGN ALGORITHM (MANUAL OF ETABS – EC3 & EC8) .......................................................................................................... 186
Page 5
A1.1:LIMITATION MADE IN THE DESIGN ALGORITHM (MANUAL OF ETABS – EC3&EC8) ............................................................................................................................. 187 ANNEX –B: STEEL DESIGN FLOWCHARTS .................................................................. 188
Page 6
1.1 Design and analysis example of steel frame with concentric bracing
1.1 Layout of structure
Figure 1.1: Plan view
Figure 1.2: Side Elevation (4) & (1)
Page 7
Figure 1.3: Side Elevation (A) & (D)
Table 1.1: Dimensions of the building Dimensions
Symbol
Value
Units
Storey height
h
3.0
m
Total height of the building
H
9.0
m
Beam length in X-direction
lx
5.0
m
Beam length in Y-direction
ly
5.0
m
Building width in X-direction
Lx
15.0
m
Building width in Y-direction
Ly
15.0
m
Page 8
1.2 Preliminary design Table 1.2: Seismic design data Data
Symbol
Value
Units
-
3
-
Reference peak ground acceleration on type A ground, agR. Importance class
agR
0.25
m/s2
γI
1.0
-
Design ground acceleration on type A ground
ag
0.25
m/s2
Design spectrum
-
Type 1
-
Ground type
-
B
-
Seismic zone
Structural system
Steel frame with concentric bracing
Behavior factor
q
4.0
-
1.2.1 Preliminary design of columns and beams Preliminary design of steel beam Design data: Span of beam
Lx := 5000mm
Bay width
wbay := 5000mm
Overall depth of slab
h := 130mm
Loading data: −3
Density of concrete
γ c := 25kN⋅ m
Loads of floor per meter
g floor := γ c⋅ h ⋅ Lx = 16.25⋅ kN⋅ m
Live load
q office := 2kN⋅ m
Live load per meter
q service := q office⋅ Lx = 10⋅ kN⋅ m
−1
−2 −1
Partial factor for actions: Safety factor are obtain from Table A.1(2)B EN1990 Permanent actions, γ G Variable actions, γ Q Total load
γ G := 1.35 γ Q := 1.5 −1
Ed := γ G⋅ g floor + γ Q⋅ q service = 36.94⋅ kN⋅ m
Page 9
Material properties: −2
Young Modulus of Elasticity
Es := 210kN⋅ mm
Structural steel (clause 6.1(1) EN 1993 1-1)
γ M0 := 1.0
Structural steel properties: −2
Yield strength, fy
fy := 355N ⋅ mm
Ultimate strength, fu
fu := 450N ⋅ mm
Yield strength of reinforcement, fyk
fyk := 500N ⋅ mm
−2 −2
Deflection limitation: Deflection limit - General purpose
Lx
F :=
300 3
300⋅ Ed ⋅ Lx
Second moment area required
Ireq :=
Second moment area provided (IPE240)
Iprov := 3892cm
(
Check_1 := if Iprov > Ireq, "OK" , "NOT OK"
3
4
= 1.718 × 10 ⋅ cm
384⋅ Es 4
)
Check_1 = "OK"
Moment resistance check: 2
Design moment (Fixed end)
MEd :=
= 76.953⋅ kN⋅ m 12 MEd 3 W pl.y.req := = 216.769⋅ cm fy
Plastic modulus required
3
W pl.y := 324.4cm
Plastic modulus provided (IPE240)
(
Check_2 := if Wpl.y > Wpl.y.req, "OK" , "NOT OK"
Ed ⋅ Lx
)
Check_2 = "OK" Weak Beam - Strong column -Capacity design: 3
Plastic modulus of column required
W pl.y.c.req := 1.3⋅ W pl.y = 421.72cm
Plastic modulus of column provided (HE220A)
W pl.y.c := 515cm
(
Check_3 := if Wpl.y.c > Wpl.y.c.req , "OK" , "NOT OK"
3
)
Check_3 = "OK"
Page 10
1.3 Material properties ETABS: Define > Material properties 1.3.1 Material properties of concrete
Design requirement Poisson ratio is equal to v = 0 (cracked concrete) and v = 0.2 (un-cracked concrete) as (EN1992-1-1,cl.3.1.3). Table 1.3: Concrete properties (EN 1992, Table 3.1) C16/20
C20/25
C25/30
C30/37
Property Data for concrete
(N/mm2)
(N/mm2)
(N/mm2)
(N/mm2)
Mass per unit Volume
2,5E-09
2,5E-09
2,5E-09
2,5E-09
Weight per unit volume
2,5E-05
2,5E-05
2,5E-05
2,5E-05
29000
30000
31000
33000
0
0
0
0
10E-06
10E-06
10E-06
10E-06
Charact. ConcCyl. Strength, fck
16
20
25
30
Bending Reinf. Yield stress, fyk
500
500
500
500
Shear Reinf. Yield stress, fyk
500
500
500
500
Modulus of Elasticity Poisson’s Ratio (cracked concrete) Coeff. of thermal expansion
Page 11
1.3.2 Material properties of steel
Table 1.4: Material properties of steel Material Properties
Symbol
Value
Units
References
Mass per unit Volume
γs
7.85E-09
kg/mm3
EN1991-1-1,table A.4
Weight per unit Volume Modulus of Elasticity
γs
7.70E-05
N/mm3
EN1991-1-1,table A.4
Es
210,000
N/mm2
EN1993-1-1,cl.3.2.6(1)
Poisson’s ratio
ν
0.3
-
EN1993-1-1,cl.3.2.6(1)
α
1.2x10-5 per K (for T ≤ 100oC)
K
EN1993-1-1,cl.3.2.6(1)
α
1.2x10-5 per K (for T ≤ 100oC)
K
EN1993-1-1,cl.3.2.6(1)
G
≈81,000
N/mm2
EN1993-1-1,cl.3.2.6(1)
fy
275
N/mm2
EN1993-1-1,table 3.1
fu
430
N/mm2
EN1993-1-1,table 3.1
Coeff of Thermal Expansion (Steel structures) Coeff of Thermal Expansion (Composite ConcreteSteel structures) Shear Modulus Characteristic yield strength of steel profile Ultimate strength
Table 1.5: Strength vales of steel sections (EN1993-1-1,table 3.1) Nominal thickness of the element t (mm) Steel grade
t ≤ 40mm
40mm < t ≤ 80mm
Grade
fy (N/mm2)
fu (N/mm2)
fy (N/mm2)
fu (N/mm2)
reference
S235
235
360
215
360
EN 10025-2
S275
275
430
255
410
EN 10025-2
S355
355
510
335
470
EN 10025-2
S450
440
550
410
550
EN 10025-2
Note: You may use the product standard instead of those given in EN1993-1-1
Page 12
1.3.3 Material properties of steel and concrete as define in ETABS
Figure 1.4: Material properties of concrete (C25/30)
Figure 1.5: Material properties of steel (S275)
1.3.4 Slab modeling
Page 13
Table 1.6: Slab properties Data
Symbol
Value
Units
Slab depth
hs
170
mm
Diameter of stud
d
19
mm
haw
152
mm
fu
430
N/mm2
Height of stud Tensile strength of stud
ETABS: Define > Wall/Slab/Deck Sections/Add new deck Figure 1.6: Deck section properties
Press “Set Modifier” in order to modify the slab properties
Page 14
1.3.4.1 Modeling requirements of EC8 for concrete members 1. Unless a more accurate analysis of the cracked elements is performed, the elastic flexural and shear stiffness properties of concrete and masonry elements may be taken to be equal to one-half of the corresponding stiffness of the un-cracked elements (EN1998-1-1,cl.4.3.1(7)). Figure 1.7: Modified “Stiffness Modifiers”
1.3.4.2 Modeling requirements of EC8 for floor diaphragms ETABS: Select > Wall/Slab/Deck section > Select Deck ETABS: Define > Diaphragms ETABS: Select “D1” (Rigid diaphragms) 2. When the floor diaphragms of the building may be taken as being rigid in their planes, the masses and the moments of inertia of each floor may be lumped at the centre of gravity (EN1998-1-1,cl.4.3.1(4)).
Page 15
1.3.4.3 Meshing of slabs ETABS: Select > Wall/Slab/Deck section > Select Deck ETABS: Assign > Shell area > Auto Object Auto mesh option When you have a composite beam floor system, ETABS, by default, automatically meshes (divides) the deck at every beam and girder. This allows ETABS to automatically distribute the loading on the deck to each beam or girder in an appropriate manner. Figure 1.8: Meshing of composite slab
Figure 1.9: Meshing of normal slab
Page 16
1.4 Joint modeling (EN1993-1-1,cl.5.1.2)
(1) The effects of the behavior of the joints on the distribution of internal forces and moments within a structure, and on the overall deformations of the structure, may generally be neglected, but where such effects are significant (such as in the case of semi-continuous joints) they should be taken into account, see EN 1993-1-8. (2) (2) To identify whether the effects of joint behavior on the analysis need be taken into account, a distinction may be made between three joint models as follows, see EN 1993-1-8, 5.1.1: – simple, in which the joint may be assumed not to transmit bending moments. – continuous, in which the behavior of the joint may be assumed to have no effect on the analysis. – semi-continuous, in which the behavior of the joint needs to be taken into account in the analysis.
Page 17
Table 1.7: Example of joint types Simple joint
Continuous Fixed joint
Semi- continuous joint
ETABS: Pin joint in ETABS The pin-joint in ETABS can be achieved by selecting the members that you assumed to be pinned in the analysis process. This can be done as follow: Select member > Assign > Frame/Line > Frame Releases Partial Fixity Figure 1.10: Pinned joint (both ends)
Page 18
ETABS: Fixed joint in ETABS The fixed-joint in ETABS can be achieved by selecting the members that you assumed to be fixed in the analysis process. This can be done as follow: Select member > Assign > Frame/Line > Frame Releases Partial Fixity Figure 1.11: Fixed joint
Page 19
2.0 Modal Response Spectrum Analysis
2.1 Structural types and behavior factor according to EN1998-1-1,cl.6.3 Table 2.1: Structural types and behavior factor q-factor DCM DCH
Structural Type Moment resisting frames (MRF)
4
αu/ α1 =1.1
5αu/ α1
αu/ α1 =1.2 (1 bay) αu/ α1 =1.3 (multi-bay)
dissipative zones in beams and column bases Concentrically braced frames (CBF)
4
4
2
2.5
Dissipative zones in tension diagonals V-braced frames (CBF)
Page 20
Dissipative zones in tension and compression diagonals Frames with K-bracing (CBF)
Not allowed in dissipative design
Eccentrically braced frame (EBF)
4
5αu/ α1
2
2αu/ α1
4
4αu/ α1
αu/ α1 =1.2 dissipative zones in bending or shear links Inverted pendulum system
αu/ α1 =1.0
αu/ α1 =1.1
dissipative zones in column base, or column ends (NEd/Npl,Rd < 0.3) Moment-resisting frames with concentric bracing (MRF) + (CBF)
Page 21
αu/ α1 =1.2 dissipative zones in moment frame and tension diagonals Moment frames with infills Unconnected concrete or masonry infills, in contact with the frame
Connected reinforced concrete Infills
Infills isolated from moment frame
2
2
See EN1998-1-1,table 5.1
4
5αu/ α1
Structures with concrete cores or walls
See EN1998-1-1,table 5.1
Note: If the building is non-regular in elevation (see EN1998-1-1,cl.4.2.3.3) the upper limit values of q listed above should be reduced by 20 %
Page 22
Table 2.2: Values of behavior factor for regular and irregular structure Structural type
Regular in plan
Irregular in
Regular in plan
Irregular in
Irregular in
Regular in plan
Irregular in
and elevation
plan / Regular
/ Irregular in
plan &
plan / Regular
/ Irregular in
plan &
in elevation
elevation
elevation
in elevation
elevation
elevation
DCM
DCH
DCM
DCM
DCM
DCH
DCH
DCH
Single storey portal
4.0
5.5
3.2
3.2
3.2
5.25
4.4
4.2
One bay multi-storey
4.0
6.0
3.2
3.2
3.2
5.5
4.8
4.4
Multi-bay, multi-storey
4.0
6.5
3.2
3.2
3.2
5.75
5.2
4.6
Diagonal bracing
4.0
4.0
3.2
4.0
4.0
4.0
3.2
3.2
V-bracing
2.0
2.5
1.6
2.5
2.5
2.5
2.0
2.0
2.0
2.0
1.6
2.0
2.0
2.0
1.6
1.6
Moment resisting frame
Concentrically braced frame
Frame with masonry infill panels
Page 23
2.2 Define design horizontal response spectrum
2.2.1 Vertical response spectrum (EN1998-1-1,cl.3.2.2.3) The vertical component of the seismic action should be taken into account if the avg>0.25g (2.5m/s2) in the cases listed below: •
for horizontal structural member spanning 20m or more,
•
for horizontal cantilever components longer than 5m,
•
for horizontal pre-stressed components,
•
for beams supporting columns,
•
in based-isolated structures.
2.2.2 Horizontal response spectrum (EN1998-1-1,cl.3.2.2.5) For the horizontal components of the seismic action the design spectrum, Sd(T), shall be defined by the following expressions:
0 ≤ 𝑇 ≤ 𝑇! : 𝑆! 𝑇 = 𝑎! ∙ 𝑆 ∙
!
𝑇! ≤ 𝑇 ≤ 𝑇! : 𝑆! 𝑇 = 𝑎! ∙ 𝑆 ∙
!.!
𝑇! ≤ 𝑇 ≤ 𝑇! : 𝑆! 𝑇 = 𝑎! ∙ 𝑆 ∙
!
+! ∙ ! !
!
!.! !
(ΕΝ1998-1-1,Eq. 3.14)
2.5 𝑇! 𝑞 𝑇
≥ 𝛽 ∙ 𝑎! 𝑇! ≤ 𝑇 ≤ 4𝑠: 𝑆! 𝑇 = 𝑎! ∙ 𝑆 ∙ ≥ 𝛽 ∙ 𝑎!
!
− ! (ΕΝ1998-1-1,Eq. 3.13)
(ΕΝ1998-1-1,Eq. 3.15)
!.! !! !! !
!!
(ΕΝ1998-1-1,Eq. 3.5)
Design ground acceleration on type A ground:
ag=γIagR
Lower bound factor for the horizontal spectrum: β=0.2 Note: the value of q are already incorporate with an appropriation value of damping viscous, however the symbol η is not present in the above expressions. Page 24
2.2.3 Parameters of elastic response spectrum (EN1998-1-1,cl.3.2.2.5) Table 2.3: Parameters of Type 1 elastic response spectrum (CYS NA EN1998-1-1,table 3.2) Ground
S
TB (s)
TC (s)
TD (s)
A
1.0
0.15
0.4
2.0
B
1.2
0.15
0.5
2.0
C
1.15
0.20
0.6
2.0
D
1.35
0.20
0.8
2.0
E
1.4
0.15
0.5
2.0
Type
Note: For important structures (γI>1.0), topographic amplification effects should be taken into account (see Annex A EN1998-5:2004 provides information for topographic amplification effects).
ETABS: Define > Response spectrum function Select EUROCODE8 Spectrum
Add New Function
1.
Peak ground acceleration agR=0,25g,
2.
Type C or D for building within category of importance I and II,
3.
Define two response spectrum cases if the factor q is different in each direction,
Page 25
4.
Modify the existing values of elastic response spectrum case in order to change it into the design response spectrum.
Convert the existing elastic response spectrum case to design response spectrum case
Figure 2.1: Response Spectrum to EC8
PERIOD ACCELERATION T Sd(T) 0.0000 0.2000 0.1000 0.1917 0.1500 0.1875
g = β = SoilType = q = αgR =
9.81 0.2 B 4.00 0.25
m/sec2 -‐ -‐ -‐ -‐
0.2000 0.4000
0.1875 0.1875
S = TB =
1.20 0.15
-‐ sec
0.6000
0.1563
TC =
0.50
sec
0.8000
0.1172
TD =
2.00
sec
1.0000 1.5000 2.0000 2.5000 3.0000 4.0000 5.0000 6.0000 8.0000 10.0000
0.0938 0.0625 0.0469 0.0300 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
sec T = 0.50 Data for soil type -‐ Type Spectrum 1 index Soil Type S TB 1 A 1 0.15 2 B 1.2 0.15 3 C 1.15 0.2 4 D 1.35 0.2 5 E 1.4 0.15
TD 2 2 2 2 2
TC 0.4 0.5 0.6 0.8 0.5
Page 26
Page 27
Figure 2.2: Amendment Response spectrum (q = 4)
Page 28
2.2.3.1 Ground investigation conditions Table 2.4: Geological studies depend on the importance class (CYS NA EN1998-1-1, NA 2.3 / cl.3.1.1 (4)) Importance class of buildings Ground
I
II
III
IV
A
NRGS
NRGS
RGS
RGS
B
NRGS
NRGS
RGS
RGS
C
NRGS
NRGS
RGS
RGS
D
NRGS
NRGS
RGS
RGS
E
NRGS
NRGS
RGS
RGS
Type
NRGS: Not required geological studies RGS: required geological studies if there is not adequate information 2.2.3.2 Importance factor Table 2.5: Importance classes for buildings (ΕΝ1998-1-1,table.4.3 and CYS NA EN19981-1,cl NA2.12) Importance
Buildings
class I II
Buildings of minor importance for public safety, e.g. argricultural buildings, etc. Ordinary buildings, not belonging in the other categories.
Important
Consequences
factor γI
Class
0.8
CC1
1.0
CC2
1.2
CC3
1.4
CC3
Buildings whose seismic resistance is of III
importance in view of the consequences associated with a collapse, e.g. schools, assembly halls, cultural institutions etc. Buildings whose integrity during earthquakes
IV
is of vital importance for civil protection, e.g. hospitals, fire stations, power plants, etc.
Page 29
CC1: Low consequence for loss of human life, and economic, social or environmental consequences small or negligible. CC2: Medium consequence for loss of human life, economic, social or environmental consequences considerable. CC3: High consequence for loss of human life, or economic, social or environmental consequences very great
2.2.3.3 Ductility class
Table 2.6: Requirement for importance class relate to ductility class (CYS NA EN19981-1,cl NA2.16 & cl.5.2.1(5)) Importance
Zone 1
Zone 2
Zone 3
I
DCL
DCL
DCL
II
DCM/DCH
DCM/DCH
DCM/DCH
III
DCM/DCH
DCM/DCH
DCM/DCH
IV
DCH
DCH
DCH
class
DCL: Ductility class low. DCM: Ductility class medium. DCH: Ductility class high.
Page 30
2.3 Analysis types
2.3.1 Modal Response spectrum analysis
Table 2.7: Requirements of modal response spectrum analysis according to Eurocode 8 Requirements
Values
References
YES / NO
ΕΝ1998-1-1,table 4.1
Regular in elevation
NO
ΕΝ1998-1-1,table 4.1
Sum of the effective
≥ 90%
Regular in plan
modal masses
≥ 5% of total mass
EN1998-1-1,cl.4.3.3.1(3)
k ≥3.√n
Minimum number of
k: is the number of modes
modes
EN1998-1-1,cl.4.3.3.1(5)
n: is the number of storey Tk ≤ 0.20sec
Behaviour factor q
Tk: is the period of vibration of
EN1998-1-1,cl.4.3.3.1(5)
mode k. Fundamental period
Tj ≤ 0.9 Ti
SRSS
Tj ≥ 0.9 Ti
CQC
Accidental eccentricity
See section 2.1.1.1
EN1998-1-1,cl.4.3.3.2.1(2) EN1998-1-1,cl.4.3.2
1. Independently in X and Y direction, 2. Define design spectrum, 3. Use CQC rule for the combination of different modes (EN1998-1-1,cl.4.3.3.3.2(3)) 4. Use SRS rule for combined the results of modal analysis for both horizontal directions (EN1998-1-1,cl.4.3.3.5.1(21)). 5. Modal Combination: “Complete Quadratic Combination” (CQC) can be used if the Tj ≤ 0,9 Ti (EN1998-1-1,cl.4.3.3.3.2(3)P).
Page 31
2.3.1.1 Accidental eccentricity
Accidental eccentricity of each storey cause of uncertainties location of masses have been taken into account 5% (EN1998-1-1,cl.4.3.2). Moreover, if there are masonry infills with a moderately irregular and asymmetric distribution in plan, is doubled further in Eurocode 8 (i.e., to 10% of the storey orthogonal dimension in the baseline case, or 20% if accidental torsional effects are evaluated in a simplified way when using two separate 2D models).
Table 2.8: Summary of accidental eccentricity Percentage of
Geometry
Asymmetric
Masonry infills
accidental
of model
distribution of mass
(Regular/Irregular)
eccentricity
(3D/2D)
(Regular/Irregular)
5%
3D
Regular
Regular
10%
3D
Irregular
Irregular
20%
2D
-
-
Note: Accidental eccentricity is automatically included during response-spectrum analysis in ETABS, though equivalent static-load procedures are also available for manual evaluation. Note that floor diaphragms must be rigid, otherwise torsional effects are not substantial. ETABS implements an efficient and practical approach while formulating dynamic response from accidental eccentricity. After the response-spectrum load case is run, the X and Y acceleration at each joint location is determined, then multiplied by the tributary mass and the diaphragm eccentricity along either Y or X. The larger absolute value of these resultant moments (m*Xacc*dY or m*Yacc*dX) is then applied as torsion about the joint location. Static response is then added to response-spectrum output to account for the additional design forces caused by accidental eccentricity.
Page 32
Define > Response spectrum cases Note: Add two response spectrum cases: EQX and EQY as showing below (figure 9).
Figure 2.3: Response Spectrum case Data for EQY& EQX
Page 33
2.3.2 Lateral force analysis requirements Table 2.9: Requirements of lateral force analysis according to Eurocode 8 Requirements
Values
References
YES / NO
ΕΝ1998-1-1,table 4.1
Regular in elevation
YES
ΕΝ1998-1-1,table 4.1
Ground acceleration
0.10-0.25g
Regular in plan
Spectrum type
1
CYS NA EN1998-11:Seismic zonation map EN1998-1-1,cl.3.2.2.2(2)P
A,B,C,D,E Ground type
Normally type B or C can be used
EN1998-1-1,cl.3.1.2(1)
normal condition Lower bound factor for the horizontal design spectrum
λ = 0.85 if T1 ≤ 2TC and more than 2 storey
EN1998-1-1,cl.4.3.3.2.2(1Ρ)
λ=1.0 in all other case
Behaviour factor q
Fundamental period Accidental eccentricity
Concrete DCM
q= 1.5 – 3.90
EN1998-1-1,cl.5.2.2.2(2)
Concrete DCH
q= 1.6 – 5.85
EN1998-1-1,cl.5.2.2.2(2)
Steel DCM
q= 2.0 – 4.00
EN1998-1-1,cl.6.3.2(1)
Steel DCH
q= 2.0 – 5.85
EN1998-1-1,cl.6.3.2(1)
T1≤4Tc T1≤2,0s
EN1998-1-1,cl.4.3.3.2.1(2)
See section 2.1.1.1
EN1998-1-1,cl.4.3.2
Table 2.10: Equivalent Static Force Case Load case name
Direction and Eccentricity
% Eccentricity
EQXA
X Dir + Eccen. Y
0.05
EQYA
X Dir – Eccen. Y
0.05
EQXB
Y Dir + Eccen. X
0.05
EQYB
Y Dir – Eccen. X
0.05
Page 34
2.3.4 Estimation of fundamental period T1
Table 2.11: Estimation of fundamental period T1 Reference structure
Period T1
Exact formula for Single Degree of Freedom Oscillator. Mass M lumped at top of a vertical cantilever of height H. Cantilever mass MB = 0.
𝑀𝐻! 𝑇! = 2𝜋 3𝐸𝐼
Exact formula for Single Degree of Freedom Oscillator. Vertical cantilever of height H and of
𝑇! = 2𝜋
total mass MB.
0.24𝑀! 𝐻! 3𝐸𝐼
Exact formula for Single Degree of Freedom Oscillator. Mass M lumped at top of a vertical cantilever of height H and of total mass MB.
𝑇! = 2𝜋
𝑀 + 0.24𝑀! 𝐻! 3𝐸𝐼
Approximate Relationship (Eurocode 8). Ct = 0,085 for moment resisting steel space frames Ct = 0,075 for eccentrically braced steel frames Ct = 0,050 for all other structures
𝑇! = 𝐶! 𝐻!/! H building height in m measured from foundation or top of rigid basement.
Approximate Relationship (Eurocode 8). d : elastic horizontal displacement of top of building in m under gravity loads applied
𝑇! = 2 𝑑
horizontally.
Page 35
2.3.5 Automatic Lateral force analysis using ETABS ETABS: Define > Static load cases Figure 2.4: Apply the Equivalent Static Force Case
Figure 2.5: Modify the Equivalent Static Force Case
Note: The seismic forces should be applied only above the top of the basement
Page 36
Fundamental period (EN1998-1-1,Eq.4.6) T1=CtH3/4 (For heights up to 40m)
Value of Ct(EN1998-1-1,cl.4.3.3.2.2(3)) Ct = 0.085 (for moment resisting steel frames) Ct= 0.075 (for moment resisting concrete frames) Ct= 0.05 (for all other structures) (EN 1998-1-1:2004, cl. 4.3.3.2.2(3)) Ct= 0.075/√ΣAc(for concrete/masonry shear wall structures) (EN 1998-1-1:2004, Eq. 4.7)
Fundamental period requirements (EN1998-1-1,Eq.4.6) T1≤4TCT1≤2sec IF this
YES
LATERAL FORCE ANALYSIS
Correction factor λ(EN1998-11,cl.4.3.3.2.2(1Ρ)) λ=0.85 if T1≤2TC and more than 2 storey λ=1.0 in all other case
Horizontal seismic forces (according to displacement of the masses) s! ∙ m ! F! = F! ∙ s! ∙ m ! (EN 1998-1-1:2004, Eq. 4.10)
Ac= Σ[Ai·(0,2+(lwi/H2))] (EN 1998-1-1:2004, Eq. 4.8) NO
RESPONSE SPECTRUM ANALYSIS
Design spectrum Sd(T)(EN1998-11,cl.3.2.2.5) 0≤T≤TB TB≤T≤TcTC≤T≤TD TD≤T
Base shear(EN1998-11,cl.4.3.3.2.2) Fb=Sd(T1).m.λ (EN 1998-1-1:2004, Eq. 4.5)
Seismic mass(EN1998-11,cl.3.2.4) ΣGk,j/g”+”ΣψE,i.Qk,i/g (EN 1998-1-1:2004, Eq.3.17)
Horizontal seismic forces (according to height of the masses) z! ∙ m ! F! = F! ∙ z! ∙ m ! (EN 1998-1-1:2004, Eq. 4.11)
Page 37
2.3.6 User loads - Lateral force analysis using ETABS Geometrical data
Span of the longitutinal direction
Lx := 15m
Span of the transverse direction
Ly := 15m
Span of each beam
Lb := 5m
Span of each bracing
Lt := 5.831m
Height of each column
hc := 3m
Total heigh of building
H := 9m
Area of floor for each storey
A f := Ly ⋅ Lx = 225m
Number of floors
Nf := 3
Number of beams IPE240 at each floor
Nb := 24
Number of beams IPE180 at each floor
Ns := 9
Number of columns HE280A at each floor
Nc := 16
Number of TUBE sections D127-4 at each floor
Nt := 8
2
Page 38
Dead load −1
Weight of steel column HE280A
g c := 76.4kg⋅ m
Weight of primary beams IPE240
g p := 30.7kg⋅ m
Weight of secondary beams IPE180
g s := 18.8kg⋅ m
Weight of steel beams TUBE-D127-4
g t := 12.38kg⋅ m
Slab thickness
hs := 170mm
Weigth of concrete
γ c := 25kN⋅ m
Weight of slab
g slab := γ c⋅ h s = 4.25⋅ kN⋅ m
Weigth of finishes
g fin := 1kN⋅ m
−1
−1 −1
−3 −2
−2
Total dead load
(
3
)
Gk.storey := ⎡ gc⋅ Nc ⋅ hc + g p⋅ Nb ⋅ Lb + g s ⋅ Ns ⋅ Lb + gt⋅ Nt ⋅ Lt g + g slab ⋅ A f + g fin⋅ A f⎤ = 1.267 × 10 ⋅ kN ⎣ ⎦
Total dead load
(
3
)
Gk := ⎡ g c⋅ Nc ⋅ h c + g p ⋅ Nb ⋅ Lb + g s ⋅ Ns ⋅ Lb + g t⋅ Nt ⋅ Lt g + g slab ⋅ A f + g fin⋅ A f⎤ ⋅ Nf = 3.802 × 10 ⋅ kN ⎣ ⎦
Live load Combination coefficient for variable action
ψEi := 0.3
Live load
q k := 2kN⋅ m
Total live load
Qk := qk⋅ Af = 450⋅ kN
Total gravity load per storey (EN1998-1-1,cl.3.2.4(2)P)
FEd.storey := Gk.storey + ψEi⋅ Qk = 1.402 × 10 ⋅ kN
Total gravity load per storey (EN1998-1-1,cl.3.2.4(2)P)
FEd := Gk + ψEi⋅ Qk ⋅ Nf = 4.207 × 10 ⋅ kN
Seismic mass
S_mass :=
−2
(
(
FEd g
3
)
3
)
5
= 4.29 × 10 kg
Page 39
Horizontal design response Spectrum (EN1998-1-1,cl.3.2.2.5) Behaviour factor q (EN1998-1-1,cl.6.3) Lower bound factor (EN1998-1-1,cl.3.2.2.5(4)P)
q := 1.5
Seismic zone (CYS NA EN1998-1-1, zonation map)
Seismic_zone := "3"
β := 0.2
agR :=
0.15g if Seismic_zone 0.2g if Seismic_zone 0.25g if Seismic_zone
Importance factor (CYS NA EN1998-1-1,cl. NA2.12)
Value of Ct (EN1998-1-1,cl.4.3.3.2.2(3))
Fundamental period of vibration (EN1998-1-1,cl.4.3.3.2.2(3)) Type of soil (EN1998-1-1,cl.3.1.2(1))
= 2.452
m s
"2"
2
"3"
Importance_factor := "II" γ I :=
Design ground acceleration on type A (EN1998-1-1,cl.3.2.1(3))
"1"
0.8 if Importance_factor
"I"
=1
1.0 if Importance_factor
"II"
1.2 if Importance_factor
"III"
1.4 if Importance_factor
"IV"
m ag := γ I⋅ agR = 2.452 2 s
Value_Ct := "OTHER" Ct :=
0.085 if Value_Ct
"MRSF"
0.075 if Value_Ct
"MRCF"
0.05 if Value_Ct
"OTHER"
= 0.05
3⎤ ⎡ ⎢ ⎥ 4 ⎢ ⎛ H ⎞ ⎥ T1 := ⎢Ct⋅ ⎜ ⎟ ⎥ s = 0.26s ⎣ ⎝ m ⎠ ⎦
Soil_type := "B"
Value of parameters describing the Type 1 elastic response spectrum (EN1998-1-1,table 3.2) Soil factor, S
S :=
1.0 if Soil_type
"A"
1.2 if Soil_type
"B"
1.15 if Soil_type
"C"
1.35 if Soil_type
"D"
= 1.2
Page 40
Lower limit of the period, TB
TB :=
Upper limit of the period, TC
TC :=
Constant displacement value, TD
Corection factor λ (EN1998-1-1,cl.4.3.3.2.2(1)P)
TD :=
λ :=
0.15s if Soil_type
"A"
0.15s if Soil_type
"B"
0.20s if Soil_type
"C"
0.20s if Soil_type
"D"
0.40s if Soil_type
"A"
0.50s if Soil_type
"B"
0.60s if Soil_type
"C"
0.80s if Soil_type
"D"
2.0s if Soil_type
"A"
2.0s if Soil_type
"B"
2.0s if Soil_type
"C"
2.0s if Soil_type
"D"
0.85 if T1 ≤ 2TC ∧ Nf > 2
= 0.15s
= 0.5s
= 2s
= 0.85
1 otherwise
Check the fundamental period of vibration requirements (EN1998-1-1,cl.4.3.3.2.1(2))
(
Check_1 := if T1 ≤ 4TC ∧ T1 ≤ 2s , "Lateral force analysis" , "Response spectrum analysis"
)
Check_1 = "Lateral force analysis"
Design spectrum for elastic analysis (EN1998-1-1,cl.3.2.2.5(4)P)
⎡ 2 T1 ⎛ 2.5 2 ⎞⎤ S1e T1 := ag ⋅ S⋅ ⎢ + ⋅ ⎜ − ⎟⎥ 3 TB ⎝ q 3 ⎠ ⎣ ⎦
( )
2.5 S2e T1 := ag⋅ S⋅ q
( )
( )
S3e T1 :=
ag ⋅ S⋅
( )
S4e T1 :=
( )
−2
( )
−2
S3e TC = 4.903⋅ m⋅ s
2.5 TC if β ⋅ ag ≥ ag ⋅ S⋅ ⋅ q T1
⎛ 2.5 TC⋅ TD ⎞ 2.5 TC⋅ TD ⎜ ag⋅ S⋅ ⋅ ⎟ if ag⋅ S⋅ ⋅ ≥ β ⋅ ag q 2 ⎟ q 2 ⎜ T1 T1 ⎝ ⎠
( β ⋅ ag )
−2
S2e TB = 4.903⋅ m⋅ s
2.5 TC 2.5 TC ⋅ if ag ⋅ S⋅ ⋅ ≥ β ⋅ ag q T1 q T1
( β ⋅ ag )
S1e( 0) = 1.961⋅ m⋅ s
2.5 TC⋅ TD if ag ⋅ S⋅ ⋅ ≤ β ⋅ ag q 2 T1
( )
Page 41
m S4e T1 = 72.642 2 s
( )
(
(
(
Se( T) := if T < TB, S1e( T) , if T < TC, S2e( T) , if T < TD, S3e( T) , S4e( T)
)))
T := 0.01sec , 0.02sec .. 4sec
8
6
Se( T )4
2
0
0
1
2
3
4
T
Design spectrum acceleration
Se :=
S1e( 0) if 0 ≤ T1 ≤ TB
( ) S3e( TC) S4e( T1) S2e TB
Seismic base shear (EN1998-1-1,cl.4.3.3.2.2(1)) Seismic base shear on each bracing Note: 2 bracing on each direction
if TB ≤ T1 ≤ TC
= 4.903
m s
2
if TC ≤ T1 ≤ TD if TD ≤ T1 ≤ 4s
T1 Fb := S_mass ⋅ Se⋅ ⋅ λ = 464.519kN ⋅ s Fb Fb.bracing := = 232.259kN ⋅ 2
Page 42
3
Mass per storey
mi := FEd.storey = 1.402 × 10 kN
Heigth at roof level
z3 := 9m
Heigth at level 2
z2 := 6m
Heigth at level 1
z1 := 3m 4
Total mass:
Σmi_zi := FEd.storey ⋅ z3 + FEd.storey ⋅ z2 + FEd.storey ⋅ z1 = 2.524 × 10 kN⋅ m
Lateral force at roof level (EN1998-1-1,Eq.4.11)
mi⋅ z3 F3 := ⋅ F = 232.259kN ⋅ Σmi_zi b
Lateral force at level 2 (EN1998-1-1,Eq.4.11)
mi⋅ z2 F2 := ⋅ F = 154.84kN ⋅ Σmi_zi b
Lateral force at level 1 (EN1998-1-1,Eq.4.11)
mi⋅ z1 F1 := ⋅ F = 77.42kN ⋅ Σmi_zi b
F := F3 + F2 + F1 = 464.519kN
Check lateral force per storey
(
Check_2 := if F ≠ Fb , "OK" , "NOT OK"
)
Check_2 = "OK"
Table 2.12: Summary table of the lateral force results
Story STORY1 STORY2 STORY3
Heigth Mass zi mi zi*mi (m) (kN) 9 6 3 TOTAL
1402 1402 1402 4206
12618 8412 4206 25236
Fb F=Fb(zi*mi)/ (kN) Σzi*mi 464.52 464.52 464.52
232.26 154.84 77.42 464.52
Moment M=F*zi (kNm) 2090.34 929.04 232.26 3251.64
Accidental Length of eccentricity floor Lx=Ly ei=0.05L 15 15 15
0.75 0.75 0.75
Torsional Moment due to moment SRSS M=F*ei MSRS=√Mx^2+My^2 (kNm) (kNm) 174.195 246.3489315 116.13 164.232621 58.065 82.1163105
Page 43
ETABS: Define > Static load case > Figure 2.6: Define manually the lateral forces
Figure 2.7: Define manually the lateral forces/moments per storey
Page 44
2.3.7 Torsional effects FLOW CHART OF TORSIONAL EFFECTS
Carry out Lateral force analysis/ Response spectrum analysis
𝑒! = +0.05 ∗ 𝐿!
𝑒! = −0.05 ∗ 𝐿!
𝑒! = +0.05 ∗ 𝐿!
𝑒! = −0.05 ∗ 𝐿!
𝑀! = 𝑒! 𝐹!
𝑀! = 𝑒! 𝐹!
SRSS rule
𝑀!"!! =
𝑀! ! + 𝑀! !
Page 45
2.3.8 Summary of analysis process in seismic design situation Importance class/Ductility class
I
II
III
IV
DCL
DCM DCH
DCM DCH
DCH
Ignore “topographic amplification effects”
Consider “topographic amplification effects” Ignore
Consider
Slopes Preferences > Steel frame design Figure 7.1: Steel frame design preferences
1 2 3 4 5
6
Page 61
Table 7.1: Steel frame design parameters Note 1: Reliability class Class section classification according to EN1998-1-1,cl.6.5.3(2) 1. Depending on the ductility class and the behavior factor q used in the design, the requirements regarding the cross-sectional classes of the steel elements which dissipate energy are indicated in table below (EN1998-1-1,cl.6.5.3(2).
Ductility class
Reference q factor Lower
q factor
limit DCM DCH
Cross-Section Class
Upper limit
1.5<
q
≤2
Class 1, 2 or 3
2.0<
q
≤4
Class 1 or 2
4.0<
q
Class 1
Note 2: Frame type See section 2.0 of this manual Note 3: Gamma factors Partial factors Resistance of cross-sections whatever the
Values
Reference
γΜ0=1.00
EN1993-1-1,cl.6.1(1)
γΜ1=1.00
EN1993-1-1,cl.6.1(1)
γΜ1=1.25
EN1993-1-1,cl.6.1(1)
class Resistance of members to instability assessed by member checks Resistance of cross-sections in tension to fracture Note 4: Behavior factor See section 2.0 of this manual Note 5: System Omega Omega Factor (System Overstrength Factor) axial load member: (𝛀 = 𝑵𝒑𝒍,𝑹𝒅 /𝑵𝑬𝒅 ) Omega factor may different for each diagonal member. Page 62
1. Run the design analysis with the Ω=1 2. Find the Npl,Rd and NEd of the bracing member and then overwrite the omega factor for each diagonal member separately and then re-run the analysis.(Ω=1). Note: Omega factor should be limited to the following for all diagonal members
(
Check_16 := if Ωmax ≤ 1.25Ωmin, "OK" , "NOT OK"
)
Note 6: Vertical deflection limits STEEL MEMBERS (CYS NA EN1993-1-1,table NA.1) Vertical deflection
Limits
Cantilevers
wmax L/180
Beams carrying plaster or other brittle finish
L/360
Other beams (except purlin and sheeting rails) Purlins and sheeting rails
L/250
General use
To suit cladding L/300
ETABS deflection limits DL limit, L/
360
Super DL+LL Limit, L/
360
Live load Limit, L/
360
Total Limit, L/
360
Total Camper Limit, L/
360
Page 63
8.0 Analysis and design requirements for Concentrically braced frames according to EN1998-1-1,cl.6.7.2 Analysis requirements according to EN1998-1-1,cl.6.7.2
Beams & Columns 1. Under gravity load conditions, only beams and columns shall be considered to resist such loads, without taking into account the bracing members (EN1998-11,cl6.7.2(1)P). Diagonal members 2. The diagonals shall be taken into account as follows in an elastic analysis of the structure for the seismic action: a) in frames with diagonal bracings, only the tension diagonals shall be taken into account, b) in frames with V bracings, both the tension and compression diagonals shall be taken into account (EN1998-1-1,cl6.7.2(2). 3. Taking into account of both tension and compression diagonals in the analysis of any type of concentric bracing is allowed provided that all of the following conditions are satisfied: a) a non-linear static (pushover) global analysis or non-linear time history analysis is used, b) both pre-buckling and post-buckling situations are taken into account in the modeling of the behavior of diagonals and, c)
background information justifying the model used to represent the behavior of diagonals is provided (EN1998-1-1,cl6.7.2(3).
Page 64
8.1 Steps of the design detail of Concentric steel frames Table 8.1: Detail steel frame design Design step
Description
number Step 1
Design of slab under gravity loads (without CBF bracings) considering columns as fixed supports
Step 2
Design columns under gravity loads (without CBF bracings)
Step 3
Design beams under gravity loads (without CBF bracings)
Step 4
Check concentric bracings under gravity loads combination
Step 5
Accidental torsional effects
Step 6
Second order effects (P-Δ) (P loads are those taken in the definition of the seismic mass “m”)
Step 7
Check of beams and of concentric bracings under gravity loads combination
Step 8
Design of concentric bracing under seismic combination of loads with the accidental torsional effects and P-Δ effects taken into account
Step 9
Check of beams and columns under seismic combination of loads with bracings overstrength factors Ω and with second order effects taken into account
Step 10
Re-run the analysis with the modified overstrength factors Ω
Page 65
8.2 Classification of steel sections
Table 8.2: Section classification (EN1993-1-1,cl.5.5) Classes Class 1
Analysis type Plastic analysis
Description Section can form a plastic hinge with the rotation capacity required from plastic analysis, without reduction of the resistance
Class 2
Plastic/ Elastic analysis Section can develop its plastic moment capacity, but has limited rotation capacity.
Class 3
Elastic analysis
Section in which the stress in the extreme compression fiber of the section, assuming an elastic distribution of stresses, can reach the yield strength, but local buckling is likely to prevent the development of the plastic moment capacity.
Description of detail
Equations
References
requirements fy. :=
fy if t < 16mm −2
fy − 10N ⋅ mm
−2
fy − 20N ⋅ mm
Reduction of yield and ultimate strength of sections
if 16mm < t < 40mm if 40mm < t < 80mm
EN10025-2 fu. :=
fu if t ≤ 16mm −2
fu − 10N ⋅ mm
−2
fu − 20N ⋅ mm
ε - Factor
ε :=
if 16mm < t ≤ 40mm if 40mm < t ≤ 80mm
EN1993-1-1,Table 5.2
235 fy
Depth of a part of section for internal compression
EN1993-1-1,Table 5.2
cw := h − 2⋅ tf − 2⋅ r
(I-sections) Class_type web :=
"CLASS 1" if
cw tw
≤ 72⋅ ε
Section classification for web element
"CLASS 2" if 84⋅ ε <
cw
"CLASS 3" if 105⋅ ε <
tw cw tw
≤ 83⋅ ε
EN1993-1-1,Table 5.2
≤ 124⋅ ε
Page 66
Depth of a part of section for oustand flange
cf :=
(I-sections) Class_type flange :=
(b − tw − 2.r )
EN1993-1-1,Table 5.2
2
"CLASS 1" if
cf tf
≤ 9⋅ ε
Section classification for flange element
"CLASS 2" if 9⋅ ε <
cf
"CLASS 3" if 10⋅ ε <
tf cf tf
≤ 10⋅ ε
EN1993-1-1,Table 5.2
≤ 14⋅ ε
Page 67
8.3 Design of composite slab under gravity loads Table 8.3: Detail design of composite slab (with steel sheeting) Partial factor Partial factor of longitudinal shear in composite slabs
Value
References
γvs = 1.25
CYS EN1994-11cl.2.4.1.2(6)P
Partial factor for shear connector
γv = 1.25
CYS EN1994-11cl.2.4.1.2(5)P
Partial factor for steel reinforcement
γs = 1.15
CYS EN1992-1-1,table 2.1
Partial factor of concrete
γc = 1.5
CYS EN1992-1-1,table 2.1
γM0 = 1.0
CYS EN1993-1-1,cl 6.1(1)
Equations
References
Minimum nominal thickness of profile steel sheets
t ≥ 0.70mm
CYS EN1994-1-1,cl.3.5(2)
Minimum depth of slab
h ≥ 90mm
EN1994-1-1,cl.9.2.1(2)
Depth of concrete slab above steel sheeting
hc ≥ 50mm
EN1994-1-1,cl.9.2.1(2)
As.prov ≥80mm2/m
EN1994-1-1,cl.9.2.1(4)
Spacing of the reinforcement bars
s = min{2h,350mm}
EN1994-1-1,cl.9.2.1(5)
Maximum height of steel decking
hp ≤ 85mm
EN1994-1-1,cl.6.6.4.2(3)
b0 ≥ hp
EN1994-1-1,cl.6.6.4.2(3)
d ≤ 20mm
EN1994-1-1,cl.6.6.4.2(3)
Partial factor of structural steel Description of detail requirements
Minimum steel reinforcement in both direction
Minimum width per ribs Diameter of stud that welded in the sheeting
Page 68
For holes provided in the sheeting, the diameter of the stud Maximum overall height of stud
Design stage
Description of checks
d ≤ 22mm
EN1994-1-1,cl.6.6.4.2(3)
hsc ≤ hp +75mm
EN1994-1-1,cl.6.6.4.1(2)
Equations
References
Resistance verifications of metal decking at the construction stage Moment resistance of steel sheeting Concrete compressive strength Design yield strength Bending resistance of metal decking
From manufacture data
-
fcd = fck / γc
EN1994-1-1,cl.2.4.1.2(2)P
fyo,d = fyp / γM0
-
MEd / MRd 1.2
"a" if tf < 40mm "b" if 40mm < tf < 100mm
Buckling curve if
h b
EN1993-1-1,table 6.2
≤ 1.2
"b" if tf ≤ 100mm "d" if tf > 100mm
Imperfection factor a
EN1993-1-1,table 6.1
Page 81
αy :=
0.1 if Buckling_class_Y
"ao"
0.21 if Buckling_class_Y
"a"
0.34 if Buckling_class_Y
"b"
0.49 if Buckling_class_Y
"c"
0.76 if Buckling_class_Y
"d"
Φ = 0.5 [1 + α (λ – 0.2) + λ2
Value to determine the reduction factor χ Reduction factor χ
χ=
Design buckling resistance of a compression member Buckling length
1 Φ + Φ ! − λ! 𝜒𝐴𝑓! 𝑁!,!" = 𝛾!! )
≤ 1,0
See: Figure 1: Effective length columns
Elastic critical force for the relevant buckling mode based on the
𝑁!".! =
gross cross sectional properties Non dimensional slenderness
λ! = Buckling_class_Y :=
if
h b
𝐸! 𝐼! 𝜋 ! 𝐿!".! ! 𝐴𝑓! 𝑁!".!
EN1993-1-1,cl.6.3.1.2(1) EN1993-1-1,cl.6.3.1.2(1) EN1993-1-1,cl.6.3.1.1(3) Design Guidance of EC3) EN1993-1-1,cl.6.3.1.2(1)
> 1.2
"a" if tf < 40mm "b" if 40mm < tf < 100mm
Buckling curve if
h b
EN1993-1-1,table 6.2
≤ 1.2
"b" if tf ≤ 100mm "d" if tf > 100mm
Imperfection factor a
EN1993-1-1,table 6.1
Page 82
αz :=
0.1 if Buckling_class_Z
"ao"
0.21 if Buckling_class_Z
"a"
0.34 if Buckling_class_Z
"b"
0.49 if Buckling_class_Z
"c"
0.76 if Buckling_class_Z
"d"
Value to determine the reduction factor χ
Φ = 0.5 [1 + α (λ – 0.2) + λ2
Reduction factor χ
χ=
Design buckling resistance of a compression member
≤ 𝜒 ≤ 1,0 Φ + Φ ! − λ! 𝜒𝐴𝑓! 𝑁!,!",! = 𝛾!! )
(
Non dimensional slenderness
)
λ := max λ y , λ z
Check the bukling effects if can be ignored and only cross section check is adequate
1
EN1993-1-1,cl.6.3.1.2(1) EN1993-1-1,cl.6.3.1.2(1) EN1993-1-1,cl.6.3.1.1(3) EN1993-1-1,cl.6.3.1.2(1)
Check := if (λ < 0.2, "Ignored buckling effects" , "Consider buckling effects" ) EN1993-1-1,cl.6.3.1.2(4)
Lateral torsional buckling interaction check 2
Elastic critical moment for lateral torsional buckling
Mcr := C1⋅
π ⋅ Es ⋅ Izz
(k⋅ Lcr)2
2 I
2
( cr) t k w 2 ⋅ ⎛⎜ ⎞⎟ ⋅ + + (C2⋅ zg) − C2⋅ zg 2 ⎝ kw ⎠ Izz π Es ⋅ Izz k⋅ L
G⋅ I
NCCI: SN003a-EN-EU
Effective length factor (Pinned End)
k = 1.0
NCCI: SN003a
Factor for end warping
kw = 1.0
NCCI: SN003a
Coefficient factor C1 (Load condition: UDL)
C1 := 1.88 − 1.40ψ + 0.52ψ
(
Check_5 := if C1 ≤ 2.7, "OK" , "NOT OK"
Coefficient factor C2
)
C2 = 1.554
NCCI: SN003a
zg = 0m
NCCI: SN003a
Distance between the point of load application and the shear centre (load applied on centre)
NCCI: SN003a
2
Page 83
Buckling_curve_Z :=
Lateral torsional buckling curves
"a" if
h b h
"b" if
αLT :=
b 0.21 if Buckling_curve_Z
≤2
EN1993-1-1,table 6.4
>2
"a"
Imperfection factors for lateral torsional buckling curves
0.34 if Buckling_curve_Z
"b"
0.49 if Buckling_curve_Z
"c" "d"
Non dimensional slenderness for lateral torsional buckling
0.76 if Buckling_curve_Z W pl.y ⋅ fy λ LT := Mcr
Value to determine the reduction factor χLT
can be ignored
(
(
)
EN1993-1-1,cl.6.3.2.2(1)
2
Check_6 := if λ LT < λ LTO, "Ignored torsional buckling effects" , "Consider torsional buckling effects"
EN1993-1-1,cl.6.3.2.2(1)
)
⎛ MEd.y ⎞ 2 Check_7 := if ⎜ < λ LTO , "Ignored torsional buckling effects" , "Consider torsional buckling effects" ⎟ ⎝ Mcr ⎠
Moments due to the shift of the centroidal axis for class sections 1,2 & 3 Characteristic resistance to normal force of the critical cross-section Characteristic moment resistance of the critical cross-section
EN1993-1-1,cl.6.3.2.2(1)
φ LT := 0.5⋅ ⎡1 + αLT⋅ λ LT − 0.2 + λ LT ⎤ ⎣ ⎦ 1 χ LT := 2 2 φ LT + φ LT − λ LT
Reduction factor for lateral-torsional buckling Check if the lateral torsional buckling
EN1993-1-1,table 6.3
ΔM Ed.z := 0 ΔM Ed.y := 0 NRk := fy ⋅ A My.Rk := fy ⋅ Wpl.y Mz.Rk := fy ⋅ Wpl.z
EN1993-1-1,cl.6.3.2.2(4)
EN1993-11,cl.6.3.3(4)/table 6.7 EN1993-11,cl.6.3.3(4)/table 6.7 E1993-1-1,cl.6.3.3(4)/table 6.7)
Page 84
MEd.y1
ψy :=
MEd.y2 MEd.y2 MEd.y1
Ratio of end moments
M Ed.z1
ψz :=
M Ed.z2 M Ed.z2 M Ed.z1
if −1 ≤
if −1 ≤ if −1 ≤
if −1 ≤
MEd.y2 MEd.y2 MEd.y1 M Ed.z1 M Ed.z2 M Ed.z2 M Ed.z1
≤1
≤1
EN193-1-1,Table B2) ≤1
≤1
Cmy := 0.6 + 0.4⋅ ψy Cmz := 0.6 + 0.4⋅ ψz
Equivalent uniform moment factor
EN1993-1-1,table B.1&B.2
NEd ⎞⎤ ⎤⎤ ⎛ ⎥⎥ , Cmy⋅ ⎜ 1 + 0.8⋅ ⎟⎥ NRk ⎥⎥ NRk ⎟⎥ ⎢⎢ ⎢ ⎜ χ y⋅ χ y⋅ ⎢⎢ ⎢ ⎜ γ M1 ⎥⎥ γ M1 ⎟⎥ ⎣⎣ ⎣ ⎦⎦ ⎝ ⎠⎦ N N ⎡⎡ ⎡ ⎛ ⎞⎤ Ed ⎤⎤ ⎥⎥ , Cmz⋅ ⎜ 1 + 1.4⋅ Ed ⎟⎥ kzz := min⎢⎢Cmz⋅ ⎢1 + ( 2λ z − 0.6) ⋅ NRk ⎥⎥ NRk ⎟⎥ ⎢⎢ ⎢ ⎜ χ ⋅ χ ⋅ z z ⎢⎢ ⎢ ⎜ γ M1 ⎥⎥ γ M1 ⎟⎥ ⎣⎣ ⎣ ⎦⎦ ⎝ ⎠⎦
⎡⎡
⎡
(
)
kyy := min⎢⎢Cmy⋅ ⎢1 + λ y − 0.2 ⋅
Interaction factors
MEd.y1
NEd
EN1993-1-1,table B.1&B.2
kyz := 0.6kzz kzy := 0.6kyy NEd
Combined bending and axial compression
xy ⋅ NRk γ M1
+ kyy ⋅
MEd.y + ΔM Ed.y χ LT⋅
My.Rk γ M1
+ kyz⋅
Mz.Ed + ΔM Ed.z M z.Rk
EN1993-1-1,Eq.6.61
γ M1
Page 85
NEd
Combined bending and axial compression
χ z ⋅ NRk γ M1
+ kzy⋅
MEd.y + ΔM Ed.y χ LT⋅
My.Rk γ M1
+ kzz⋅
MEd.z + ΔM Ed.z M z.Rk
EN1993-1-1,Eq.6.62
γ M1
Note: This equations is applicable only for I and H sections with section class 1 and 2 Note 1: The shear area is for rolled I and H sections, load parallel to web
Page 86
8.6 Detail design rules of steel Concentric Braced Frames (CBF) according to Eurocode 8
8.6.1 Detail design rules of steel bracing according to Eurocode 8
Description Overstrength factor used in design
Value
References
γov = 1.25
CYS EN1998-1-1cl.6.2(3)P
(
Non-dimensional slenderness (X bracing)
Check_6 := if 1.3 < λ y < 2, "OK" , "NOT OK"
)
EN1998-1-1,cl.6.7.3(1)
Non-dimensional slenderness (one diagonal)
λ ≤ 2.0
EN1998-1-1,cl.6.7.3(2)
Non-dimensional slenderness (V bracing)
λ ≤ 2.0
EN1998-1-1,cl.6.7.3(3)
Non-dimensional slenderness (V,X & one bracing) Yield resistance check Check Ω factor Check Ω factor
(
Check_5 := if Ns ≥ 3, "Consider limitation (As EC8)" , "Ignore limitation (As EC3)"
(
Check_15 := if NEd ≤ Npl.Rd , "OK" , "NOT OK"
Class_type_req :=
Ductility class require for seismic design
)
Npl.Rd Ω. := NEd Check_16 := if Ωmax ≤ 1.25Ωmin, "OK" , "NOT OK"
(
EN1998-1-1,cl.6.7.3(4) EN1998-1-1,cl.6.7.3(5) EN1998-1-1,cl.6.7.3(8)
)
EN1998-1-1,cl.6.7.3(8)
"CLASS 1 , 2 or 3" if 1.5 < q ≤ 2 ∧ Ductility_class "CLASS 1 or 2" if 2 < q ≤ 4 ∧ Ductility_class "CLASS 1" if q > 4 ∧ Ductility_class
)
"DCM"
"DCM"
EN1998-1-1,cl.6.5.3(2)
"DCH"
Page 87
8.7 Detail design rules of steel columns and beams according to Eurocode 8 Description Overstrength factor used in design Yield resistance check
References
γov = 1.25
CYS EN1998-1-1cl.6.2(3)P
(
Check_15 := if NEd ≤ Npl.Rd , "OK" , "NOT OK"
)
EN1998-1-1,cl.6.7.3(5)
Npl.Rd Ω. := NEd NEd. := NEd.G + 1.1⋅ γ ov⋅ Ω⋅ NEd.E
Check Ω factor Minimum resistance requirement, NEd Class_type_req :=
Ductility class require for seismic design
Value
EN1998-1-1,cl.6.7.3(8) EN1998-1-1,cl.6.7.4(1)
"CLASS 1 , 2 or 3" if 1.5 < q ≤ 2 ∧ Ductility_class "CLASS 1 or 2" if 2 < q ≤ 4 ∧ Ductility_class "CLASS 1" if q > 4 ∧ Ductility_class
"DCM"
"DCM"
EN1998-1-1,cl.6.5.3(2)
"DCH"
Page 88
8.8 Detail design rules of steel composite members according to Eurocode 8
Description Minimum concrete strength Steel reinforcement class Minimum degree of connection Reduction factor
Value
References
C20/25 – C40/50
CYS EN1998-1-1cl.7.2.1(1)
B or C
EN1998-1-1,cl.7.2.2(2)
η ≤ 0.8 kt = 0.75
EN1998-1-1,cl.7.6.2(3) EN1998-1-1,cl.7.6.2(4)
kt = kt * kr Profiled steel sheeting with ribs transverse to the
EN1998-1-1,cl.7.6.2(6)
supporting beams is used, the reduction factor
fy :=
Yield strength of steel
"DCM " ∧
"fy=235" if 1.5 < q ≤ 4 ∧ Ductility_class
"DCM " ∧ 0.27 < x
"fy=355" if q > 4 ∧ Ductility_class
"DCH" ∧
"fy=235" if q > 4 ∧ Ductility_class
"DCH" ∧ 0.20 <
Class_type_req :=
Ductility class require for seismic design
x
"fy=355" if 1.5 < q ≤ 4 ∧ Ductility_class
d
d
≤ 0.27 x d
EN1998-1-1,cl.7.6.2(8)
≤ 0.20 x d
≤ 0.27
"CLASS 1 , 2 or 3" if 1.5 < q ≤ 2 ∧ Ductility_class "CLASS 1 or 2" if 2 < q ≤ 4 ∧ Ductility_class "CLASS 1" if q > 4 ∧ Ductility_class
≤ 0.36
"DCM"
"DCM"
EN1998-1-1,cl.6.5.3(2)
"DCH"
Page 89
8.9 Detail design rules of steel moment resistance frames (MRF) according to Eurocode 8
8.9.1 Detail design rules for MRF - Design criteria
Description Below design criteria apply to (Bottom – Top)
Value
References
Single/Multi-story buildings
EN1998-1-1cl.6.6.1(1)
∑MRc ≥ 1.3MRb
EN1998-1-1,cl.4.4.2.3(4)
Value
References
𝑀!" ≤ 1.0 𝑀!".!"
EN1998-1-1,cl.6.6.2.(2)
Moment capacity (where fixed support is provided)
8.9.2 Detail design rules of steel beam for MRF
Description Moment capacity verification VEd = VEd.G + VEd.M Design shear force
Shear capacity verification Axial capacity verification
Where VEd.M = (Mpl.Rd.A + Mpl.Rd.B)/L 𝑉!" ≤ 0.5 𝑉!".!" 𝑁!" ≤ 0.15 𝑁!".!"
EN1998-1-1,cl.6.6.2.(2)
EN1998-1-1,cl.6.6.2.(2) EN1998-1-1,cl.6.6.2.(2) Page 90
8.9.3 Detail design rules of steel column for MRF
Description Overstrength factor used in design Check Ω factor (derivate from all beam with moment connection)
Ω!"# =
Value
References
γov = 1.25
CYS EN1998-1-1cl.6.2(3)P
!!".!"
MEd.E : Lateral force
!!".!
EN1998-1-1cl.6.6.3(1P)
Design axial compression force
NEd = NEd.G +1.1γvoΩ NEd.E
NEd.E : Lateral force
EN1998-1-1cl.6.6.3(1P)
Design bending moment
MEd = MEd.G +1.1γvoΩ MEd.E
MEd.E : Lateral force
EN1998-1-1cl.6.6.3(1P)
VEd = VEd.G +1.1γvoΩ VEd.
VEd.E : Lateral force
EN1998-1-1cl.6.6.3(1P)
Design shear force Design shear force verification
𝑉!" ≤ 0.5 𝑉!".!"
EN1998-1-1cl.6.6.3(4)
Page 91
9.0 Design of steel frames
9.1 Design of steel member overwrites data
Figure 9.1: Steel design result of the member
Overwrites Page 92
Figure 9.2: Steel frame design overwrites for Eurocode 3
1 2 3 4 5 7
6
8 9 10 11 12
Page 93
Table 9.1: Steel frame design overwrites for Eurocode 3 Explanation of Steel frame design overwrites for Eurocode 3 Note No.
Parameter
1
Effective length factor
Values
kyy
2
Moment coefficient
kzz
Page 94
3
Bending Coefficient (C1)
4
Moment coefficient Overstrength factor
5
used in design1
Npl.Rd Ω. := NEd
Omega gamma 6
factor
γov = 1.25
Compressive/Tensile 7
capacity Major bending
8
capacity, Mc3Rd Minor bending
9
capacity, Mc2Rd Buckling resistance
10
moment
Page 95
Major shear capacity, Vc3Rd
11
Minor shear
12
Notes:
capacity, Vc2Rd
1
Ω is not calculated automatically by the program. Rather, its value can be overwritten by the user through design Preference and Overwrites.
Page 96
9.2 Design of columns / beams using ETABS – Gravity load analysis only STEP 1: Analyze > Run Analysis STEP 2: Design > Steel frame design > Select design combo… Note: Under gravity load conditions, only beams and columns shall be considered to resist such loads, without taking into account the bracing members (EN1998-1-1,cl6.7.2(1)P).
Design combination at ULS STATIC 1. STATIC 10.
1.35DL + 1.5LL 1.00DL + 0.3LL Figure 9.3: Gravity load combination at ULS
Design combination at SLS DSTLD 1. DSTLD 2.
DL + LL DL
Page 97
Figure 9.4: Gravity load combination at SLS
Figure 9.5: Steel design under gravity load ONLY
Write click on each member in order to check it individually Column name: C2 Storey level: Storey 1
Page 98
Figure 9.6: Steel design result of the member
Worst case combination Figure 9.7: Ultimate moment results under worst case combination ETABS: Display > Show tables
Page 99
Take the ultimate moment and shear force from the above table and place them into the Excel spreadsheet or Mathcad file in order to verify the steel design results of ETABS.
Press the button summary
Table 9.2: Summarize of design values required to carry out the design of steel member Results
Design value
Symbol
Design axial force for gravity load combination (G+0.3Q)
NEd.GV
344.75
Design moment at y-y at end 1 (seismic load combination)
MEd.GV.y1
-1.293
Design moment at y-y at end 2 (seismic load combination)
MEd.GV.y2
3.195
Design moment at z-z at end 1 (seismic load combination)
MEd.GV.z1
-0.173
Design moment at z-z at end 2 (seismic load combination)
MEd.GV.z2
-0.142
Shear forces at y-y at end (seismic load combination)
VEd.GV.y
-0.01
Shear force at z-z at end 1 (seismic load combination)
VEd.GV.z
-1.63
(kN)
Page 100
Design results of ETABS
ETABS/HAND ETABS HAND (see section 9.3)
Description of comparison Equation 6.62 in EC3
Results 0.160 0.135
Page 101
ETABS/HAND
N.c.Rd
N.t.Rd
N.pl.Rd
ETABS
2675.75
2675.75
2675.75
HAND (see section 9.3)
2675.75
2675.75
2675.75
ETABS/HAND
Curve
Alpha
LambarBar
Phi
Chi
Nb.Rd
y-y
z-z
y-y
z-z
y-y
z-z
y-y
z-z
y-y
z-z
y-y
z-z
ETABS
“b”
“c”
0.340
0.490
0.268
0.454
0.548
0.66
0.976
0.868
2610
2322
HAND (see section 9.3)
“b”
“b”
0.340
0.340
0.248
0.42
0.539
0.625
0.983
0.918
2630
2534
Page 102
M.c.Rd
ETABS/HAND
M.v.Rd
M.b.rd
y-y
z-z
y-y
z-z
ETABS
305.8
142.45
305.8
142.45
302.05
HAND (see section 9.3)
305.8
142.45
305.8
142.45
305.80
ETABS/HAND
Curve
AlphaLT
LambdaBarLT
PhiLT
ChiLT
C1
Mcr
ETABS
a
0.21
0.255
0.538
0.988
2.532
4694
HAND (see section 9.3)
b
0.34
0.24
0.535
0.986
2.532
4679
ETABS/HAND
kyy
kyz
kzy
kzz
ETABS
0.442
0.582
0.964
0.970
HAND (see section 9.3)
0.441
0.576
0.265
0.96
Page 103
ETABS/HAND
V.c.Rd
V.pl.Rd
η
1234
504
1.2
1156
504
1.0
y-y
z-z
ETABS
504
HAND (see section 9.3)
504
Page 104
9.3 Design of steel column (Gravity design situation) – Hand calculations
1. Rolled I - section 2. Limit to class 1 and 2 section 3. Column not susceptible to torsional deformations Length of column
hc := 3m
Total axial load on column, NEd
NEd := 344.798kN
Shear force y-y axis
VEd.y := 0.011kN
Shear force z-z axis
VEd.z := 1.626kN
Design moment y-y axis
MEd.y1 := 3.195kN⋅ m
Design moment y-y axis
MEd.y2 := −1.293kN⋅ m
Maximum moment
MEd.y := max MEd.y1, MEd.y2 = 3.195kN ⋅ ⋅m
Design moment z-z axis
MEd.z1 := −0.142kN⋅ m
Design moment z-z axis
MEd.z2 := −0.173kN⋅ m
Maximum moment
MEd.z := max MEd.z1, MEd.z2 = −0.142⋅ kN⋅ m
(
)
(
)
Section properties: Depth of section,h:
h := 270mm
Width of section,b:
b := 280mm
Thickness of web, tw: Thickness of flange, tf :
tw := 8mm tf := 13mm
(
)
Thickness of element
t := max tw, tf = 13⋅ mm
Second moment of area z-z:
Izz := 47630000mm
Second moment of area y-y:
Iyy := 1.367⋅ 10 mm
4
8
4
2
Cross section area, A:
A := 9730mm
Radius of section:
r := 24mm
Heigth of web, hw
hw := h − 2tf − 2r = 196⋅ mm
Page 105
3
2
Area of the web
A w := h w⋅ tw = 1.568 × 10 ⋅ mm
Warping Constant, Iw:
Iw := 753.7⋅ 10 ⋅ mm
Torsional Constant, IT:
It := 635000mm
Plastic Modulus, Wply
W pl.y := 1112000mm
Plastic Modulus, Wplz
W pl.z := 518000mm
Elastic modulus, E:
Es := 210kN⋅ mm
Yield strength of steel , fy:
fy := 275N ⋅ mm
Ultimate strength, fu:
fu := 430N ⋅ mm
Shear modulus
G := 81kN⋅ mm
9
6
4 3
3
−2
−2 −2
−2
fy :=
fy if t ≤ 16mm −2
fy − 10N ⋅ mm
Reduction of yield and ultimate strength of sections EN10025-2 fu :=
−2
fy − 20N ⋅ mm
−2
if 16mm < t ≤ 40mm
fy = 275⋅ N ⋅ mm
if 40mm < t ≤ 80mm
fu if t ≤ 16mm −2
fu − 10N ⋅ mm
−2
fu − 20N ⋅ mm
−2
if 16mm < t ≤ 40mm
fu = 430⋅ N ⋅ mm
if 40mm < t ≤ 80mm
Partial safety factor Resistance of cross-sections whatever the class (CYS EN1993-1-1,cl 6.1(1)) Resistance of members to instability (CYS EN1993-1-1,cl 6.1(1)) Resistance of cross-section in tension (CYS EN1993-1-1,cl.6.1(1))
γ M0 := 1 γ M1 := 1 γ M2 := 1.25
Section classification ε :=
For section classification the coefficient ε is: For a flange element:
235 fy
= 0.924
−2
N⋅ mm
Page 106
Class_type flange :=
"CLASS 1" if
cf tf
cf :=
≤ 9⋅ ε cf
"CLASS 2" if 9⋅ ε <
tf
"CLASS 3" if 10⋅ ε <
cf tf
"CLASS 1" if
cw tw
Class_type flange = "CLASS 2" ≤ 14⋅ ε
≤ 72⋅ ε cw
"CLASS 3" if 105⋅ ε <
(
= 112⋅ mm
cw := h − 2⋅ tf − 2⋅ r = 196⋅ mm
"CLASS 2" if 84⋅ ε <
Class_type := if Class_type flange
2
≤ 10⋅ ε
For a web element:
Class_type web :=
(b − tw − 2.r )
tw cw tw
Class_type web = "CLASS 1" ≤ 83⋅ ε
≤ 124⋅ ε
Class_type web , Class_type flange , "ADD MANUALY"
)
Class_type = "ADD MANUALY"
Tension resistance (cl.6.2.3) Design plastic resistance of the cross section (EN1993-1-1,cl.6.2.3(2)
A ⋅ fy 3 Npl.Rd := = 2.676 × 10 ⋅ kN γ M0
Design ultimate resistance (EN1993-1-1,cl.6.2.3(2b))
0.9A ⋅ fy 3 Nu.Rd := = 1.927 × 10 ⋅ kN γ M2
Design tension resistance (EN1993-1-1,cl.6.2.3(2))
Nt.Rd := min Nu.Rd , Npl.Rd = 1.927 × 10 ⋅ kN
Check tension capacity
Check1 := if ⎜
(
⎛ NEd ⎝ Nt.Rd
)
3
⎞
≤ 1.0, "OK" , "NOT OK" ⎟
⎠
Check1 = "OK"
Page 107
Compression resistance (cl.6.2.4) Compression resistance of steel section (EN1993-1-1,cl.6.2.4(1))
Nc.Rd := Npl.Rd = 2.676 × 10 ⋅ kN
Check compression capacity (EN1993-1-1,cl.6.2.4(1)P)
Check2 := if ⎜
3
⎛ NEd
⎞
⎝ Nc.Rd
≤ 1.0, "OK" , "NOT OK" ⎟
⎠
Check2 = "OK"
Bending resistance (cl.6.2.5) Moment resistance of steel section at Y-Y (EN1993-1-1,cl.6.2.5(2)
Mc.Rd.y :=
Moment resistance of steel section at Z-Z (EN1993-1-1,cl.6.2.5(2)
Mc.Rd.z :=
W pl.y⋅ fy
= 305.8⋅ kN⋅ m
γ M0 W pl.z⋅ fy γ M0
= 142.45⋅ kN⋅ m
Shear resistance (cl.6.2.6) Factor for shear area (EN1993-1-1,cl.6.2.6(g)) Shear area of steel section (EN1993-1-1,cl.6.2.6(3)) A v :=
A vy if A vy > η ⋅ tw⋅ hw η ⋅ tw⋅ h w if A vy < η ⋅ tw⋅ h w
Shear resistance of steel section Y-Y (EN1993-1-1,cl.6.2.6(2)) Shear area of steel section (EN1993-1-1,cl.6.2.6(3)) Shear resistance of steel section Z-Z (EN1993-1-1,cl.6.2.6(2))
η := 1
(
)
Avy := A − 2⋅ b ⋅ tf + tw + 2r ⋅ tf 3
2
A v = 3.178 × 10 ⋅ mm
Vpl.Rd.y := A v ⋅
fy ⋅ ( 3)
−1
= 504.575kN ⋅
γ M0
3
2
A vz := 2⋅ b ⋅ tf = 7.28 × 10 ⋅ mm
Vpl.Rd.z := 2⋅ b ⋅ t f ⋅
fy ⋅ ( 3)
−1
γ M0
3
= 1.156 × 10 ⋅ kN
Page 108
Check if the verification of shear buckling resistance required or not (EN1993-1-1,cl.6.2.6(6)) ⎛ hw ⎞ ε Check := if ⎜ < 72⋅ , "Not required shear buckling resistance" , "Required shear buckling resistance" ⎟ η ⎝ tw ⎠ Check = "Not required shear buckling resistance"
Bending and shear interaction check (cl.6.2.8) Strong axis Y-Y VEd.y
−5
Interaction check 1
vy :=
Reduced yield strength
⎛ 2VEd.y ⎞ ρ := ⎜ − 1⎟ = 1 ⎝ Vpl.Rd.y ⎠
Vpl.Rd.y
= 2.18 × 10 2
Reduced design plastic resistance moment (EN1993-1-1,cl.6.2.8(5))
2 ⎛ ρ⋅ A w ⎞⎟ ⎜ ⎜ W pl.y − 4t ⎟ ⋅ fy w ⎠ ⎝ M c.Rd.y := if v y > 0.5 γ
M0
M c.Rd.y if v y < 0.5
Mc.Rd.y = 305.8kN ⋅ ⋅m
Weak axis Z-Z VEd.z
−3
Interaction check 1
vz :=
Reduced yield strength
⎛ 2VEd.z ⎞ ρ := ⎜ − 1⎟ = 0.994 ⎝ Vpl.Rd.z ⎠
Vpl.Rd.z
= 1.407 × 10 2
2 ⎛ ρ⋅ A w ⎞⎟ ⎜ ⎜ W pl.z − 4t ⎟ ⋅ fy w ⎠ ⎝ Reduced design plastic resistance moment M c.Rd.z := if v z > 0.5 γ (EN1993-1-1,cl.6.2.8(5)) M0
M c.Rd.z if v z < 0.5
Mc.Rd.z = 142.45kN ⋅ ⋅m
Page 109
Check combination of axial and bending (EN1993-1-1,cl.6.2.1(7))
⎛ NEd
Check_1 := if ⎜
⎝ Npl.Rd NEd
Unity factor Npl.Rd
+
+
MEd.y Mc.Rd.y MEd.y Mc.Rd.y
+
+
MEd.z Mc.Rd.z MEd.z Mc.Rd.z
⎞
≤ 1.0, "OK" , "NOT OK" ⎟
⎠
= 0.138
Check_1 = "OK"
Bending and axial force interaction check (cl.6.2.9)
⎡ (A − 2b ⋅ tf )
⎤
Factor a
a := min⎢
Factor n
n :=
Factor β
β :=
Coefficient 1
c1 :=
Coefficient 2
c2 :=
Coefficient check
c := max c1, c2 = 1.599
A
⎣
NEd Npl.Rd
, 0.5⎥ = 0.252
⎦
= 0.129
5n if 5n ≥ 1
=1
1 otherwise NEd 0.25Npl.Rd NEd 0.5hw⋅ tw⋅ fy
(
= 0.515
= 1.599
)
Strong axis Y-Y Mc.Rd.y⋅ ( 1 − n ) M := if c > 1 N.y.Rd Reduced design value of the resistance to 1 − 0.5a bending moments making allowance for the Mc.Rd.y if 0 ≤ c ≤ 1 presence of axial forces (EN1993-11,cl.6.2.9.1(5))
MN.y.Rd = 304.764kN ⋅ ⋅m
Page 110
MN.z.Rd := Mc.Rd.z if n ≤ a Weak axis Z-Z Reduced design value of the resistance to 2 ⎡ n − a ⎞ ⎤ bending moments making allowance for the Mc.Rd.z⋅ ⎢1 − ⎛⎜ ⎟ ⎥ if n ≥ a ⎣ ⎝ 1 − a ⎠ ⎦ presence of axial forces (EN1993-1-
1,cl.6.2.9.1(5))
MN.z.Rd = 142.45kN ⋅ ⋅m
Check combination of bi-axial bending (EN1993-1-1,cl.6.2.9.1(6)) a β ⎡⎡⎛ M ⎤ ⎛ MEd.z ⎞ ⎤⎥ ⎢⎢ Ed.y ⎞ ⎥ Check_1 := if ⎜ ⎟ + ⎜ ⎟ ⎥ ≤ 1.0, "OK" , "NOT OK"⎥ ⎢⎢ M ⎣⎣⎝ N.y.Rd ⎠ ⎝ MN.z.Rd ⎠ ⎦ ⎦ a
β
⎛ MEd.y ⎞ ⎛ MEd.z ⎞ + = 0.316 Unity factor ⎜ MN.y.Rd ⎟ ⎜ MN.z.Rd ⎟ ⎝ ⎠ ⎝ ⎠ Check_1 = "OK"
Bucking interaction check (cl.6.3) Strong axis Y-Y Status of effective length
Effective_Length := " Pinned Fixed"
Effective length factor (Guidance of EC3)
k :=
0.7 if Effective_Length
"Fixed Fixed"
0.85 if Effective_Length
"Partial restraint"
0.85 if Effective_Length
" Pinned Fixed"
1 if Effective_Length
Buckling length of column (fixed end) Euler Buckling at y-y axis (EN1993-1-1,cl.6.3.1.2(1)
= 0.85
"Pinned Pinned"
Lcr := k hc = 2.55m
Ncry :=
Es ⋅ Iyy⋅ π Lcr
2
2 4
= 4.357× 10 ⋅ kN
Page 111
Slenderness parameter at y-y axis (for class 1,2 and 3 cross-section) (EN1993-1-1,cl.6.3.1.2(1) Buckling curve (EN1993-1-1,table 6.2)
Buckling_class_Y :=
λ y :=
if
h b
A ⋅ fy Ncry
= 0.248
> 1.2
"a" if tf < 40mm "b" if 40mm < tf < 100mm if
h b
≤ 1.2
"b" if tf ≤ 100mm "d" if tf > 100mm
Buckling_class_Y = "b" αy :=
Imperfection factor (EN1993-1-1,table 6.1)
0.1 if Buckling_class_Y
"ao"
0.21 if Buckling_class_Y
"a"
0.34 if Buckling_class_Y
"b"
0.49 if Buckling_class_Y
"c"
0.76 if Buckling_class_Y
"d"
αy := 0.34
2⎤
Value to determine the reduction factor χ (EN1993-1-1,cl.6.3.1.2(1))
φ y := 0.5⋅ ⎡1 + αy ⋅ λ y − 0.2 + λ y ⎣
Reduction factor χ (EN1993-1-1,cl.6.3.1.2(1))
χ y :=
Reduction factor χ check
Check1 := if χ y ≤ 1.0, "OK" , "NOT OK"
(
)
1 2
φy +
φ y − λy
2
⎦ = 0.539
= 0.983
(
)
Check1 = "OK"
Design buklcing resistance (EN1993-1-1,cl.6.3.1.1(3)) Buckling resistance of compression member check (EN1993-1-1,cl.6.3.1.1(1))
Nb.Rd.y :=
χ y⋅ A⋅ fy γ M1
⎛ NEd
Check2 := if ⎜
3
= 2.63 × 10 ⋅ kN
⎝ Nb.Rd.y
⎞
, "OK" , "NOT OK" ⎟
⎠
Check2 = "OK"
Page 112
Weak axis Z-Z Buckling length of column (fixed end)
Lcr := k⋅ hc = 2.55m
Euler Buckling at y-y axis (EN1993-1-1,cl.6.3.1.2(1)
Ncrz :=
Slenderness parameter at y-y axis (for class 1,2 and 3 cross-section) (EN1993-1-1,cl.6.3.1.2(1) Check if the buckling may be ignored (EN1993-1-1,cl.6.3.1.2(4))
λ z :=
Es ⋅ Izz⋅ π Lcr
A ⋅ fy Ncrz
(
2
2
4
= 1.518 × 10 ⋅ kN
= 0.42
)
Slenderness parameter
λ := max λ y , λ z
MinimumEuler Buckling
Ncr := min Ncry , Ncrz
⎛
NEd
⎝
Ncr
Check_2 := if ⎜ λ < 0.2 ∧
(
)
< 0.04, "Ignored buckling effects" , "Consider buckling effects"
⎞ ⎟ ⎠
Check_2 = "Consider buckling effects"
Buckling curve (EN1993-1-1,table 6.2)
Buckling_class_Z :=
if
h b
> 1.2
"a" if tf < 40mm "b" if 40mm < tf < 100mm if
h b
≤ 1.2
"b" if tf ≤ 100mm "d" if tf > 100mm
Buckling_class_Z = "b"
Imperfection factor (EN1993-1-1,table 6.1)
αz :=
αz := 0.34
0.1 if Buckling_class_Z
"ao"
0.21 if Buckling_class_Z
"a"
0.34 if Buckling_class_Z
"b"
0.49 if Buckling_class_Z
"c"
0.76 if Buckling_class_Z
"d"
Page 113
2
Value to determine the reduction factor χ (EN1993-1-1,cl.6.3.1.2(1))
φ z := 0.5⋅ ⎡1 + αz⋅ λ z − 0.2 + λ z ⎤ = 0.625 ⎣ ⎦
Reduction factor χ (EN1993-1-1,cl.6.3.1.2(1))
χ z :=
Reduction factor χ check
Check_3 := if χ z ≤ 1.0, "OK" , "NOT OK"
(
)
1 2
φz +
2
= 0.918
φ z − λz
(
)
Check_3 = "OK" χ z⋅ A ⋅ fy
Design buklcing resistance (EN1993-1-1,cl.6.3.1.1(3))
Nb.Rd.z :=
Buckling resistance of compression member check (EN1993-1-1,cl.6.3.1.1(1))
Check_4 := if ⎜
γ M1
3
= 2.457 × 10 ⋅ kN
⎛ NEd ⎝ Nb.Rd.z
⎞
, "OK" , "NOT OK" ⎟
⎠
Check_4 = "OK"
Lateral torsional buckling check (cl.6.3.2) Effective length factor, k (SN003a-EN-EU) Factor for end warping, kw (SN003a-EN-EU)
k = 0.85 kw := 1.0 MEd.y2
= −0.405
Ratio of the smaller and larger moment
ψ :=
Coefficient factor C1
C1 := 1.88 − 1.40ψ + 0.52ψ = 2.532
(SN003a-EN-EU) Coefficient factor C1 check (SN003a-EN-EU)
MEd.y1
2
(
Check_5 := if C1 ≤ 2.7, "OK" , "NOT OK"
)
Check_5 = "OK"
Coefficient factor C2
C2 := 1.554
(SN003a-EN-EU) Distance between the point of load application and the shear centre
zg := 0m
Page 114
Elastic critical moment for lateral torsional buckling (SN003a-EN-EU) 2
Mcr := C1⋅
π ⋅ Es ⋅ Izz
(Lcr)2
2 I
2
( cr) t k w 2 3 ⋅ ⎛⎜ ⎞⎟ ⋅ + + ( C2⋅ zg) − C2⋅ zg = 4.679× 10 ⋅ kN⋅ m ⎝ kw ⎠ Izz π 2Es ⋅ Izz L
G⋅ I
Lateral torsional buckling curve (EN1993-1-1,table 6.4)
Buckling_curve_Z :=
"b" if "c" if
h b h b
≤2 >2
Buckling_curve_Z = "b"
Imperfection factor for lateral torsional (EN1993-1-1,table 6.3)
αLT :=
0.21 if Buckling_curve_Z
"a"
0.34 if Buckling_curve_Z
"b"
0.49 if Buckling_curve_Z
"c"
0.76 if Buckling_curve_Z
"d"
αLT = 0.34
Non dimensional slenderness (EN1993-1-1,cl.6.3.2.2(1))
λ LT :=
W pl.y ⋅ fy Mcr
= 0.256
Value to determine the reduction factor (EN1993-1-1,cl.6.3.2.2(1))
φ LT := 0.5⋅ ⎡1 + αLT⋅ λ LT − 0.2 + λ LT ⎤ = 0.542 ⎣ ⎦
Reduction factor for lateral-torsional buckling (EN1993-1-1,cl.6.3.2.2(1))
χ LT :=
(
1 φ LT +
2
)
2
2
= 0.98
φ LT − λ LT
Check_6 := if ⎛⎜ χ LT ≤ 1 ∧ χ LT ≤
⎜ ⎝
1 2
, "OK" , "NOT OK" ⎞⎟
⎟ ⎠
λ LT
Check_6 = "OK"
Parameter λ LTO (EN1993-1-1,cl.6.3.2.3(1)) Design buckling resistance moment (EN1993-1-1,cl.6.3.2.1(3))
λ LTO := 0.4 Mb.Rd := χ LT⋅ W pl.y ⋅ γ
⎛ MEd.y
Check_7 := if ⎜
⎝ Mb.Rd
fy
= 299.741kN ⋅ ⋅m
M1
⎞
≤ 1, "OK" , "NOT OK" ⎟
⎠
Page 115
Check if the lateral torsional buckling Check_7 = "OK" be ignored (EN1993-1-1,cl.6.3.2.2(4)) MEd.y ⎛ ⎞ 2 Check_8 := if ⎜ λ LT < λ LTO ∧ < λ LTO , "Ignored torsional buckling effects" , "Consider torsional buckling effects" ⎟ Mcr ⎝ ⎠ Check_8 = "Ignored torsional buckling effects"
Combine bending and axial compression cl.6.3.3 Moments due to the shift of the centroidal axis for class sections 1,2 & 3 (EN1993-1-1,cl.6.3.3(4)/table 6.7)
ΔM Ed.z := 0 ΔM Ed.y := 0
Characteristic resistance to normal force of the critical cross-section (EN1993-1-1,cl.6.3.3(4)/table 6.7)
3
NRk := fy ⋅ A = 2.676 × 10 ⋅ kN
Characteristic moment resistance of the critical cross-section (EN1993-1-1,cl.6.3.3(4)/table 6.7)
My.Rk := Mc.Rd.y = 305.8kN ⋅ ⋅m Mz.Rk := Mc.Rd.z = 142.45kN ⋅ ⋅m
ψy :=
MEd.y1 MEd.y2 MEd.y2 MEd.y1
Ratio of end moments (EN1993-1-1,Table B2) ψz :=
M Ed.z1 M Ed.z2 M Ed.z2 M Ed.z1
if −1 ≤
if −1 ≤
if −1 ≤
if −1 ≤
MEd.y1 MEd.y2 MEd.y2 MEd.y1 M Ed.z1 M Ed.z2 M Ed.z2 M Ed.z1
≤1
≤1
≤1
≤1
Equivalent uniform moment factor
Cmy := 0.6 + 0.4⋅ ψy = 0.438
Equivalent uniform moment factor
Cmz := 0.6 + 0.4⋅ ψz = 0.928
Page 116
⎡⎡
⎡
⎢⎢ ⎢⎢ ⎣⎣
⎢ ⎢ ⎣
(
)
kyy := min⎢⎢Cmy⋅ ⎢1 + λ y − 0.2 ⋅
NEd
N ⎤⎤ ⎛ ⎞⎤ ⎥⎥ , Cmy⋅ ⎜ 1 + 0.8⋅ Ed ⎟⎥ = 0.441 NRk ⎥⎥ NRk ⎟⎥ ⎜ χ y⋅ χ y⋅ ⎥ ⎥ ⎜ γ M1 γ M1 ⎟⎥ ⎦⎦ ⎝ ⎠⎦
Interaction factors NEd ⎤⎤ N ⎡⎡ ⎡ ⎛ ⎞⎤ (EN1993-1-1,table ⎥⎥ , Cmz⋅ ⎜ 1 + 1.4⋅ Ed ⎟⎥ = 0.96 kzz := min⎢⎢Cmz⋅ ⎢1 + ( 2λ z − 0.6) ⋅ NRk ⎥⎥ NRk ⎟⎥ B.1&B.2) ⎢⎢ ⎢ ⎜ χ ⋅ χ ⋅ z z ⎢⎢ ⎢ ⎜ γ M1 ⎥⎥ γ M1 ⎟⎥ ⎣⎣ ⎣ ⎦⎦ ⎝ ⎠⎦ kyz := 0.6kzz = 0.576 kzy := 0.6kyy = 0.265
EN1993-1-1,Equation 6.61
⎛ NEd
Check_9 := if ⎜
⎜ ⎜ ⎝
χ y ⋅ NRk
+ kyy ⋅
MEd.y + ΔM Ed.y χ LT⋅
γ M1
NEd
Unity factor
+ kyy ⋅
χ y ⋅ NRk
My.Rk
+ kyz⋅
M z.Rk
γ M1
χ LT⋅
⎞
≤ 1.0, "OK" , "NOT OK" ⎟
⎟ ⎟ ⎠
γ M1
MEd.y + ΔM Ed.y
γ M1
MEd.z + ΔM Ed.z
My.Rk
+ kyz⋅
γ M1
MEd.z + ΔM Ed.z M z.Rk
= 0.135
γ M1
Check_9 = "OK"
EN1993-1-1,Equation 6.62
⎛ NEd
Check_10 := if ⎜
⎜ ⎜ ⎝
χ z ⋅ NRk
+ kzy⋅
χ LT⋅
γ M1
NEd
Unity factor
MEd.y + ΔM Ed.y
χ z ⋅ NRk γ M1
+ kzy⋅
My.Rk
+ kzz⋅
MEd.z + ΔM Ed.z
γ M1
MEd.y + ΔM Ed.y χ LT⋅
My.Rk γ M1
M z.Rk
⎞
≤ 1.0, "OK" , "NOT OK" ⎟
⎟ ⎟ ⎠
γ M1
+ kzz⋅
MEd.z + ΔM Ed.z M z.Rk
= 0.142
γ M1
Check_10 = "OK"
Page 117
9.4 Design of steel column (Seismic design situationn)
Column name: C2 Storey level: Storey 1
Page 118
Step 1: Option > Preferences > Steel frame design
Modify the existing “System Omega”. The omega factor is equal to the minimum section overstrength factor of concentric bracing. See below:
Note: the minimum value of Ω is calculate over all the diagonals of the braced frame system
Step 2: Design > Steel frame design > Select design combo…
Figure 9.7: Lateral/gravity load combination at ULS
Page 119
Figure 9.8: Gravity load combination at SLS
Ultimate limit state (ULS)
Static load combination STATIC 1. STATIC 2. STATIC 3. STATIC 4. STATIC 5. STATIC 6. STATIC 7. STATIC 8.
1.35DL + 1.5LL 1.35DL + 1.5LL + 0.75WINDX 1.35DL + 1.5LL - 0.75WINDX 1.35DL + 1.5LL + 0.75WINDY 1.35DL + 1.5LL - 0.75WINDY 1.35DL + 1.5WINDX + 1.05LL 1.35DL - 1.5WINDX – 1.05LL 1.35DL + 1.5WINDY + 1.05LL Page 120
STATIC 9. 1.35DL - 1.5WINDY – 1.05LL STATIC 10. DL + 0.3LL Seismic load combination for “Modal Analysis” SEISMIC 1. SEISMIC 2. SEISMIC 3. SEISMIC 4. SEISMIC 5. SEISMIC 6. SEISMIC 7. SEISMIC 8.
DL + 0.3LL + EQX + 0.3EQY DL + 0.3LL + EQX – 0.3EQY DL + 0.3LL - EQX + 0.3EQY DL + 0.3LL - EQX – 0.3EQY DL + 0.3LL + EQY + 0.3EQX DL + 0.3LL + EQY – 0.3EQX DL + 0.3LL - EQY + 0.3EQX DL + 0.3LL - EQY – 0.3EQX
Serviceability limit state (SLS)
DSTLD 1. DL + LL DSTLD 2. LL ETABS: Display > Show Tables
Select all combinations
Table 9.3a: Analysis results of gravity load combination (STATIC 10: G + 0.3Q) Story
Column
Load
Loc
P
V2
V3
T
M2
M3
STORY1 STORY1
C2 C2
STATIC10 STATIC10
0 1.38
-‐245.17 -‐244.13
-‐0.28 -‐0.28
-‐0.27 -‐0.27
0 0
-‐0.43 -‐0.055
0.001 0.389
Page 121
STORY1 C2 Note: P = NEd.G
STATIC10
2.76
-‐243.1
-‐0.28
-‐0.27
0
0.321
0.776
Table 9.3b: Analysis results of seismic action (MODAL EQX / EQY) Story
Column
STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 STORY1 C2 Note: P = NEd.E
Load
Loc
P
V2
V3
T
M2
M3
EQX EQX EQX EQX EQX EQX EQY EQY EQY EQY EQY EQY
0 1.38 2.76 0 1.38 2.76 0 1.38 2.76 0 1.38 2.76
38.99 38.99 38.99 33.61 33.61 33.61 3.55 3.55 3.55 2.6 2.6 2.6
29.66 29.66 29.66 26.3 26.3 26.3 2.72 2.72 2.72 1.89 1.89 1.89
0.49 0.49 0.49 1.15 1.15 1.15 8.97 8.97 8.97 10.93 10.93 10.93
-‐0.001 -‐0.001 -‐0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.002 0.002 0.002
0.884 0.202 -‐0.48 1.917 0.332 1.256 14.692 2.313 10.076 17.899 2.813 -‐12.273
58.02 17.094 -‐23.833 51.189 14.928 21.431 5.227 1.468 2.297 3.709 1.097 -‐1.516
Results of Seismic load combination (SEISMIC 1-8)
Select all the seismic load combinations Sort out the highest values of P, V and M
Page 122
Table 9.4: Analysis result of design values of V and M based on worst case seismic design combination Story
Column
Load
Loc
P
V2
V3
T
M2
M3
STORY1 STORY1 STORY1
C2 C2 C2
SEISMIC1 MIN SEISMIC1 MIN SEISMIC1 MIN
0 1.38 2.76
-‐279.84 -‐278.8 -‐277.77
-‐27.4 -‐27.4 -‐27.4
-‐4.11 -‐4.11 -‐4.11
-‐0.002 -‐0.002 -‐0.002
-‐6.755 -‐1.081 -‐3.958
-‐52.756 -‐14.979 -‐21.344
Table 9.5: Summarize of design values required to carry out the design of steel member Results
Design value
Symbol
Design axial force for gravity load combination (G+0.3Q)
NEd.G
245
Design axial force for the design seismic action alone
NEd.E
39
Design moment at y-y at end 1 (seismic load combination)
MEd.SC.y1
52.8
Design moment at y-y at end 2 (seismic load combination)
MEd.SC.y2
21.3
Design moment at z-z at end 1 (seismic load combination)
MEd.SC.z1
6.8
Design moment at z-z at end 2 (seismic load combination)
MEd.SC.z2
4.0
Shear forces at y-y at end (seismic load combination)
VEd.SC.y
27.4
Shear force at z-z at end 1 (seismic load combination)
VEd.SC.z
4.1
(kN/kNm)
Page 123
9.4.1 Design of steel column (Seismic design situation – Hand calculation) Detail design of steel column using Eurocode 3 and Eurocode 8 1. Rolled I - section 2. Limit to class 1 and 2 section 3. Column not susceptible to torsional deformations Design data Length of column
hc := 3m
Overstrength factor (EN1998-1-1,cl.6.1.3(2))
γ ov := 1.25
Omega factor of bracing members at storey 1
Ω := 2.5
Behavior factor q
q := 4
Ductlity class
Ductility_class := "DCM"
Total axial force due to the non-seismic actionsNEd.G := 245.17kN (G+ψ EiQ) Total axial force due to the non-seismic actionsNEd.E := 39kN (seismic) Design shear force due to Eurocode requirement (EN1998-1-1,cl.6.7.4(1)) Design shear force due to Eurocode requirement (EN1998-1-1,cl.6.7.4(1)) Design moment y-y axis (seismic combination) Design moment y-y axis (seismic combination) Design moment y-y axis (seismic combination) Design moment y-y axis (seismic combination) Maximum moment
MEd.y := max MEd.y1, MEd.y2 = 52.76kN ⋅ ⋅m
Maximum moment
MEd.z := max MEd.z1, MEd.z2 = 6.75⋅ kN⋅ m
VEd.y := 4.11kN
VEd.z := 27.4kN MEd.y1 := 52.76kN⋅ m MEd.y2 := 21.34kN⋅ m MEd.z1 := 6.75kN⋅ m MEd.z2 := 3.96kN⋅ m
(
(
)
)
Page 124
Design shear force due to Eurocode requirement (EN1998-1-1,cl.6.7.4(1)) Section properties:
NEd := NEd.G + 1.1⋅ γ ov⋅ Ω⋅ NEd.E = 379.233kN ⋅
Depth of section,h:
h := 270mm
Width of section,b:
b := 280mm
Thickness of web, tw:
tw := 8mm
Thickness of flange, tf :
tf := 13mm
Thickness of element
t := max tw, tf = 13⋅ mm
Second moment of area z-z:
Izz := 47630000mm
Second moment of area y-y:
Iyy := 1.367⋅ 10 mm
Cross section area, A:
A := 9730mm
Radius of section,r:
r := 24mm
Heigth of web, hw
hw := h − 2tf − 2r = 196⋅ mm
Area of the web
A w := h w⋅ tw = 1.568 × 10 ⋅ mm
Warping Constant, Iw:
Iw := 753.7⋅ 10 ⋅ mm
Torsional Constant, IT:
It := 635000mm
Plastic Modulus, Wply
W pl.y := 1112000mm
Plastic Modulus, Wplz
W pl.z := 518000mm
Elastic modulus, E:
Es := 210kN⋅ mm
Yield strength of steel , fy:
fy := 275N ⋅ mm
Ultimate strength, fu:
fu := 430N ⋅ mm
Shear modulus
G := 81kN⋅ mm
(
)
4
8
4
2
3
9
2
6
4 3
3
−2
−2 −2
−2
Page 125
fy :=
fy if t ≤ 16mm −2
fy − 10N ⋅ mm
−2
fy − 20N ⋅ mm
Reduction of yield and ultimate strenght of sections EN10025-2 fu :=
−2
if 16mm < t ≤ 40mm
fy = 275⋅ N ⋅ mm
if 40mm < t ≤ 80mm
fu if t ≤ 16mm −2
fu − 10N ⋅ mm
−2
fu − 20N ⋅ mm
−2
if 16mm < t ≤ 40mm
fu = 430⋅ N ⋅ mm
if 40mm < t ≤ 80mm
Partial safety factor Resistance of cross-sections whatever the class (CYS EN1993-1-1,cl 6.1(1)) Resistance of members to instability (CYS EN1993-1-1,cl 6.1(1)) Resistance of cross-section in tension (CYS EN1993-1-1,cl.6.1(1))
γ M0 := 1 γ M1 := 1 γ M2 := 1.25
Section classification ε :=
For section classification the coefficient ε is:
"CLASS 1" if
fy
= 0.924
−2
N⋅ mm
For a flange element:
Class_type flange :=
235
cf tf
cf := ≤ 9⋅ ε
"CLASS 2" if 9⋅ ε <
cf
"CLASS 3" if 10⋅ ε <
tf cf tf
(b − tw − 2.r ) 2
= 112⋅ mm
≤ 10⋅ ε
Class_type flange = "CLASS 2" ≤ 14⋅ ε
Page 126
For a web element:
Class_type web :=
cw := h − 2⋅ tf − 2⋅ r = 196⋅ mm
"CLASS 1" if
cw
≤ 72⋅ ε
tw
"CLASS 2" if 84⋅ ε <
cw
"CLASS 3" if 105⋅ ε <
(
Class_type := if Class_type flange
tw cw tw
Class_type web = "CLASS 1" ≤ 83⋅ ε
≤ 124⋅ ε
Class_type web , Class_type flange , "ADD MANUALY"
)
Class_type = "ADD MANUALY"
Requirements on cross-sectional class of dissipative elements depending on Ductility class (EN1998-1-1,cl.6.5.3(2)) Section classification rule for EC8 (EN1998-1-1,cl.6.5.3(2)) Class_type_req :=
"CLASS 1 , 2 or 3" if 1.5 < q ≤ 2 ∧ Ductility_class "CLASS 1 or 2" if 2 < q ≤ 4 ∧ Ductility_class "CLASS 1" if q > 4 ∧ Ductility_class
"DCM"
"DCM"
"DCH"
Class_type_req = "CLASS 1 or 2"
Note: The column now has to be check using the resistance verification checks of Eurocode 3 as shown in section 9.3 of this document.
Page 127
9.5 Design of composite beams - Hand calculations ETABS: Define > Wall/Slab/Deck sections Figure 9.9: Define deck section Comflor60 -Corus
Figure 9.10: Modified “Stiffness Modifiers” (crack-sections)
Page 128
ETABS: Analyze > Run analysis ETABS: Display > Show Tables >
Select all combinations
Page 129
Assumptions - Design and analysis This design process is envisaging a analyzed to determine the forces and moments in the individual structural members. Simple design approach: This method applies to structures in which the connections between members will not develop any significant restraint moments. Members forces and moments are calculated on the basic of the following assumptions: 1. Simply supported beam. 2. The steel sheeting with ribs is placed transverse to the beam. 3. Limited only to I abd H rolled sections with equal flanges 4. Ignored any contribution of steel sheeting to the transverse reinforcements Length of beam
Le := 5m
Spacing of the secondary beams (LHS)
L1 := 5m
Spacing of the secondary beams (RHS)
L2 := 5m
Loading length
L :=
L1 2
+
L2 2
= 5m
Slab design data Comfloor 60
Overall depth of slab
h := 150mm
Steel sheeting deck profile (Comflor 60)
hp := 60mm
Depth of concrete slab above steel sheeting
hc := h − hp = 90⋅ mm
Rib width at top
b1 := 131mm
Rib width at bottom
b2 := 180mm
Page 130
b1 + b2
Distance between shear connector (Assume single shear connector) Space of each troughs
e := 300mm
Thickness of steel sheeting
ts := 1mm
bo :=
= 155.5⋅ mm
2
Structural steel properties Depth of section, h:
ha := 240mm
Width of section,b:
b := 120mm
Thickness of web, tw:
tw := 6.2mm
Thickness of flange, tf :
tf := 9.8mm
Thickness of element
t := max tw, tf = 9.8⋅ mm
Radius of section,r:
r := 15mm
Heigth of web, hw
hw := ha − 2tf − 2r = 190.4mm ⋅
Area of the web
A w := h w⋅ tw = 1.18 × 10 ⋅ mm
Radious of gyration
iz := 26.9507mm
Second moment of area z-z:
Izz := 2840000mm
Second moment of area y-y:
Iyy := 38920000mm
Cross section area, A:
A := 3910mm
Torsional Constant, IT:
It := 130000mm
Warping Constant, Iw:
Iw := 753.7⋅ 10 ⋅ mm
Plastic Modulus, Wply
W pl.y := 367000mm
Plastic Modulus, Wplz
W pl.z := 73900mm
Yield strength
fy := 275N ⋅ mm
Ultimate strength
fu := 430N ⋅ mm
Modulus of Elasticity
Es := 210kN⋅ mm
Shear modulus
G := 81kN⋅ mm
(
)
3
2
4 4
2 4
9
6 3
3
−2 −2 −2
−2
Page 131
Concrete properties −2
Yield strength of reinforcement
fyk := 500N ⋅ mm
Cylinder strength
fck := 25N ⋅ mm
Modulus of Elasticity
Ecm := 31kN⋅ mm
−2 −2
Shear connector properties Diameter
d := 19mm
Overall height before welding
hsc := 95mm
Ultimate strength of shear connector
fus := 450N ⋅ mm
Number of stud per in one rib
n r := 1
−2
Material partial factors for resistance Resistance of cross-sections whatever the class (CYS EN1993-1-1,cl 6.1(1)) Resistance of members to instability (CYS EN1993-1-1,cl 6.1(1))
γ M0 := 1.0 γ M1 := 1.0
Partial factor for concrete (EN 1992 1-1 Table 2.1N)
γ c := 1.5
Partial factor for reinforcing steel (EN 1992 1-1 Table 2.1N)
γ s := 1.15
Partial factor for design shear resistance of a headed stud (CYS EN1994-1-1,cl.2.4.1.2(5)P) Partial factor for design shear resistance of a composite slab (CYS EN1994-1-1,cl.2.4.1.2(6)P)
γ v := 1.25
γ vs := 1.25
Partial factor for permanent action
γ G := 1.35
Partial factor for variable action
γ Q := 1.5
Design value of the cylinder compressive strength of concrete (EN1992-1-1,cl.
fck −2 fcd := = 16.667⋅ N ⋅ mm γc
Page 132
fyk −2 fyd := = 434.783N ⋅ ⋅ mm γs
Design value of the yield strength of structural steel Loading at construction stage Dead load
−2
Weight of steel deck (Comfloor 60)
g k.deck := 0.114kN⋅ m
Weight of wet concrete
gk.c.wet := 2.79kN⋅ m
Weight of steel beam (IPE240)
g k.b := 0.8kN⋅ m
−2
−1
Live load −2
Construction live load
q k := 0.75kN⋅ m
Total load at construction stage
(
)
−1
FEd := γ G⋅ gk.deck ⋅ L + gk.c.wet⋅ L + g k.b + γ Q⋅ q k⋅ L = 26.307⋅ kN⋅ m
2
Moment at construction stage
MEd.c :=
Shear force at construction stage
VEd.c :=
FEd⋅ L 8
FEd⋅ L 2
= 82.209⋅ kN⋅ m
= 65.767kN ⋅
Design moments and shear forces Shear force at composite stage
VEd.c = 65.767kN ⋅
Design moment at composite stage
MEd.c = 82.209kN ⋅ ⋅m
Shear force at composite stage
VEd := 55.5kN
Design moment at composite stage
MEd := 132kN⋅ m
Page 133
Ultimate limit state verification Construction stage Section classification (EN19931-1,cl.5.6(6)) fy :=
fy if t ≤ 16mm −2
fy − 10N ⋅ mm
−2
fy − 20N ⋅ mm
Reduction of yield and ultimate strength of sections EN10025-2 fu :=
−2
if 16mm < t ≤ 40mm
fy = 275⋅ N ⋅ mm
if 40mm < t ≤ 80mm
fu if t ≤ 16mm −2
fu − 10N ⋅ mm
−2
fu − 20N ⋅ mm
For section classification the coefficient ε is:
−2
if 16mm < t ≤ 40mm
fu = 430⋅ N ⋅ mm
if 40mm < t ≤ 80mm
ε :=
235 fy
= 0.924
−2
N⋅ mm
For a flange element:
Class_type flange :=
"CLASS 1" if
cf := cf tf
(b − tw − 2.r ) 2
= 41.9⋅ mm
≤ 9⋅ ε
"CLASS 2" if 9⋅ ε <
cf
"CLASS 3" if 10⋅ ε <
tf cf tf
≤ 10⋅ ε
Class_type flange = "CLASS 1"
≤ 14⋅ ε
Page 134
For a web element:
Class_type web :=
"CLASS 1" if
cw := ha − 2⋅ tf − 2⋅ r = 190.4mm ⋅ cw tw
≤ 72⋅ ε
"CLASS 2" if 84⋅ ε <
cw
"CLASS 3" if 105⋅ ε <
(
Class_type := if Class_type flange
tw cw tw
Class_type web = "CLASS 1" ≤ 83⋅ ε
≤ 124⋅ ε
Class_type web , Class_type flange , "ADD MANUALY"
)
Class_type = "CLASS 1"
Bending Resistance of the steel section (EN1993-1-1,cl.6.2.5) Design resistance for bending (EN1993-1-1,cl.6.2.5(2)) Bending resistance check checks (EN1993-1-1,cl.6.2.5(1))
Ma.pl.Rd :=
W pl.y ⋅ fy γ M0
= 100.925⋅ kN⋅ m
(
Check_1 := if MEd.c ≤ Ma.pl.Rd , "OK" , "NOT OK"
)
Check_1 = "OK"
Vertical Shear resistance of the steel section (cl.6.2.2) & (EN1993-1-1,cl.6.2.6) Factor for shear area (EN1993-1-1,cl.6.2.6(g)) Shear area of steel section (EN1993-1-1,cl.6.2.6(3)) A v :=
A v1 if A v1 > η ⋅ tw⋅ h w η ⋅ tw⋅ h w if A v1 < η ⋅ tw⋅ h w
Shear resistance of steel section Y-Y (EN1993-1-1,cl.6.2.6(2))
η := 1
(
)
Av1 := A − 2⋅ b ⋅ tf + tw + 2r ⋅ tf 3
2
A v = 1.913 × 10 ⋅ mm
Vpl.Rd := A v ⋅
fy ⋅ ( 3)
−1
γ M0
= 303.691kN ⋅
Page 135
Design of shear resistance check (EN1993-1-1,cl.6.2.6(1)P)
(
Check_2 := if VEd ≤ Vpl.Rd , "OK" , "NOT OK"
)
Check_2 = "OK"
Check if the verification of shear buckling resistance required or not (EN1993-1-1,cl.6.2.6(6)) ⎛ hw ⎞ ε Check_3 := if ⎜ < 72⋅ , "Not required shear buckling resistance" , "Required shear buckling resistance" ⎟ η ⎝ tw ⎠ Check_3 = "Not required shear buckling resistance"
Bending and shear interaction check (cl.6.2.2.4) Strong axis Y-Y VEd
Interaction check 1
vy :=
Reduced yield strength
⎛ 2VEd ⎞ ρ := ⎜ − 1⎟ = 0.403 ⎝ Vpl.Rd ⎠
Vpl.Rd
= 0.183 2
Reduced design plastic resistance moment (EN1993-1-1,cl.6.2.8(5))
2 ⎛ ρ⋅ A w ⎞⎟ ⎜ ⎜ W pl.y − 4t ⎟ ⋅ fy w ⎠ ⎝ M a.pl.Rd. := if v y > 0.5 γ
M0
M a.pl.Rd if v y < 0.5
Ma.pl.Rd = 100.925kN ⋅ ⋅m
Lateral torsional buckling resistance of steel beam (EN1993-1-1,cl.6.3.2) Status of effective length
Effective_Length := "Pinned Pinned"
Effective length factor (Guidance of EC3)
k :=
0.7 if Effective_Length
"Fixed Fixed"
0.85 if Effective_Length
"Partial restraint"
0.85 if Effective_Length
" Pinned Fixed"
1 if Effective_Length
=1
"Pinned Pinned"
Page 136
Effective length (pinned)
Lcr := k⋅ Le = 5m
Factor for end warping, kw
kw := 1.0
(SN003a-EN-EU) Coefficient factor C1
C1 := 1.348
(SN003a-EN-EU) Coefficient factor C2
C2 := 0.454
(SN003a-EN-EU) Distance between the point of load application and the shear centre
zg := 0m
Elastic critical moment for lateral torsional buckling (SN003a-EN-EU) 2
Mcr := C1⋅
π ⋅ Es ⋅ Izz
(Lcr)2
2 I
2
( cr) t k w 2 ⋅ ⎛⎜ ⎞⎟ ⋅ + + (C2⋅ zg) − C2⋅ zg = 176.744kN ⋅ ⋅m kw Izz 2 ⎝ ⎠ π Es ⋅ Izz L
G⋅ I
Lateral torsional buckling curve (EN1993-1-1,table 6.4)
Buckling_curve_Z :=
"b" if "c" if
h b h b
≤2 >2
Buckling_curve_Z = "b"
Imperfection factor for lateral torsional (EN1993-1-1,table 6.3)
αLT :=
0.21 if Buckling_curve_Z
"a"
0.34 if Buckling_curve_Z
"b"
0.49 if Buckling_curve_Z
"c"
0.76 if Buckling_curve_Z
"d"
αLT = 0.34
Non dimensional slenderness (EN1993-1-1,cl.6.3.2.2(1)) Parameter introducing the effect of biaxial bending (EN1994-1-1,cl.6.3.2.3(1)) Parameter λ LTO (EN1993-1-1,cl.6.3.2.3(1))
λ LT :=
W pl.y ⋅ fy Mcr
= 0.756
β := 0.75
λ LTO := 0.4
Page 137
Value to determine the reduction factor (EN1993-1-1,cl.6.3.2.2(1))
φ LT := 0.5⋅ ⎡1 + αLT⋅ λ LT − λ LTO + ⎛ β ⋅ λ LT ⎣ ⎝
Reduction factor for lateral-torsional buckling (EN1993-1-1,cl.6.3.2.2(1))
χ LT :=
(
1 2
φ LT +
2⎞⎤
)
2
⎠⎦ = 0.775
= 0.841
φ LT − β λ LT
1
Check_5 := if ⎛⎜ χ LT ≤ 1 ∧ χ LT ≤
2
⎜ ⎝
, "OK" , "NOT OK" ⎞⎟
⎟ ⎠
λ LT
Check_5 = "OK"
Design plastic resistance (EN1993-1-1,cl.6.3.2.1)
Mb.Rd := χ LT⋅
W pl.y⋅ fy γ M1
= 84.882⋅ kN⋅ m
Section verification for lateral torsional ⎛ MEd.c ⎞ Check_6 := if < 1, "OK" , "NOT OK" ⎟ ⎜ M buckling ⎝ b.Rd ⎠ (EN1993-1-1,cl.6.3.2.1(1)) Check_6 = "OK"
Composite stage Effective width of composite beam (cl.5.4.1.2(5)) Total effective width at mid-span (EN1994-1-1cl. 5.4.1.2(5))
⎛ ⎛ L1 L2 Le ⎞ ⎞ beff := bo + 2⎜ min⎜ + , ⎟ ⎟ 2 8 ⎠ ⎠ ⎝ ⎝ 2
Plastic resistance moment of composite section with full shear connection (cl.6.2) Tensile resistance of steel section (EN1993-1-1,cl.6.2.3(2))
fy ⋅ A 3 Npl.a := = 1.075 × 10 ⋅ kN γ M0
Compression resistance of concrete slab (EN1994-1-1,cl.6.2.1.2(1d)
Nc.f := 0.85⋅ fcd ⋅ b eff ⋅ h c = 1.792 × 10 ⋅ kN
Tensile resistance in web of steel section
Npl.w := fy ⋅ tw⋅ ha − 2⋅ tf
3
(
)
Page 138
Location of neutral axis (EN1994-1-1,cl.6.2.1.2(1)) Location_neutral axis :=
"Lies in the concrete slab"
if Nc.f > Npl.a
"Lies in the top flange of the beam"
if Nc.f ≤ Npl.a
"Lies in the web of the beam" if Nc.f < Npl.w
Location_neutral axis = "Lies in the concrete slab"
Bending resistance with full shear connection (EN1994-1-1,cl.6.1.2) M pl.Rd :=
Npl.a h c ⎞ ⎛ h a Npl.a ⋅ ⎜ +h − ⋅ ⎟ if Location_neutral axis Nc.f 2 ⎝ 2 ⎠
"Lies in the concrete slab"
ha ⎛ h c ⎞ Npl.a ⋅ + Nc.f ⋅ ⎜ + h p ⎟ if Location_neutral axis 2 ⎝ 2 ⎠
"Lies in the top flange of the beam"
2 ⎛ h c + h a + 2h p ⎞ Nc.f h a M a.pl.Rd + Nc.f ⋅ ⎜ ⎟ − ⋅ if Location_neutral axis "Lies in the top flange of the beam" 2 ⎝ ⎠ Npl.w 4
Mpl.Rd = 261.285kN ⋅ ⋅m
Bending resistance check checks (EN1993-1-1,cl.6.2.5(1))
(
Check_7 := if MEd ≤ Mpl.Rd , "OK" , "NOT OK"
)
Check_7 = "OK"
Vertical Sheat resistance of the composite steel section (cl.6.2.2) & (EN1993-1-1,cl.6.2.6) Shear resistance of steel section Y-Y (EN1993-1-1,cl.6.2.6(2)) Design of shear resistance check (EN1993-1-1,cl.6.2.6(1)P)
Vpl.Rd = 303.691kN ⋅
(
Check_8 := if VEd ≤ Vpl.Rd , "OK" , "NOT OK"
)
Check_8 = "OK"
Page 139
Check if the verification of shear buckling resistance required or not (EN1993-1-1,cl.6.2.6(6)) ⎛ hw ⎞ ε Check_9 := if ⎜ < 72⋅ , "Not required shear buckling resistance" , "Required shear buckling resistance" ⎟ η ⎝ tw ⎠ Check_9 = "Not required shear buckling resistance"
Design resistance of shear stud connector (cl.6.6.3.1(1)) For sheeting with ribs transverse to the beam For sheeting parallel to the beam see Equation 6.22 of EC4 Upper limit of reduction factor kt kt.max := 0.85 if n r 1 ∧ 1mm ≥ ts ∧ d < 20mm (EN1994-1-1,Table:6.2) 1.0 if n r 1 ∧ 1mm < ts ∧ d < 20mm 0.75 if n r
1 ∧ 1mm ≥ ts ∧ 19mm ≤ d < 22mm
0.75 if n r
1 ∧ 1mm < ts ∧ 19mm ≤ d < 22mm
0.70 if n r
2 ∧ 1mm ≥ ts ∧ d < 20mm
0.80 if n r
2 ∧ 1mm < ts ∧ d < 20mm
0.60 if n r
2 ∧ 1mm ≥ ts ∧ 19mm ≤ d < 22mm
0.60 if n r
2 ∧ 1mm < ts ∧ 19mm ≤ d < 22mm
kt.max = 0.75
(EN1994-1-1,cl.6.6.4.2)
bo ⎛ hsc ⎞ kt := 0.6⋅ ⋅ ⎜ − 1⎟ hp hp ⎝ ⎠
Limitation of kt
kt :=
Reduction factor kt
(EN1994-1-1,cl.6.6.4.2(2)) Minimum height of shear stud (EN1994-1-1,cl.6.6.1.2(1))
kt if kt < kt.max
= 0.75
kt.max otherwise
(
hmin := if hsc ≥ 4d , "Ductile" , "Not Ductile"
)
hmin = "Ductile"
Page 140
Limitation of stud diameter (EN1994-1-1,cl.6.6.1.2(1))
dlim:= if ( 16mm < d < 25mm, "Ductile" , "Not ductile" ) dlim = "Ductile"
Factor α (EN1994-1-1,cl.6.6.3.1(1))
hsc ⎛ hsc ⎞ + 1⎟ if 3 ≤ ≤4 =1 d ⎝ d ⎠
0.2⋅ ⎜
α :=
h sc
1 if
d
>4
Design shear resistance of a headed stud (EN1994-1-1,cl.6.6.3.1(1))
2 ⎛ ⎞ ⎜ 0.8⋅ f ⋅ π ⋅ d ⎟ 2 us ⎜ 4 0.29⋅ α⋅ d ⋅ fck ⋅ Ecm ⎟ PRd := kt⋅ min , ⎜ ⎟ = 55.298⋅ kN γv γv ⎝ ⎠
Degree of shear connection (cl.6.6.1.2(1)) Nc.f
= 1.667 Ratio of the degree shear connection η := Npl.a (EN1994-1-1,cl.6.2.1.3(3))
Minimum degree of shear connection ηmin := 1 − ⎛⎜ ⎜ for equal flange ⎜ (EN1994-1-1,cl.6.6.1.2(1)) ⎝
355 fy −2
N⋅ mm
⎞⎟ ⋅ ⎛⎜ 0.75 − 0.03⋅ Le ⎞⎟ if L < 25m e m ⎠ ⎟ ⎝ ⎟ ⎠
1.0 if Le > 25m
ηmin = 0.225
Check the degree of shear interaction within the limits Check_11 := if (η > ηmin ∧ η ≥ 0.4, "OK" , "NOT OK" ) (EN1994-1-1,cl.6.6.1.2(1)) Check_11 = "OK" 2⋅ Npl.a
Number of shear connector required
n :=
Numper of stud provided
Nstud := 40
Stud spacing
s prov :=
PRd
Le Nstud
= 38.889
= 0.125m
Page 141
Check the minimum spacing of studs (EN1994-1-1,cl.6.6.5.7(4))
s lim := if s prov ≥ 5⋅ d ∧ s prov < 6⋅ h , "OK" , "NOT OK"
Adequacy of the shear connection (EN1994-1-1,cl.6.6.1.3(3))
Check_12 := if Mpl.Rd < 2.5⋅ Ma.pl.Rd , "Uniform spacing" , "Not uniform spacing"
(
)
s lim = "OK"
(
Check_12 = "Not uniform spacing"
Design of transverse reinforcement (cl.6.6.6.2) & (EN1992-1-1,cl.6.2.4) Le
Length under consideration
Δ x :=
Longitudinal shear stress (EN1992-1-1,cl.6.2.4(3))
v Ed :=
Strength reduction factor (EN1992-1-1,Eq.6.6N)
v := 0.6⋅ ⎜ 1 −
Angle between the diagonal strut (EN1992-1-1,cl.6.2.4(4))
θf := 45deg
Assume spacing of the bars
s f := 200mm
Area of transverse reinforcement required (EN1992-1-1,cl.6.2.4(4))
A s.req :=
= 2.5m
2
Npl.a 2⋅ h c⋅ Δ x
⎛ ⎜ ⎝
fck
⎞⎟ − 2 ⎟ 250⋅ N ⋅ mm ⎠
v Ed⋅ h c⋅ s f
( ) ( )
sin θf fyd ⋅ cos θf 2
Area of transverse reinforcement provided As.prov := 193mm
(
Check_13 := if As.req ≤ As.prov , "OK" , "NOT OK"
)
Check_13 = "OK"
Check the crushing compression in the flange Check_14 := if (vEd ≤ v⋅ fcd ⋅ sin(θf )⋅ cos (cos (θf )) , "OK" , "NOT OK" ) (EN1992-1-1cl.6.2.4(4)) Check_14 = "OK"
Page 142
Serviceability limit state verification Construction stage −1
Dead load at composite stage
Gk := 10.88kN⋅ m
Live load at composite stage
Qk := 5.0kN⋅ m
−1
(
)
5⋅ Gk + Qk ⋅ Le
Maximum deflection at construction stage
δcon :=
Vertical deflection limit (CYS NA EN1993-1-1,table NA.1)
Check_15 := if ⎜ δcon <
4
= 15.812⋅ mm
384⋅ Es ⋅ Iyy
⎛
Le
⎝
250
⎞
, "OK" , "NOT OK" ⎟
⎠
Check_15 = "OK"
Short term elastic modular ration (EN1994-1-1,cl.7.2.1)
n o :=
r :=
Second moment of area of the composite section, Ic
Deflection with full shear connection Vertical deflection limit (CYS NA EN1993-1-1,table NA.1)
Iy :=
Es Ecm
A beff ⋅ hc
(
A ⋅ h + 2⋅ h p + h c
δcom :=
)2
+
(
)
(
) ( )4
4⋅ 1 + n o ⋅ r
5⋅ Gk + Qk ⋅ Le 384⋅ Es ⋅ Iy
⎛
Le
⎝
200
Check_16 := if ⎜ δcom <
b eff ⋅ h c 12⋅ n o
3 −4 4
+ Iyy = 1.563 × 10
= 3.938⋅ mm
⎞
, "OK" , "NOT OK" ⎟
⎠
Check_16 = "OK"
Page 143
m
Vibration (Simplified analysis): Loading: −1
Permanent load
Gk = 10.88⋅ kN⋅ m
Imposed load
Qk = 5⋅ kN⋅ m
For category B building
ψ1 := 0.5
Total weigth floor, Fv
Fv := Gk + ψ1⋅ Qk
−1
Increase the inertia, Ic by 10% to allow for the increased dynamic stiffness of the composite beam, Icl
(
)
Icl := Iy + Iy⋅ 0.1
Instantaneous deflection caused by re-application of the self weight of the floor and the beam to the composite beam, δ α δα :=
Natural frequncy, f
Check beam vibration (SCI-P-076)
(
)
5⋅ Fv ⋅ Le ⋅ Le 384⋅ Es ⋅ Icl
3
= 3.016⋅ mm
18 ⎞ ⋅ ⎜ δ ⎟ Hz = 10.364Hz α ⎜ ⎟ ⎝ mm ⎠
f := ⎛
Check_17 := if (f > 4⋅ Hz, "OK" , "NOT OK" ) Check_17 = "OK"
Page 144
9.5 Design of steel bracing
9.5.1 Main configuration of design of steel bracing Basic theory: Tension only, utilises two members at each storey but only the tension element is assumed to resist wind load and seismic load, the compression element is assumed to buckle and offer no resistance to lateral movement. Eurocode 8 requirement: The diagonals shall be taken into account as follows in an elastic analysis of the structure for the seismic action: a) in frames with diagonal bracings, only the tension diagonals shall be taken into account, b) in frames with V bracings, both the tension and compression diagonals shall be taken into account (EN1998-1-1,cl6.7.2(2). Taking into account of both tension and compression diagonals in the analysis of any type of concentric bracing is allowed provided that all of the following conditions are satisfied: a) a non-linear static (pushover) global analysis or non-linear time history analysis is used, b) both pre-buckling and post-buckling situations are taken into account in the modeling of the behavior of diagonals and, c) background information justifying the model used to represent the behavior of diagonals is provided (EN1998-1-1,cl6.7.2(3).
Page 145
Figure 9.11: Method of design bracing in this manual
Ignore compression members
Compression members Tension members Direction of shear
Steps for designing steel bracing member: 1. Delete the compression member. 2. Leave the tension members only. 3. Run the design of steel frame. 4. Find the suitable section and ensure that the section pass all the checks. 5. Ensure that the compression member has been placed at the construction drawings.
Page 146
9.5.2 Simplified design of frames with X bracing (Extract from Design guidance to EC8) In a standard design, the following simplified approach may be used:
•
The analysis of the structure is realized considering that only one diagonal in each X bracing is present, the other diagonal being considered as already buckled and unable to provide strength. This corresponds to an underestimation of both the stiffness and the strength of the structural system at the initial (pre-buckling) stage, but to a safe-side estimate at the post-buckling stage.
•
The beams and columns are capacity designed according to the real yield strength of the diagonals, for bending with increased axial force and bending moment from the analysis for the combination of the design seismic action with gravity loads.
However, this simplified approach could be dangerous for the stability of the structure, if it does not take into account that action effects of compression in columns and beams at the pre-buckling stage are higher than in the post-buckling stage envisaged in the analysis. Indeed, if the buckling loads of the diagonal are closed to their yield load in tension, the initial shear resistance Vinit of the X bracing is underestimated by a model where only one diagonal is considered present. If low-slenderness diagonals are used, Vinit can be close to double the value of Vpl.Rd computed with the hypothesis of one active yielded diagonal. The only way to prevent this unsafe situation is to design slender diagonal having their buckling load at most around 0.5Npl.Rd. This condition is behind the prescribed lower bound limit value of 1.3 for the slenderness λ. The prescribed upper bound limit max λ=2, is justified by the aim to avoid shock effects during the load reversal in diagonals.
Page 147
9.5.3 Model in ETABS Figure 9.12: Amendment model
Assume that the steel bracing resist the lateral force at the +X direction
Assume that the steel bracing resist the lateral force at the -X direction
Page 148
Assume that the steel bracing resist the lateral force at the +Y direction
Assume that the steel bracing resist the lateral force at the -Y direction
Page 149
STEP 2: Design > Steel frame design > Select design combo…
Figure 9.13: Lateral/gravity load combination at ULS
Figure 9.14: Gravity load combination at SLS
Page 150
Ultimate limit state (ULS)
Static load combination STATIC 11. 1.35DL + 1.5LL + 0.75WINDX STATIC 12. 1.35DL + 1.5LL - 0.75WINDX STATIC 13. 1.35DL + 1.5LL + 0.75WINDY STATIC 14. 1.35DL + 1.5LL - 0.75WINDY STATIC 15. 1.35DL + 1.5WINDX + 1.05LL STATIC 16. 1.35DL - 1.5WINDX – 1.05LL STATIC 17. 1.35DL + 1.5WINDY + 1.05LL STATIC 18. 1.35DL - 1.5WINDY – 1.05LL Seismic load combination for “Modal Analysis” SEISMIC 9. DL + 0.3LL + EQX + 0.3EQY SEISMIC 10. DL + 0.3LL + EQX – 0.3EQY SEISMIC 11. DL + 0.3LL - EQX + 0.3EQY SEISMIC 12. DL + 0.3LL - EQX – 0.3EQY SEISMIC 13. DL + 0.3LL + EQY + 0.3EQX SEISMIC 14. DL + 0.3LL + EQY – 0.3EQX SEISMIC 15. DL + 0.3LL - EQY + 0.3EQX SEISMIC 16. DL + 0.3LL - EQY – 0.3EQX Serviceability limit state (SLS)
DSTLD 3. DL + LL
Page 151
Figure 9.15: Design steel bracing member
Write click on member Brace name: D3 Storey level: Storey 1
Page 152
Table 9.6: Design value of brace D3
Story
Brace
Load
Loc
P
V2
V3
T
M2
M3
STORY1 STORY1 STORY1 STORY1 STORY1 STORY1 STORY1 STORY1
D3 D3 D3 D3 D3 D3 D3 D3
SEISMIC1 MIN SEISMIC2 MIN SEISMIC3 MIN SEISMIC4 MIN SEISMIC1 MIN SEISMIC2 MIN SEISMIC3 MIN SEISMIC4 MIN
0 0 0 0 2.915 2.915 2.915 2.915
-‐361.83 -‐361.83 -‐361.83 -‐361.83 -‐361.06 -‐361.06 -‐361.06 -‐361.06
-‐1.41 -‐1.41 -‐1.41 -‐1.41 -‐0.13 -‐0.13 -‐0.13 -‐0.13
-‐0.05 -‐0.05 -‐0.05 -‐0.05 -‐0.05 -‐0.05 -‐0.05 -‐0.05
-‐0.044 -‐0.044 -‐0.044 -‐0.044 -‐0.044 -‐0.044 -‐0.044 -‐0.044
-‐0.173 -‐0.173 -‐0.173 -‐0.173 -‐0.054 -‐0.054 -‐0.054 -‐0.054
-‐1.792 -‐1.792 -‐1.792 -‐1.792 0.443 0.443 0.443 0.443
Page 153
Worst case combination
Modify the default steel design data if needed
Page 154
Modify the effective length factor if needed
Modify the omega factors if needed
Table 9.7: Summarize of design values required to carry out the design of steel member Results
Design value
Symbol
Design axial force for the worse case design load combination
NEd
361.83
Design moment at y-y at end 1 (worse case combination)
MEd.y1
-1.792
Design moment at y-y at end 2 (worse case combination)
MEd.y2
0.443
Design moment at z-z at end 1 (worse case combination)
MEd.z1
-0.173
Design moment at z-z at end 2 (worse case combination)
MEd.z2
-0.054
Shear forces at y-y at end (worse case combination)
VEd.y
-0.05
Shear force at z-z at end 1 (worse case combination)
VEd.z
-1.41
(kN/kNm)
Page 155
9.5.4 Design of steel bracing (Gravity/Seismic design situation) – Hand calculation
1. Rolled I - section 2. Limit to class 1 and 2 section Design data Overstrength factor (EN1998-1-1,cl.6.1.3(2))
γ ov := 1.25
Behavior factor q
q := 4
Ductlity class
Ductility_class := "DCM"
Number of storeys
Ns := 3
Length of bracing
hc := 5.831m
Total axial load on column, NEd Shear force y-y axis
NEd := 361.83kN VEd.y := 0.05kN
Shear force z-z axis
VEd.z := 1.41kN
Design moment y-y axis
MEd.y1 := 1.792kN⋅ m
Design moment y-y axis
MEd.y2 := 0.443kN⋅ m
Maximum moment
MEd.y := max MEd.y1, MEd.y2 = 1.792kN ⋅ ⋅m
Design moment z-z axis
MEd.z1 := −0.173kN⋅ m
Design moment z-z axis
MEd.z2 := −0.054kN⋅ m
Maximum moment
MEd.z := max MEd.z1, MEd.z2 = −0.054⋅ kN⋅ m
(
(
)
)
Section properties: Depth of section,d:
d := 120mm
Width of section,b:
b := 120mm
Thickness of web, tw: Thickness of flange, tf : Thickness of element
tw := 16mm tf := 16mm
(
)
t := max tw, tf = 16⋅ mm
Page 156
4
Second moment of area z-z:
Izz := 12280000mm
Second moment of area y-y:
Iyy := 12280000mm
4
2
A := 6656mm
Cross section area, A:
6
Warping Constant, Iw:
Iw := 0⋅ mm
Torsional Constant, IT:
It := 18000000mm
Plastic Modulus, Wply
W pl.y := 261600mm
Plastic Modulus, Wplz
W pl.z := 261600mm
Elastic modulus, E:
Es := 210kN⋅ mm
Yield strength of steel , fy:
fy := 275N ⋅ mm
Ultimate strength, fu:
fu := 430N ⋅ mm
Shear modulus
G := 81kN⋅ mm
4 3
3
−2
−2 −2
−2
fy :=
fy if t ≤ 16mm −2
fy − 10N ⋅ mm
Reduction of yield and ultimate strenght of sections EN10025-2 fu :=
−2
fy − 20N ⋅ mm
−2
fy = 275⋅ N ⋅ mm
if 40mm < t ≤ 80mm
fu if t ≤ 16mm −2
fu − 10N ⋅ mm
Partial safety factor
if 16mm < t ≤ 40mm
−2
fu − 20N ⋅ mm
if 16mm < t ≤ 40mm
−2
fu = 430⋅ N ⋅ mm
if 40mm < t ≤ 80mm
Resistance of cross-sections whatever the class (CYS EN1993-1-1,cl 6.1(1)) Resistance of members to instability (CYS EN1993-1-1,cl 6.1(1)) Resistance of cross-section in tension (CYS EN1993-1-1,cl.6.1(1))
γ M0 := 1 γ M1 := 1 γ M2 := 1.25
Page 157
Section classification ε :=
For section classification the coefficient ε is:
235 fy
= 0.924
−2
N⋅ mm
cf := d − 2tf = 88⋅ mm
Class_type_flange :=
"CLASS 1" if
cf t
≤ 33⋅ ε
"CLASS 2" if 33⋅ ε < "CLASS 3" if 38⋅ ε <
cf t cf t
≤ 38⋅ ε ≤ 42⋅ ε
Class_type_flange = "CLASS 1"
cw := d − 2tw = 88⋅ mm Class_type_web :=
"CLASS 1" if
cw t
≤ 72⋅ ε
"CLASS 2" if 72⋅ ε < "CLASS 3" if 83⋅ ε <
Class_type := if (Class_type_flange
cw t cw t
≤ 83⋅ ε ≤ 124⋅ ε
Class_type_web = "CLASS 1"
Class_type_web , Class_type_flange , "ADD MANUALY" ) Class_type = "CLASS 1"
Requirements on cross-sectional class of dissipative elements depending on Ductility class (EN1998-1-1,cl.6.5.3(2)) Section classification rule for EC8 (EN1998-1-1,cl.6.5.3(2)) Class_type_req :=
"CLASS 1 , 2 or 3" if 1.5 < q ≤ 2 ∧ Ductility_class "CLASS 1 or 2" if 2 < q ≤ 4 ∧ Ductility_class "CLASS 1" if q > 4 ∧ Ductility_class
"DCM" = "CLASS 1 or 2"
"DCM"
"DCH"
Class_type_req = "CLASS 1 or 2"
Page 158
Tension resistance (cl.6.2.2) Design plastic resistance of the cross section (EN1993-1-1,cl.6.2.3(2a))
A ⋅ fy 3 Npl.Rd := = 1.83 × 10 ⋅ kN γ M0
Modified plastic resistance of cross section as described in "Design Guidance to EC8" (cl.6.10.2) Design ultimate resistance (EN1993-1-1,cl.6.2.3(2b))
Npl.Rd := 0.5⋅ Npl.Rd = 915.2kN ⋅
Design tension resistance (EN1993-1-1,cl.6.2.3(2))
Nt.Rd := min Nu.Rd , Npl.Rd = 915.2kN ⋅
Check tension capacity (EN1993-1-1,cl.6.2.3(1)P)
Check_1 := if ⎜
0.9A ⋅ fy 3 Nu.Rd := = 1.318 × 10 ⋅ kN γ M2
(
)
⎛ NEd
⎞
⎝ Nt.Rd
≤ 1.0, "OK" , "NOT OK" ⎟
⎠
Check_1 = "OK"
Compression resistance (cl.6.2.3) Compression resistance of steel section (EN1993-1-1,cl.6.2.4(1)) Check compression capacity (EN1993-1-1,cl.6.2.4(1)P)
Nc.Rd := Npl.Rd = 915.2kN ⋅
⎛ NEd
⎞
Check_2 := if ⎜
⎝ Nc.Rd
≤ 1.0, "OK" , "NOT OK" ⎟
⎠
Check_2 = "OK"
Bending resistance (cl.6.2.5) Moment resistance of steel section at Y-Y (EN1993-1-1,cl.6.2.5(2)
Mc.Rd.y :=
Moment resistance of steel section at Z-Z (EN1993-1-1,cl.6.2.5(2)
Mc.Rd.z :=
W pl.y⋅ fy γ M0 W pl.z⋅ fy γ M0
= 71.94⋅ kN⋅ m
= 71.94⋅ kN⋅ m
Sheat resistance (cl.6.2.6) Factor for shear area (EN1993-1-1,cl.6.2.6(g))
η := 1
Shear area of steel section (EN1993-1-1,cl.6.2.6(3))
Avy :=
Shear area of steel section (EN1993-1-1,cl.6.2.6(3))
Avz :=
Shear resistance of steel section Y-Y (EN1993-1-1,cl.6.2.6(2))
A⋅ b b+d A⋅ d b+d
3
2
3
2
= 3.328× 10 ⋅ mm
= 3.328× 10 ⋅ mm
Vpl.Rd.y := A vy ⋅
fy ⋅ ( 3) γ M0
−1
= 528.391⋅ kN
Page 159
Shear resistance of steel section Z-Z (EN1993-1-1,cl.6.2.6(2))
Vpl.Rd.z := A vz⋅
fy ⋅ ( 3)
−1
= 528.391kN ⋅
γ M0
Check if the verification of shear buckling resistance required or not (EN1993-1-1,cl.6.2.6(6)) d ε Check_3 := if ⎛⎜ < 72⋅ , "Not required shear buckling resistance" , "Required shear buckling resistance" ⎞⎟ η ⎝ t ⎠ Check_3 = "Not required shear buckling resistance"
Bending and shear interaction check (cl.6.2.8) Strong axis Y-Y VEd.y
−5
Interaction check 1
vy :=
Reduced yield strength
⎛ 2VEd.y ⎞ ρ := ⎜ − 1⎟ = 1 ⎝ Vpl.Rd.y ⎠
Vpl.Rd.y
= 9.463× 10 2
2 ⎞ ⎛ ⎜ W pl.y − ρ⋅ A ⎟ ⋅ fy 4t ⎠ Reduced design plastic resistance moment ⎝ Mc.Rd.y := if v y > 0.5 γ M0 (EN1993-1-1,cl.6.2.8(5))
Mc.Rd.y if v y < 0.5
Mc.Rd.y = 71.94kN ⋅ ⋅m
Weak axis Z-Z VEd.z
−3
Interaction check 1
vz :=
Reduced yield strength
⎛ 2VEd.z ⎞ ρ := ⎜ − 1⎟ = 0.989 ⎝ Vpl.Rd.z ⎠
Vpl.Rd.z
= 2.668 × 10 2
Page 160
2 ⎞ ⎛ ⎜ W pl.z − ρ⋅ A ⎟ ⋅ fy 4t ⎠ Reduced design plastic resistance moment ⎝ M c.Rd.z := if v z > 0.5 γ M0 (EN1993-1-1,cl.6.2.8(5))
M c.Rd.z if v z < 0.5
Mc.Rd.z = 71.94kN ⋅ ⋅m
Check combination of axial and bending (EN1993-1-1,cl.6.2.1(7))
⎛ NEd
Check_4 := if ⎜
⎝ Npl.Rd NEd
Unity factor Npl.Rd
+
+
MEd.y Mc.Rd.y
+
MEd.y Mc.Rd.y
+
MEd.z Mc.Rd.z
⎞
≤ 1.0, "OK" , "NOT OK" ⎟
MEd.z Mc.Rd.z
⎠
= 0.42
Check_4 = "OK"
Bending and axial force interaction check (cl.6.2.9)
⎡ (A − 2b ⋅ tw)
Factor a
aw := min⎢
Factor a
af := min⎢
Factor n
n :=
Factor β
β :=
A
⎣
⎦
⎡ (A − 2d ⋅ tf ) A
⎣
NEd Npl.Rd
⎤
, 0.5⎥ = 0.423
⎤
, 0.5⎥ = 0.423
⎦
= 0.395
1.66 1 − 1.13n
2
if
1.66 1 − 1.13n
2
≤6
= 2.016
6 otherwise
Factor α
a := β = 2.016
Page 161
Strong axis Y-Y Mc.Rd.y⋅ ( 1 − n ) M := N.y.Rd Reduced design value of the resistance to 1 − 0.5aw bending moments making allowance for the MN.y.Rd := MN.y.Rd if MN.y.Rd ≤ Mc.Rd.y presence of axial forces Mc.Rd.y if MN.y.Rd > Mc.Rd.y (EN1993-1-1,cl.6.2.9.1(5)) MN.y.Rd = 55.168kN ⋅ ⋅m Mc.Rd.z⋅ ( 1 − n ) Weak axis Z-Z MN.z.Rd := 1 − 0.5af Reduced design value of the resistance to bending moments making allowance for the M N.z.Rd := MN.z.Rd if MN.z.Rd ≤ Mc.Rd.z presence of axial forces Mc.Rd.z if MN.z.Rd > Mc.Rd.z (EN1993-1-1,cl.6.2.9.1(5))
MN.z.Rd = 55.168kN ⋅ ⋅m
Check combination of axial and bending (EN1993-1-1,cl.6.2.1(7))
⎛ NEd
Check_5 := if ⎜
⎝ Npl.Rd NEd
Unity factor Npl.Rd
+
+
MEd.y Mc.Rd.y
+
MEd.y Mc.Rd.y
+
MEd.z Mc.Rd.z
⎞
≤ 1.0, "OK" , "NOT OK" ⎟
MEd.z Mc.Rd.z
⎠
= 0.42
Check_5 = "OK"
Bucking interaction check (cl.6.3) Strong axis Y-Y Status of effective length
Effective_Length := "Pinned Pinned"
Effective length factor (Guidance of EC3)
ky :=
0.7 if Effective_Length
"Fixed Fixed"
0.85 if Effective_Length
"Partial restraint"
0.85 if Effective_Length
" Pinned Fixed"
1 if Effective_Length
=1
"Pinned Pinned"
Page 162
Buckling length of column (fixed end)
Lcry := ky hc = 5.831m
Euler Buckling at y-y axis (EN1993-1-1,cl.6.3.1.2(1)
Ncry :=
Slenderness parameter at y-y axis (for class 1,2 and 3 cross-section) (EN1993-1-1,cl.6.3.1.3(1) Check for X bracing (EN1998-1-1,cl.6.7.3(4))
λ y :=
Es ⋅ Iyy ⋅ π
2
= 748.568⋅ kN
2
Lcry
A ⋅ fy
= 1.564
Ncry
(
Check_6 := if Ns ≥ 3, "Consider limitation (As EC8)" , "Ignore limitation (As EC3)" Check_6 = "Consider limitation (As EC8)"
Check for X bracing (EN1998-1-1,cl.6.7.3(1))
(
Check_7 := if 1.3 < λ y < 2, "OK" , "NOT OK"
)
Check_7 = "OK"
Type of the section
Section := "Hot finished"
Buckling curve (EN1993-1-1,table 6.2)
Buckling_curve :=
"a" if Section
"Hot finished"
"c" if Section
"Cold formed"
Buckling_curve = "a" αy :=
Imperfection factor (EN1993-1-1,table 6.1)
0.21 if Buckling_curve
"a"
0.49 if Buckling_curve
"c"
αy = 0.21 2⎤
Value to determine the reduction factor χ (EN1993-1-1,cl.6.3.1.2(1))
φ y := 0.5⋅ ⎡1 + αy ⋅ λ y − 0.2 + λ y ⎣
Reduction factor χ (EN1993-1-1,cl.6.3.1.2(1))
χ y :=
Reduction factor χ check
Check_8 := if χ y ≤ 1.0, "OK" , "NOT OK"
(
)
1 2
φy +
φ y − λy
(
2
⎦ = 1.866
= 0.347
)
Check_8 = "OK"
Page 163
)
Design buklcing resistance (EN1993-1-1,cl.6.3.1.1(3))
Nb.Rd.y :=
χ y⋅ A ⋅ fy
= 634.758⋅ kN
γ M1
⎛ NEd
Buckling resistance of compression member check (EN1993-1-1,cl.6.3.1.1(1))
Check_9 := if ⎜
⎝ Nb.Rd.y
⎞
, "OK" , "NOT OK" ⎟
⎠
Check_9 = "OK"
Weak axis Z-Z Status of effective length
Effective_Length := "Pinned Pinned"
Effective length factor (Guidance of EC3)
kz :=
0.7 if Effective_Length 0.85 if Effective_Length
"Partial restraint"
0.85 if Effective_Length
" Pinned Fixed"
1 if Effective_Length
Buckling length of column (fixed end)
=1
"Pinned Pinned"
Lcrz := kz hc = 5.831m
Euler Buckling at y-y axis (EN1993-1-1,cl.6.3.1.2(1)
Ncrz :=
Slenderness parameter at y-y axis (for class 1,2 and 3 cross-section) (EN1993-1-1,cl.6.3.1.3(1) Check for X bracing (EN1998-1-1,cl.6.7.3(4))
"Fixed Fixed"
λ z :=
Es ⋅ Izz⋅ π 2
2
= 748.568kN ⋅
Lcrz
A ⋅ fy Ncrz
= 1.564
(
Check_10 := if Ns ≥ 3, "Consider limitation (As EC8)" , "Ignore limitation (As EC3)" Check_10 = "Consider limitation (As EC8)"
Check for X bracing (EN1998-1-1,cl.6.7.3(1))
(
Check_11 := if 1.3 < λ z < 2, "OK" , "NOT OK"
)
Check_11 = "OK"
Type of the section
Section := "Hot finished"
Page 164
)
Buckling curve (EN1993-1-1,table 6.2)
Buckling_curve :=
"a" if Section
"Hot finished"
"c" if Section
"Cold formed"
Buckling_curve = "a" αz :=
0.21 if Buckling_curve
"a"
0.49 if Buckling_curve
"c"
αz = 0.21 2
Value to determine the reduction factor χ (EN1993-1-1,cl.6.3.1.2(1))
φ z := 0.5⋅ ⎡1 + αz⋅ λ z − 0.2 + λ z ⎤ = 1.866 ⎣ ⎦
Reduction factor χ (EN1993-1-1,cl.6.3.1.2(1))
χ z :=
Reduction factor χ check
Check_12 := if χ z ≤ 1.0, "OK" , "NOT OK"
(
)
1 2
φz +
2
= 0.347
φ z − λz
(
)
Check_12 = "OK"
Design buklcing resistance (EN1993-1-1,cl.6.3.1.1(3)) Buckling resistance of compression member check (EN1993-1-1,cl.6.3.1.1(1))
Nb.Rd.z :=
χ z⋅ A ⋅ fy γ M1
= 634.758⋅ kN
⎛ NEd
Check_13 := if ⎜
⎝ Nb.Rd.z
⎞
, "OK" , "NOT OK" ⎟
⎠
Check_13 = "OK"
Lateral torsional buckling check (cl.6.3.2) Effective length factor, k (SN003a-EN-EU) Factor for end warping, kw (SN003a-EN-EU)
kz = 1 kw := 1.0 MEd.y2
= 0.247
Ratio of the smaller and larger moment
ψ :=
Coefficient factor C1
C1 := 1.88 − 1.40ψ + 0.52ψ = 1.566
MEd.y1
2
(SN003a-EN-EU)
Page 165
(
Coefficient factor C1 check
Check_14 := if C1 ≤ 2.7, "OK" , "NOT OK"
)
(SN003a-EN-EU) Check_14 = "OK"
Coefficient factor C2
C2 := 1.554
(SN003a-EN-EU) Distance between the point of load application and the shear centre
zg := 0m
Elastic critical moment for lateral torsional buckling (SN003a-EN-EU) 2
Mcr := C1⋅
π ⋅ Es ⋅ Izz
(Lcrz)2
2 2 ⎛ kz ⎞ Iw (Lcrz) G⋅ It 2 3 ⋅ ⎜ ⎟ ⋅ + + (C2⋅ zg) − C2⋅ zg = 1.636× 10 ⋅ kN⋅ m kw Izz 2 ⎝ ⎠ π Es ⋅ Izz
Imperfection factor for lateral torsional CHS sections (EN1993-1-1,table 6.3)
αLT := 0.76
Non dimensional slenderness (EN1993-1-1,cl.6.3.2.2(1))
W pl.y ⋅ fy
λ LT :=
Mcr
= 0.21
Value to determine the reduction factor (EN1993-1-1,cl.6.3.2.2(1))
φ LT := 0.5⋅ ⎡1 + αLT⋅ λ LT − 0.2 + λ LT ⎤ = 0.526 ⎣ ⎦
Reduction factor for lateral-torsional buckling (EN1993-1-1,cl.6.3.2.2(1))
χ LT :=
(
1 φ LT +
2
)
2
2
= 0.992
φ LT − λ LT
Check_15 := if ⎛⎜ χ LT ≤ 1 ∧ χ LT ≤
⎜ ⎝
1 2
, "OK" , "NOT OK" ⎞⎟
⎟ ⎠
λ LT
Check_15 = "OK"
Parameter λ LTO
λ LTO := 0.4
(EN1993-1-1,cl.6.3.2.3(1)) Design buckling resistance moment (EN1993-1-1,cl.6.3.2.1(3))
Mb.Rd := χ LT⋅ W pl.y⋅ γ
⎛ MEd.y
Check_16 := if ⎜
⎝ Mb.Rd
fy
= 71.389⋅ kN⋅ m
M1
⎞
≤ 1, "OK" , "NOT OK" ⎟
⎠
Page 166
Check_16 = "OK"
Check if the lateral torsional buckling be ignored (EN1993-1-1,cl.6.3.2.2(4)) MEd.y ⎛ ⎞ 2 Check_17 := if ⎜ λ LT < λ LTO ∧ < λ LTO , "Ignored torsional buckling effects" , "Consider torsional buckling effects" ⎟ Mcr ⎝ ⎠ Check_17 = "Ignored torsional buckling effects"
Combine bending and axial compression cl.6.3.3 Moments due to the shift of the centroidal axis for class sections 1,2 & 3 (EN1993-1-1,cl.6.3.3(4)/table 6.7)
ΔM Ed.z := 0 ΔM Ed.y := 0
Characteristic resistance to normal force of the critical cross-section (EN1993-1-1,cl.6.3.3(4)/table 6.7)
3
NRk := fy ⋅ A = 1.83 × 10 ⋅ kN
Characteristic moment resistance of the critical cross-section (EN1993-1-1,cl.6.3.3(4)/table 6.7)
My.Rk := fy ⋅ Wpl.y = 71.94kN ⋅ ⋅m Mz.Rk := fy ⋅ Wpl.z = 71.94kN ⋅ ⋅m
ψy :=
MEd.y1 MEd.y2 MEd.y2 MEd.y1
Ratio of end moments (EN1993-1-1,Table B2) ψz :=
M Ed.z1 M Ed.z2 M Ed.z2 M Ed.z1
if −1 ≤
if −1 ≤
if −1 ≤
if −1 ≤
MEd.y1 MEd.y2 MEd.y2 MEd.y1 M Ed.z1 M Ed.z2 M Ed.z2 M Ed.z1
≤1
≤1
≤1
≤1
Equivalent uniform moment factor
Cmy := 0.6 + 0.4⋅ ψy = 0.699
Equivalent uniform moment factor
Cmz := 0.6 + 0.4⋅ ψz = 0.725
⎡⎡
⎡
⎢⎢ ⎢⎢ ⎣⎣
⎢ ⎢ ⎣
(
)
kyy := min⎢⎢Cmy⋅ ⎢1 + λ y − 0.2 ⋅
NEd
N ⎤⎤ ⎛ ⎞⎤ ⎥⎥ , Cmy⋅ ⎜ 1 + 0.8⋅ Ed ⎟⎥ = 1.018 NRk ⎥⎥ NRk ⎟⎥ ⎜ χ y⋅ χ ⋅ y γ ⎜ ⎟⎥ γ M1 ⎥⎥ M1 ⎠⎦ ⎦⎦ ⎝
Page 167
Interaction factors NEd ⎤⎤ N ⎡⎡ ⎡ ⎛ ⎞⎤ (EN1993-1-1,table ⎥⎥ , Cmz⋅ ⎜ 1 + 1.4⋅ Ed ⎟⎥ = 1.303 kzz := min⎢⎢Cmz⋅ ⎢1 + ( 2λ z − 0.6) ⋅ B.1&B.2) NRk ⎥⎥ NRk ⎟⎥ ⎢⎢ ⎢ ⎜ χ ⋅ χ ⋅ zγ zγ ⎢⎢ ⎢ ⎥⎥ ⎜ ⎟⎥ M1 ⎦⎦ M1 ⎠⎦ ⎣⎣ ⎣ ⎝ kyz := 0.6kzz = 0.782 kzy := 0.6kyy = 0.611
EN1993-1-1,Equation 6.61
⎛ NEd
Check_18 := if ⎜
⎜ ⎜ ⎝
χ y ⋅ NRk
+ kyy ⋅
χ LT⋅
γ M1
NEd
Unity factor
MEd.y + ΔM Ed.y
+ kyy ⋅
χ y ⋅ NRk
My.Rk
+ kyz⋅
γ M1
χ LT⋅
⎞
≤ 1.0, "OK" , "NOT OK" ⎟
M z.Rk
⎟ ⎟ ⎠
γ M1
MEd.y + ΔM Ed.y
γ M1
MEd.z + ΔM Ed.z
My.Rk
+ kyz⋅
γ M1
MEd.z + ΔM Ed.z M z.Rk
= 0.595
γ M1
Check_18 = "OK"
EN1993-1-1,Equation 6.62
⎛ NEd
Check_19 := if ⎜
⎜ ⎜ ⎝
χ z ⋅ NRk
+ kzy⋅
χ LT⋅
γ M1
NEd
Unity factor
MEd.y + ΔM Ed.y
χ z ⋅ NRk γ M1
+ kzy⋅
My.Rk
+ kzz⋅
MEd.z + ΔM Ed.z
γ M1
MEd.y + ΔM Ed.y χ LT⋅
My.Rk γ M1
M z.Rk
⎞
≤ 1.0, "OK" , "NOT OK" ⎟
⎟ ⎟ ⎠
γ M1
+ kzz⋅
MEd.z + ΔM Ed.z M z.Rk
= 0.584
γ M1
Check_19 = "OK"
Page 168
Eurocode 8 requirements Yield resistance (EN1998-1-1,cl.6.7.3(5)) Yield resistance check (EN1998-1-1,cl.6.7.3(5))
(
Check_20 := if NEd ≤ Npl.Rd , "OK" , "NOT OK"
)
Check_20 = "OK"
Check omega factor (EN1998-1-1,cl.6.7.3(8)) Axial force at storey 3
NEd.3 := 162.34kN
Axial force at storey 2
NEd.2 := 317.56kN
Area of steel section (RHS 100X100X10)
A := 3600mm
Design plastic resistance of the cross section Storey 3: RHS 100X100X10 (EN1993-1-1,cl.6.2.3(2a))
0.5A ⋅ fy Npl.Rd.3 := = 495⋅ kN γ M0
2
Omega factor
Npl.Rd Ωstorey1 := = 2.529 NEd
Omega factor
Npl.Rd Ωstorey2 := = 2.882 NEd.2
Omega factor
Npl.Rd.3 Ωstorey3 := = 3.049 NEd.3
Minimum omega
Ωmin := min Ωstorey1 , Ωstorey2 , Ωstorey3
(
)
Ωmin = 2.529
Minimum omega
(
Ωmax := max Ωstorey1 , Ωstorey2 , Ωstorey3
)
Ωmax = 3.049
Check Ω factor (EN1998-1-1,cl.6.7.3(8))
(
Check_21 := if Ωmax ≤ 1.25Ωmin, "OK" , "NOT OK"
)
Check_21 = "OK"
Page 169
10.0 Modal response spectrum analysis
10.1 Set the analysis options
1.
ETABS: Analyze > Set analysis Options
Calculate the number of modes:
Figure 10.1: Set the modal analysis parameters
Page 170
10.2 Evaluate the analysis results of the structure according to the modal analysis requirements
2.
ETABS: Display > Show Tables
Figure 10.2: Modal response spectrum results
Page 171
10.2.1 Assess the modal analysis results based on the EN1998
The requirements of the sum of effective modal masses for the modes taken into account amounts to at least 90% of the total mass of the structure is satisfied (EN1998-11,cl.4.3.3.3.1(3)). Page 172
Effective mass of mode 6 = 97% > 90% “OK”
11.0 Second order effects (P – Δ effects) according to EN1998-1-1,cl.4.4.2.2
The criterion for taking into account the second order effect is based on the interstorey drift sensitivity coefficient θ, which is define with equation (EN 1998-1-1,cl.4.4.2.2(2)).
Θ=
P!"! ∙ d! V!"! ∙ h
dr:
is the interstorey drift
h:
is the storey height.
Vtot:
is the total seismic storey shear.
Ptot:
is the total gravity load at and above storey considered in the seismic design situation (G+0.3Q).
Table 11.1: Consequences of value of P-Δ coefficient θ on the analysis θ≤0,1
No need to consider P-Δ effects P-Δ effects may be taken into account approximately by
0,1≤θ≤0,2
0,2≤θ≤0,3 θ≥0,3
!
amplifying the effects of the seismic actions by !!! P-Δ effects must be accounted for by an analysis including second order effects explicity Not permitted
Important note: If the above expression is not satisfied, second order effects, should be enable in ETABS.
ETABS: Analyze > Set analysis option >
> Set the parameters Page 173
11.1 Displacement calculation according to EN1998-1-1,cl.4.4.2.2
d! = q ∗ d! ds :
is the displacement of a point of the structural system induced by the design seismic action.
qd :
is the displacement behaviour factor, assumed equal to q unless otherwise specified.
de :
is the displacement of the same point of the structural system, as determined by a linear analysis based on the design response spectrum.
11.2 Interstorey drift Interstorey drift is the design interstorey drift, evaluated as the difference of the average lateral displacements ds at the top and bottom of the storey under consideration and calculated in accordance with EN1993-1-1,cl.4.3.4.
d! =
d!.!"# − d!.!"# 2
Page 174
11.3 Calculation of second order effect using ETABS
3.
ETABS: Run the model
4.
ETABS: Display > Show tables
Select the design combinations
Static load case combination (include wind load) STATIC 2. STATIC 3. STATIC 4. STATIC 5. STATIC 6. STATIC 7. STATIC 8. STATIC 9.
1.35DL + 1.5LL + 0.75WINDX 1.35DL + 1.5LL - 0.75WINDX 1.35DL + 1.5LL + 0.75WINDY 1.35DL + 1.5LL - 0.75WINDY 1.35DL + 1.5WINDX + 1.05LL 1.35DL - 1.5WINDX – 1.05LL 1.35DL + 1.5WINDY + 1.05LL 1.35DL - 1.5WINDY – 1.05LL
Seismic load case combination SEISMIC 1. SEISMIC 2. SEISMIC 3. SEISMIC 4. SEISMIC 5. SEISMIC 6. SEISMIC 7. SEISMIC 8.
DL + 0.3LL + EQX + 0.3EQY DL + 0.3LL + EQX – 0.3EQY DL + 0.3LL - EQX + 0.3EQY DL + 0.3LL - EQX – 0.3EQY DL + 0.3LL + EQY + 0.3EQX DL + 0.3LL + EQY – 0.3EQX DL + 0.3LL - EQY + 0.3EQX DL + 0.3LL - EQY – 0.3EQX Page 175
Figure 11.1: Displacement due to lateral load
For floor with the non use of diaphragm, the maximum displacement can be found in this table
For floor with the use of diaphragm, the maximum displacement can be found in this table
11.3.1 Interstorey drift displacement
Page 176
Sort smallest to largest in order to find the maximum displacement or Sort largest to smallest in order to find the maximum displacement Consider the maximum value Do this process for all storeys separately as showing below
Table 11.2: Displacement due to lateral load Storey no.
Max Displacement at X
Max Displacement at Y
Storey 3
Storey 2
Storey 1
Page 177
Table 11.3: Drift displacement
Storey
Displacement Displacement Displacement Displacement Interstorey Interstorey Direction x Direction y Behaviour dsx dsy drift drift dx.e dy.e factor q (mm) (mm) drx dry (mm) (mm) cl.4.4.2.2 cl.4.4.2.2 (mm) (mm)
Storey 3
11.742
11.7452
4
46.968
46.9808
6.7754
6.7776
Storey 2
8.3543
8.3564
4
33.4172
33.4256
9.0274
9.0296
Storey 1
3.8406
3.8416
4
15.3624
15.3664
7.6812
7.6832
d!" = q ∗ d!"
d!" =
d!".!"# − d!".!"# 2
d!" =
d!".!"# − d!".!"# 2
d!" = q ∗ d!"
11.3.2 Total gravity load Ptot ETABS: Display > Show tables
Select the design combinations
Static load case combination STATIC 10. DL + 0.3LL
Page 178
Export the results in Excel sheet
Filter the value of the bottom storey
Page 179
Story
Load
Loc
P
Record the total gravity load (G+ψEiQ) of each storey
STORY3 STATIC10 Bottom 1402.76 STORY2 STATIC10 Bottom 2804.93 STORY1 STATIC10 Bottom 4207.11
11.3.2 Total seismic storey shear Vtot ETABS: Display > Show tables
Select the design combinations
Seismic load case combination SEISMIC 1. SEISMIC 2. SEISMIC 3. SEISMIC 4. SEISMIC 5. SEISMIC 6. SEISMIC 7. SEISMIC 8.
DL + 0.3LL + EQX + 0.3EQY DL + 0.3LL + EQX – 0.3EQY DL + 0.3LL - EQX + 0.3EQY DL + 0.3LL - EQX – 0.3EQY DL + 0.3LL + EQY + 0.3EQX DL + 0.3LL + EQY – 0.3EQX DL + 0.3LL - EQY + 0.3EQX DL + 0.3LL - EQY – 0.3EQX
Page 180
Export the results in Excel sheet
Sort smallest to largest in order to find the maximum shear force or Sort largest to smallest in order to find the maximum shear force Consider the worst load combination Do this process for all storeys separately as showing below
Page 181
Filter the values using the worst case combination Filter the value of the bottom storey
Story
Load
STORY1 STORY2 STORY3
SEISMIC1 MAX SEISMIC1 MAX SEISMIC1 MAX
Loc
P
Bottom 4207.11 Bottom 2804.93 Bottom 1402.76
VX 663.91 550.8 330
Repeat the above procedure in order to obtain the Vtot at Y-direction
VY Story
Load
STORY1 STORY2 STORY3
SEISMIC5 MAX SEISMIC5 MAX SEISMIC5 MAX
Loc
Record the total seismic shear of each storey for Vtot at X-direction
P
Bottom 4207.11 Bottom 2804.93 Bottom 1402.76
663.91 550.8 330
Page 182
Table 11.4: Second order effects check (EN1993-1-1,cl.4.4.2.2(2)) Displacement Displacement Displacement Displacement Interstorey Interstorey Direction x Direction y Behaviour dsx dsy drift drift dx.e dy.e factor q (mm) (mm) drx dry (mm) (mm) cl.4.4.2.2 cl.4.4.2.2 (mm) (mm)
Storey
Storey 3
11.742
11.7452
4
46.968
46.9808
6.7754
6.7776
Storey 2
8.3543
8.3564
4
33.4172
33.4256
9.0274
9.0296
Storey 1
3.8406
3.8416
4
15.3624
15.3664
7.6812
7.6832
Total Total Total Height of gravity load seismic seismic each Ptot storey shear storey shear storey (kN) Vtotx (kN) Vtoty (kN) (mm)
Interstorey drift Interstorey drift sensitivity coefficient θ sensitivity coefficient θ at at X direction Y direction
663.91
663.91
663.91
3000
OK
OK
550.8
550.8
550.8
3000
OK
OK
330
330
330
3000
OK
OK
Θ=
P!"! ∙ d!" ≤ 0.10 V!"!# ∙ h
Θ=
P!"! ∙ d!" ≤ 0.10 V!"!# ∙ h
Page 183
12.0 Damage limitation according to EN1998-1-1,cl.4.4.3 The “damage limitation requirement” is considered to have been satisfied, if, under a seismic action having a larger probability of occurrence than the design seismic action corresponding to the “no-collapse requirement” in accordance with 2.1(1)P and 3.2.1(3), the interstorey drifts are limited in accordance with 4.4.3.2. The damage limitation requirements should be verified in terms of the interstorey drift (dr) (EN 1998-1-1,cl.4.4.3.2) using the equation below:
d! ∙ v ≤ 0.005 ∙ h dr: is the difference of the average lateral displacement ds in CM at the top and bottom of storey. v: is the reduction factor which takes into account the lower return period of the seismic action. h: is the storey height Table 12.1: Damage limitation (EN1998-1-1,cl.4.4.3) For non-structural elements of brittle material attached to the structure
drv≤0.005h
drv≤0.0075h
For building having ductile non structural elements For building having non-structural elements fixed in a way so as not to
drv≤0.010h
interfere with structural deformation
Table 12.2: Reduction factor of limitation to interstorey drift (CYA NA EN1998-11,cl.NA.2.15)
Importance class
Reduction factor v
I
0.5
II
0.5
III
0.4
IV
0.4
Page 184
12.1 Calculation of damage limitation
Table 12.3: Interstorey drift (see table 11.3)
Storey
Displacement Displacement Displacement Displacement Interstorey Interstorey Direction x Direction y Behaviour dsx dsy drift drift dx.e dy.e factor q (mm) (mm) drx dry (mm) (mm) cl.4.4.2.2 cl.4.4.2.2 (mm) (mm)
Storey 3
11.742
11.7452
4
46.968
46.9808
6.7754
6.7776
Storey 2
8.3543
8.3564
4
33.4172
33.4256
9.0274
9.0296
Storey 1
3.8406
3.8416
4
15.3624
15.3664
7.6812
7.6832
Reduction Heigh of factor each v storey cl.4.4.3.2(2) (mm)
Damage limitation Damage limitation check check X-‐direction Y-‐direction
0.4
3000
OK
OK
0.4
3000
OK
OK
0.4
3000
OK
OK
d! ∙ v ≤ 0.005 ∙ h d! ∙ v ≤ 0.005 ∙ h
Page 185
ANNEX - A
ANNEX A.1 - Assumptions made in the design algorithm (Manual of ETABS – EC3 & EC8)
1. Load combination
•
The automated load combinations are based on the STR ultimate limit states and the characteristic serviceability limit states.
2. Axial force check
•
Tubular sections are assumed to be hot finished for selecting the appropriate buckling curve from EC3 Table 6.2. This is non conservative if cold formed sections are used.
3. Bending moment check
•
The load is assumed to be applied at the shear center for the calculation of the elastic critical moment.
•
Any eccentric moment due to load applied at other locations is not automatically accounted for.
4. Shear Force Check
•
Plastic design is assumed such that Vc,Rd is calculated in accordance with EC3 6.2.6(2).
•
The shear area, Av is taken from the input frame section property, rather than using the equations defined in EC3 6.2.6(3).
•
Transverse stiffeners exist only at the supports and create a non-rigid end post for the shear buckling check. No intermediate stiffeners are considered. Page 186
•
The contribution from the flanges is conservatively ignored for the shear buckling capacity.
5. Combined Forces Check
•
The interaction of bending and axial force is checked in accordance with EC3 6.2.1(7), which may be conservative compared to EC3 6.2.9.
•
The calculation of the equivalent uniform moment factors, Cm, assumes uniform loading, which is conservative.
A1.1:Limitation made in the design algorithm (Manual of ETABS – EC3&EC8) 6. General
•
Class 4 sections are not designed (EC3 5.5) and should be considered using other methods.
•
The effects of torsion are not considered in the design (EC3 6.2.7) and should be considered using other methods.
7. Axial Force Check
•
The net area is not determined automatically. This can be specified on a member-bymember basis using the Net Area to Total Area Ratio overwrite.
•
The axial buckling check does not consider torsional or torsional-flexural buckling.
8. Combined Forces Check
•
The effect of high shear is checked only for Class 1 or 2 I-sections when combined with bending. Other section shapes and classes require independent checks to be carried out. Page 187
ANNEX –B: Steel design flowcharts
BASIS OF STRUCTURAL DESIGN (EN1990:2002) Vertical deflection (EN1993-1-1,cl.7.2.1) w1 = Initial part of the deflection under permanent loads wc = Precamber in the unloaded structural member w2 = due to Permanent load w3 = due to Variable load STEEL MEMBERS (CYS NA EN1993-1-1,table NA.1) Vertical deflection Cantilevers Beams carrying plaster or other brittle finish Other beams (except purlin and sheeting rails) Purlins and sheeting rails General use
Limits wmax L/180 L/360 L/250 To suit cladding L/300
Horizontal deflection (EN1993-1-1,cl.7.2.2)
u = Overall horizontal displacement over the building height H ui = Horizontal displacement over height Hi STEEL MEMBERS (CYS NA EN1993-1-1,table NA.2) Horizontal deflection Top of columns in single storey buildings, exept portal frames Columns in portal frame buildings, not supporting crane runways In each storey of the building with more than one storey On the multi-storey building as a whole
Limits wmax H/300 To suit cladding Storey height/300 Building height/500
Page 188
Dynamic effects (vibration of floors) (EN1993-1-1,cl.7.2.3) STEEL MEMBERS (CYS NA EN1993-1-1,table NA.3) Design situation
Limits natural frequency 5Hz 9Hz
Floors over which people walk regularly Floor which is jumped or danced on in a rhythmical manner
Effective length (Design Guidance of EC3)
Figure 1: Effective length columns (Design Guidance of EC3)
End restraints Effective length factor, ky,z
Fixed/Fixed 0.7L
Partial restrain in direction 0.85L
Pined/Fixed
Pinned/Pined
0.85L
1.0L
Free in position/Fixed 1.2L
Free/Fixed 2.0L
Page 189
Compression resistance (EN1993-1-1,cl. 6.2.4)
Class 1 or 2and3
𝛮!.!" =
𝛢𝑓! 𝛾!!
𝑵𝑬𝒅 ≤ 𝑵𝒄,𝑹𝒅
Bending resistance (EN1993-1-1,cl. 6.2.5)
Class 1 or 2
𝑀!.!" =
Class 3
𝑊!",! 𝑓! 𝛾!!
𝑀!.!" =
𝑊!",!"# 𝑓! 𝛾!!
𝑴𝑬𝒅 ≤ 𝑴𝒄.𝑹𝒅
Fastener holes in tension flange may be ignored if:
𝑨𝒇,𝒏𝒆𝒕 𝟎. 𝟗𝒇𝒖 /𝜸𝑴𝟐 ≥ 𝑨𝒇 𝒇𝒚 /𝜸𝑴𝟎
Page 190
Shear resistance (EN1993-1-1,cl. 6.2.6)
Plastic design
Elastic design
𝐴! = ℎ! ∙ 𝑡!
𝐴! /𝐴! ≥ 0.6
𝜏!" =
𝑉!,!" =
𝑉!" 𝐴!
Rolled I and H sections (load parallel to web)
Rolled C channel sections (load parallel to web)
CHS
𝐴! = 2𝐴/𝜋
RHS
𝐴! = 𝐴ℎ/(𝑏 + ℎ)Load parallel to depth
𝜂= 1.0 (conservative value)
𝐴! = 𝐴𝑏/(𝑏 + ℎ)Load parallel to
𝜏!" 𝑓! /( 3𝛾!! )
width
𝐴! = 𝐴 − 2𝑏𝑡! + 𝑡! + 2𝑟 𝑡!
𝑽𝑬𝒅 ≤ 𝟏. 𝟎 𝑽𝒄.𝑹𝒅 but
≥𝜂ℎ! 𝑡!
𝑉!".!" =
𝐴! (𝑓! / 3) 𝛾!!
𝑽𝑬𝒅 ≤ 𝑽𝒄,𝑹𝒅
Ignore Shear buckling resistance for webs without intermediate stiffeners
𝒉𝒘 𝜺 > 72 𝒕𝒘 𝜼
Page 191
Combine Bending and shear (EN1993-1-1,cl. 6.2.8)
NO Reduction of resistances (effect on Mc,Rd)
𝑉!".!" =
𝜌= 1−
Shear design resistance
YES
𝑉!" ≤ 0.5 ∙ 𝑉!".!"
NO Reduction of resistances (no effect on Mc,Rd)
𝐴! (𝑓! / 3) 𝛾!!
2𝑉!" −1 𝑉!",!"
!
If torsion present:
2𝑉!" 𝜌= 1− −1 𝑉!",!,!"
!
For an I and H sections
𝑓!" = 1 − 𝜌 𝑓!
𝑉!",!,!" =
1−
𝜏!,!" 1.25 𝑓! / 3 /𝛾!!
Reduced design plastic resistance moment
𝐴! = ℎ! 𝑡!
𝑴𝒚.𝑽,𝑹𝒅 =
(𝑾𝒑𝒍,𝒚 −
𝝆𝑨𝒘 𝟐 𝟒𝒕𝒘
𝜸𝑴𝟎
)𝒇𝒚
≤ 𝑴𝒚,𝒄,𝑹𝒅
Page 192
𝑉!",!"
Bending & Axial force (EN1993-1-1,cl. 6.2.9) Class 1 or 2
Doubly symmetrical I and H sections Z-Z axis
Doubly symmetrical I and H sections Y-Y axis
𝑁!" ≤
0.5 ∙ ℎ! ∙ 𝑡! ∙ 𝑓! 𝛾!!
𝑁!" ≤
ℎ! ∙ 𝑡! ∙ 𝑓! 𝛾!!
𝑁!" ≤ 0.25𝑁!".!" NO NO
YES
YES Consider axial force
Consider axial force
Ignored axial force 𝑎=
𝑎=
𝐴 − 2𝑏𝑡! ≤ 0,5 𝐴
𝑛=
𝑁!" 𝑁!",!"
Ignored axial force
𝐴 − 2𝑏𝑡! ≤ 0,5 𝐴
𝑛=
𝑁!" 𝑁!",!"
𝑛𝑎
𝑀!,!,!" = 𝑀!",!,!" (1 − 𝑛)/(1 − 0,5𝑎) 𝑀!,!,!" = 𝑀!",!,!" 1 − MN,y,Rd≤ Mpl,y,Rd
𝑛−𝑎 1−𝑎
!
𝑀!,!,!" = 𝑀!",!,!"
𝑵𝑬𝒅 𝑴𝒚,𝑬𝒅 𝑴𝒛,𝑬𝒅 + + ≤ 𝟏. 𝟎 𝑵𝑹𝒅 𝑴𝒚,𝑹𝒅 𝑴𝒛,𝑹𝒅
Page 193
Bending & Axial force (EN1993-1-1,cl. 6.2.9) Class 1 or 2
For RHS Y-Y axis Z-Z axis
𝑁!" ≤
ℎ! ∙ 𝑡! ∙ 𝑓! 𝛾!!
NO
YES
Consider axial force
Ignored axial force
Hollow section
Welded box section
𝑎! = (𝐴 − 2𝑏𝑡)/𝐴) ≤ 0.5
𝑎! = (𝐴 − 2𝑏𝑡! )/𝐴) ≤ 0.5
𝑎! = (𝐴 − 2ℎ𝑡)/𝐴) ≤ 0.5
𝑎! = (𝐴 − 2ℎ𝑡! )/𝐴) ≤ 0.5
𝑀!,!,!" =
𝑀!",!,!" 1 − 𝑛 ≤ 𝑀!",!,!" 1 − 0.5𝑎!
𝑀!,!,!" =
𝑀!",!,!" 1 − 𝑛 ≤ 𝑀!",!,!" 1 − 0.5𝑎!
I and H section
CHS
𝑎=2 𝛽 = 5𝑛 ≥ 1 𝑛 = 𝑁!" /𝑁!",!"
𝑎=2 𝛽 = 5𝑛 ≥ 1 𝑛 = 𝑁!" /𝑁!",!"
𝑴𝒚,𝑬𝒅 𝑴𝑵,𝒚,𝑹𝒅
𝒂
+
𝑴𝒛,𝑬𝒅 𝑴𝑵,𝒛,𝑹𝒅
RHS 1.66 1 − 1.13𝑛! but𝑎 = 𝛽 ≤ 6
𝑎=𝛽=
𝜷
≤ 𝟏. 𝟎
Page 194
Buckling resistance in compression (EN1993-1-1,cl. 6.3.1.1) Class 1 or 2and3
Slenderness for flexural buckling
𝑁!" =
!! !" !!
λ=
for ideal strut
𝐴𝑓! 𝑁!"
𝜆 ≤ 0.2 𝑁!" /𝑁!" ≤ 0.04
NO (consider buckling effects)
Cross-section
YES (ignored buckling effects)
Limits tf≤40mm h/b>1.2 40mm 100mm
U-T and solid section L-sections Hollow sections
Hot finished Cold formed
Buckling curve Imperfection factor a
ao 0,13
a 0,21
Buckling about axis y-y z-z y-y z-z y-y z-z y-y z-z any any any any
b 0,34
c 0,49
Buckling curve a b b c b c d d C b a c
d 0,76
Φ = 0,5 1 + 𝑎 𝜆 − 0,2 + 𝜆!
χ=
1 Φ + Φ ! − λ!
𝑁!,!" =
≤ 𝜒 ≤ 1,0
𝜒𝐴𝑓! 𝛾!! )
𝑵𝑬𝒅 ≤ 𝑵𝒃,𝑹𝒅
Page 195
Buckling resistance in bending (EN1993-1-1,cl. 6.3.2)
Class 1 or 2and3
Slenderness for flexural buckling
𝜀=
235 𝑓!
λ! = 𝜋
𝐸 = 93,9𝜀 𝑓!
λ!" =
𝑊! 𝑓! 𝑀!"
1
χ!" = Φ!" +
!
See following pages for calculation of Mcr and λL
Φ!" − λ!"
!
≤ 𝜒!" ≤ 1,0
Φ!" = 0,5 1 + 𝑎!" 𝜆!" − 0,2 + 𝜆!" !
Cross-section
Limits
Rolled I-sections
h/b≤2 h/b>2 h/b≤2 h/b>2 -
Welded I-sections Other cross-sections Buckling curve Imperfection factor aLT
a 0,21
b 0,34
Buckling curve a b c d d c 0,49
d 0,76
Class 1 or 2
Class 3
Wy=Wpl,y
Wy=Wel,y
𝑀!,!" =
𝜒!" 𝑊! 𝑓! 𝛾!!
𝑴𝑬𝒅 ≤ 𝟏. 𝟎 𝑴𝒃.𝑹𝒅
Page 196
Calculation process of Mcr (www.access-steel.com - Document SN003a&b)
Term L E G Iz It Iw k kw zg
Step 1: Define the properties of member Description Values Distance between point of Lcr=kl lateral restraint Young’s modulus 210000 N/mm2 Shear modulus 80770 N/mm2 Second moment of area about the weak axis From section table Torsion constant Warping constant Effective length factor 1.0 unless justified otherwise Factor for end warping 1.0 unless justified otherwise Distance between the point of +/-(h/2) or 0 if the load is load application and the shear applied through the shear centre centre
Step 2: Calculate the coefficient C1 and C2 Loading and C2 Ψ=M1/M2 support conditions Pinned UDL 0,454 1.00 Fixed UDL 1,554 0.75 Pinned central P 0,630 0.50 Fixed central P 1,645 0.25 0 -0.25 -0.50 -0.75 -1.00 Pinned UDL Pinned, central P
C1 1,00 1.14 1,31 1,62 1,77 2,05 2,33 2,57 2,55 1,127 1,348
Point of application of the load is through the shear centre
YES zg=0
𝛭!"
𝜋 ! 𝐸𝐼! 𝐼! 𝐿!" ! 𝐺𝐼! = ! + ! 𝐿!" 𝐼! 𝜋 𝐸𝐼!
NO zg
!.!
𝛭!" = 𝐶!
𝜋 ! 𝐸𝐼! (𝑘𝐿!" )!
𝑘 𝑘!
!
𝐼! (𝑘𝐿!" )! 𝐺𝐼! + + 𝐶! 𝑧! 𝐼! 𝜋 ! 𝐸𝐼!
!
− 𝐶! 𝑧!
Page 197
Alternative method to calculate the Mcr and λLT
Non-dimensional slenderness
! !!
= 1.0(conservative value)
𝑈 = 0.9(conservative value)
𝑉 = 1.0
(conservative value)
𝜆! =
𝑘𝐿 𝑖!
K=1.0 for beams k=1.0 for free cantilever k=0.9 for lateral restraint to top flange k=0.8 for torsional restraint k=0.7 for lateral and torsional restraint
Simply supported rolled I, H and C section
𝝀𝑳𝑻 =
𝟏 𝑪𝟏
𝑼𝑽𝝀𝒛 𝜷𝒘
βw = 1.0 (conservative value)
Page 198
Member combined bending and axial compression (EN1993-1-1,cl. 6.3.3)
Class 1 and 2
𝑵𝑬𝒅 𝝌𝒚 𝑵𝑹𝒌
+ 𝒌𝒚𝒚
𝜸𝑴𝟏
𝑵𝑬𝒅 𝝌𝒛 𝑵𝑹𝒌 𝜸𝑴𝟏
+ 𝒌𝒛𝒚
𝑴𝒚,𝑬𝒅 𝝌𝑳𝑻
𝑴𝒚,𝑹𝒌
𝑴𝒚,𝑹𝒌 𝜸𝑴𝟏
𝑴𝒛,𝑬𝒅 𝑴𝒛,𝑹𝒌
≤ 𝟏. 𝟎
𝜸𝑴𝟏
𝜸𝑴𝟏
𝑴𝒚,𝑬𝒅 𝝌𝑳𝑻
+ 𝒌𝒚𝒛
Class 3
+ 𝒌𝒛𝒛
𝑴𝒛,𝑬𝒅 𝑴𝒛,𝑹𝒌
≤ 𝟏. 𝟎
𝜸𝑴𝟏
Method 2:Interaction factor kij for members not susceptible to torsional deformations (Recommended by CYS NA EN 1993-1-1,cl.NA2.20 – Table B.1) Interaction Plastic cross-sectional properties Elastic cross-sectional properties Type of sections factors Class 1 and 2 Class 3 𝑵𝑬𝒅 𝑵𝑬𝒅 𝑪𝒎𝒚 𝟏 + 𝝀𝒚 − 𝟎. 𝟐 𝑪𝒎𝒚 𝟏 + 𝟎. 𝟔𝝀𝒚 𝝌𝒚 𝑵𝑹𝒌 /𝜸𝑴𝟏 𝝌𝒚 𝑵𝑹𝒌 /𝜸𝑴𝟏 I-sections kyy RHS-sections 𝑵𝑬𝒅 𝑵𝑬𝒅 ≤ 𝑪𝒎𝒚 𝟏 + 𝟎. 𝟖 ≤ 𝑪𝒎𝒚 𝟏 + 𝟎. 𝟔 𝝌𝒚 𝑵𝑹𝒌 /𝜸𝑴𝟏 𝝌𝒚 𝑵𝑹𝒌 /𝜸𝑴𝟏 kyz kzy
I-sections RHS-sections I-sections RHS-sections
0.6kzz
kzz
0.6kyy
0.8kyy
𝑪𝒎𝒛 𝟏 + 𝟐𝝀𝒛 − 𝟎. 𝟔 I-sections ≤ 𝑪𝒎𝒚 𝟏 + 𝟏. 𝟏𝟒
𝑵𝑬𝒅 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
kzz 𝑪𝒎𝒛 𝟏 + 𝝀𝒛 − 𝟎. 𝟐 RHS-sections ≤ 𝑪𝒎𝒛 𝟏 + 𝟎. 𝟖
𝑵𝑬𝒅 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
𝑵𝑬𝒅 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
𝑪𝒎𝒛 𝟏 + 𝟎. 𝟔𝝀𝒛
𝑵𝑬𝒅 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
≤ 𝑪𝒎𝒚 𝟏 + 𝟎. 𝟔
𝑵𝑬𝒅 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
𝑵𝑬𝒅 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
Page 199
Method 2:Interaction factor kij for members susceptible to torsional deformations (Recommended by CYS NA EN 1993-1-1,cl.NA2.20 – Table B.2) Interaction Plastic cross-sectional properties Elastic cross-sectional properties factors Class 1 and 2 Class 3 kyy Kyy from Table B.1 Kyy from Table B.1 kyz Kyz from Table B.1 Kyz from Table B.1 𝟏−
𝟎. 𝟏𝝀𝒛 𝑵𝑬𝒅 𝑪𝒎𝑳𝑻 − 𝟎. 𝟐𝟓 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
≥ 𝟏− kzz
𝟎. 𝟏 𝑵𝑬𝒅 𝑪𝒎𝑳𝑻 − 𝟎. 𝟐𝟓 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏 for𝜆! < 0.4:
𝟏−
𝟎. 𝟎𝟓𝝀𝒛 𝑵𝑬𝒅 𝑪𝒎𝑳𝑻 − 𝟎. 𝟐𝟓 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
≥ 𝟏−
𝟎. 𝟎𝟓 𝑵𝑬𝒅 𝑪𝒎𝑳𝑻 − 𝟎. 𝟐𝟓 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
𝒌𝒛𝒚 = 𝟎. 𝟔 + 𝝀𝒛 𝟎. 𝟏𝝀𝒛 𝑵𝑬𝒅 ≤𝟏− 𝑪𝒎𝑳𝑻 − 𝟎. 𝟐𝟓 𝝌𝒛 𝑵𝑹𝒌 /𝜸𝑴𝟏
Page 200
Summary design of steel member in bending
Design step
Choose yield strength of section, fy from table 3.1 in EN 1993-1-1
Get starinε from table 5.2 in EN 1993-1-1
Results
fy
S275 S355
ε
Substitute the value of εinto the class limits in table 5.2 to work out the class of the flange and web
Flange Class
Take the latest favourable class from the flange outstand, web in bending and web in compression results
Overall Section Class
Use the required value of W for the defined class to work out Mc,Rd
Steel grade
Web class
Mc,Rd
𝜀=
fy (N/mm2) Nominal thickness of element t (mm) t≤16 16≤t≤40 40≤t≤63 63≤t≤80 275 265 255 245 355 345 335 325
235 𝑓!
fy ε
235
275
355
420
1.00
0.92
0.81
0.75
Flange under compression: Web under pure bending:
c=(b-tw-2r)/2 c/tf c=(h-2tf-2r) c/tw
Class 1 or 2 Class 3 Class 4
Mc,Rd = Mpl,Rd = Wpl,yfy/γM0
Class 1 & 2
Mc,Rd = Mel,Rd = Wel,minfy/γM0
Class 3
Mc,Rd = Weff,minfy/γM0
Class 4
Cross-section Resistance check
Page 201
Summary design of steel member in shear
Design step
Calculate the shear area of the section, Av
Results
Av
Steel grade S275 S355
Calculate the design plastic shear resistance, Vpl,Rd
Vpl,Rd
Shear resistance check
VEd≤Vc,Rd
fy (N/mm2) Nominal thickness of element t (mm) t≤16 16≤t≤40 40≤t≤63 63≤t≤80 275 265 255 245 355 345 335 325
𝑉!".!" =
𝐴! (𝑓! / 3) 𝛾!!
Page 202
Summary of buckling resistance in bending
Design step
Calculate the design bending moment and shear
Section classification
Calculate critical length
Calculate Critical moment
Results
MEd &VEd
Wy&fy
Lcr
Mcr
Calculate non-dimensional slenderness λLT
λLT
Calculate imperfection factor αLT
αLT
Calculate reduction factor φLT
φLT
Calculate modified/reduction factor for lateral-torsional buckling χLTorχLT,mod
Calculate buckling resistance Mb,Rd
Buckling resistance check
χLTχLT,mod
Mb,Rd
𝑴𝑬𝒅 ≤ 𝟏. 𝟎 𝑴𝒃,𝑹𝒅
Page 203