Sample4_PVElite

July 28, 2018 | Author: Sourav Hait | Category: Stress (Mechanics), Pressure, Beam (Structure), Bending, Solid Mechanics
Share Embed Donate


Short Description

Download Sample4_PVElite...

Description

Pressure Vessel Engineering Ltd. ASME Calculations - CRN Assistance - Vessel Design - Finite Element Analysis

Design Conditions Code: ASME VIII-1 Year: 2007 Addenda: 2009 MAWP: 150

psi

MEAWP: 0

psi

Max. Temp.: 120

°F

MDMT: -20

°F

MDMT Press.: 150

psi

ASME Section VIII-1 Calculations Cust: Desc: Dwg: ID:

Pressure Vessel Engineering Sample Vessel 4 Sample 4 Sample 4

Min. Thk. (UG-16b): 0.09375 in Corrosion Allowance: 0.125 Hydrotest: 195

in psi

Impact Testing: No Impact Exemption: UG-20(f) Radiography: None

UG-22 Loadings Considered Internal Press.: Yes External Press.: No Vessel Weight: Yes Weight of Attachments: No Attachment of Internals: No Attachment of Externals: Yes Cyclic or Dynamic Reactions: No Wind Loading: No Seismic Loading: Yes Fluid Impact Shock Reactions: No Temperature Gradients: No Differential Thermal Expansion: No Abnormal Pressures: No

PVEcalc-Sample PVEcalc-Sample 4 Calulations Author: Brian Munn Reviewer: Laurence Brundrett

Hydrotest Loads: No

Conclusion: Conclusion: The sample vessel has been calculated to ASME Section VIII-1 and found acceptable.

www.pveng.com [email protected] Phone 519-880-9808

Pressure Vessel Engineering Ltd. 120 Randall Drive, Suite B Waterloo, Ontario, Canada, N2V 1C6

PV Elite 2009 - Sample 4.1.PVI

150

30

100

120 in x 59 in id

50

Datum

20

 April 15, 2010

in

0

PV Elite 2009

Date: 04/15/10 File: L:\Samples\Sample 4-Vertical Vessel\Sample 4.1.PVI

Table of Contents Cover Page Title Page Warnings and Errors : Input Echo : XY Coordinate Calculations : Internal Pressure Calculations : External Pressure Calculations : Element and Detail Weights : Nozzle Flange MAWP : Natural Frequency Calculation : Earthquake Load Calculation : Wind/Earthquake Shear, Bending : Longitudinal Stress Constants : Longitudinal Allowable Stresses : Longitudinal Stresses Due to . . Stress due to Combined Loads : Center of Gravity Calculation : Leg Check, (Operating Case) : Leg Check, (Filled w/Water) : Nozzle Calcs. : N2 Nozzle Calcs. : M2 Nozzle Calcs. : N1 Nozzle Calcs. : M1 Nozzle Calcs. : N3 Nozzle Schedule : Nozzle Summary : MDMT Summary : Vessel Design Summary :

1 2 3 4 9 10 15 17 19 20 21 23 24 25 26 28 32 33 35 37 41 45 49 54 58 59 60 61

Cover Page

DESIGN CALCULATION In Accordance with ASME Section VIII Division 1 ASME Code Version

: 2007, Addenda A-08

Analysis Performed by : PRESSURE VESSEL ENGINEERING Job File

: L:\SAMPLES\SAMPLE 4-VERTICAL VESSEL\SAMPLE 4.1.P

Date of Analysis

: Apr 15,2010

PV Elite 2009,

January 2009

Title Page

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 3 of 62 Warnings and Errors : Step: 0 8:15a Apr 15,2010

Class From To : Basic Element Checks. ========================================================================== Note 10 20 The wind load will not be computed on this element. Note 20 30 The wind load will not be computed on this element. Note 30 40 The wind load will not be computed on this element. Class From To: Check of Additional Element Data ========================================================================== Warn 10 20 Check UG-32(j) and UG-81 for Crown Radius > OD Warn 30 40 Check UG-32(j) and UG-81 for Crown Radius > OD

PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 4 of 62 Input Echo : Step: 1 8:15a Apr 15,2010

PV Elite Vessel Analysis Program: Input Data

Design Internal Pressure (for Hydrotest) Design Internal Temperature Type of Hydrotest Hydrotest Position Projection of Nozzle from Vessel Top Projection of Nozzle from Vessel Bottom Minimum Design Metal Temperature Type of Construction Special Service Degree of Radiography Miscellaneous Weight Percent Use Higher Longitudinal Stresses (Flag) Select t for Internal Pressure (Flag) Select t for External Pressure (Flag) Select t for Axial Stress (Flag) Select Location for Stiff. Rings (Flag) Consider Vortex Shedding Perform a Corroded Hydrotest Is this a Heat Exchanger User Defined Hydro. Press. (Used if > 0) User defined MAWP User defined MAPnc Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load Load

Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case Case

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

NP+EW+WI+FW+BW NP+EW+EE+FS+BS NP+OW+WI+FW+BW NP+OW+EQ+FS+BS NP+HW+HI NP+HW+HE IP+OW+WI+FW+BW IP+OW+EQ+FS+BS EP+OW+WI+FW+BW EP+OW+EQ+FS+BS HP+HW+HI HP+HW+HE IP+WE+EW IP+WF+CW IP+VO+OW IP+VE+OW IP+VF+CW FS+BS+IP+OW FS+BS+EP+OW

Wind Design Code Seismic Design Code Importance Factor Table Value Fa Table Value Fv Short Period Acceleration value Ss Long Period Acceleration Value Sl Moment Reduction Factor Tau Force Modification Factor R Site Class Component Elevation Ratio

150.00 120 UG99-b Vertical 0.0000 0.0000 -20 Welded None None 0. N N N N N N N No 0.0000 0.0000 0.0000

No Wind Loads

z/h

IBC 2000 1.000 1.200 2.800 0.750 0.300 1.000 2.000 E 0.000

psig F

in in F

psig psig psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 5 of 62 Input Echo : Step: 1 8:15a Apr 15,2010 Amplification Factor Force Factor Consider Vertical Acceleration Minimum Acceleration Multiplier User Value of Sds (used if > 0 ) User Value of Sd1 (used if > 0 )

Ap

0.000 0.000 No 0.000 0.000 0.000

Design Nozzle for Des. Press. + St. Head Consider MAP New and Cold in Noz. Design Consider External Loads for Nozzle Des. Use ASME VIII-1 Appendix 1-9

Y N Y N

Material Database Year

Current w/Addenda or Code Year

Complete Listing of Vessel Elements and Details: Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Element Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Allowable Stress, Ambient Allowable Stress, Operating Allowable Stress, Hydrotest Material Density P Number Thickness Yield Stress, Operating UCS-66 Chart Curve Designation External Pressure Chart Name UNS Number Product Form Efficiency, Longitudinal Seam Efficiency, Circumferential Seam Tori Head Crown Radius Tori Head Knuckle Radius

10 20 Torisphe. Bottom Head 1.5000 60.000 0.6750 0.1250 0.7500 0.0000 150.00 120 0.0000 70 0. SA-516 70 20000. 20000. 26000. 0.2830 1.2500 37080. B CS-2 K02700 Plate 0.85 0.7 60.000 3.6000

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Liquid Density

10 Liquid BOTTOM HEAD -10.212 11.712 62.400

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter

10 Nozzle N2 0.0000 4.

in in in in in in psig F psig F

psi psi psi lbm/in³ in psi

in in

in in lbm/ft³

in in.

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 6 of 62 Input Echo : Step: 1 8:15a Apr 15,2010 Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

160 150 0. N 0.0000 GR 1.1 SA-106 B

lbf

-------------------------------------------------------------------Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Element Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Efficiency, Longitudinal Seam Efficiency, Circumferential Seam

20 30 Cylinder Shell 120.00 60.000 0.5000 0.1250 0.5000 0.0000 150.00 120 0.0000 70 0. SA-516 70 0.7 0.7

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Liquid Density

20 Liquid SHELL 0.0000 120.00 62.400

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

20 Nozzle M2 10.000 16. None 0 180. N 39.091 None SA-106 B

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 )

20 Nozzle N1 114.00 4. 160 150 0. N 11.075

in in in in in in psig F psig F

in in lbm/ft³

in in.

lbf

in in.

lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 7 of 62 Input Echo : Step: 1 8:15a Apr 15,2010 Grade of Attached Flange Nozzle Matl Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Diameter at Leg Centerline Leg Orientation Number of Legs Section Identifier Length of Legs

GR 1.1 SA-106 B 20 Leg LEGS 12.500 60.500 3 4 W6X15 42.500

in in

in

-------------------------------------------------------------------Element From Node Element To Node Element Type Description Distance "FROM" to "TO" Element Outside Diameter Element Thickness Internal Corrosion Allowance Nominal Thickness External Corrosion Allowance Design Internal Pressure Design Temperature Internal Pressure Design External Pressure Design Temperature External Pressure Effective Diameter Multiplier Material Name Efficiency, Longitudinal Seam Efficiency, Circumferential Seam Tori Head Crown Radius Tori Head Knuckle Radius

30 40 Torisphe. Top Head 1.5000 60.000 0.6750 0.1250 0.7500 0.0000 150.00 120 0.0000 70 0. SA-516 70 0.85 0.7 60.000 3.6000

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Height/Length of Liquid Liquid Density

30 Liquid TOP HEAD 0.0000 11.462 62.400

Element From Node Detail Type Detail ID Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

30 Nozzle M1 19.000 16. None 0 0. N 0.0000 None SA-106 B

Element From Node Detail Type Detail ID

30 Nozzle N3

in in in in in in psig F psig F

in in

in in lbm/ft³

in in.

lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 8 of 62 Input Echo : Step: 1 8:15a Apr 15,2010 Dist. from "FROM" Node / Offset dist Nozzle Diameter Nozzle Schedule Nozzle Class Layout Angle Blind Flange (Y/N) Weight of Nozzle ( Used if > 0 ) Grade of Attached Flange Nozzle Matl

PVElite is a registered trademark of COADE, Inc. [2009]

0.0000 2.25 None 0 0. N 0.0000 None SA-105

in in.

lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 9 of 62 XY Coordinate Calculations : Step: 2 8:15a Apr 15,2010

XY Coordinate Calculations | | From| To | | | Bottom Hea| Shell| Top Head|

| X (Horiz.)| in | 0.00000 | 0.00000 | 0.00000 |

Y (Vert.) in 1.50000 121.500 123.000

| |DX | | | |

| | (Horiz.)| DY (Vert.) | in | in | 0.00000 | 1.50000 | 0.00000 | 120.000 | 0.00000 | 1.50000 |

PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 10 of 62 Internal Pressure Calculations : Step: 3 8:15a Apr 15,2010

Element Thickness, Pressure, Diameter and Allow able Stress : | | Int. Press From| To | + Liq. Hd | | psig Bottom Hea| 155.170 Shell| 154.747 Top Head| 150.414

| | | | | |

Nominal Thickness in 0.75000 0.50000 0.75000

| Total Corr| | Allowance | | in | | 0.12500 | | 0.12500 | | 0.12500 |

Element Diameter in 60.0000 60.0000 60.0000

| | | | | |

| M.A.P. | New & Cold | psig | 215.752 | 234.899 | 215.752 215.751

Minimum Thickness in 0.67500 0.50000 0.67500

Allowable | Stress(SE)| psi | 17000.0 | 14000.0 | 17000.0 |

Element Required Thickness and MAWP : | | From| To | | | Bottom Hea| Shell| Top Head| Minimum

Design Pressure psig 150.000 150.000 150.000

| | | | | |

M.A.W.P. Corroded psig 171.925 171.132 176.735 171.132

| | | | | |

| | | | | |

Required Thickness in 0.60739 0.45514 0.59254

MAWP: 171.132 psig, limited by: Shell. Internal Pressure Calculation Results :  ASME  ASME Code, Section VIII , Division 1, 2007 A-08 Torispherical He ad From 10 To 20 SA-516 70 , UCS-66 Crv. B at 120 F

Bottom Head Longitudinal Joint: Seamless Circumferential Joint: No Radiography per UW 11(c) Type 1 Inside Corroded Head Depth [h]: = L - sqrt( ( L - Di / 2) * ( L + Di / 2 - 2 * r ) ) = 60.12-sqrt((60.12-60.25/2)*(60.12+60.25/2-2* 60.12-sqrt((60.12-60.25/2)*(60.12+60.25/2-2*3.72)) 3.72)) = 10.285 in

M factor for Torispherical Heads ( Corroded ): = (3+sqrt((L+C)/(r+C)))/4 per Appendix 1-4 (b & d) = (3+sqrt((60.000 + 0.1250 )/(3.600 + 0.1250 )))/4 = 1.7544

Required Thickness due to Internal Pressure [tr]: = (P*Lo*M)/(2*S*E+P*(M-0.2)) per Appendix 1-4 (d) = (155.170*60.6750*1.7544)/(2*20000.00*0.85+15 (155.170*60.6750*1.7544)/(2*20000.00*0.85+155.17*(1.7544-0.2)) 5.17*(1.7544-0.2)) = 0.4824 + 0.1250 = 0.6074 in

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 5.170 psig = (2*S*E*t)/(M*Lo-t*(M-0.2)) per Appendix 1-4 (d) = (2*20000.00*0.85*0.5500)/(1.7544*60.6750-0.5 (2*20000.00*0.85*0.5500)/(1.7544*60.6750-0.5500*(1.75-0.2)) 500*(1.75-0.2)) = 177.095 - 5.170 = 171.925 psig

M factor for Torispherical Heads ( New & Cold ): = (3+sqrt(L/r))/4 per Appendix 1-4 (b & d) = (3+sqrt(60.000/3.600))/4 = 1.7706

| | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 11 of 62 Internal Pressure Calculations : Step: 3 8:15a Apr 15,2010

Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(M*Lo - t*(M-0.2)) per Appendix 1-4 (d) = (2*20000.00*0.85*0.6750)/(1.7706*60.6750-2*0 (2*20000.00*0.85*0.6750)/(1.7706*60.6750-2*0.6750*(1.77-0.2)) .6750*(1.77-0.2)) = 215.752 psig

 Actual stress at given pressure and thickness, corroded [Sact]: = (P*(M*Lo-t*(M-0.2)))/(2*E*t) = (155.170*(1.7544*60.6750-0.5500*(1.7544-0.2) (155.170*(1.7544*60.6750-0.5500*(1.7544-0.2)))/(2*0.85*0.5500) ))/(2*0.85*0.5500) = 17523.934 psi

Straight Flange Required Thickness: = (P*Ro)/(S*E+0.4*P) + c per Appendix 1-1 (a)(1) = (155.170*30.0000)/(20000.00*0.85+0.4*155.170 (155.170*30.0000)/(20000.00*0.85+0.4*155.170)+0.125 )+0.125 = 0.398 in

Straight Flange Maximum Allowable Working Pressure: Less Operating Hydrostatic Head Pressure of 5.170 psig = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00 * 0.85 * 0.6250 ) / (30.0000 - 0.4 * 0.6250 ) = 357.143 - 5.170 = 351.973 psig Percent Elongation per UCS-79

(75*tnom/Rf)*(1-Rf/Ro)

14.151 %

Note: Please Check Requirements of UCS-79 as Elongation is > 5%. MDMT Calculations in the Knuckle Portion: Govrn. thk, tg = 0.675 , tr = 0.482 , c = 0.1250 in , E* = 0.85 Stress Ratio = tr * (E*) / (tg - c) = 0.746 , Temp. Reduction = 25 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

10 -15 -20

F F F

16 -55 -20

F F F

MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 0.750 , tr = 0.264 , c = 0.1250 in , E* = 0.85 Stress Ratio = tr * (E*) / (tg - c) = 0.360 , Temp. Reduction = 130 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

Cylindrical Shell From 20 To 30 SA-516 70 , UCS-66 Crv. B at 120 F

Shell Longitudinal Joint: No Radiography per UW 11(c) Type 1 Circumferential Joint: No Radiography per UW 11(c) Type 1 Required Thickness due to Internal Pressure [tr]: = (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (154.747*30.0000)/(20000.00*0.70+0.4*154.747 (154.747*30.0000)/(20000.00*0.70+0.4*154.747) ) = 0.3301 + 0.1250 = 0.4551 in

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 4.747 psig = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*0.70*0.3750)/(30.0000-0.4*0.3750) = 175.879 - 4.747 = 171.132 psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 12 of 62 Internal Pressure Calculations : Step: 3 8:15a Apr 15,2010

Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*0.70*0.5000)/(30.0000-0.4*0.5000) = 234.899 psig

 Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Ro-0.4*t))/(E*t) = (154.747*((30.0000-0.4*0.3750))/(0.70*0.3750 (154.747*((30.0000-0.4*0.3750))/(0.70*0.3750) ) = 17596.973 psi Percent Elongation per UCS-79

(50*tnom/Rf)*(1-Rf/Ro)

0.840 %

Minimum Design Metal Temperature Results: Govrn. thk, tg = 0.500 , tr = 0.330 , c = 0.1250 in , E* = 0.80 Stress Ratio = tr * (E*) / (tg - c) = 0.704 , Temp. Reduction = 30 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-6 -36 -20

F F F

Torispherical He ad From 30 To 40 SA-516 70 , UCS-66 Crv. B at 120 F

Top Head Longitudinal Joint: Seamless Circumferential Joint: No Radiography per UW 11(c) Type 1 Inside Corroded Head Depth [h]: = L - sqrt( ( L - Di / 2) * ( L + Di / 2 - 2 * r ) ) = 60.12-sqrt((60.12-60.25/2)*(60.12+60.25/2-2* 60.12-sqrt((60.12-60.25/2)*(60.12+60.25/2-2*3.72)) 3.72)) = 10.285 in

M factor for Torispherical Heads ( Corroded ): = (3+sqrt((L+C)/(r+C)))/4 per Appendix 1-4 (b & d) = (3+sqrt((60.000 + 0.1250 )/(3.600 + 0.1250 )))/4 = 1.7544

Required Thickness due to Internal Pressure [tr]: = (P*Lo*M)/(2*S*E+P*(M-0.2)) per Appendix 1-4 (d) = (150.360*60.6750*1.7544)/(2*20000.00*0.85+15 (150.360*60.6750*1.7544)/(2*20000.00*0.85+150.36*(1.7544-0.2)) 0.36*(1.7544-0.2)) = 0.4675 + 0.1250 = 0.5925 in

Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: Less Operating Hydrostatic Head Pressure of 0.360 psig = (2*S*E*t)/(M*Lo-t*(M-0.2)) per Appendix 1-4 (d) = (2*20000.00*0.85*0.5500)/(1.7544*60.6750-0.5 (2*20000.00*0.85*0.5500)/(1.7544*60.6750-0.5500*(1.75-0.2)) 500*(1.75-0.2)) = 177.095 - 0.360 = 176.735 psig

M factor for Torispherical Heads ( New & Cold ): = (3+sqrt(L/r))/4 per Appendix 1-4 (b & d) = (3+sqrt(60.000/3.600))/4 = 1.7706

Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(M*Lo - t*(M-0.2)) per Appendix 1-4 (d) = (2*20000.00*0.85*0.6750)/(1.7706*60.6750-2*0 (2*20000.00*0.85*0.6750)/(1.7706*60.6750-2*0.6750*(1.77-0.2)) .6750*(1.77-0.2)) = 215.752 psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 13 of 62 Internal Pressure Calculations : Step: 3 8:15a Apr 15,2010

 Actual stress at given pressure and thickness, corroded [Sact]: = (P*(M*Lo-t*(M-0.2)))/(2*E*t) = (150.360*(1.7544*60.6750-0.5500*(1.7544-0.2) (150.360*(1.7544*60.6750-0.5500*(1.7544-0.2)))/(2*0.85*0.5500) ))/(2*0.85*0.5500) = 16980.678 psi

Straight Flange Required Thickness: = (P*Ro)/(S*E+0.4*P) + c per Appendix 1-1 (a)(1) = (150.360*30.0000)/(20000.00*0.85+0.4*150.360 (150.360*30.0000)/(20000.00*0.85+0.4*150.360)+0.125 )+0.125 = 0.389 in

Straight Flange Maximum Allowable Working Pressure: Less Operating Hydrostatic Head Pressure of 0.360 psig = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00 * 0.85 * 0.6250 ) / (30.0000 - 0.4 * 0.6250 ) = 357.143 - 0.360 = 356.783 psig Percent Elongation per UCS-79

(75*tnom/Rf)*(1-Rf/Ro)

14.151 %

Note: Please Check Requirements of UCS-79 as Elongation is > 5%. MDMT Calculations in the Knuckle Portion: Govrn. thk, tg = 0.675 , tr = 0.468 , c = 0.1250 in , E* = 0.85 Stress Ratio = tr * (E*) / (tg - c) = 0.723 , Temp. Reduction = 28 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

10 -17 -20

F F F

16 -55 -20

F F F

MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 0.750 , tr = 0.264 , c = 0.1250 in , E* = 0.85 Stress Ratio = tr * (E*) / (tg - c) = 0.360 , Temp. Reduction = 130 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

Note: Heads and Shells Exempted to -20F (-29C) by paragraph UG-20F Hydrostatic Test Pressure Results: Pressure Pressure Pressure Pressure

per per per per

UG99b UG99b[34] UG99c UG100

= = = =

1.3 1.3 1.3 1.1

* * * *

M.A.W.P. * Sa/S Design Pres * Sa/S M.A.P. - Head(Hyd) M.A.W.P. * Sa/S

222.472 195.000 275.327 188.245

psig psig psig psig

 Vertical Test performed per: UG-99b Stresses on Elements due to Hydrostatic Test Pressure: From To Bottom Head Shell Top Head

Stress 21100.3 19345.6 20660.8

Elements Suitable for Internal Pressure.

Allowable 26000.0 26000.0 26000.0

Ratio 0.812 0.744 0.795

Pressure 227.62 227.21 222.88

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 14 of 62 Internal Pressure Calculations : Step: 3 8:15a Apr 15,2010

PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 15 of 62 External Pressure Calculations : Step: 4 8:15a Apr 15,2010

External Pressure Calculation Results :  ASME  ASME Code, Section VIII , Division 1, 2007 A-08 Torispherical Torispherical Head From 10 to 20 Ext. Chart: CS-2 at 70 F

Bottom Head Elastic Modulus from Chart: Chart: CS-2 CS-2 at 70 F :

0.29000E+08 psi

Results for Maximum Allowable External Pressure (MAEP): Tca Sph. Rad Ro/t Factor A B 0.550 60.67 110.32 0.0011331 12914.96 EMAP = B/(Ro/t) = 12914.9561 /110.3182 = 117.0701 psig

Cylindrical Shell From 20 to 30 Ext . Chart: CS-2 at 70 F

Shell Elastic Modulus from Chart: Chart: CS-2 CS-2 at 70 F :

0.29000E+08 psi

Results for Maximum Allowable External Pressure (MAEP): Tca OD SLEN D/t L/D Factor A B 0.375 60.00 129.54 160.00 2.1590 0.0003025 4386.30 EMAP = (4*B)/(3*(D/t)) = (4*4386.2959 )/(3*160.0000 ) = 36.5525 psig

Results for Maximum Stiffened Length (Slen): Tca OD SLEN D/t L/D Factor A B 0.375 60.00 0.33E+33 160.00 .5000E+02 0.0000430 623.05 EMAP = (4*B)/(3*(D/t)) = (4*623.0469 )/(3*160.0000 ) = 5.1921 psig

Torispherical Torispherical Head From 30 to 40 Ext. Chart: CS-2 at 70 F

Top Head Elastic Modulus from Chart: Chart: CS-2 CS-2 at 70 F :

0.29000E+08 psi

Results for Maximum Allowable External Pressure (MAEP): Tca Sph. Rad Ro/t Factor A B 0.550 60.67 110.32 0.0011331 12914.96 EMAP = B/(Ro/t) = 12914.9561 /110.3182 = 117.0701 psig

External Pressure Calculations | | From| To | | | 10| 20| 20| 30| 30| 40|

Section Length in No Calc 129.539 No Calc

| | | | | |

Outside Diameter in 60.6750 60.0000 60.6750

| Corroded | Factor | | Thickness | A | | in | | | 0.55000 | 0.0011331 | | 0.37500 | 0.00030250 | | 0.55000 | 0.0011331 |

Factor B psi 12915.0 4386.30 12915.0

External Pressure Calculations | | From| To | | | 10| 20| 20| 30|

External Actual T. in 0.67500 0.50000

| External | External | Required T.|Des. Press. | in | psig | No Calc | 0.00000 | No Calc | 0.00000

| | | | |

External M.A.W.P. psig 117.070 36.5525

| | | | |

| | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 16 of 62 External Pressure Calculations : Step: 4 8:15a Apr 15,2010 30| 40| Minimum

0.67500 |

No Calc |

0.00000 |

117.070 | 36.552

External Pressure Calculations | | Actual Len.| Allow. Len.| Ring Inertia | Ring Inertia | From| To | Bet. Stiff.| Bet. Stiff.| Required | Available | | | in | in | in**4 | in**4 | 10| 20| No Calc | No Calc | No Calc | No Calc | 20| 30| 129.539 | 328.4E+30 | No Calc | No Calc | 30| 40| No Calc | No Calc | No Calc | No Calc |

Elements Suitable for External Pressure. PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 17 of 62 Element and Detail Weights : Step: 5 8:15a Apr 15,2010

Element and Detail Weights | | Element | Element | Corroded | Corroded | Extra due | From| To | Metal Wgt. | ID Volume |Metal Wgt. | ID Volume | Misc % | | | lbf | ft³ | lbf | ft³ | lbf | 10| 20| 762.967 | 11.7502 | 639.274 | 12.0032 | 0.00000 | 20| 30| 3173.99 | 189.858 | 2385.50 | 191.470 | 0.00000 | 30| 40| 762.967 | 11.7502 | 639.274 | 12.0032 | 0.00000 | --------------------------------------------------------------------------Total 4699 213 3664 215 0

Weight of Details | | From|Type| | | 10|Liqd| 10|Nozl| 20|Liqd| 20|Nozl| 20|Nozl| 20|Legs| 30|Liqd| 30|Nozl| 30|Nozl|

Weight of Detail lbf 811.588 16.3337 11847.2 39.0913 11.0755 254.730 734.315 42.4670 1.25949

| X Offset, | Dtl. Cent. | in | 0.00000 | 0.00000 | 0.00000 | 37.5000 | 31.5000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

| Y Offset, |Dtl. Cent. | in | -5.10578 -5.10578 | 0.81738 | 60.0000 | 10.0000 | 114.000 | -8.74980 | 4.98101 | 0.81738 | 0.81738

| | Description | | BOTTOM HEAD | N2 | SHELL | M2 | N1 | LEGS | TOP HEAD | M1 | N3

Total Weight of Each Detail Type Total Weight of Liquid 13393.1 Total Weight of Nozzles 110.2 Total Weight of Legs 254.7 --------------------------------------------------------------Sum of the Detail Weights 13758.1 lbf

Weight Summary Fabricated Wt. Shop Test Wt. Shipping Wt. Erected Wt. Ope. Wt. no Liq Operating Wt. Field Test Wt. Mass of the Upper

Bare Weight W/O Removable Internals Fabricated Weight + Water ( Full ) Fab. Wt + Rem. Intls.+ Shipping App. Fab. Wt + Rem. Intls.+ Insul. (etc) Fab. Wt + Intls. + Details + Wghts. Empty Wt. + Operating Liquid (No CA) Empty Weight + Water (Full) 1/3 of the Vertical Vessel

Outside Surface Areas of Elements | | Surface | From| To | Area | | | in² | 10| 20| 3630.95 | 20| 30| 22619.5 | 30| 40| 3630.95 | ----------------------------------------------------Total 29881.373 in² [207.5 Square Feet ]

Element and Detail Weights

5064.9 18378.5 5064.9 5064.9 5064.9 18458.0 18378.5 6113.3

lbf lbf lbf lbf lbf lbf lbf lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 18 of 62 Element and Detail Weights : Step: 5 8:15a Apr 15,2010 | To | From| To | | | 10| 20| 20|Legs| Legs| 30| 30| 40|

Total Ele.| Total. Ele.|Total. Ele.| Total Dtl.| Oper. Wgt. Empty Wgt.| Oper. Wgt.|Hydro. Wgt.| Offset Mom.| No Liquid lbm | lbm | lbm | in-lb | lbm 779.301 | 1590.89 | 1512.52 | 0.00000 | 779.301 335.860 | 1569.98 | 1569.98 | 189.048 | 335.860 2888.29 | 13501.4 | 13501.4 | 1625.75 | 2888.29 806.694 | 1541.01 | 1539.91 | 0.00000 | 806.694

Cumulative Vessel Weight | | Cumulative Ope From| To | Wgt. No Liquid | | lbm 10| 20| -779.301 20|Legs| -1115.16 Legs| 30| 3694.99 30| 40| 806.694

| Cumulative | Cumulative | Oper. Wgt. | Hydro. Wgt. | lbm | lbm lbm | -1590.89 | -1512.52 | -3160.87 | -3082.50 | 15042.4 | 15041.3 | 1541.01 | 1539.91

Note: The cumulative operating weights no liquid in the column above are the cumulative operating weights minus the operating liquid weight minus any weights absent in the empty condition. Cumulative Vessel Moment | | Cumulative | Cumulative |Cumulative | From| To | Empty Mom. | Oper. Mom. |Hydro. Mom.| | | in-lb | in-lb | in-lb | 10| 20| 0.00000 | 0.00000 | 0.00000 | 20|Legs| 189.048 | 189.048 | 189.048 | Legs| 30| 1625.75 | 1625.75 | 1625.75 | 30| 40| 0.00000 | 0.00000 | 0.00000 |

PVElite is a registered trademark of COADE, Inc. [2009]

| | | | | | |

| | | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 19 of 62 Nozzle Flange MAWP : Step: 6 8:15a Apr 15,2010

Nozzle Flange MAWP Results : Nozzle Description

----- Flange Rating Operating Ambient Temperature Class Grade|Group psig psig F ---------------------------------------------------------------------------N2 280.0 285.0 120 150 GR 1.1 N1 280.0 285.0 120 150 GR 1.1 ---------------------------------------------------------------------------Minimum Rating 280.000 285.000 psig

Note: ANSI Ratings are per ANSI/ASME B16.5 2003 Edition PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 20 of 62 Natural Frequency Calculation : Step: 7 8:15a Apr 15,2010

The Natural Frequencies for the vessel have been computed iteratively by solving a system of matrices. These matrices describe the mass and the stiffness of the vessel. This is the generalized generalized eigenvalue/  eigenvector problem and is referenced in some mathematical texts. The Natural Frequency for the Vessel (Empty.) is 31.8010 Hz. The Natural Frequency for the Vessel (Ope...) is 16.5138 Hz. The Natural Frequency for the Vessel (Filled) is 16.8513 Hz.

PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 21 of 62 Earthquake Load Calculation : Step: 8 8:15a Apr 15,2010

Earthquake Analysis Results per IBC-2000 User Entered Table Value 1615.1.2(1) Fa User Entered Table Value 1615.1.2(1) Fv Max. Mapped Acceleration Value for Short Periods Ss Max. Mapped Acceleration Value for 1 sec. Period S1 Moment Reduction Factor Tau Force Modification Factor R Importance Factor I Site Class Sms Sm1 Sds Sd1

= = = =

Fa * Ss = Fv * S1 = 2/3 * Sms 2/3 * Sm1

1.200 2.800 = 2/3 = 2/3

* * * *

0.750 0.300 0.900 0.840

= = = =

1.200 2.800 0.75 0.300 1.000 2.000 1.000 E

0.900 0.840 0.600 0.560

Check the Period (1/Frequency) from 16-39 = Ct * hn^(3/4) where Ct = 0.020 and hn = total Vessel Height [Ta]: = 0.020 * 161.3085 ^(3/4) = 0.140 seconds The Coefficient Coefficient Cu from Table 1617.4.2 is 1.200 Check the Min. Value of T which is the Smaller of Cu*Ta and T, [T]: = Min. Value of (1.200 * 0.140 , 1/16.514 ) = 0.0606 per 1617.4.2

Compute the Seismic Response Coefficient Cs per 16-35, [Cs]: = Sds / ( R / I ) = 0.600 / ( 2.00 / 1.00 ) = 0.3000

Check the Maximum value of Cs per eqn. 16-36 : = Sd1 / ( ( R / I ) * T ) = 0.560 / ( ( 2.00 / 1.00 ) * 0.061 ) = 4.6239

Check the Minimum value of Cs per eqn. 16-75: = 0.14 * 1.00 * 0.600 = 0.0840

For Categories E and F, check Minimum value of Cs per 16-76: = 0.8 * S1 / ( R / I ) = 0.8 * 0.30 / ( 2.00 / 1.00 ) = 0.1200

Compute the Total Base Shear V = Cs * Total Weight, [V]: = 0.3000 * 18203.3 = 5460.98 lbf

Note: Loads multiplied by the Scalar multiplier value of 0.7143 Final Base Shear,

V = 3900.78 lbf

Distribute the Base shear force to each element according to the equations Fx = Cvx * V (eqn. 16-41 ) and the vertical distribution factor equation Cvx = Wx*hx**k/( Sum of Wi*hi**k ). The factor k in the equation is an exponent that is related to the period of Vibration. In this case, the value of k was 1.0000 . The Natural Frequency for the Vessel (Ope...) is 16.5138 Hz. Earthquake Load Calculation

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 22 of 62 Earthquake Load Calculation : Step: 8 8:15a Apr 15,2010 | | Earthquake | Earthquake | Element From| To | Height | Weight | Ope Load | | in | lbf | lbf 10| 20| 0.75000 | 1590.89 | 4.13242 20|Legs| 14.0004 | 1569.98 | 76.1271 Legs| 30| 67.7502 | 13501.4 | 3168.05 30| 40| 122.250 | 1541.01 | 652.466

PVElite is a registered trademark of COADE, Inc. [2009]

| | | | | | |

Element Emp Load lbf 1.20658 9.70704 403.961 203.585

| | | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 23 of 62 Wind/Earthquake Shear, Bending : Step: 9 8:15a Apr 15,2010

The following table is for the Operating Case. Wind/ Earthquake Shear, Shear, Bending | | Distance to| Cummulative|Earthquake | From| To | Support| Wind Shear| Shear | | | in | lbf | lbf | 10| 20| 17.6485 | 0.00000 | 0.00000 | 20|Legs| 6.25020 | 0.00000 | 4.13242 | Legs| 30| 53.7498 | 0.00000 | 3824.65 | 30| 40| 111.148 | 0.00000 | 652.466 |

PVElite is a registered trademark of COADE, Inc. [2009]

Wind Bending in-lb 0.00000 0.00000 0.00000 0.00000

| Earthquake | | Bending | | in-lb | | 0.00000 | | 15.0755 | | 242260. | | 2380.27 |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 24 of 62 Longitudinal Stress Constants : Step: 10 8:15a Apr 15,2010

Longitudinal Stress Constants | | Metal Area | Metal Area From| To | New & Cold | Corroded | | in² | in² 10| 20| 125.803 | 102.722 20| 30| 93.4624 | 70.2440 30| 40| 125.803 | 102.722

|New & Cold |Sect. Mod. | in ³ | 1845.06 | 1378.76 | 1845.06

PVElite is a registered trademark of COADE, Inc. [2009]

| Corroded | Sect. Mod. | in ³ | 1512.84 | 1040.57 | 1512.84

| | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 25 of 62 Longitudinal Allowable Stresses : Step: 11 8:15a Apr 15,2010

Longitudinal Allowable Stresses | | All. Str. From| To | Long. Ten. | | psi 10| 20| 14000.0 20|Legs| 14000.0 Legs| 30| 30| 14000.0 30| 40| 14000.0

| All. Str. | Hydr. Ten. | psi | 18200.0 | 18200.0 | 18200.0 | 18200.0

| All. Str. |Long. Com. | psi | -15476.5 | -14189.7 -14189.7 | -14189.7 | -15476.5

PVElite is a registered trademark of COADE, Inc. [2009]

| All. Str. | Hyr. Comp. | psi | -24091.2 | -22769.8 | -22769.8 | -24091.2

| | | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 26 of 62 Longitudinal Stresses Due to . . . Step: 12 8:15a Apr 15,2010

Longitudinal Stress Report Note: Longitudinal Operating and Empty Stresses are computed in the corroded condition. Stresses due to loads in the hydrostatic test cases have been computed in the new and cold condition. Longitudinal Stresses Due to . . . | | Long. Str. | Long. Str. |Long. Str. From| To | Int. Pres. | Ext. Pres. |Hyd. Pres. | | psi | psi | psi 10| 20| 3985.91 | 0.00000 | 4788.09 20| 30| 5895.00 | 0.00000 | 6518.42 30| 40| 3985.91 | 0.00000 | 4788.09

| | | | | |

Longitudinal Stresses Due to . . . | | Wght. Str. From| To | Empty | | psi 10| 20| 7.58650 20|Legs| 15.8755 Legs| 30| -52.6021 30| 40| -7.85317

| Wght. Str. | Operating | psi | 15.4873 | 44.9984 | -214.145 | -15.0017

|Wght. Str. |Hydrotest | psi | 12.0229 | 32.9812 | -160.934 | -12.2407

| Wght. Str. | Wght. Str. | | Emp. Mom. | Opr. Mom. | | psi | psi | | 0.00000 | 0.00000 | | 0.18168 | 0.18168 | | 1.56237 | 1.56237 | | 0.00000 | 0.00000 |

Longitudinal Stresses Due to . . . | | Wght. Str. | Bend. Str. |Bend. Str. From| To | Hyd. Mom. | Oper. Wind |Oper. Equ. | | psi | psi | psi 10| 20| 0.00000 | 0.00000 | 0.00000 20|Legs| 0.13711 | 0.00000 | 0.014488 Legs| 30| 1.17914 | 0.00000 | 232.814 30| 40| 0.00000 | 0.00000 | 1.57338

| Bend. Str. | Hyd. Wind | psi | 0.00000 | 0.00000 | 0.00000 | 0.00000

| Bend. Str. | | Hyd. Equ. | | psi | | 0.00000 | | 0.00000 | | 0.00000 | | 0.00000 |

Longitudinal Stresses Due to . . . | | Long. Str. | Long. Str. |Long. Str. | EarthQuake | From| To | Vortex Ope.| Vortex Emp.|Vortex Tst.| Empty | | | psi | psi | psi | psi | 10| 20| 0.00000 | 0.00000 | 0.00000 | 0.00000 | 20|Legs| 0.00000 | 0.00000 | 0.00000 | 0.0042301 0.0042301 | Legs| 30| 0.00000 | 0.00000 | 0.00000 | 42.5349 | 30| 40| 0.00000 | 0.00000 | 0.00000 | 0.49093 |

Longitudinal Stresses Due to . . . | | Long. Str. From| To | Y Forces W | | psi 10| 20| 0.00000 20|Legs| 0.00000 Legs| 30| 0.00000 30| 40| 0.00000

| Long. Str. | Y ForceS S | psi | 0.00000 | 0.00000 | 0.00000 | 0.00000

| | | | | | |

Long. Stresses Stresses due to User Forces and M oments |

|Wind For/Mom| Eqk For/Mom|Wnd For/Mom| Eqk For/Mom|

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 27 of 62 Longitudinal Stresses Due to . . . Step: 12 8:15a Apr 15,2010 From| To | Corroded | | psi 10| 20| 0.00000 20|Legs| 0.00000 Legs| 30| 0.00000 30| 40| 0.00000

| Corroded | psi | 0.00000 | 0.00000 | 0.00000 | 0.00000

| | | | | |

No Corr. psi 0.00000 0.00000 0.00000 0.00000

PVElite is a registered trademark of COADE, Inc. [2009]

| | | | | |

No Corr. psi 0.00000 0.00000 0.00000 0.00000

| | | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 28 of 62 Stress due to Combined Loads : Step: 13 8:15a Apr 15,2010

Stress Combination Load Cases for Vertical Vessels: Load Case Definition Key IP EP HP NP EW OW HW WI EQ EE HI HE WE WF CW VO VE VF FW FS BW BS BN BU

= = = = = = = = = = = = = = = = = = = = = = = =

Longitudinal Longitudinal Stress due to Internal Pressure Longitudinal Longitudinal Stress due to External Pressure Longitudinal Stress due to Hydrotest Pressure No Pressure Longitudinal Stress due to Weight (No Liquid) Longitudinal Stress due to Weight (Operating) Longitudinal Stress due to Weight (Hydrotest) Bending Stress due to Wind Moment (Operating) Bending Stress due to Earthquake Moment (Operating) Bending Stress due to Earthquake Moment (Empty) Bending Stress due to Wind Moment (Hydrotest) Bending Stress due to Earthquake Moment (Hydrotest) Bending Stress due to Wind Moment (Empty) (no CA) Bending Stress due to Wind Moment (Filled) (no CA) Longitudinal Stress due to Weight (Empty) (no CA) Bending Stress due to Vortex Shedding Loads ( Ope ) Bending Stress due to Vortex Shedding Loads ( Emp ) Bending Stress due to Vortex Shedding Loads ( Test No CA. ) Axial Stress due to Vertical Forces for the Wind Case Axial Stress due to Vertical Forces for the Seismic Case Bending Stress due to Lat. Forces for the Wind Case, Corroded Bending Stress due to Lat. Forces for the Seismic Case, Corroded Bending Stress due to Lat. Forces for the Wind Case, UnCorroded Bending Stress due to Lat. Forces for the Seismic Case, UnCorroded

General Notes: Case types HI and HE are in the Un-Corroded condition. Case types WE, WF, and CW are in the Un-Corroded condition. A blank stress and stress ratio indicates that the corresponding stress comprising those components that did not contribute to that type of stress. An asterisk (*) in the final column denotes overstress.  Analysis of Load Case 1 : NP+EW+WI+FW+BW From Node 10 20 20 30

Tensile Stress 7.59 16.06

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-54.16 -7.85

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.0005 0.0011

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.0005 0.0011

Comp. Ratio

0.0038 0.0005

 Analysis of Load Case 2 : NP+EW+EE+FS+BS From Node 10 20 20 30

Tensile Stress 7.59 16.06

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-96.70 -8.34

Comp. Ratio

0.0068 0.0005

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 29 of 62 Stress due to Combined Loads : Step: 13 8:15a Apr 15,2010

 Analysis of Load Case 3 : NP+OW+WI+FW+BW From Node 10 20 20 30

Tensile Stress 15.49 45.18

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.0011 0.0032

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.0011 0.0032 0.0014

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.0009 0.0024

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.0009 0.0024

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.2858 0.4243 0.2695

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.2858 0.4243 0.2862

Tens. Ratio 0.0011 0.0032

-215.71 -15.00

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Comp. Stress

All. Comp. Stress

Tens. Ratio

-215.71 -15.00

Comp. Ratio

0.0152 0.0010

 Analysis of Load Case 4 : NP+OW+EQ+FS+BS From Node 10 20 20 30

Tensile Stress 15.49 45.19 20.23

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-448.52 -16.58

Comp. Ratio

0.0316 0.0011

 Analysis of Load Case 5 : NP+HW+HI From Node 10 20 20 30

Tensile Stress 12.02 33.12

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-162.11 -12.24

Comp. Ratio

0.0114 0.0008

 Analysis of Load Case 6 : NP+HW+HE From Node 10 20 20 30

Tensile Stress 12.02 33.12

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-162.11 -12.24

Comp. Ratio

0.0114 0.0008

 Analysis of Load Case 7 : IP+OW+WI+FW+BW From Node 10 20 20 30

Tensile Stress 4001.40 5940.18 3773.33

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-15.00

Comp. Ratio

0.0010

 Analysis of Load Case 8 : IP+OW+EQ+FS+BS From Node 10 20 20 30

Tensile Stress 4001.40 5940.19 4006.14

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-16.58

Comp. Ratio

0.0011

 Analysis of Load Case 9 : EP+OW+WI+FW+BW From Node 10 20 20 30

Tensile Stress 15.49 45.18

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

Comp. Ratio

0.0152 0.0010

 Analysis of Load Case 10 : EP+OW+EQ+FS+BS From Node

Tensile Stress

All. Tens. Stress

Comp. Ratio

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 30 of 62 Stress due to Combined Loads : Step: 13 8:15a Apr 15,2010 10 20 20 30

15.49 45.19 20.23

14000.00 14000.00 14000.00 14000.00

-448.52 -16.58

15476.47 14189.66 14189.66 15476.47

0.0011 0.0032 0.0014

All. Comp. Stress 24091.24 22769.79 22769.79 24091.24

Tens. Ratio 0.2637 0.3600 0.2543

All. Comp. Stress 24091.24 22769.79 22769.79 24091.24

Tens. Ratio 0.2637 0.3600 0.2543

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.2852 0.4222 0.2811

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.2856 0.4235 0.2732

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.2858 0.4243 0.2695

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.2858 0.4243 0.2695

All. Comp. Stress 24091.24 22769.79 22769.79

Tens. Ratio 0.2197 0.3258 0.2102

0.0316 0.0011

 Analysis of Load Case 11 : HP+HW+HI From Node 10 20 20 30

Tensile Stress 4800.11 6551.54 4628.33

All. Tens. Stress 18200.00 18200.00 18200.00 18200.00

Comp. Stress

-12.24

Comp. Ratio

0.0005

 Analysis of Load Case 12 : HP+HW+HE From Node 10 20 20 30

Tensile Stress 4800.11 6551.54 4628.33

All. Tens. Stress 18200.00 18200.00 18200.00 18200.00

Comp. Stress

-12.24

Comp. Ratio

0.0005

 Analysis of Load Case 13 : IP+WE+EW From Node 10 20 20 30

Tensile Stress 3993.50 5911.06 3934.87

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-7.85

Comp. Ratio

0.0005

 Analysis of Load Case 14 : IP+WF+CW From Node 10 20 20 30

Tensile Stress 3998.56 5928.82 3824.96

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-12.25

Comp. Ratio

0.0008

 Analysis of Load Case 15 : IP+VO+OW From Node 10 20 20 30

Tensile Stress 4001.40 5940.18 3773.33

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-15.00

Comp. Ratio

0.0010

 Analysis of Load Case 16 : IP+VE+OW From Node 10 20 20 30

Tensile Stress 4001.40 5940.18 3773.33

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-15.00

Comp. Ratio

0.0010

 Analysis of Load Case 17 : IP+VF+CW From Node 10 20 20

Tensile Stress 3998.56 5928.82 3824.96

All. Tens. Stress 18200.00 18200.00 18200.00

Comp. Stress

Comp. Ratio

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 31 of 62 Stress due to Combined Loads : Step: 13 8:15a Apr 15,2010 30

18200.00

-12.25

24091.24

0.0005

Comp. Stress

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.2858 0.4243 0.2695

All. Comp. Stress 15476.47 14189.66 14189.66 15476.47

Tens. Ratio 0.0011 0.0032

 Analysis of Load Case 18 : FS+BS+IP+OW From Node 10 20 20 30

Tensile Stress 4001.40 5940.18 3773.33

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

-15.00

Comp. Ratio

0.0010

 Analysis of Load Case 19 : FS+BS+EP+OW From Node 10 20 20 30

Tensile Stress 15.49 45.18

All. Tens. Stress 14000.00 14000.00 14000.00 14000.00

Comp. Stress

-215.71 -15.00

Absolute Maximum of the all of the Stress Ratio's

Governing Element: Shell Governing Load Case 8 : IP+OW+EQ+FS+BS PVElite is a registered trademark of COADE, Inc. [2009]

Comp. Ratio

0.0152 0.0010 0.4243

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 32 of 62 Center of Gravity Calculation : Step: 14 8:15a Apr 15,2010

Shop/ Field Installation Options :

Note : The CG is computed from the first Element From Node Center of Gravity of Liquid Center of Gravity of Nozzles Center of Gravity of Legs

61.0 in 64.3 in -7.2 in

Center of Gravity of Bare Shell New and Cold Center of Gravity of Bare Shell Corroded

61.7 in 61.8 in

Vessel CG in the Operating Condition Vessel CG in the Fabricated (Shop/Empty) Condition

60.2 in 58.3 in

PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 33 of 62 Leg Check, (Operating Case) : Step: 15 8:15a Apr 15,2010

RESULTS FOR LEGS : Opera ting Case Descript ion: LEGS Legs attached to: Shell Section Properties : I Beam W6X15 USA AISC 1989 Steel Table Overall Leg Length Effective Leg Length Distance Leg Up Side Number of Legs Cross Sectional Area Section Inertia ( Section Inertia ( Section Modulus ( Section Modulus ( Radius of Gyration ( Radius of Gyration (

42.500 42.500 12.500 4 4.430 29.100 9.320 9.720 3.110 2.560 1.460

Leglen of Vessel for W6X15 strong axis weak axis strong axis weak axis strong axis weak axis

Nleg Aleg ) ) ) ) ) )

in in in in² in**4 in**4 in ³ in ³ in in

Leg Orientation - Weak Axis Overturning Moment at top of Legs Total Weight Load at top of Legs Total Shear force at top of Legs Additional force in Leg due to Bracing Occasional Load Factor Effective Leg End Condition Factor

W Fadd Occfac k

242259.7 18203.3 3900.8 0.0 1.333 1.000

Note: The Legs are Not Cross Braced The Leg Shear Force includes Wind and Seismic Effects Maximum Shear at top of one Leg [Vleg]: = ( Max(Wind, Seismic) + Fadd ) * ( Imax / Itot ) = ( 3900.8 + 0.0 ) * ( 29.0 / 76.95 ) = 1471.71 lbf

 Axial Compression, Leg futhest from N.A. [Sma] = ((W/Nleg)+(Mleg/(Nlegm*Rn)))/Aleg) = ((18203 / 4 ) + (2907116 /( 2 * 30.25 )))/ 4.430 ) = 1931.18 psi

  Axial Compression, Leg closest to N.A. [Sva] = ( W / Nleg ) / Aleg = ( 18203 / 4 ) / 4.430 = 1027.27 psi

 Allowable Comp. for the Selected Leg (KL/r < Cc ) [Sa]: = Occfac * ( 1-(kl/r)²/(2*Cc²))*Fy / ( 5/3+3*(Kl/r)/(8*Cc)-(Kl/r³)/(8*Cc³) = 1.33 * ( 1-( 29.11 )²/(2 * 125.32² )) * 37080 / ( 5/3+3*( 29.11 )/(8* 125.32 )-( 29.11³)/(8* 125.32³) = 27447.69 psi

Bending at the Bottom of the Leg closest to the N.A. [S]: = ( Vleg * Leglen * 12 / Smdwa ) = ( 1471.71 * 42.50 * 12 / 3.11 ) = 20111.93 psi

in-lb lbf lbf lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 34 of 62 Leg Check, (Operating Case) : Step: 15 8:15a Apr 15,2010

 Allowable Bending Stress[Sb]: = ( 0.6 * Fy * Occfac ) = ( 0.6 * 37080 * 1.33 ) = 29656.58 psi

 AISC Unity Check [Sc]( must be < or = to 1.00 ) : = (Sma/Sa)+(0.85*S)/((1-Sma/Spex)*Sb) = (1931 /27447 )+( 0.85 *20111.934 )/(( 1 -1931 /238959 ) *29656 ) = 0.6515

Bolting Size Requirement for Leg Baseplates : Baseplate Material Baseplate Allowable Stress SBA Baseplate Length D Baseplate Width B Baseplate Thickness BTHK Leg Dimension Along Baseplate Length d Leg Dimension Along Baseplate Width b Dist. from the Leg Edge to Bolt Hole Center z Bolt Material Bolt Allowable Stress STBA Anchor Bolt Nominal Diameter BOD Number of Anchor Bolts in Tension per Leg NB Total Number of Anchors Bolt per Leg NBT Ultimate 28-day Concrete Strength FCPRIME The dim., B is too short for the leg size (7.00) The dim., D is too short for the leg size (7.00)

PVElite is a registered trademark of COADE, Inc. [2009]

SA/CSA G40.21 17100.00 psi 7.0000 in 7.0000 in 0.7500 in 5.9900 in 5.9900 in 1.5000 in SA-193 B7 18800.00 psi 1.5000 in 1 2 3000.000 psi

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 35 of 62 Leg Check, (Filled w/Water) : Step: 16 8:15a Apr 15,2010

RESULTS FOR LEGS : Hy droTest Case Descript ion: LEGS Legs attached to: Shell Section Properties : I Beam W6X15 USA AISC 1989 Steel Table Overall Leg Length Effective Leg Length Distance Leg Up Side Number of Legs Cross Sectional Area Section Inertia ( Section Inertia ( Section Modulus ( Section Modulus ( Radius of Gyration ( Radius of Gyration (

Leglen of Vessel for W6X15 strong axis weak axis strong axis weak axis strong axis weak axis

Nleg Aleg ) ) ) ) ) )

42.500 42.500 12.500 4 4.430 29.100 9.320 9.720 3.110 2.560 1.460

in in in in² in**4 in**4 in ³ in ³ in in

Leg Orientation - Weak Axis Overturning Moment at top of Legs Total Weight Load at top of Legs Total Shear force at top of Legs Additional force in Leg due to Bracing Occasional Load Factor Effective Leg End Condition Factor

W Fadd Occfac k

0.0 18123.8 0.0 0.0 1.000 1.000

Note: The Legs are Not Cross Braced The Leg Shear Force includes Wind and Seismic Effects Maximum Shear at top of one Leg [Vleg]: = ( Max(Wind, Seismic) + Fadd ) * ( Imax / Itot ) = ( 0.0 + 0.0 ) * ( 29.0 / 76.95 ) = 0.00 lbf

 Axial Compression, Leg futhest from N.A. [Sma] = ((W/Nleg)+(Mleg/(Nlegm*Rn)))/Aleg) = ((18123 / 4 ) + (0 /( 2 * 30.25 )))/ 4.430 ) = 1022.79 psi

  Axial Compression, Leg closest to N.A. [Sva] = ( W / Nleg ) / Aleg = ( 18123 / 4 ) / 4.430 = 1022.79 psi

 Allowable Comp. for the Selected Leg (KL/r < Cc ) [Sa]: = Occfac * ( 1-(kl/r)²/(2*Cc²))*Fy / ( 5/3+3*(Kl/r)/(8*Cc)-(Kl/r³)/(8*Cc³) = 1.00 * ( 1-( 29.11 )²/(2 * 125.32² )) * 37080 / ( 5/3+3*( 29.11 )/(8* 125.32 )-( 29.11³)/(8* 125.32³) = 20590.91 psi

Bending at the Bottom of the Leg closest to the N.A. [S]: = ( Vleg * Leglen * 12 / Smdwa ) = ( 0.00 * 42.50 * 12 / 3.11 ) = 0.00 psi

in-lb lbf lbf lbf

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 36 of 62 Leg Check, (Filled w/Water) : Step: 16 8:15a Apr 15,2010

 Allowable Bending Stress[Sb]: = ( 0.6 * Fy * Occfac ) = ( 0.6 * 37080 * 1.00 ) = 22248.00 psi

 AISC Unity Check [Sc]( must be < or = to 1.00 ) : = (Sma/Sa)+(0.85*S)/((1-Sma/Spex)*Sb) = (1022 /20590 )+( 0.85 *0.000 )/(( 1 -1022 /179264 ) *22248 ) = 0.0497

Bolting Size Requirement for Leg Baseplates : Baseplate Material Baseplate Allowable Stress SBA Baseplate Length D Baseplate Width B Baseplate Thickness BTHK Leg Dimension Along Baseplate Length d Leg Dimension Along Baseplate Width b Dist. from the Leg Edge to Bolt Hole Center z Bolt Material Bolt Allowable Stress STBA Anchor Bolt Nominal Diameter BOD Number of Anchor Bolts in Tension per Leg NB Total Number of Anchors Bolt per Leg NBT Ultimate 28-day Concrete Strength FCPRIME The dim., B is too short for the leg size (7.00) The dim., D is too short for the leg size (7.00)

PVElite is a registered trademark of COADE, Inc. [2009]

SA/CSA G40.21 17100.00 psi 7.0000 in 7.0000 in 0.7500 in 5.9900 in 5.9900 in 1.5000 in SA-193 B7 18800.00 psi 1.5000 in 1 2 3000.000 psi

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 37 of 62 Nozzle Calcs. : N2 Nozl: 1 8:15a Apr 15,2010

INP UT VALUES, Nozzle Description: N2

From : 10

Pressure for Reinforcement Calculations Temperature for Internal Pressure

P Temp

155.170 120

psig F

Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Crown Radius of Torispherical Head Inside Knuckle Radius of Torispherical Head Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance

L r t c co

60.0000 3.6000 0.6750 0.1250 0.0000

in in in in in in

Distance from Head Centerline

L1

0.0000

in

-20.00

F

User Entered Minimum Design Metal Temperature

SA-516 70 20000.00 psi 20000.00 psi

Type of Element Connected to the Shell : Nozzle  Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter

SA-106 B K03006 Smls. pipe 17100.00 psi 17100.00 psi OD 0.00 4.0000

Size and Thickness Basis Actual Thickness

tn

Flange Material Flange Type

deg in.

Actual 0.4650 in SA-105 Slip on

Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

can E1 En

0.1250 1.00 0.85

in

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi ASME Code Weld Type per UW-16

4.5000 0.3750 0.7500 0.0000 0.0000 C

in in in in in

Class of attached Flange Grade of attached Flange

The Pressure Design option was Design Pressure + static head. Nozzle Sketch | | |

| | |

150 GR 1.1

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 38 of 62 Nozzle Calcs. : N2 Nozl: 1 8:15a Apr 15,2010 | | ____________/| | | \ | | | \ | | |____________\|__|

Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N2

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Outside Diameter Used in Calculation Actual Thickness Used in Calculation

4.000 0.465

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Torispherical Head, Tr [Int. Press] = (P*L*M)/(2*S*E-0.2*P) Appendix 1-4 (d) = (155.17*60.1250*1.00)/( 2*20000*1.00-0.2*155.17) = 0.2334 in

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (155.17*2.0000)/(17100*1.00+0.4*155.17) = 0.0181 in

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (155.17*2.0000)/(17100*0.85+0.4*155.17) = 0.0213 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Parallel to Vessel Wall Normal to Vessel Wall (Thickness Limit), no pad

Dl d Tlnp

6.6400 3.3200 0.8500

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0 /20000.0 ) = 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0 /20000.0 ) = 0.855

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855

Results of Nozzle Reinforcement Area Calculations: AREA Area Area Area Area Area

AVAILABLE, A1 to A5 Required Ar in Shell A1 in Nozzle Wall A2 in Inward Nozzle A3 in Welds A41+A42+A43

Design 0.798 1.020 0.468 0.000 0.120

External NA NA NA NA NA

Mapnc NA NA NA NA NA

in² in² in² in² in²

in in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 39 of 62 Nozzle Calcs. : N2 Nozl: 1 8:15a Apr 15,2010 Area in Element TOTAL AREA AVAILABLE

A5 Atot

0.000 1.608

NA NA

NA NA

in² in²

The Internal Pressure Case Governs the Analysis. Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.  Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (3.3200*0.2334*1.0+2*0.3400*0.2334*1.0*(1-0. (3.3200*0.2334*1.0+2*0.3400*0.2334*1.0*(1-0.86)) 86)) = 0.798 in²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 3.320 ( 1.00 * 0.5500 - 1.0 * 0.233 ) - 2 * 0.340 ( 1.00 * 0.5500 - 1.0 * 0.2334 ) * ( 1 - 0.855 ) = 1.020 in²

Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 0.850 ) * ( 0.3400 - 0.0181 ) * 0.8550 ) = 0.468 in²

Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 0.3750² * 0.8550 + ( 0.0000 )² * 0.8550 = 0.120 in²

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Wall Wall Wall Std. Wall

Thickness Thickness Thickness Thickness Wall Pipe Thickness

per per per per per per

UG45(a), tra UG16(b), tr16b UG45(b)(1), trb1 UG45(b)(3), trb3 UG45(b)(4), trb4 UG45(b), trb

= = = = = =

0.1463 in 0.1875 in 0.5345 in Max(trb1, trb2, tr16b) = 0.5345 in 0.3228 in Min(trb3, trb4) = 0.3228 in

Final Required Thickness, tr45 = Max(tra, trb) = 0.3228 in Available Nozzle Neck Thickness = 0.4650 in --> OK

Nozzle Junction Minim um Design Metal Temperature (MDMT) Calculations:

MDMT MDM T of the Nozzle Neck to Flange Weld,

Curve: B 

----------------------------------------------------------------------

Govrn. thk, tg = 0.465 , tr = 0.021 , c = 0.1250 in , E* = 0.85 Stress Ratio = tr * (E*) / (tg - c) = 0.053 , Temp. Reduction = 140 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-10 -150 -20

F F F

MDMT MDM T of Nozzle-Shell/Head Nozzle-She ll/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B  ----------------------------------------------------------------------

Govrn. thk, tg = 0.465 , tr = 0.021 , c = 0.1250 in , E* = 0.85 Stress Ratio = tr * (E*) / (tg - c) = 0.053 , Temp. Reduction = 140 F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 40 of 62 Nozzle Calcs. : N2 Nozl: 1 8:15a Apr 15,2010 Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-10 -150 -20

Governing MDMT of all the sub-joints of this Junction :

F F F

-150 F

ANSI Flange MDMT including temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temperature reduction per UCS-66(b)(1)(b)

-20 -55

Where the Temperature Reduction per UCS-66(b)(1)(b) is: Stress ratio: P/Ambient Rating = 155.17/285.00 = 0.544

Weld Size Calculations, Description: N2 Intermediate Calc. for nozzle/shell Welds

Tmin

0.3400

in

Results Per UW-16.1: Nozzle Weld

Required Thickness 0.2380 = 0.7 * tmin.

Actual Thickness 0.2651 = 0.7 * Wo in

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case

Note: The MAWP of this junction was limited by the shell. The Drop for this Nozzle is : 0.0330 in The Cut Length for this Nozzle is, Drop + Ho + H + T : 5.2080 in PVElite is a registered trademark of COADE, Inc. [2009]

177.095

psig

F F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 41 of 62 Nozzle Calcs. : M2 Nozl: 2 8:15a Apr 15,2010

INP UT VALUES, Nozzle Description: M2

From : 20

Pressure for Reinforcement Calculations Temperature for Internal Pressure

P Temp

Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Cylindrical Shell Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance

D t c co

Distance from Bottom/Left Tangent User Entered Minimum Design Metal Temperature

154.386 120

psig F

SA-516 70 20000.00 psi 20000.00 psi 59.0000 0.5000 0.1250 0.0000

in in in in

11.5000

in

-20.00

F

Type of Element Connected to the Shell : Nozzle  Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter

SA-106 B K03006 Smls. pipe 17100.00 psi 17100.00 psi ID 180.00 16.0000

Size and Thickness Basis Actual Thickness

tn

Flange Material Flange Type

deg in.

Actual 0.7500 in C None

Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

can E1 En

0.1250 1.00 1.00

in

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi ASME Code Weld Type per UW-16 This is a Manway or Access Opening.

2.6250 0.3750 0.5000 0.8750 0.5000 C

in in in in in

The Pressure Design option was Design Pressure + static head. Nozzle Sketch | | | | ____________/|

| | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 42 of 62 Nozzle Calcs. : M2 Nozl: 2 8:15a Apr 15,2010 | \ | | | \ | | |____________\| | \| | |__|

Insert Nozzle No Pad, with Inside projection Reinforcement CALCULATION, Description: M2

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

16.000 0.750

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (154.39*29.6250)/(20000*1.00-0.6*154.39) = 0.2297 in

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (154.39*8.12)/(17100*1.00-0.6*154.39) = 0.0738 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Parallel to Vessel Wall Normal to Vessel Wall (Thickness Limit), no pad Normal to Vessel Wall, Inward

Dl d Tlnp

32.5000 16.2500 0.9375 0.7500

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0 /20000.0 ) = 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0 /20000.0 ) = 0.855

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Area Required Ar Area in Shell A1 Area in Nozzle Wall A2 Area in Inward Nozzle A3 Area in Welds A41+A42+A43 Area in Element A5 TOTAL AREA AVAILABLE Atot

Design 3.775 2.334 0.884 0.641 0.210 0.000 4.069

The Internal Pressure Case Governs the Analysis.

External NA NA NA NA NA NA NA

Mapnc NA NA NA NA NA NA NA

in² in² in² in² in² in² in²

in in in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 43 of 62 Nozzle Calcs. : M2 Nozl: 2 8:15a Apr 15,2010

Nozzle Angle Used in Area Calculations

90.00

Degs.

The area available without a pad is Sufficient.  Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (16.2500*0.2297*1.0+2*0.6250*0.2297*1.0*(1-0 (16.2500*0.2297*1.0+2*0.6250*0.2297*1.0*(1-0.86)) .86)) = 3.775 in²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 16.250 ( 1.00 * 0.3750 - 1.0 * 0.230 ) - 2 * 0.625 ( 1.00 * 0.3750 - 1.0 * 0.2297 ) * ( 1 - 0.855 ) = 2.334 in²

Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 0.938 ) * ( 0.6250 - 0.0738 ) * 0.8550 ) = 0.884 in²

Area Available in Inward Nozzle [A3]: = 2 * ti * min( h, Tl, 2.5 * ti) * fr2 = 2 * 0.5000 * ( 0.7500 ) * 0.8550 = 0.641 in²

Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 0.3750² * 0.8550 + ( 0.3232 )² * 0.8550 = 0.210 in²

Nozzle Junction Minim um Design Metal Temperature (MDMT) Calculations:

MDMT MDM T of the Nozzle Neck to Flange Weld,

Curve: B 

----------------------------------------------------------------------

Govrn. thk, tg = 0.750 , tr = 0.074 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.118 , Temp. Reduction = 140 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

16 -124 -20

F F F

MDMT MDM T of Nozzle-Shell/Head Nozzle-She ll/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B  ----------------------------------------------------------------------

Govrn. thk, tg = 0.500 , tr = 0.230 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.613 , Temp. Reduction = 39 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-6 -45 -20

Governing MDMT of all the sub-joints of this Junction :

F F F

-45 F

Weld Size Calculations, Description: M2 Intermediate Calc. for nozzle/shell Welds

Tmin

0.3750

in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 44 of 62 Nozzle Calcs. : M2 Nozl: 2 8:15a Apr 15,2010

Results Per UW-16.1: Nozzle Weld

Required Thickness Actual Thickness 0.2500 = Min per Code 0.2651 = 0.7 * Wo in

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case

The Drop for this Nozzle is : 1.3275 in The Cut Length for this Nozzle is, Drop + Ho + H + T : 4.4525 in PVElite is a registered trademark of COADE, Inc. [2009]

160.330

psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 45 of 62 Nozzle Calcs. : N1 Nozl: 3 8:15a Apr 15,2010

INP UT VALUES, Nozzle Description: N1

From : 20

Pressure for Reinforcement Calculations Temperature for Internal Pressure

P Temp

Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Diameter of Cylindrical Shell Shell Finished (Minimum) Thickness Shell Internal Corrosion Allowance Shell External Corrosion Allowance

D t c co

Distance from Bottom/Left Tangent User Entered Minimum Design Metal Temperature

150.631 120

psig F

SA-516 70 20000.00 psi 20000.00 psi 59.0000 0.5000 0.1250 0.0000

in in in in

115.5000

in

-20.00

F

Type of Element Connected to the Shell : Nozzle  Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

SA-106 B K03006 Smls. pipe 17100.00 psi 17100.00 psi

Diameter Basis (for tr calc only) Layout Angle Diameter

OD 0.00 4.0000

Size and Thickness Basis Actual Thickness

Actual 0.4650 in

tn

Flange Material Flange Type

deg in.

SA-105 Slip on

Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

can E1 En

0.1250 1.00 1.00

in

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi ASME Code Weld Type per UW-16

5.0000 0.3750 0.5000 0.0000 0.0000 C

in in in in in

Class of attached Flange Grade of attached Flange

The Pressure Design option was Design Pressure + static head. Nozzle Sketch | | | |

| | | |

150 GR 1.1

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 46 of 62 Nozzle Calcs. : N1 Nozl: 3 8:15a Apr 15,2010   ____________/| | | \ | | | \ | | |____________\|__|

Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N1

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Outside Diameter Used in Calculation Actual Thickness Used in Calculation

4.000 0.465

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Cylindrical Shell, Tr [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (150.63*29.6250)/(20000*1.00-0.6*150.63) = 0.2241 in

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (150.63*2.0000)/(17100*1.00+0.4*150.63) = 0.0176 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Parallel to Vessel Wall Normal to Vessel Wall (Thickness Limit), no pad

Dl d Tlnp

6.6400 3.3200 0.8500

in in in

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0 /20000.0 ) = 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0 /20000.0 ) = 0.855

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Area Required Ar Area in Shell A1 Area in Nozzle Wall A2 Area in Inward Nozzle A3 Area in Welds A41+A42+A43 Area in Element A5 TOTAL AREA AVAILABLE Atot

Design 0.766 0.486 0.469 0.000 0.120 0.000 1.075

External NA NA NA NA NA NA NA

Mapnc NA NA NA NA NA NA NA

in² in² in² in² in² in² in²

90.00

Degs.

The Internal Pressure Case Governs the Analysis. Nozzle Angle Used in Area Calculations

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 47 of 62 Nozzle Calcs. : N1 Nozl: 3 8:15a Apr 15,2010

The area available without a pad is Sufficient.  Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (3.3200*0.2241*1.0+2*0.3400*0.2241*1.0*(1-0. (3.3200*0.2241*1.0+2*0.3400*0.2241*1.0*(1-0.86)) 86)) = 0.766 in²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 3.320 ( 1.00 * 0.3750 - 1.0 * 0.224 ) - 2 * 0.340 ( 1.00 * 0.3750 - 1.0 * 0.2241 ) * ( 1 - 0.855 ) = 0.486 in²

Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 0.850 ) * ( 0.3400 - 0.0176 ) * 0.8550 ) = 0.469 in²

Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 0.3750² * 0.8550 + ( 0.0000 )² * 0.8550 = 0.120 in²

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Wall Wall Wall Std. Wall

Thickness Thickness Thickness Thickness Wall Pipe Thickness

per per per per per per

UG45(a), tra UG16(b), tr16b UG45(b)(1), trb1 UG45(b)(3), trb3 UG45(b)(4), trb4 UG45(b), trb

= = = = = =

0.1426 in 0.1875 in 0.3491 in Max(trb1, trb2, tr16b) = 0.3491 in 0.3228 in Min(trb3, trb4) = 0.3228 in

Final Required Thickness, tr45 = Max(tra, trb) = 0.3228 in Available Nozzle Neck Thickness = 0.4650 in --> OK

Nozzle Junction Minim um Design Metal Temperature (MDMT) Calculations:

MDMT MDM T of the Nozzle Neck to Flange Weld,

Curve: B 

----------------------------------------------------------------------

Govrn. thk, tg = 0.465 , tr = 0.018 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.052 , Temp. Reduction = 140 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-10 -150 -20

F F F

MDMT MDM T of Nozzle-Shell/Head Nozzle-She ll/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B  ----------------------------------------------------------------------

Govrn. thk, tg = 0.465 , tr = 0.018 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.052 , Temp. Reduction = 140 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f) Governing MDMT of all the sub-joints of this Junction :

-10 -150 -20 -150 F

F F F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 48 of 62 Nozzle Calcs. : N1 Nozl: 3 8:15a Apr 15,2010

ANSI Flange MDMT including temperature reduction per UCS-66.1: Unadjusted MDMT of ANSI B16.5/47 flanges per UCS-66(c) Flange MDMT with Temperature reduction per UCS-66(b)(1)(b)

-20 -55

Where the Temperature Reduction per UCS-66(b)(1)(b) is: Stress ratio: P/Ambient Rating = 150.63/285.00 = 0.529

Weld Size Calculations, Description: N1 Intermediate Calc. for nozzle/shell Welds

Tmin

0.3400

in

Results Per UW-16.1: Nozzle Weld

Required Thickness 0.2380 = 0.7 * tmin.

Actual Thickness 0.2651 = 0.7 * Wo in

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case

Note: The MAWP of this junction was limited by the shell. The Drop for this Nozzle is : 0.0679 in The Cut Length for this Nozzle is, Drop + Ho + H + T : 5.5679 in PVElite is a registered trademark of COADE, Inc. [2009]

171.762

psig

F F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 49 of 62 Nozzle Calcs. : M1 Nozl: 4 8:15a Apr 15,2010

INP UT VALUES, Nozzle Description: M1

From : 30

Pressure for Reinforcement Calculations Temperature for Internal Pressure

P Temp

150.117 120

psig F

Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Crown Radius of Torispherical Head Inside Knuckle Radius of Torispherical Head Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance

L r t c co

60.0000 3.6000 0.6750 0.1250 0.0000

in in in in in in

Distance from Head Centerline

L1

19.0000

in

User Entered Minimum Design Metal Temperature

SA-516 70 20000.00 psi 20000.00 psi

-20.00

F

Type of Element Connected to the Shell : Nozzle  Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter Size and Thickness Basis Actual Thickness

ID 0.00 16.0000

tn

Flange Material Flange Type Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

SA-106 B K03006 Smls. pipe 17100.00 psi 17100.00 psi

deg in.

Actual 0.7500 in C None

can E1 En

0.1250 1.00 1.00

in

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi

1.5000 0.5000 0.6750 0.7500 0.3750

in in in in in

Pad Material Pad Allowable Stress at Temperature Pad Allowable Stress At Ambient Diameter of Pad along vessel surface Thickness of Pad Weld leg size between Pad and Shell Groove weld depth between Pad and Nozzle Reinforcing Pad Width ASME Code Weld Type per UW-16 This is a Manway or Access Opening.

Sp Spa Dp te Wp Wgpn

SA-516 70 20000.00 20000.00 21.5000 0.5000 0.3750 0.0000 2.0000 C

psi psi in in in in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 50 of 62 Nozzle Calcs. : M1 Nozl: 4 8:15a Apr 15,2010

The Pressure Design option was Design Pressure + static head. Nozzle Sketch | | | | | | | | __________/| | ____/|__________\| | | \ | | | \ | | |________________\| | \| | |__|

Insert Nozzle With Pad, with Inside projection Reinforcement CALCULATION, Description: M1

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Inside Diameter Used in Calculation Actual Thickness Used in Calculation

16.000 0.750

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Torispherical Head, Tr [Int. Press] = (P*L*M)/(2*S*E-0.2*P) Appendix 1-4 (d) = (150.12*60.1250*1.75)/( 2*20000*1.00-0.2*150.12) = 0.3962 in

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*R)/(S*E-0.6*P) per UG-27 (c)(1) = (150.12*8.12)/(17100*1.00-0.6*150.12) = 0.0717 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall d Normal to Vessel Wall (Thickness Limit), pad side Tlwp Normal to Vessel Wall, Inward

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 17100.0 /20000.0 ) = 0.855

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 17100.0 /20000.0 ) = 0.855

Weld Strength Reduction Factor [fr4]: = min( 1, Sp/S ) = min( 1, 20000.0 /20000.0 ) = 1.000

32.5000 16.2500 1.3750 0.6250

in in in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 51 of 62 Nozzle Calcs. : M1 Nozl: 4 8:15a Apr 15,2010

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 0.9 , 1.0 ) = 0.855

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Area Required Ar Area in Shell A1 Area in Nozzle Wall A2 Area in Inward Nozzle A3 Area in Welds A41+A42+A43 Area in Element A5 TOTAL AREA AVAILABLE Atot

Design 6.510 2.472 1.301 0.534 0.388 2.000 6.695

External NA NA NA NA NA NA NA

Mapnc NA NA NA NA NA NA NA

in² in² in² in² in² in² in²

90.00

Degs.

The Internal Pressure Case Governs the Analysis. Nozzle Angle Used in Area Calculations

The area available without a pad is Insufficient. The area available with the given pad is Sufficient. SELECTION OF POSSIBLE REINFORCING PADS: Based on given Pad Thickness: Based on given Pad Diameter: Based on Shell or Nozzle Thickness:

Diameter 21.1875 21.5000 20.1875

Thickness 0.5000 in 0.5000 in 0.6875 in

 Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (16.2500*0.3962*1.0+2*0.6250*0.3962*1.0*(1-0 (16.2500*0.3962*1.0+2*0.6250*0.3962*1.0*(1-0.86)) .86)) = 6.510 in²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 16.250 ( 1.00 * 0.5500 - 1.0 * 0.396 ) - 2 * 0.625 ( 1.00 * 0.5500 - 1.0 * 0.3962 ) * ( 1 - 0.855 ) = 2.472 in²

Area Available in Nozzle Wall Projecting Outward [A2]: = ( 2 * Tlwp ) * ( tn - trn ) * fr2 = ( 2 * 1.375 ) * ( 0.6250 - 0.0717 ) * 0.8550 ) = 1.301 in²

Area Available in Inward Nozzle [A3]: = 2 * ti * min( h, Tl, 2.5 * ti) * fr2 = 2 * 0.5000 * ( 0.6250 ) * 0.8550 = 0.534 in²

Area Available in Welds [A41 + A42 + A43]: = Wo²*fr3+(Wi-can/0.707)²*fr2+Wp²*fr4 = 0.5000² *0.86 + (0.1982 )² *0.86 + 0.3750² * 1.00 = 0.388 in²

Area Available in Element [A5]: = (min(Dp,DL)-(Nozzle OD))*(min(tp,Tlwp,te))*fr4 = ( 21.5000 - 17.5000 ) * 0.5000 * 1.0000 = 2.000 in²

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 52 of 62 Nozzle Calcs. : M1 Nozl: 4 8:15a Apr 15,2010

Nozzle Junction Minim um Design Metal Temperature (MDMT) Calculations:

MDMT MDM T of the Nozzle Neck to Flange Weld,

Curve: B 

----------------------------------------------------------------------

Govrn. thk, tg = 0.750 , tr = 0.072 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.115 , Temp. Reduction = 140 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

MDMT MDM T of Nozzle Neck to Pad Weld for the Nozzle,

16 -124 -20

F F F

Curve: B 

----------------------------------------------------------------------

Govrn. thk, tg = 0.500 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.720 , Temp. Reduction = 28 F Pad governing, Conservately assuming Pad stress = Shell stress(Div. 1 L-9.3). Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

MDMT MDM T of Nozzle Neck to Pad Weld for Reinforcement Reinforceme nt pad,

-6 -34 -20

F F F

Curve: B 

----------------------------------------------------------------------

Govrn. thk, tg = 0.500 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.720 , Temp. Reduction = 28 F Pad governing, Conservately assuming Pad stress = Shell stress(Div. 1 L-9.3). Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

MDMT MDM T of Shell to Pad Weld at Pad OD for pad,

-6 -34 -20

F F F

Curve: B 

----------------------------------------------------------------------

Govrn. thk, tg = 0.500 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.720 , Temp. Reduction = 28 F Pad governing, Conservately assuming Pad stress = Shell stress(Div. 1 L-9.3). Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-6 -34 -20

F F F

MDMT MDM T of Nozzle-Shell/Head Nozzle-She ll/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B  ----------------------------------------------------------------------

Govrn. thk, tg = 0.675 , tr = 0.396 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.720 , Temp. Reduction = 28 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

10 -18 -20

Governing MDMT of the Nozzle : Governing MDMT of the Reinforcement Pad : Governing MDMT of all the sub-joints of this Junction :

F F F

-20 F -34 F -20 F

Weld Size Calculations, Description: M1 Intermediate Calc. for nozzle/shell Welds Tmin Intermediate Calc. for pad/shell Welds TminPad

0.5000 0.5000

in in

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 53 of 62 Nozzle Calcs. : M1 Nozl: 4 8:15a Apr 15,2010

Results Per UW-16.1: Nozzle Weld Pad Weld

Required Thickness 0.3500 = 0.7 * tmin. 0.2500 = 0.5*TminPad

Actual Thickness 0.3535 = 0.7 * Wo in 0.2651 = 0.7 * Wp in

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case

The Drop for this Nozzle is : 0.6342 in The Cut Length for this Nozzle is, Drop + Ho + H + T : 2.9250 in PVElite is a registered trademark of COADE, Inc. [2009]

152.251

psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 54 of 62 Nozzle Calcs. : N3 Nozl: 5 8:15a Apr 15,2010

INP UT VALUES, Nozzle Description: N3

From : 30

Pressure for Reinforcement Calculations Temperature for Internal Pressure

P Temp

150.000 120

psig F

Shell Material Shell Allowable Stress at Temperature Shell Allowable Stress At Ambient

S Sa

Inside Crown Radius of Torispherical Head Inside Knuckle Radius of Torispherical Head Head Finished (Minimum) Thickness Head Internal Corrosion Allowance Head External Corrosion Allowance

L r t c co

60.0000 3.6000 0.6750 0.1250 0.0000

in in in in in in

Distance from Head Centerline

L1

0.0000

in

-20.00

F

User Entered Minimum Design Metal Temperature

SA-516 70 20000.00 psi 20000.00 psi

Type of Element Connected to the Shell : Nozzle  Material Material UNS Number Material Specification/Type Allowable Stress at Temperature Allowable Stress At Ambient

Sn Sna

Diameter Basis (for tr calc only) Layout Angle Diameter

SA-105 K03504 Forgings 20000.00 psi 20000.00 psi OD 0.00 2.2500

Size and Thickness Basis Actual Thickness

tn

Flange Material Flange Type

deg in.

Actual 0.4675 in C None

Corrosion Allowance Joint Efficiency of Shell Seam at Nozzle Joint Efficiency of Nozzle Neck

can E1 En

0.1250 1.00 1.00

in

Outside Projection ho Weld leg size between Nozzle and Pad/Shell Wo Groove weld depth between Nozzle and Vessel Wgnv Inside Projection h Weld leg size, Inside Element to Shell Wi ASME Code Weld Type per UW-16

1.7000 0.3750 0.7500 0.0000 0.0000 C

in in in in in

The Pressure Design option was Design Pressure + static head. Nozzle Sketch | | | | ____________/|

| | | | |

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 55 of 62 Nozzle Calcs. : N3 Nozl: 5 8:15a Apr 15,2010 | \ | | | \ | | |____________\|__|

Insert Nozzle No Pad, no Inside projection Reinforcement CALCULATION, Description: N3

ASME Code, Section VIII, Division 1, 2007, A-08 UG-37 to UG-45 Actual Outside Diameter Used in Calculation Actual Thickness Used in Calculation

2.250 0.468

in. in.

Nozzle input data check completed without errors. Reqd thk per UG-37(a)of Torispherical Head, Tr [Int. Press] = (P*L*M)/(2*S*E-0.2*P) Appendix 1-4 (d) = (150.00*60.1250*1.00)/( 2*20000*1.00-0.2*150.00) = 0.2256 in

Reqd thk per UG-37(a)of Nozzle Wall, Trn [Int. Press] = (P*Ro)/(S*E+0.4*P) per Appendix 1-1 (a)(1) = (150.00*1.1250)/(20000*1.00+0.4*150.00) = 0.0084 in

UG-40, Limits of Reinforcement : [Int. Press] Parallel to Vessel Wall (Diameter Limit) Dl Parallel to Vessel Wall Rn+tn+t Normal to Vessel Wall (Thickness Limit), no pad Tlnp

3.3500 1.6750 0.8562

in in in

Weld Strength Reduction Factor [fr1]: = min( 1, Sn/S ) = min( 1, 20000.0 /20000.0 ) = 1.000

Weld Strength Reduction Factor [fr2]: = min( 1, Sn/S ) = min( 1, 20000.0 /20000.0 ) = 1.000

Weld Strength Reduction Factor [fr3]: = min( fr2, fr4 ) = min( 1.0 , 1.0 ) = 1.000

Results of Nozzle Reinforcement Area Calculations: AREA AVAILABLE, A1 to A5 Area Required Ar Area in Shell A1 Area in Nozzle Wall A2 Area in Inward Nozzle A3 Area in Welds A41+A42+A43 Area in Element A5 TOTAL AREA AVAILABLE Atot

Design 0.353 0.579 0.572 0.000 0.141 0.000 1.292

External NA NA NA NA NA NA NA

Mapnc NA NA NA NA NA NA NA

in² in² in² in² in² in² in²

90.00

Degs.

The Internal Pressure Case Governs the Analysis. Nozzle Angle Used in Area Calculations

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 56 of 62 Nozzle Calcs. : N3 Nozl: 5 8:15a Apr 15,2010

The area available without a pad is Sufficient.  Area Required [A]: = ( d * tr*F + 2 * tn * tr*F * (1-fr1) ) UG-37(c) = (1.5650*0.2256*1.0+2*0.3425*0.2256*1.0*(1-1. (1.5650*0.2256*1.0+2*0.3425*0.2256*1.0*(1-1.00)) 00)) = 0.353 in²

Reinforcement Areas per Figure UG-37.1 Area Available in Shell [A1]: = d( E1*t - F*tr ) - 2 * tn( E1*t - F*tr ) * ( 1 - fr1 ) = 1.785 ( 1.00 * 0.5500 - 1.0 * 0.226 ) - 2 * 0.343 ( 1.00 * 0.5500 - 1.0 * 0.2256 ) * ( 1 - 1.000 ) = 0.579 in²

Area Available in Nozzle Projecting Outward [A2]: = ( 2 * tlnp ) * ( tn - trn ) * fr2 = ( 2 * 0.856 ) * ( 0.3425 - 0.0084 ) * 1.0000 ) = 0.572 in²

Area Available in Inward Weld + Outward Weld [A41 + A43]: = Wo² * fr2 + ( Wi-can/0.707 )² * fr2 = 0.3750² * 1.0000 + ( 0.0000 )² * 1.0000 = 0.141 in²

UG-45 Minimum Nozzle Neck Thickness Requirement: [Int. Press.] Wall Wall Wall Wall Std. Wall

Thickness Thickness Thickness Thickness Wall Pipe Thickness

per per per per per per

UG45(a), tra UG16(b), tr16b UG45(b)(1), trb1 UG45(b)(3), trb3 UG45(b)(4), trb4 UG45(b), trb

= = = = = =

0.1334 in 0.1875 in 0.5209 in Max(trb1, trb2, tr16b) = 0.5209 in 0.2598 in Min(trb3, trb4) = 0.2598 in

Final Required Thickness, tr45 = Max(tra, trb) = 0.2598 in Available Nozzle Neck Thickness = 0.4675 in --> OK

Nozzle Junction Minim um Design Metal Temperature (MDMT) Calculations:

MDMT MDM T of the Nozzle Neck to Flange Weld,

Curve: B 

----------------------------------------------------------------------

Govrn. thk, tg = 0.468 , tr = 0.008 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.025 , Temp. Reduction = 140 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f)

-10 -150 -20

F F F

MDMT MDM T of Nozzle-Shell/Head Nozzle-She ll/Head Weld for the Nozzle (UCS-66(a)1(b)), Curve: B  ----------------------------------------------------------------------

Govrn. thk, tg = 0.468 , tr = 0.008 , c = 0.1250 in , E* = 1.00 Stress Ratio = tr * (E*) / (tg - c) = 0.025 , Temp. Reduction = 140 F Min Metal Temp. w/o impact per UCS-66 Min Metal Temp. at Required thickness (UCS 66.1) Min Metal Temp. w/o impact per UG-20(f) Governing MDMT of all the sub-joints of this Junction :

Weld Size Calculations, Description: N3

-10 -150 -20 -150 F

F F F

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 57 of 62 Nozzle Calcs. : N3 Nozl: 5 8:15a Apr 15,2010

Intermediate Calc. for nozzle/shell Welds

Tmin

0.3425

in

Results Per UW-16.1: Nozzle Weld

Required Thickness 0.2397 = 0.7 * tmin.

Actual Thickness 0.2651 = 0.7 * Wo in

Maximum Allowable Pressure for this Nozzle at this Location: Converged Max. Allow. Pressure in Operating case

Note: The MAWP of this junction was limited by the shell. The Drop for this Nozzle is : 0.0104 in The Cut Length for this Nozzle is, Drop + Ho + H + T : 2.3854 in PVElite is a registered trademark of COADE, Inc. [2009]

176.735

psig

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 58 of 62 Nozzle Schedule : Step: 22 8:15a Apr 15,2010

Nozzle Schedule: Nominal Flange Noz. Wall Re-Pad Cut Description Size Sch/Type O/Dia Thk ODia Thick Length in. Cls in. in in in in -----------------------------------------------------------------------------N3 2.250 None 2.250 0.468 2.39 N2 4.000 150 SlipOn 4.000 0.465 5.21 N1 4.000 150 SlipOn 4.000 0.465 5.57 M2 16.000 None 17.500 0.750 4.45 M1 16.000 None 17.500 0.750 21.50 0.500 2.92

Note on the Cut Length Calculation:  The Cut Length is the Outside Projection + Inside Projection + Drop + In Plane Shell Shell Thickness. This value does not include weld weld gaps, nor does it account for shrinkage.

Please Note: In the case of Oblique Nozzles, the Outside Diameter must be increased. The Re-Pad Re-Pad WIDTH around the nozzle nozzle is calculated as follows: Width of Pad = (Pad Outside Dia. (per above) - Nozzle Outside Dia.)/2 Nozzle Material and W eld Fillet Leg Size Details: Shl Grve Noz Shl/Pad Pad OD Pad Grve Inside Nozzle Material Weld Weld Weld Weld Weld in in in in in -----------------------------------------------------------------------------N3 SA-105 0.750 0.375 N2 SA-106 B 0.750 0.375 N1 SA-106 B 0.500 0.375 M2 SA-106 B 0.500 0.375 0.500 M1 SA-106 B 0.675 0.500 0.375 0.000 0.375

Note: The Outside projections below do not include the flange thickness. Nozzle Miscellaneous Data: Elevation/Distance Layout Projection Installed In Nozzle From Datum Angle Outside Inside Component in deg. in in ---------------------------------------------------------------------------N3 0.00 1.70 0.00 Top Head N2 0.00 4.50 0.00 Bottom Head N1 115.500 0.00 5.00 0.00 Shell M2 11.500 180.00 2.62 0.88 Shell M1 0.00 1.50 0.75 Top Head

PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 59 of 62 Nozzle Summary : Step: 23 8:15a Apr 15,2010

Nozzle Calculation Summary Description

MAWP Ext MAPNC UG45 [tr] Weld Areas psig psig Path --------------------------------------------------------------------------N2 171.92 ... ... OK 0.323 OK Passed M2 155.94 ... ... ... OK Passed N1 171.13 ... ... OK 0.323 OK Passed M1 152.13 ... ... ... OK Passed N3 176.74 ... ... OK 0.260 OK Passed --------------------------------------------------------------------------Min. - Nozzles 152.13 M1 Min. Shell&Flgs 152.13 20 30 215.75

Computed Vessel M.A.W.P.

152.13

psig

Note: MAWPs (Internal Case) shown above are at the High Point. Check the Spatial Relationship between the Nozzles From Node 10 20 20 30 30

Nozzle Description N2 M2 N1 M1 N3

Y Coordinate, 0.000 11.500 115.500 0.000 0.000

The nozzle spacing is computed by the following: = Sqrt( ll² + lc² ) where ll - Arc length along the inside vessel surface in the long. direction. lc - Arc length along the inside vessel surface in the circ. direction If any interferences/violations are found, they will be noted below.

No interference violations have been detected ! PVElite is a registered trademark of COADE, Inc. [2009]

Layout Angle, 0.000 180.000 0.000 0.000 0.000

Dia. Limit 6.640 32.500 6.640 32.500 3.350

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 60 of 62 MDMT Summary : Step: 24 8:15a Apr 15,2010

Minimum Design Metal Temperature Results Summary :

Required Minimum Design Metal Temperature

-20 F 

Curve

Basic Reduced UG-20(f) Thickness Gov E* Description MDMT MDMT MDMT ratio Thk Notes F F F in ---------------------------------------------------------------------------Bottom Head [10] B 10 -15 -20 0.746 0.675 0.850 Bottom Head [7] B 16 -55 -20 0.360 0.750 0.850 Shell [8] B -6 -36 -20 0.704 0.500 0.800 Top Head [10] B 10 -17 -20 0.723 0.675 0.850 Top Head [7] B 16 -55 -20 0.360 0.750 0.850 N2 [1] B -10 -150 -20 0.053 0.465 0.850 Nozzle Flg [5] -20 -55 0.544 M2 [1] B -6 -45 -20 0.613 0.500 1.000 N1 [1] B -10 -150 -20 0.052 0.465 1.000 Nozzle Flg [5] -20 -55 0.529 M1 [1] B 10 -20 -20 0.720 0.675 1.000 N3 [1] B -10 -150 -20 0.025 0.468 1.000 ----------------------------------------------------------------------------

Notes: [ ! ] - This was an impact tested material. [ 1] - Governing Nozzle Nozzle Weld. [ 5] - ANSI Flange MDMT Calcs. The thickness ratio is the pressure ratio. [ 6] - MDMT MDMT Calculations at the Shell/Head Joint. [ 7] - MDMT MDMT Calculations for the Straight Flange. [ 8] - Cylinder/Cone/Flange Junction MDMT. [ 9] - Calculations in the Spherical Spherical Portion of the Head. Head. [10] - Calculations in the Knuckle Portion of the Head. [11] - Calculated (Body Flange) Flange MDMT. [12] - Calculated Flat Head MDMT per UCS-66.3 UG-84(b)(2) was not considered. UCS-66(g) was not considered. UCS-66(i) was not considered. Notes: Impact test temps were not entered in and not considered in the analysis. UCS-66(i) applies to impact tested materials not by specification and UCS-66(g) applies to materials impact tested per UG-84.1 General Note (c). The Basic MDMT includes the (30F) PWHT credit if applicable. PVElite is a registered trademark of COADE, Inc. [2009]

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 61 of 62 Vessel Design Summary : Step: 25 8:15a Apr 15,2010

Design Code: ASME ASME Code Section VII I Divi sion 1, 2007 A-08 Diameter Spec : 60.000 in OD Vessel Design Length, Tangent to Tangent Distance of Bottom Tangent above Grade Specified Datum Line Distance Shell Material Specification Nozzle Material Specification Nozzle Material Specification Re-Pad Material Specification

123.00

in

0.00 0.00

in in

SA-516 70 SA-106 B SA-105 SA-516 70

Internal Design Temperature Internal Design Pressure

120 150.00

External Design Temperature

70

Maximum Allowable Working Pressure Hydrostatic Test Pressure

F psig F

152.13 222.47

Required Minimum Design Metal Temperature Warmest Computed Minimum Design Metal Temperature

psig psig

-20 -20

Wind Design Code Earthquake Design Code

F F

No Wind Loads IBC 2000

Element Pressures and MAWP: psig Element Desc Bottom Head Shell Top Head

Internal 155.170 154.747 150.414

Liquid Level: 143.17 in

Dens.: 62.400 lbm/ft³

Element Type Torisph Cylinder Torisph

"To" Elev Length in in 1.50 1.500 121.50 120.000 123.00 1.500

External 0.000 0.000 0.000

Element Thk in 0.750 0.500 0.750

M.A.W.P 171.925 171.132 176.735

Corr. All. 0.1250 0.1250 0.1250

Sp. Gr.: 1.000

R e q d T h k Int. Ext. 0.607 No Calc 0.455 No Calc 0.593 No Calc

Joint Eff Long Circ 0.85 0.70 0.70 0.70 0.85 0.70

Element thicknesses are shown as Nominal if specified, otherwise are Minimum Earthquake Moment on Support Total Earthquake Shear on Support

242260. 3901.

in-lb lbf

Note: Wind and Earthquake moments include the effects of user defined forces and moments if any exist in the job and were specified to act (compute loads loads and stresses) during these cases. Also included are moment effects due to eccentric weights if any are present in the input. Weights: Fabricated - Bare W/O Removable Internals Shop Test - Fabricated + Water ( Full ) Shipping - Fab. + Rem. Intls.+ Shipping App.

5064.9 18378.5 5064.9

lbm lbm lbm

PV Elite 2009 Licensee: PRESSURE VESSEL ENGINEERING FileName : Sample 4.1 ------------------------------------ Page 62 of 62 Vessel Design Summary : Step: 25 8:15a Apr 15,2010 Erected Empty Operating Field Test

-

Fab. + Rem. Intls.+ Insul. (etc) Fab. + Intls. + Details + Wghts. Empty + Operating Liquid (No CA) Empty Weight + Water (Full)

PVElite is a registered trademark of COADE, Inc. [2009]

5064.9 5064.9 18458.0 18378.5

lbm lbm lbm lbm

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF