SC Filters
Short Description
Download SC Filters...
Description
Switched
Capacitor Filters Franco Maloberti
F. Maloberti Malo berti :
Switched Capacitor Filters
1
OUTLINE • Switched ca capacitor te techniqu ique • Biquadratic SC filters • SC N-path filters • Finit inite e gai gain n and and ba band ndwi widt dth h ef effect ects • Layout consideration • Noise
F. Maloberti Malo berti :
Switched Capacitor Filters
2
SWITCHED SWITC HED CAPACITOR TECHNIQUE • An active filter is made of op-amps, resistors and capacitors. • The accuracy of the filter is determined by the accuracy of the realized time costants since the capacitors and resitors are realized by uncorrelated technological steps δ τ ---- τ
2
2
δR δC = ------- + ------- R
• In CMOS MOS te tech chno nolo logy gy δ R ⁄ R ≈ 40 40% %;
2
C δ C ⁄ C ≈ 30 30% %
; he henc nce e
δτ 50% %, ----- ≈ 50 τ
unacceptable for for most of the applications •Hybrid realization with functional trimming •Problems for for a fully integrated realization F. Maloberti Malo berti :
Switched Capacitor Filters
3
•
Accuracy
•
Values of capacitors and resistors: for 70 nm oxide thickness 1 pF --> 2000 µ 2; 10 pF is a large la rge capacitance. capaci tance. To get ge t τ = 10-4 sec R = 107 Ω
The above problems are solved by the use of simulated resistors made of switches and capacitors. MOS technology is suitable because: •Offset free switches switches •Good capacitors •Satisfactory •Satisfactory op-amps
F. Maloberti Malo berti :
Switched Capacitor Filters
4
Simple SC structures I
V1
Φ1
Φ2
C
Φ1
1
I Φ2
V1
Φ1
C
T
V2
Φ2
T
V2 1
∆Q = C1 (V1 - V2) every ∆t = T
F. Maloberti Malo berti :
Switched Capacitor Filters
5
I
I
V1 – V2 ∆ Q = i ∆ t = ------------------- T R V1
T
V2
t
The two SC structures are (on average) equivalent to a resistor T R e q = ------C1
If the SC structures are used to get an equivalent time constant τeq = ReqC2 it results: C2
τ e q = T ------C1
F. Maloberti Malo berti :
Switched Capacitor Filters
6
•
Its accuracy depends on the clock and on the capacitor matching accuracy
•
If τeq=40 T C2 = 40 C1 (acceptable spread) regardless of the value of τeq
A more complex SC structure:
V1
Φ1
Φ2
Φ2
Φ1
V2
∆ Q = 2 C1 ( V1 – V2 )
The charge is transferred twice per clock period T or we assume as clock period half of the period of phases Φ1 and Φ2. F. Maloberti Malo berti :
Switched Capacitor Filters
7
SC IN INTEG TEGRA RAT TOR C2 R1 _
+
Starting from the continuous-time circuit of the Integrator, we can obtain a SC integrator by replacing the continuous-time resistor with the equivalent resistances. F. Maloberti Malo berti :
Switched Capacitor Filters
8
C2
Φ2
Φ1
C1
_ Φ1
+
C2 Φ2
_
Φ1
C1
Φ1
+
C2 Φ2
Φ1
C Φ2
F. Maloberti Malo berti :
Switched Capacitor Filters
_
1 Φ1
+
Φ2
Φ1
9
•We •We consider the samples of the input and of the output taken at the same times nT (the end of the sampling period). •
Structure 1: C1 V o u t [ ( n + 1 ) T ] = V o u t ( n T ) – ------- V i n ( n T ) C2
taking the z-transform: C1 Vou t ( z ) 1 ------------------- = – ------- ⋅ -----------C2 z – 1 V in ( z )
•
Structure 2: C1 V o u t [ ( n + 1 ) T ] = V o u t ( n T ) – ------- V i n ( n + 1 ) T ] C2
taking the z-transform: F. Maloberti Malo berti :
Switched Capacitor Filters
10
C1 Vou t ( z ) z ------------------- = – ------- ⋅ -----------C2 z – 1 V in ( z )
•
Structure 3: C1 V o u t [ ( n + 1 ) T ] = V o u t ( n T ) – ------- { V in [ ( n + 1 ) T ] + V in ( n T ) } C2
taking the z-transform: C1 z + 1 Vout ( z ) = – ------- ⋅ -----------------------------C2 z – 1 Vin ( z )
Remember that for the continuous-time integrator: Vout ( s ) 1 ------------------- = – -----------------Vin ( s ) s R1 C 2
Comparing the sampled-data and continuous-time transfer functions we get: F. Maloberti Malo berti :
Switched Capacitor Filters
11
•
Structure 1: T R 1 → ------C1
•
FE approximation approximation
1 (z – 1) s → --- ----------------T z
BE approximation approximation
Structure 2: T R 1 → ------C1
•
1 s → --- ( z – 1 ) T
Structure 3: T R 1 → ---------2 C1
2 (z – 1) s → --- ----------------T (z + 1)
Bilinear approximation approximation
•It does not exist a simple SC integrator which implement the LD LD approximation. •Note: the cascade of a FE integrator and a BE integrator i ntegrator is equivalent to the cascade of two LD integrators.
F. Maloberti Malo berti :
Switched Capacitor Filters
12
C2
C1'
_ Φ 1
C2'
_
Φ 2
C1
+
Φ 1
Φ2
+
•The key key point is to introduce a full period pe riod delay from the input to the output
F. Maloberti Malo berti :
Switched Capacitor Filters
13
•The same result is got with: C2'
C2
_ Φ1
Φ2
C1
F. Maloberti Malo berti :
Switched Capacitor Filters
+
Φ2
_ Φ1
' C1
+
14
STRAY STRA Y INSENSITIVE STRUCTURE The considered SC integrators are sensitive to parasitics. Toggle structure: •
The top plate parasitic capacitance C t,1 is in parallel with C 1
•
It is not negligible with respect to C1 and it is non linear
•
The top plate parasitic capacitance Ct,1 acts as a toggle structure
Bilinear resistor:
F. Maloberti Malo berti :
Switched Capacitor Filters
Φ2
Φ1
C1
Ct,1
Cb,1
Φ2
C1
Φ1
Ct,1
Cb,1
15
•
•
•
Both the parasitic capacitances Ct,1, Cb,1 act as toggle structures. Their values are different (of a factor ≈ 10) and they are non linear. Stray Stray insensitivity can be got for the first two structures if one terminal is switched between points at the same voltage. The right-side parasitic capacitor is switched between the virtual ground and ground (note: even in DC Vv.g. must equal Vground)
F. Maloberti Malo berti :
Switched Capacitor Filters
Ct,1
Φ 1
Φ 2
C1
Φ1
Φ 2
Cb,1
C1 Φ1 Φ2
Φ1
Φ2
Virtual ground
C1 Φ1 Φ2
Φ1
Virtual ground
Φ2
16
•
The left side capacitor is connected, during phase 1, to a voltage (or equivalent) source.
•
The charge injected into virtual ground is important, not the one furnished by the input source.
•
Structure A is equivalent to the toggle structure, but the injected charge has opposite sign.
•
Equivalent negative negative resistance allows to implement non inver inverting ting integrators.
•
It is possible to easily realize a stra st ray y insensitive bilinear resistor with fully differential configuration.
F. Maloberti Malo berti :
Switched Capacitor Filters
17
SC BIQUADRATIC FILTERS Consider a (continuous-time) biquadratic transfer function 2
p0 + s p1 + s p2 H ( s ) = ---------------------------------------2
ω0
s + s ------- + ω 0 Q0
2
If the bilinear transformation is applied, it results a z-biquadratic z-biqu adratic transfer function 2
a0 + z a1 + z a2 H ( s ) = ---------------------------------------2 b0 + z b1 + z b2
where the coefficients are: 2 4 a 0 = p 0 – --- p 1 + ------2 p 2 T T
F. Maloberti Malo berti :
Switched Capacitor Filters
18
8 a 1 = 2 p 0 – ------2 p 2 T 2 4 a 2 = p 0 + --- p 1 + ------2 p 2 T T
b0 = ω0
2
2 ω0 4 – --- ------ + -----T Q T2
2 8 b 1 = 2 ω 0 – -----2 T
b2 = ω0
F. Maloberti Malo berti :
Switched Capacitor Filters
2
2 ω0 4 + --- ------ + -----T Q T2
19
All the stable z-biquadratic transfer functions are realized by the topology: E C F D 1
G B
-
A
H
+
V01 +
V02
I
J
F1
F2
Vin
t
F. Maloberti Malo berti :
Switched Capacitor Filters
20
Features: •Loop of two integrators one inver inverting ting and the other noninver noninverting. ting. •Damping around the loop provided by capacitor F or (and) capacitor E (usually only E or F are included in the network). •Two outputs available V0,1 V0,2. •Denominator of the transfer function determined by the capacitors along the loop (A, B, C, D, E, F). •Transmission zeros (numerator) realized by the capacitors (G, H, I, J). •Input signal sampled during Φ1 and held for a full clock period •Charge injected into the virtual ground during Φ1. F. Maloberti Malo berti :
Switched Capacitor Filters
21
Charge conservation equations: DV0,1(n+1) = DV0,1(n) - GVin(n+1) + HVin(n) - CV0,2(n+1) - E[V0,2(n+1) - V0,2(n)] (B + F)V0,2(n+1) = BV0,2(n) + AV0,1(n) - IVin(n+1) + JVin(n)
Taking the z-transform and solving, it results: H1
2 V 0, 1 ( IC + IE – GF – GB )z + ( FH + BH + B G – JC – J E – IE )z + ( EJ – BH) = ----------- = ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------2 Vin ( DB + DF )z + ( AC + AE – 2DB – DF )z + ( DB – AE )
H2
2 V 0, 2 DIz + ( AG – DI – DJ )z + ( DJ – AH) = ----------- = ------------------------------------------------------------------------------------------------------------------------------------------2 Vin ( DB + DF )z + ( AC + AE – 2DB – DF )z + ( DB – AE )
•
10 Capacitors
•
6 Equations a0, a1, a2, b0, b1, b2
•
Dynamic range optimization
F. Maloberti Malo berti :
Switched Capacitor Filters
23
•
Scaling for minimum total capacitance in the groups of capacitors connected to the virtual ground of the op-amp 1 and the op-amp2.
•
Since there are 9 conditions, one capacitor can be set equal to zero E=0 “F type”
F=0
“E type”
Firstly the 6 equations are satisfied. Later capacitors D and A are adjusted in order to optimize the dynamic range. Finally Finall y all the capacitor connected to the virtual ground of the op-amp are normalized to the smaller of the group.
F. Maloberti Malo berti :
Switched Capacitor Filters
24
Scaling for minimum total capacitance Cn
C1 _ C2 + C3
C4
Assume that C3 is the smallest capacitance of the group. In order to make minimum the total capacitance C3 must be reduced to the smallest value allowed by the technology (Cmin) •
Multiply all the capacitors of the group by C mi n k = -----------C3
F. Maloberti Malo berti :
Switched Capacitor Filters
25
SC LADDER FILTERS Orchard’s observation Doubly-terminated LC ladder network that are designed to effect maximum power transfer from source to load over the filter passband feature very low sensitivities to value component variation. Syntesis of SC Ladder Filters: Symple approach •
Replace every every resistance Ri in an active ladder structure with a switched capacitor Ci = T/Ri.
•
Use a full clock period delay delay along all the two t wo integrator loop (it results automatically verified in single ended schemes).
It results an LD equivalent, except for the terminations.
F. Maloberti Malo berti :
Switched Capacitor Filters
27
Quasi LD transformation: DESIRED SPECIFICATION
n o i t a u n e t t A
Asb
Apb wpb
wsb
w
PREWARPED SPECIFICATION
n o i t a u n e t t A
Asb
Apb w sin( w pb T/2)
sin( w sb T/2)
Prewarp the specifications using sin(ωT/2) F. Maloberti Malo berti :
Switched Capacitor Filters
28
Effect of the terminations: C3
R
C2
_ R 1
_
C1
+
C2 _ +
R3 C1 H D I ( s ) = --------------------------------------- if R1 = T/ C1 and R3 = T/C3 we get: H D I ( s ) = ---------------------------s C2 R1 R3 + R1 s T C2 + C3 Vo u t ( n + 1 ) ( C2 + C3 ) = V o u t ( n ) C2 + C1 Vi n ( n )
F. Maloberti Malo berti :
Switched Capacitor Filters
29
Taking the z-transform we get:
z V o u t ( C2 + C3 ) = C2 Vo u t + C1 Vi n – 1 ⁄ 2
C1 C1 z H D I ( z ) = -------------------------------------------------------------------------------- = -----------------------------------------------------------------1 ⁄ 2 1 ⁄ 2 – 1 ⁄ 2 C2 ( z – 1 ) + z C3 ) + z C3 C2 ( z –z
along the unity circle z=e jωT – j ω T ⁄ 2
j ω T
HDI ( e
– j ω T ⁄ 2
C1 e C1 e ) = -------------------------------------------------------------------------------------------------------------------------- = -------------------------------------------------------------------------------- j ω T ⁄ 2 j ω T ⁄ 2 – j ω T ⁄ 2 ωT ωT C2 ( e –e C3 )+e 2 j ( C 2 + C 3 ) sin -------- + C 3 cos -------2 2
The half clock period delay will be used in the cascaded integrator in order to get the LD transformation •
The termination is complex and frequency dependent.
•
The integrating capacitor C2 must be replaced by C2 + C3 /2.
F. Maloberti Malo berti :
Switched Capacitor Filters
30
Complex termination: C3
C1
C2 _ F1
+
Note: the output voltage changes during Φ 2
Vo u t ( n + 1 ) C2
C2 = V o u t ( n ) -------------------- + C 1 V i n ( n ) C2 + C3
Taking the z-transform: C2 C3 z V o u t C 2 = V o u t C 2 – -------------------- + C 1 V i n C 2 + C 3
F. Maloberti Malo berti :
Switched Capacitor Filters
31
– 1 ⁄ 2
C1 C1 z H D I ( z ) = ---------------------------------------------------- = ---------------------------------------------------------------------------------------------------------------------------C2 C3 – 1 ⁄ 2 – 1 ⁄ 2 C 2 C 3 1 ⁄ 2 C 2 ( z – 1 ) + -------------------–z )+z C2 ( z -------------------C2 + C3 C2 + C3
along the unity circle z=e jωT – j ω T ⁄ 2
j ω T
HDI ( e
•
•
C1 e ) = --------------------------------------------------------------------------------------------------------------C C C2 C3 ωT 1 2 3 ωT 2 j C2 – -- -------------------- sin -------- + -------------------- cos ------- 2 2 C 2 + C 3 C2 + C3 2
The imaginary part of the contribution of the termination is negative The integrating capacitor
F. Maloberti Malo berti :
Switched Capacitor Filters
C2
must be replaced by
1 C2 C3 C 2 – -- -------------------2 C2 + C3
32
Example: 5th order filter RS
IS
L2
L4
V1
V3
Vin
I2
Passive prototype
R6
Vin
_V 1
_
+
_1/s τ 1
R/Rs
Vs
C3
_1/s τ 2
_ 1/s τ 3 _V 2
+
+
F. Maloberti Malo berti :
V4
+
_V 5
_1/s τ5
_ 1/s τ 4
_
_ R/R 6 + _ V6
+ 1
1
-
τ3
+
τ5
+
T
τ2 -
Switched Capacitor Filters
_
T
T
1
_
+
τ1
1
C5
1
-
implementa-
V3
_
_
1
SC tion
I6
I4
C1
Flow diagram
Vout
V5
-
T
+
1
1
τ4
+
-
T
1
+
1
1
33
FINITE GAIN AND BANDWIDTH EFFECT C2
C1
_
+
If the op-amp has finite gain A0 the “virtual ground” voltage is V0 /A0 V0 ( n + 1 ) 1 1 C 2 V 0 ( n + 1 ) 1 + ------ = C 2 V 0 ( n ) 1 + ------ – C 1 V i n ( n + 1 ) + ------------------------ A 0 A 0 A0
z-transforming: Vo ( z ) C1 z H ( z ) = ---------------- = – ---------------------------------------------------------------Vin ( z ) C1 1 C 2 1 + ------ ( z – 1 ) + ------- z A0 A 0 F. Maloberti Malo berti :
Switched Capacitor Filters
53
Comparing H(z) with the transfer function with
A0 → ∞
C1 z H i d ( z ) = – -----------------------C2 ( z – 1 ) H (z) H (z) H (z) id id id H ( z ) = ---------------------------------------------------------- = ----------------------------------------------------------------------------------- = ---------------------------------------------------------------------------------------C C C C 1 z 1 1 1 1 1 1 1 1 1 z+1 1 1 + ------ 1 + ------- + --------------- ------------ + -- + -- + --------------- -----------1 + + + ------------------------------------------------- A C2 A0 z – 1 A C 2 A 0 z – 1 2 2 2 C A 2C A z – 1 A 0 0 2 0 2 0 0
Substituting z = esT, on the imaginary axis j ω T
j ω T
) H (e ) H (e j ω T id id H ( e ) = ----------------------------------------------------------------------------------------------------- = ------------------------------------------C C 1 – m ( ω ) – j θ ( ω ) 1 1 1 1 + ------- + ------------------- – j --------------------------------------------------A 0 2 C 2 A 0 2 C 2 A0 tan ( ω T ⁄ 2 )
Magnitude error Phase error F. Maloberti Malo berti :
C 1 1 m ( ω ) = – ------ 1 + ----------- A0 2 C 2
C1 C1 θ ( ω ) = ------------------------------------------------ ≅ ----------------------2 C A tan ( ω T ⁄ 2 ) C A ω T 2 0 2 0
Switched Capacitor Filters
54
For the noninverting integrator C2
C1
_
+
V0 ( n + 1 ) 1 1 C 2 V 0 ( n + 1 ) 1 + ------ = C 2 V 0 ( n ) 1 + ------ + C 1 V i n ( n ) + ------------------------ A 0 A 0 A0
z-transforming and solving Vo ( z )
C1
V in ( z )
C1 1 C 2 1 + ------ ( z – 1 ) + ------- z A0 A 0
H ( z ) = ---------------- = -------------------------------------------------------------------------------------------------------
Same magnitude and phase error result F. Maloberti Malo berti :
Switched Capacitor Filters
55
FULLY DIFFERENTIAL CIRCUITS •Fully differential configurations reduce the clock feedthrough feedthrough noise and increase the dynamic range. •They allow an increase design flexibility C2 C1
(Φ2) _
Φ2 Φ1
Φ2
Φ1
(Φ1)
+
Φ2
Simple integrator (inverting and non inverting)
F. Maloberti Malo berti :
Switched Capacitor Filters
66
Immediate sampling (inverting and non inverting) integrator: Vin -Vin
Φ1 Φ2
Φ1 Φ2
_
Φ1
-Vin Vin
Φ1 Φ2
Φ1
+
Φ1
Φ2
Delayed sampling (inverting and non inverting) integrator: Vin -Vin
Φ1 Φ2
Φ1 Φ2
_
Φ2
-Vin Vin
F. Maloberti Malo berti :
Switched Capacitor Filters
Φ1 Φ2
Φ1 Φ2
+
Φ2
67
•It is possible to reduce the op-amp o p-amp finite bandwidth dependence by the use of delayed delayed sampling inverting and non inver inverting ting integrators along a second order loop. Φ1
Φ1 Φ2
Φ2
Φ1
Φ1 Φ2
Φ2
_ _
+
Φ2
Φ2 Φ1
Φ2 Φ1
F. Maloberti Malo berti :
+
Switched Capacitor Filters
Φ1
Φ1
Φ2
68
•The peaking in the frequency response due to the phase error is strongly reduced •It is easy to realize reali ze bilinear integrators Vin
C1 Φ
C2
1 Φ
Φ2
1
Φ2
_
C1 Φ
_ V in
2
+ Φ1
Φ1
Φ
2
C2
F. Maloberti Malo berti :
Switched Capacitor Filters
69
NOISE IN SC CIRCUI CIRCUITS TS The noise sources in a SC network are: •
Clock feedthrough noise
•
Noise coupled from power supply lines and substrate
•
kT/C noise
• Noise generators of the op-amp The first two sources are the same as in mixed analog-digital circuits.
kT/C noise:
F. Maloberti Malo berti :
Switched Capacitor Filters
74
Consider the simple network: vin S1
In the “on” state the switch can be modeled with a noisy resitor
C
Noise equivalent circuit: Ron S1 4kTRon
f
C
The white spectrum of the “on” resistance is shaped by the low pass F. Maloberti Malo berti :
Switched Capacitor Filters
75
action of the RonC filter. The noise voltage across the capacitor C has spectrum: 4kTR o n ∆ f 2 2 S n ,c = v n, c = 4kTR o n H ( f ) ∆ f = ----------------------------------------2 1 + ( 2 π f Ron C )
When the switch is turned “off” the noise voltage vn,c is sampled and held onto C S
f
F. Maloberti Malo berti :
Switched Capacitor Filters
76
The folding of the spectrum in band-base gives a white spectrum. * v n,c
f CK /2
f
It power (the dashed area) is equal to the integral of Sn,c 2 v n, c
∞
=
4kTR o n ∆ f 4kT ∞ kT ( ) d f = atan x = -------------------------------------------------------- ∫ 0 2 2πC C + π ( ) 1 2 f R C 0 on
Procedure for the noise calculation in SC networks: F. Maloberti Malo berti :
Switched Capacitor Filters
77
View more...
Comments