Aerospace Systems, Avionics and Control Control UFMFB7-30-2
Control UFMF7-!"-2
#ect$re %& Second 'rder (ime )esponse and t*e Bloc+ diaram approac*
(odays #ect$re . #ast /ee+& 1np$ts& Step, )amp and $lse )esponse in t*e (ime (ime Domain First First order4 Final al$e (*eorem
. (*is /ee+& Second order time response 1ntrod$ction to 5loc+ diaram ale5ra
Second 'rder Systems . C*aracterised 5y ζ dampin ratio4 and ωn $ndamped nat$ral 6re$ency4 . (*e standard 6orm may 5e epressed in t9o di66erent 9ays 2 n
1
G ( s ) =
1+
2ζ s
ω n
+
s
2
ω n2
ω = 2 2 s + 2ζω n s + ω n
Second 'rder Step response . /or+ o$t t*e step response as per last 9ee+& 1
G ( s) =
1+ C ( s ) =
1 s
2ζ s
ω n
+
s
2
=
ω n2 s 2
ω n2 1
* 1+
+ 2ζω n s + ω n2
2ζ s
ω n
+
s
2
response to unit step input
ω n2
ω n2 C ( s ) = * 2 s s + 2ζω n s + ω n2 1
s + 2ζω n → Part . Fract . − 2 2 s s + 2ζω n s + ω n 1
Second 'rder Step response Further manipulati on to fit transf orm tables... .
( s + ζω n ) + ζω n C(s) = − 2 2 s ( s + ζω n ) + ω D 1
where ω D
Transform
−ζω t ζω n C (t ) = 1 − e Cosω D t + ω D n
Sinω D t
= ω n
1 − ζ 2
Second 'rder Step response ζω − ζω t n So, 9*at does t*is C (t ) = 1 − e Cosω D t + Sinω D t ω response loo+ li+e: D n
Thank you for interesting in our services. We are a non-profit group that run this website to share documents. We need your help to maintenance this website.