RTRI - Earth Structures Design Standard for Railway
May 7, 2018 | Author: Irwan Joe | Category: N/A
Short Description
Design RRR method from Japanese Railway Technical Research Institute...
Description
CONTENTS
~: th Issue
1.
the
the. H S
Cutting an
. R
25
10. Reinforced.Steep
Cut
D D
STRUCTURES COMMENTARY (EAR (EARTH TH STRU STRUCT CTUR URES ES O "F "F T H
DESCRIPTION De
S t n da da r ct
or Ra wa
n da da r
ov
STRUCT CT RE ST NDAR NDAR A RT R T H STRU
S t c tu tu re re s a n C om om m en e n ta ta r he es
nd on
Ea
earth
ct
Th
er na er ca
ct
m en en t
ha
ma
of ea
uc
P re re v o u
de gn
me nt
St uc ur
on de
nd ds
or ea
ct es
he ea
h ow ow n
Fi ur
me p u a te te d
ec
at ns
uc
as gr di nt
mp
h e p e o rm rm a c e ·0
wi
ws
me oi
o pe pe r
an ea
c tu tu r
ar
h ou ou g
bl
pa
e la la t e l
ea
e ve ve n w he he n
ol ps
D ra ra in in ag ag e a t o p of slope
O r ig ig in in a l g ro ro u n v.
of'slope
n a
blanket
F ig ig u
H ow o w ev ev e
wa de
ed
C on on s u en e n t E le le me me n
at ar
uc ur
h ou ou l
wa
ul
S trtr uc uc tu tu re re s
a nd nd a
as
ct es
am
wa
ar h ig ig h
o f E ar ar t
uc
e ve ve l
e r o rm rm a c e v e
e.
andthedevelopment
q u e d p e o rm rm an an c
ba as
a ck ck s
ee Fi ur
wa w s th
on en
ma of he
n ec ec es es sa sa r
ne
ea
m o d f ic ic a o n ct es
of gradegrade-sepa separat rated ed
De mb
mu
B u it m a
ma
to
d e a ck ck s
ac
el ca
c co co mp m p an an y
ve
m p o v m en en t
on
ct me
crossings,
verify h e r eq eq u r e
me p er er fo fo rm rm a nc nc e
sp ec ec te te d fully e sp
at
structurestandard.
Wh a pp pp l e d
ha
me
2);
ma wi
ct es
o rd rd e
me
it m a
pe or
H ow ow e ve
ca on
c o e sp sp on on d w i
a c u a c on on d o n
Ta le
Co tent tent
fthe fthe Eart Eart
Stru Struct ct re st
dard dard
Title General B as a s i o f D eess ig ig n Embankments Cuttin Cuttin and Groundwork Roadbed Subgrade Reinforced Soil oi l R et et a n in in g W a l Reinforced S oi Reinforced So Abutment Rein Rein orce orcedS dSte te Cu Si wi
10
(b Ba as es
.f;:igure.2 Exam Exampl pl
acin acin
T ra ra ck ck f x am am p
of Trac Trac
o f F ra ra me me - y p
S la la b T ra ra ck ck )
Stru Struct ctur ures es
EARTH STRUCTURE STANDARD AN
IT
CHAR CHARAC ACTE TERI RIST STIC IC Issue oHhe oHheEa Ea:r :rth th\S \Str tru' u'ct ctur ur •-',':'( : '( k~_', - < - ; !
de gn stan standa da
Stan Standa dard rd
: ; :, ~ . .' ~
concerningrearthrstructures
Comm Commen enta tary ry (Ear (Earth th Stru Struct ctur ures es issuedby
lRpo11lPlUlU~S., Th uc
nd
om en
ar
ur
previ previous ousedi editi tion on as
ed
ob
of
1992.
It Comm Commen enta tary ry (Ear (Earth th Structure
nd ds tech techno no og
nd ds rela relate te
ho um
ri ic deeme deemed-t d-too-sa sati tisf sf
ai ay
ctur ctur
om en
oncr oncret et
uc
to eart earth, h, st uctu ucture re
einf einf ce of he
or
nd ce
th
de elop elopme me
bnol bnolog og es
mp ct on
on
thestudies
EGirto Structure Standard
speci specifi ficat catio ions, ns, and (3 appl applic icat atio io
ef th
~2-
ates ates cons constr truc ucti tion on meth method ods. s.
es
wa
st
characteristics is shown as follows.
Th outl outl ne ofth ofthes es
A do d o p o n o f P e o rm rm an an c b a
(1)
The p er er fo fo rm rm a nc nc e b as as e
de gn me ho
b as as e
a d op op te te d . t o f ol ol lo lo w the
etho etho nd
on Future Rail Railwa wa
desi design gn me ho
engi engine neer er in
ny
cide cide
as follows a) on
un
po
23
by setting an ve
is mp emen emente te
safe safety ty serv servic icea eabi bili lity ty an restor restorabi abili lity, ty, Figure Figure
pu
on Technology
ns
Techn Techn logy logy Admin Adminis istr trat atio ion" n"). ).
This This perf perfor orma manc ncee-ba base se th
the provisions-of national
nc
shows the
pted pted
the
structure
struct ctur ur c on on di di t o ns ns , y p of stru
va
hin. hin.
this this stan standa dard rd Firs First, t,
es
nd
ed frOIU th requi require re
considering the di
ns on
perf perfor orma manc nces es
~"."?,~."~', ..,.~., , .~.,",~"..... ",~"..... "..
n d ic ic a o r v a u e s o r s a e ty ty . s e rv rv ic ic e a bi bi li ty ty , a n d ires~~.bi~~~~a~redecided.
i'Th;ee pe
rankjl
G ;J ;J ( ? n
a nd nd .
c o n fifi g ur ur a t io n s a r e in in d i ca ca t e d a CC CC Or Or ddll n 1 0 required performance ( d e e m e d - t o ! s a titi sf sf Y s p e c ifif ic ic a t io n s )
IfIhey a r e n o t S a tltl sf sf iiii jd jd , it a n b e e -e -e xe xe cu cu te te d o r rBdesigJled. .....
Fi (2)
Deem Deemeded-to to-s -sat atis isfy fy
S im im p l e d D e
Chart ( E a m p
Fl
an Em an men
spec specif ific icat atio ions ns
is necessarily a pp pp ro ro p i a e .c .c on on s d e i n
schedul ules es c os os t an sched
an pe or an (performance
proc proc
setting; th
required performance
at
ranks required
perf perfor orma manc nces es
an appl applic icat at on exam exampl ples es Tab
P e r o rm rm a n
Performance
Required performance
level
Application examples
R a nk nk s R e qu qu irir e
rank
E ar a r t s trtr uucc tu tu r t ha ha t u nd nd er er ggoo e v er er y l itit tltl e d ef ef oorr ma m a titi o i n o rd rd in in ar ar y c on on di di titi on on s a n no excessive deformation u nd nd e L e ve ve ii- 2 earth earthqua quake. ke.moti motion on orext orextreme remely ly heavy rainfa rainfall ll tare heavy F o rr- ex ex a m pl pl e e ar ar t s tr tr uc uc tu tu r s up up po po r i n a ba ba llll as as tltl es es s t ra ra c
p e r o rm rm a nc n c e Levels,
P er er fo fo rm rm an an c an E ar ar t s trtr uucc tu tu r t ha ha t undergoes. deformation with by r eegg u a r m aaii nt nt en en an an c i n o rd rd in in a c o d i o n a n d o n o r eeaa c d ev ev as as ta ta t n g f aaii lu lu r u nd nd e L e ve ve ll- Z e ar ar th th qu qu ak ak e m o titi o or e xt xt re re m eI eI yyrr aarr e h ea ea vy vy _rainfall. _rainfall. F o e xa xa mp m p le le : e ar ar t s trtr uucc tu tu r s up up po po r n g as trackwith very. important important section section ·oftra(;lc
-3-
nd Aoplicatlons
ran~ Ear Eartt struct structure ure that allows d ef ef or or m at at io io n i n o rd rd in in ar ar y o nd nd i o n a n d oe oe s n o f a u nd nd e motion or Level-Iearthqcake h ea ea v r aaii nf nf aall l t ha ha t occurs several year. Fo exam exampl ple: e: eart earths hstr truc uctu ture re
p po po r n g ck wi n o m a s ec ec t o n track,
w h n ex ex c v a n g
Emba Emba kmen kmen
g ro ro un un d
rein reinfo forc rc ment ment et od
with slopes 1:0.5) rein reinfo forc rced ed
the-
mban mbankm km nt in th -e rt
stru struct ct re stan stan ar
E mb m b an an km km en en t
ur ac
a ye ye r
FigUre4'Schemafic of
anno anno be ensu ensure re
radi radi nt
E mb mb an an km km en en t
Reintorced
even even in rio~ rio~ dina dinaty ty (s lf-w lf-wei ei ht
ur ac
a ye ye r
Bmbankrnent
cond cond tion tion
(1:0.5 (1:0.5 to
such such as pane panel. l.fa faci cing ng
an coricrete'facings
inke inke
to th rein reinfo forc rcin in
mate materi rial al
local rein reinfo forc rced ed body body perf perf rm nc
is va ua ed
ai ly by oi pr ssur ssur
om ut tion tions. s.
that it
Figu Figure re
Schemi;lUcof the Rf)inTP(ced Soil Soil W~II W~II W i t S t ifif f Facing Facing (RR M e t h o d )
-4
tobuild
reinfo reinforce rcedso dsoil il wall. is
placing bridge seats on
cement-treated-soil-typestructure
einf einfor orce ce
by geotextile
self-supporting properties.A schematicof Cement-stablllzed ilpp ilppro roac ac
bloc bloc
'\-Roadbed Embankment
S u pp pp O r t Q g g ro ro un un d
Figu Figure re
Ceme Cement nt-T -Tre reat ated ed-S -Sol olll-Ty Type pe
Rein Reinfo forc rced ed Soll Soll Abut Abutme ment nt
an existing Th slop slop reinforcement
method is class classif ifie ie
is used.
railway
thes these, e, dowe doweli ling ng
It FRP
to c on on s u c rein rein orci orcing ng mate materi rial al that that is shor shor with with incr increa ease se th stee steepn pnes es
diamet eter er rein rein orce orce a rg rg e diam
rela relati tive vely ly large
grad en of ofjhe grad
di
ig re
40
ural ural
ou d, ca
slope. So
Tens Tensio io
stru struct ctur ure. e. This This meth method od inst instal alli ling ng
emen emen
od
core core
rg
ia
te
info inforc rcin in
STRU STRUCT CTUR UR
Mats Matsri ri ls (R dish dish
ncho nchors rs
STAN STANDA DARD RD
Chapter
'to It also . in in c or or po po ra ra te te s t h c on on c ep ep t o f I if if ee- cy cy c l
main railway line, ut it on construction or th improvement ofa cost to permit flexible response to diversi diversifyi fying ng -5
applied mi
em
ae ity.
ds ma
on earth earth struc structur tures. es. so
Chapter
s pe pe c f ie ie s f un un da da m en e n ta ta l m a t e r c on on ce ce rn rn in in g th
design
earth earth struc structur tures. es.
Purpose ofthe design
(1)
To se ec
u c u re re , It
h e m o s e co co no no m ic ic a
ne es ar
ev ua
h e e r o rm rm an an c
an
of ar
u c u re re s
comp compar ar their life-cyclecost
uc (the
c on on s r uc uc t o n c os os t p lu lu s th m a in in te te na na nc nc e c os os t) t) . 2)
F un un d m en e n ta ta l
of design methods
Wh
me
pr
be
h e p e o rm rm a nc nc e b as as e
standard
e s g n m e h od od s n o b a
on
a pp pp ro ro ac ac h m e h od od s
p er e r fo fo rm rm a nc n c e r an an k ( th th e s oo- ca ca l e d= d= de d e em em e dd - to to -s -s a s f
at
en
d e g n m e th th od od , it also
p ec ec i
at ns
e t a cc cc o
ng
s pe pe c f ic ic a o ns ns " m e th th od od )
type
B a llll as as te te d t ra ra c k
1)
wh s trtr uc uc tu tu r
ba as
th
s le le ep ep er er s r a f as as te te n n g
system;
mi ma
roadbed.
a ln ln p n g
caused by d e o rm rm a t o n o f th
he
ast,
Fi
rails
Th
And.
ut h i
me
track
uc ur
u sc sc ep ep t b l
ac
d ef ef o m a t o n
p~U~s:t,s()jt requires regular maintenance work.
track ballastless nc ud
astructurewith
ba as
he
ck wi
regul regular ar maint maintena enance nce
track Is deformed, it
d e o rm rm a o n
ma
ma
mu
ec
p po po r
Bu wh
ot th
wi
~ d ~ s~ s~ e w i
ac
~ () () rk rk "
Ui
h e o ad ad b d . It d o
ma
m ( ))rr e d if if f c u
a ck ck ~ h e g h
mo
uc ur
as en ng
ys em Th
m ea ea n mo
using
at
o rd rd e e ar ar t
ow s tr tr uc uc tu tu r
concrete
~ ,T ,T o
r oa oa db db ed ed . a r used.
(1) Required. performances Ta
mp
ea k in in d
uc a sb sb a
c on on s d e
' .
p e o rm rm a nc nc e a nk nk so so f . .... -
ma
" .
m s T h e e p e o rm rm an an c requ requir ired ed
,~
:' ,
.'
perf perfor orma_ ma_p¢e p¢ess-
h e d eg eg re re e o f d i c u
ea
s t u c u re re s ms
ar
et no on
..
earth s t u c u re re s b u o r s t u c u re re s o f a l
o f c on on s u c n g the earth earth struct structure. ure.
-6-
Example of Requ Requir ired ed Perf Perfor orma manc nces es .•Item .•Item
Table
Requited performances
Performances
D e gr gr e o f d an an ge ge r o f i nt nt er er nnaa l f aaii lu lu re re o e ar ar t s tr tr uc uc tu tu r ( ci ci rc rc ul ul ar ar -s -s lili p s af af et et y{ y{ a qt qt or or .s .s af af et et y f ac ac to to r f o d ou ou b w ed e d g c om om pu p u ta ta t o n m e h od od ) displa displacement cement-an -an deformat deformation ion
Safety
Legend:
c om om f o rtrt "
W o rk rk ab a b ilil itit y o f ma n an an c V ib i b ra ra titi o a n noise Deformation '2 d a m ag ag e , r es es id id u a strength
Restorability
ll actions an their repetitive o cc cc ur ur re re nc nc e d ur ur in in g t h d es es ig ig n servic servic lifet lifetime ime A cc c c id id en en ta ta l a c o n ha ar ra b u h av av e a rg rg e m pa pa c
consoli consolidat dation ion settl settlement ement), ), displacementand deformation Di me ma c u m ul ul at at iv iv e d is is pl pl ac ac em em e n t d y na na m ic ic . d i~ i~ la la ce ce m e llll t D is i s pl pl ac ac em em e n a n d ef ef oorr m at at io io n ( tr tr aacc k m a in in te te n an an c e. e. st st an an d ar ar d v a lu lu e , d y na na m i displacement) D is i s pl pl ac ac em em e n o r d ef ef oopp na na titi o ( re re pe pe at at e mu at d e o rm rm a o n me pe d) V i br br at at io io n l ev ev e l n o is is e l ev ev e
Ru
Serviceability
f re re qu qu en en t a c o n a n h e r ep ep e titi titi v o c cu cu rr rr en en c e d u ri ri n t h d es es ig ig n s er er vvii c l ifif eett im im e L a g e a c o n h a o cc cc u r eell at at iv iv el el y o ft ft e d ur ur in in g t h d es es ig ig n s er er vvii c l ifif eett im im e
R e si si du du a l d e fo fo rm rm a titi o a ft ft er er -a -a n e ar ar th th q ua ua k e :r
1 . V e r e d b as as e o n h e d is is p a ce ce me me n
mi
a nd nd a d } * 2V 2V e
A cc c c id id en en ta ta l a c o n with extremely low p ro ro ba ba bi bi lili t o f o cc cc u e nc nc e b u w i J a g e impact e m III th sersmro d es es ig ig n s ta ta n da da rd rd .
ca on
ma de
pe
n d ic ic e
fV
Failure
R i di di n
Verified; a n d V e r c a t o n
m an an c
ks
ms
to III w h c h a k
it
n t c on on s d e a t o n d e g n c on on ve ve n e nc nc e and
T ab ab le le ) 2) Pr
of
T h r eq eq u r e
o rm rm a e -b -b a
p er er fo fo rm rm a nc nc e
de
a re re . i n a l
es ig ig n an e a se t o d es
uc ur
b as as e
o n p e o rm rm an a n ce ce ' d es es ig ig n In
ma e m n km km en en t other is d e et he
ut
g,
op
mi d. So
mb
o rm rm a
work, d ra ra in in ag ag e w o k , roadbed,
first step is
of on he
wi
ue ar
et
pe
ub
de
m an an c
mu al
for h e e n
parts,
ec on
e tc tc . h a will
c tu tu r
nd
of
ns
nc
ys em he
ea
en at ve Ne
en
v er er ifif ie ie d f o
he en at ve
s e d es es ig ig n s ec ec t o n Ve
pe
m an an c
u nd nd e
hi
nd
al
o n by s et et titi n
required performances.end p e o rm rm a c e wh
ai
h e e q ui ui va va le le n t limit s ta ta te te s f o
mi
by
er
um
of de
ma
c om om p
ng
ng
mi
factors. 5)
Ve 1)
on me ho
P er e r fo fo rm rm a nc nc ee- ba ba se se d
m e th th o
P e o rm rm a c e pe
de
m an an c
ng
ar
'verify
mi
al pe
by
he qu
m an an c
nt mp
mi ng he
or he wi
he
qu po
values. 'lp,cJlLd
w h e e , R d : d es es ig ig n r es es po po ns ns e v a u e
ltd: d es es ig ig n i: structure
(1)
F un u n da da m en en ta ta l
he safety
mi va ue factor
o f s af af e
v er er i c a o n
ea
dynamic displacementamplitude
is
et
mi
ue
h e a i u re re ,
de
ma
n,
will occur
durin durin
constr construct uctio io Fu
and d u n g h e d e g n
am
of servi serviceab ceabil ilit it
Th
e rv rv ic ic e
e t m e of th struc structu ture. re.
verif verific icat atio io
earth structure is verified by setting limit
ac wh
m a in in te te na na nc nc e
om f or or t n o is is e d in in g c om
p a e ng ng e
c on on s d e n g
h e s e v ic ic ea ea b
of he ea
o r the
n,
difficulty of
p p a ra ra n
n d o th th e p e
ma ce
u c u re re .
Fundamentals of restor restorabi abili lity ty verif verific icat atio io
(3)
he restorability
is veri verifi fied ed ke
ns de
he
restoring
ee of
o th th e c on on s u en en t parts of th
wo k, an
prin princi cipl ple, e, chec checki king ng that that dama damage ge caused by
wi
mi
ma
u nc nc t o na na l y . A l
h e s lo lo pe pe s
earth structure will
o ad ad be be d w o k , d ra ra in in ag ag e
th
mi
cons consid ider erin in th degr degree ee of difficulty ofrestoring its ou
he de
ma
ve
nd am
Th
el
wi
el
D e fo fo rm rm a t o n
e ve ve l 1: Almost it d ef ef or or m a o n
D e fo fo rm rm a t o n
e ve ve l 2: S om om e
o rm rm a o n
Deformation level 3: L a
ma
al
s ou ou n
f un un c o ns ns , an
ut un
ns
u sa sa b o re re d
om
by r ep ep a
be restored
but
deformation,
w i h ou ou t e pa pa i w o k . w o rk rk .
with partial
teconstruciion. De
4: Extreine1.Y
ma
without overallreconstruction, D am a m ag a g e e ve ve l 1:A lm lm o s c om om p le le te te l
u nd nd am am a ge ge d
D a m ag ag e e ve ve l 2 : D a m ag ag e r eq eq u r ~ g .r.r :e :e pa pa ir ir d ep ep en en d n g o n h e s i u a o n D am am a
D am am a
eq
ep
wo ep la la c em em e n t of m em em b worl, a n d t h r ep
Damage Ievel-k.Damagere Ievel-k.Damagerequir quiring. ing.repai repai
slruation. T ab ab l
an
ow
he ef ma
v~
d re re j a i
wh
m i values' by performance
dama damage ge
Ta
a . for d ef ef o m a t o n
ow
rank
structures. bl
form form ti
O vvee ra ra l e a t h s trtr uucc tu tu r
vels vels an
d ef ef oorr ma ma titi o Case)
ir
Repair
l ev ev e
(Case of
(Ear (Earth th Stru Struct ctur ur
Deformationlevel?
D e o rm rm a o n
ev
Deformation lcvel-4
le
rite riteri ri
A lm lm Q Sl Sl no no d~ d~ fQ fQ uunn a i on on ,s ,s ou ou n f uunn ct ct io io ns ns , a n u sa sa b \~ithouttepairwork la r s l u nd nd e (F6rexample:llo c irir ccuu la pred Some deformation, b u m c n s a n be rest restore ore prmltpl prmltpl,l ,l b y re re pa pa i w o r k ( F o e x am am p le le ; circular oc nd little little residu residual al deformation); 'predktedaction',but La ge d u d e o rm rm a o n b u u nc nc t o n c a b e e s o r large residu residual al w itit h p a t ia ia l r eecc on on st st ru ru ct ct io io n { Fo Fo r e xa xa mp m p le le : large deformarionof m b n km km en en t u nd nd e p r d i ct on an partial reconstruction is nece necess ss ryir ryirre repa para rabl bl fail fail re as n o o cc cc u r eedd ) ar ge ge -r -r es es id id ua ua l d ef ef or or m at at io io n a n f un un ct ct io io n Extremely l ar to re re d w itit ho ho u o ve ve ra ra l r eecc on on st st ru ru ct ct io io n ( Fo Fo r cannot b e r eess to exampl examplet. et.ext extrem remely ely large. large.res residu idua] a] defoinliltibn of th emba embank nkme ment nt ha been beenca caus used ed by the predicted acti action on an irre irrepar parabl abl failur failur ba occurred)
fo
limIt
P er er fo fo rm rm a nc nc e r aann k E a rtrt h s tr tr uc uc tu tu r d ef ef or or m at at io io n level D am am a structural member
trac trac
with with ball ballas ast) t)
N o r eepp ai ai r ( a n ec ec es es sa sa ry ry , r aacc k improvement) M iinn o r eepp ai ai rs rs : b al al la la s .replenishment, slope reco recomp mpac acti tion on
orpa orpart rtia ia
w i .d .d en en in in g o f f or or m at at io io n l ev ev e removi ving ng slop slop surface Partially remo o rr rr oa oa db db e S ur ur fa fa c t o r ec ec on on st st ru ru c t he he -e -e m ba ba nk nk ru ru en en t o r t ra ra ck ck .
Complete remova e mb m b an an km km eenn t a n o ve ve ra ra l reconstruction.
l,
Performance. tank
P er er fo fo rm rm aann c
Deformation
D e o rm rm a o n
Damage level!
.l
-8-
r aann k Jl ve
to
Perf Perfor orma manc nc
Deformation D am am a
tank tank level
e ve ve l
2)
De me
PN
n da da r
This
p re re s b e
e ms m s , b y a t y in in g
U, ns ou t v e constructing an earth structure, w i h ou
me
p ec ec i c a o n
Ta
ow Tab
x am am p
ee n c on on f m e d p e o rm rm a nc nc e h a b ee
w ho ho s
p er er fo fo rm rm a nc nc e r an an k ( de de em em e dd - to to -s -s a s f
y in in g p e o rm rm an an c
s pe pe c f ic ic a o ns ns )
h e n a] a] o r p e
at on
c on on f g u a t o n
or
ch er
ma
nk
E xa x a m p e s o f R e la la t o ns ns h p s b e w e e P e r o rm rm a nc nc e R a n a n M a jo jo r S p eecc i c a o n C on on f g u a t o n ( D e e m e d -t-t oo - sa sa t is is f S p e c ifif ic ic a titi on on s
Requiredperformances/items Materials Compacting Finishing thickness Reinforcing material Layer. h iicc kn kn es es s l m
Embankment
Roadbed
stabili lized zed soil GJ;OupA . stabi > 9
Slope works
Drainage system
Minimum, configuration
Bearing ground
value
.5
n s a l e d o r e ac ac h
n iiss h n g
C o nc nc re re t r oa oa db db ed ed . a sp sp ha ha l roadbed E ro ro s o n p re re ve ve n o n s ma ma l f ai ai lu lu r p re re v en en titi on on , w a te te r p ro ro o fifi ng ng , { b lo lo c k c la la d di di n gridwork) L in in e d rraa in in ag ag e w o k , s lo lo p o e d ra ra in in ag ag e w o rk rk , \ t( t( an an s ve ve l s e d ra ra in in a g w o r
Structural type Functions (Configuration examples)
layer:
la.yet.'30 emor less Iayer Iayerever ever
P e f o m a nc nc e r an an k II l:l.5 or more Group stabilized value> 90%
P e o rrm m aann c an 1: 1.5 o r m o Group A, B, s ta ta b ilil iz iz e d s oi oi l value >90%
ma
llayei':
less
Installed a~ necessary
B a si si ca ca llll y n o t i ns ns ta ta llll e
Insta Install lled ed forfor-ea each ch finishing'
Installed fo eac thickness
Asphalt roadbed
C ru ru sh sh e
E ro ro s o n p re re ve ve n o n s ma ma l failure p re re v en en titi on on , w a te te r proofi proofing, ng, (soddi (sodding ng w o rk rk )
o ad ad be be d
Erosi Erosion on prevent preventio io
work, slope
Linedrainage
s to to n
finis finishin hin
Slope t o d ra ra in in a g
o e d rraa in in ag ag e w o
work
C ir ir cu cu l a r slip
less
00
Residual orless emorless •. p e rf rf or or m an an c es es , valu ac h e m a n configuration e xa xa mp m p llee s a r examples fo valu of e ac
settlement
settlement orless ..onsa Note 1) Defi at eg eg o riri e o f r eq eq u itit e Defini niti tion sand nd c at o i m ba ba nk nk m n t a s ease of unde unders rsta tand ndin ingb gbut ut Note 2) Degree of risk IS shown. here fo ease resis resista tance nce coeffi coeffici cient ents. s.
in. me It is e pr pr es es en en te te d b y d i f er er en en ce ce s between ground
(6) Actions
1)
Types of actions
Ty es
on
ud
deadl deadload oad
au ed
ai
ad Th de
c on on c e t
a nd nd a
a n o th th e
Ac
n s c on on s
x am am p
earth earthqua quakea keact ctio ion, n,
ns of~a e la la te te d d e g n
ed
on
ad
e ez ez in in g a c o n a n v a a b
nd ge er
ms
pe of
ur
a r rainfall a n
mp
have
o mp m p ly ly i
ac on with th
a nd nd a d s
u t n o far other
c tu tu r
Be us
a in in fa fa l a c o n
ez g, or
wo
below. action
that
Ra wo ks
therela therelativ tively ely
mb
o f a ct ct io io n are 'Set a cc cc o d in in g es
design service v ic ic e
me
n ed ed . R a n f
de
n ag ag e
short short-t -term erm rainfa rainfall ll (10 minutes of rainfall) se~separately by eac prefec prefectu ture. re.
Ra ur
de
km
h e e qu qu i e d performanceof f e m e ( Ac A c t o n 1) a n
Ac on
e x r em em e l
T he he s c t O f a r mu
mp
Tw (rainf nfal al that that occurs occurs occasi occasional onally ly the structure (rai
cc u heavy rainfall that o cc cc di
o ba ba b mu
a re re l
d u n g the
a l b a e d o n c tu tu a
mo
action W he he n
ea
d e o rm rm a o n a n
region h aw aw in in g e du du ce ce s it strength.
uc ur
n .a .a .c .c o
me
9-
oi causes
fr
it
j~
with As in
tw
freez freezin in
se
indi indice cess-ar ar
in
rvic rvic
construction (J
of embank embankmen ments ts in detail.
Desi Design gn ofem ofemba bank nkme ment nt T) conditions such
shap of stru struct ctur ure, e, materials nd shap
of the required performances' (safety, serviceability, response values do
110t
teach th
restorability),
ie
limi limi valu values es
Actions that that shou should ld be considered
ri
generally cate catego gori rize ze
ri
perm perman anen en
acti acti n,
to they occu occur, r, f:requency they
Performance verification m e o d u s n g
(1)
embankment in an ordinary
safety
is verified by
rc
veri verifi fica cati tion on valu valu modified
J';MRd Ld
Where:
condit itio io seismic cond
nd in
rain rainfa fall ll cond condit itio io
li method,
s ch ch em em a t c : d ia ia gr gr a th
circ circul ular ar slip slip method
is comp comp te
of th
circular
slip method for an
by
llen lleniu iu meth method od ..
L; 2:]{(W tr ctur ctur
.0 -bu)cosa-K'rWsUla}tan¢+cL+T,.1
coef coeffi fici ci nt (gen (gen rall rall
.0
design gn resp respon onse se mome moment nt l v l R d : desi
desi design gn resi resist stan ance ce mome moment nt
circul ular ar slip slip resi resist stan ance ce coefficient W: lice lice weig weight ht I r s : circ h:
h o ri ri zo zo n ta ta l s e s m i
c o ef ef fi fi ci ci en en t
angl angl ofsl ofslic ic
bottom surface
internal friction angle,«: cohesion resi resi tanc tanc ir le y:
pressure
slice width center
of th coun counte term rm asur asur
or
Me
(2)
mp
T h N ew ew m
me
me
mp
of
mb
me
me
mp
me
slip o i m a s duringan earthquake. It assumes that on hi di pl
m en en t
ob
Sh
on he
ne
of settlement acco accomp mpan an in
pl
y,
qu
hi
on
nd d, he qu nt
um ng ha
he
of ot
psu
on
ul
of he deformation coefficient
dete dete iora iora io
mp
on
, pr pr op op e rtrt ie ie s of deformation
a cc cc u m u la la titi o
mu
ma
Th
an emba embank nkme ment nt
on s d er er at at io io n t h into c on
under the, m p
on
embankment.
of th
Me
theresidualdeformation c au au se se d b y e pe pe t v e o ad ad in in g o f a in in s
mp
me
du
pe or me
gi
ma
th o d o fa fa n em em b a n km km e n t computation m e th
qu prop proper er ie
ur
o m h e m om o m en en t b a n c
me
qu ntit ntit
method
by-the by-the Newmar Newmar
ve mb
ma
mp
o n of
o mp mp u
mu
da
ma
du
o rrm ma
wi
n. Th
mp
yb
we
b a e d o n h e p ro ro pe pe r e s of th cumulativesettlerneutof'the
me
me
e m ba b a nk nk m en e n t m a te te r a l
Ef
The s ta ta n da da r me
p re re sc sc ri ri be be s
me
me
it to
wi s af af e 3)
Ve
(1)
P e rf rf or or m an an c e v e ri ri fi fi ca ca titi o
c a o n m e th th o
ns de
me
of
It
niethod u s n g h e
me
ul
mu
mp
me ho m aann c o f
the
pp
me
u pp pp o n g g ro ro un un d a ga ga in in s slip failur failur (see (see Figure M e th th o
o fc fc om om p u titi n
G ro ro un un d n um um e r c a
a na na ly ly s a na na ly ly s
(3) M e h o
ve
u se se d
consolidation
ca es whe
h ak ak in in g
g ro ro un un d on
simple
me
me
method based
One-dimensional
o f o mp mp u n g on de
by
n, al
S et et t e m en en t c au au se se d
Eq
the g ro ro un u n d s e t le le m en en t
is computed
m en en t mp
k in in g n t
me
set
me
n um um e c a
mb
O f 8 J p po po r n gg g g ro ro un un d mb
(2)
p ag ag e
circular slip computation,
d ur u r in in g r ai ai n a l
mb
nf
obtaining
method
is used
frequently,
w o -d -d im im e n o na na l d e o rm rm a o n d om om in in a
m en e n t o f g ro ro un un d d u n g
h ak ak in in g d u n g
he de
computation
me
h qu qu ak ak e
h qu qu ak ak e is computed by u mu mu l
ne of he he
m od o d u u s of h e g ro ro un un d o b
v e d am am ag ag e
h eo eo r
h qu qu ak ak e
p on on s
ne
analysis. 4)
D e g n u s n g h e d e m ed ed - o chart
pe
de gn of
m b n km km en e n t u s n g d e m ed ed - o -
set
ma nd nk nd
he
ms Th
mb
u c u r .are determined.
on
me
ng db
pe
on
Af
mp ma
Deci Decidi diugp ugperf erfonu onuanc anc
D ec ec id id in in g e mb m b an an km km en en t
D ec ec id id in in g r oa oa db db e
--------1
rank(§ rank(§2, 2,5. 5.2) 2)
i - · h ~ - p ; ~ i ~ ; m ; .~ . ~ ~ ¢ ; ~ r tk tirifis k T I -d~t~;;~iri~d~l on de ng . _
. _
m po po r n ce ce , c k
c tu tu re re e
_ I
h ap ap e § 3 1 .5 .5 )
r uc uc tu tu r
{ Ch Ch ap ap te te r 5 )
study o f s ta ta b ilil itit y m e a su su r es es . >----'-----1 (§3.:tl) ~ ~ ~ - - - - - - - - - - ~
lu s s o w o ; j o t S u p lu m e as as ur ur e
-------I
u se se d
fake. stability
a s r eq eq ui ui re re d
u d o f ground c ou ou nt nt er er me me as as ur ur e w o rk rk s (§SA)
Installing drainage works
s lo lo p e protection\Vorks
S e le le c titi n
Figu re
'3
lo
) 1 2 I n h ec ec as as e o f o we w e mb mb an an km km cu cu t c on on f h a h e subgradeconditions (Chapter 6) ar s at at is is fi fi ed ed , a n d if h er er e a r p ro ro b e m he subgrade i s i mp mp rroo ve ve d th e t em em s • 3 T h d ra ra in in ag ag e s ys ys te te m s ec ec t o n n d o th are determi determined ned ac·cotding t o t h p e rf rf or or m an an c e r an an k , r eg eg io io n a c h ar ar ac ac te te ri ri st st ic ic s roadbed structure, t op op o gr gr ap ap h y a n a lili gn gn m en en t "' are-selected a cc cc or or d n g he performance rank..cmbankmcnt shape m a te te ri ri al al s a n d r eg eg io io n a c h ar ar ac ac te te ri ri st st ic ic s
(§35)
'4
(~'3.6)
ar of Emba Emba kmen kmen
Design by t h e D e e m e d - te te - s a titi sf sf y
the deemed-to-sat deemed-to-satisf isfyspeci yspecifi ficati cation on
Spec Speclf lflca lcatl tlon on Meth Method od
method. Figure
10
ShDWS
the
standard s ec ec t o n s ha ha pe pe . Table
Le Hi 15
or on
an
Performance R a n
E m ba ba n km km e nt n t St S t a nd nd a r ma 1:1.8
X:2.0 1:2.3
e s than 151);1
S ta ta nd nd a
(2
Gradient of Slope
P er er fo fo rm rm a nc nc e r an an k. k. I 1: 1. to I : 1 . 1:1.8t61:2.0 1:2.0 to 1:2.3
Em an me
P er e r fo fo rm rm a uc uc er er au au k
II
1:1.5 1:1.8
]:2;0
S ha ha 'p 'p e
Emba Embank nkme ment ntco cons nstr truc ucti tion on hi standard,an embankment is divi divide de region upper embankment.
ma
w n to.
n to to - w o c a e go go r e s T h u pp pp e embankment
meters
nd the: the: lower lower
to
the
impacted by h e vi
o ad ad . To c on on s r uc uc t h e u p p e r
ai
ui bl
g id id i
n d that
mi
necessary to u s m a
mu
ma
al
ha ca
repetitiveloading
trains. mp After many embankments have b e e
c o m pl pl et et ed ed , train load or self-weight cause compactionsettlement,
es
degr degree ee of comp compac acti tion on
b ed ed ac ac co co r n g
he er
h ow ow s h e e g e e o f o mp m p ac ac t o n suited to eachperformance C ie ie g re re e o f C om o m p a ct ct io io n for
TabJe Performance
part
and
an
P er er fo fo rm rm an an c
an
Upper embankment Lowerembankment
U p pe pe r e m ba ba nk nk m en en t ma
HI
Lower'embankrnenr -,
(3
a n o f a c embankment. Table
rank. Pe
ma
Ra
A v er er aagg e d en en si si t r aatt i 0 1 c om om p ac ac titi on on : higher (lower limit: 9 2% 2% ) y er er aagg e 1
Others
;1.5 Ormore
So
Soft.soil F ra ra gi gi l s oi oi l
Performance a nk nk s
1 :1 :1 .
:1.8
1.
1:1.5
1 :1 :1 . t o 1.
1;1.2
l: .Oto .Oto 1.
I:1 or mo 1:1.0 to 1.5 1:1 . o r m o 1. 1 ;1 ;1 . 1:1.5 1:2.0 1 ::11 . 2. 1;1.0 to 1. 1:1.4 1:1.0 :0.7 to 1.0 LO.7 I:Q.5 to 0. 8 to to 1 : 0. 0. 5 t o 1.0 1:1.0 I:Q.3to 0: 1:0.8 W I n at at u a l g ro ro un un d r eeii n o rc rc in in g m aatt er er ia ia l
1;L5
Ha oc -, h e a tu tu r ou w ea ea k p r c r b e in commentary), It m uuss t b e r e n fo fo rc rc e of SP,.th SP,.th soi is regarded. pe ci ci al al ' s oi oi l regarded. as th pi sand o f s pe " '3 '3 : K a n t l oa oa m e tc tc . oa m l ay ay e r Iwate l oa sw ea ea th th er er e p yr yr oocc la la st st i l o d ep ep os os itit s *4 IMid IMid i sw s ed ed im im eenn ta ta titi o o f w hi hi t v ol ol ca ca ni ni cc- sa sa nd nd ar ar i p oz oz ze ze la la na na , including including loose.volcani loose.volcanicbombs,' cbombs,' *5 Shira Shirasu su *6: Tuffaceo Tuffaceous us rocks w i g oo oo d c on on so so l d a o n m a y b e c on on si si de de re re d (ope h ar ar d r oc oc k »,
Dr
wo
wo
purposes o f d r n ag ag e w o k s
de
p r v en en t m u prevent
p um um p n g
n su su r
os on of he ur
he
ng
n d p r v en en t d e
or on
ye of
op
nd
Fa ur
slope slope durin durin torr torren enti tial al a in caused m a in fa fa l g rroo un un dp dp o W a p re ep ag ag e re ss ss u c au au se se d b y e ep wo
12 c on on ca ca v
ws pa
op
ur
rainwater groundwa groundwater ter orrainwat orrainwater, er, Therefore is th pr wa u s o f h e p ro ro b m s F ig ig u work plan. Butwhen cutting destroys ma
mu da op
it i s n e ce ce ss ss ar ar y to
on
site.
5~
me
wi
C ro ro ss ss -t -t ra ra c
d ra ra in in ag ag e w o rk rk s ( lo lo ca ca titi on on s l in in ki ki n
t ra ra c
ch w itit h ( h e l on on g itit u di di na na l drain. eto.) drainage d itit ch
Center drainage ditch \ U riri de de rg rg rroo u n . a, a, m in in a g works ( dr dr aaii n p iipp e D r i na na g
a t t o o f s lo lo p
Trac side.dr side.drain ain
Figure. 12 E Xa X a mp mp l
(3
D ra ra i a g
in g System f o C u tttt in
Cu slop slopee-pr prot otec ecti tion on works
On
wo
mu
we pr
ng wa
by
he
qu ed
un
op
Table 12 N e ccee ss ss a r Required performances
wo ks ho
ns
nm
provide o r e ac ac h p e o rm rm a nc nc e
Actions
P r v en en t n g
S lo lo p w o p e rf rf or or m an an c e l ev ev e l
layer failure PI:·
A dj d j oJ oJ j o f weather; earthquakes
u no no f o f o i by s pr pr in in g w a e r
A c titi on on ' o f weather
b.
Action o f g ro ro u nd nd w a te te r s e ep ep a g
b.
6.
Maintenance
Notes:
T ab ab l 1 3
S ta ta t o f sodding; scenic a pp pp ea ea ra ra nc nc ee- o s lo lo p e
C o n se se r v in in g t h e environment
©: Definitely necessar necessary, y, O;Necess~i O;Necess~ifl' fl'0ssi 0ssiblc; blc;
ws
e ve ve l
II
Preventing advance oi"wealhering
Serviceability
Ta
rm a nc nc e L e e l ut Slope Protection Work$ by P e r o rm
Functions
P re re ve ve nt nt in in g s ur ur fa fa c
Safety
F un u n ct ct io io ns ns : o f
o te te c
an
ma or
p ro ro te te c o n w o k s
ro v id id e a s n ec ec es es sa sa r £-.: P ro
nd
-16-
b.
D,
D.
1' la la n p F u nc nc titi on on s Protection W o r k 1'
Table
Functions
Exam Exampl ples es ofrn ofrnaj ajor or slop slop prot protec ecti tion on
works
C o nc nc re re te te -b -b lo lo c p itit ch ch in in g a tttt ic ic e r aam m ee - p o te te c i o w o r by _BreCastconcrete. L a tttt ic ic e f ra ra m e prnfection.work. by
cast-ln~placeconcrete
L a tttt ic ic e f ra ra m e protec protecti tion on work by concrete spraying Concrete protection.works
S h ot ot cr cr et et in in g w o rk rk s
Sodding Notes: @; p r ov ov id id e s a d va va n ce ce d f un un c titi o ns ns , p ro ro v d e 1: bb on ar ed protect protect inside insidethe the iattice + : 2 : s od od di di n I S u se se d t o p ro ro te te c inside th lattice,
Chapter
h e design an
p re re sc sc r b e
u nc nc t o ns ns ,
X : d oe oe s n o p ro ro v d e u nc nc t o n
'\
cons constr truc ucti tion on of roadbed.
of design
d e g ne ne d bysett1hg the-required performances
a db db e ea
uc ur o ad ad be be d
c on on s d e n g
h e. e. ty t y p o f t ra ra ck ck .
d e g ne ne d using h e p e o rm rm a nc nc e b a e d
on
ma
d es es ig ig n s ec ec t o n shape an
h e m a te te r a l u se se d
o r e ac ac h
qu ed
ma
d es es ig ig n m e th th o
by s e e c n g h e type
track
e r o rm rm a c e
a fe fe t
me
performance c ea ea b
y,
e s o ra ra b
ms
and, it is v e
y)
ed
ha
de
limit value. stone roadbeds. Concrete
concrete,
ks
Fi
mp o rd rd in in ar ar y
4)
ks
Cr
tracks in
n e s ec ec t o ns ns .
~4-~---~ r - ,
.!>!.
1"ypcA s J : ' q II';!ck CAmOTlar
S i m pl pl i p a vi vi n g
layer
2l
E xa xa mp mp l
St
wi
-17..;
Co
et
R pa pa d e d
layer m i xt xt ur ur e l ay ay e mal) coat'
Unitrmm
RA lypcllf!¢ksl lypcllf!¢kslqb qb
G r a d e s lal a b i titi u d en;,.hccl s t O i J e , g r a d e s!abil s!abili~d i~d sreelslag(MS). sreelslag(MS). h y d r ; , u H ¢ gmde~!abil gmde~!abilrlr rlr stee slag ( H M S ) , alln s m i l e ( lol o w e r r o o d b t d ) Q!her = h e d
CAmQrlar
S im im p l
p av av in in g
D t I in in ag ag e a ye ye r
a mp mp l
(3
an
p ha h a l R oa oa d e d
alas es
ac
o f r oa oa db db e d db
th required performances
ha
of track. G en en e
rank T, a n
mp supporting
r oa oa db db e d s up up p or or titi n
COncrete.roadbed o r : a s p h a l t
h en en , e i h e
ac
balla ballast stle less ss
e le le c e d
ma ba as ed
the
ma o ad ad be be d
p e o rm rm an an c
u pp pp o n g
ba as ed
asphalt
r ac ac k .in
rank III, an
performance
c ru ru sh sh e
on
roadbed is selected. w s the
Ta
toa d b e d Table 14
Tm
Ballastless
an
R oa oa d e da da n
Pe
ma
P e o rm rm an an ce ce . n k R oa oa db db e C o nc nc re re t
t yp yp e r oa oa db db e
I : :. : :: .
Ra of ea roadbed
+ _; ~ -_I I __
uc
wi
he
_.-
PerfonnancerankJI Performance rank III
track
Legend: Recommended, Ca wh
Ve
ac
or-the
Perj'orrpailceri;lhk
Ballasted.
(4)
pe
Performance rank roadbed
yp
p e rf rf or or m an an c e r an an k .r.r el el at at io io n sh sh ip ip .
o fp fp e o rm rm an an c
of
P e rf rf or or m an an c e v e ri ri fi fi ca ca titi o mo
ay be,used, X: C a nn .6 nn o b e. e. us us e to o fa earth structure. fa p o t n an an c an
Ca
ca on me ho
Crushed stone roadbed.
o f R oa o a db db e
r oa oa d be be d is o n
vi to th
analysis method
performanceaccording to the determined
er
di es ~n
by d e g nb nb a e do do n
ed ma response
values
pr er nd
he
na ve if in
h e types o f a ,c ,c t m s h a a r h an an d e d
d ee ee me m e d o - a t y sp sp ec ec i c a o n
their
T I e , s ec ec t o n
h a permit d es es ig ig n w i h ou ou t
de ai ed de gn wo k.
deemed-to-satisfy specifications Design
me
me
type o f r oa oa db db e
p er er fo fo rm rm a nc nc e r an an k and-track structure to d e e rm rm in in e h e a pp pp ro ro p a t
according
stows section
da
ap
on
ad ed
p e o r the asphalt roadbedandthe
as
011
o ad ad be be d
deemed-to-satisfy mi
way.
'-18-
h ap ap e specifications.
me
n c re re t e Roadbed S e c o n S h ap a p e . b y Deemed-to-Satlsty Table 1 5 C o nc L in i n e t yp yp e
Standardgauge Na wg
Reinforced concret concret slab slab G ra r a d s ta ta bi bi l z e s to to n l ay ay e G au au g
c ru ru sh sh e
o f n a o w g au au g
IS
R o ad ad be b e d w i dt dt h s up up po p o rt rt in in g load: B L m ) 3.20 2.60
Specifications S ta ta nd nd ar ar d t hi hi ck ck ne ne s
=0.30 ""Q.30 t2=0.15 12=0.15 II tl
Standardgauge N a rr rr o g a ug ug e l,06701m.
de
uc
(m)
bg de
s o
(1)
th
safe perf perfor orma manc nc
veri verifi fica cati tion on
is
on on
on·t on·t
Then" nc
he nd
it must he
bi
lue
th subgrade subgrade o f c u n g and groundwork is
wn
left side schematic
Figure 15., to
widthof
am as th form format atio io
width.
Grotind
" I l s l e s th;m3 m.
Sc pe
3)
F U 1 c c 11 11 1
Ground
theSi:Jbgrade
subgrade V Ib Ib ra ra t o n m a y
ma ntai ntaina nabi bi it
of he rack rack when it
if
de
layer
uc ng Less
he
susceptible must region.using th action prescribed in.ChapterZ of thestanda thestandard. rd. Then, ithe ithe them themat at rial rial must must measure re mustmust-be be take ists fr st heav heavin in at other measu take to pr vent vent fr st eavi eavi g. with th tw ic re ists harmfuldeformation
replaced
an K30
30
th p e o rm rm an an c
dete determ rmin ined ed cons consid ider erin in
shows th
eeme eemedd-to to-s -s tisf tisf
an
roadbe be of th road
peci pecifi fica cati tion on
e r o rm rm aann c
he
is
acco accord rdin in
fo th
Table 16 D e em e m e d4 d 4 6 s a s fy fy Sp S p e c c a o n$ n$ o
valu valu requ requir ired ed by th su grad grad
K30
1\30
valu valu requ requir ired ed by the subgra subgrade, de, V a lu lu e R e q u r e d by t h S u bg bg ra ra d e Ball Ballas aste te
m i k : o f h e o ad ad be be d
trac trac
70MN/m
specified K~ value, thesubgrade is impr improv oved ed
7.
einf einfor or ed Soil Soil
material an outl outlin in
of'reinforced soil). reinforce soil
(1)
Embankment
Embankment
an appr approa oach ch
lo
ha ca
mate materi rial al
rein reinfo forc rced ed soil soil An appr approa oach ch block used
grade stabilized c ru ru sh sh e r oc oc k stabilized with cement, he hard harden ener er used used to stabilize it is genera generally llyeit either her ordinary Portland cement, fly ash cement (2 Geotextile wa
reinfo reinforce rce installed inside
rein reinfo forc rced ed soil soil abutment.is
cement-treated-soil-type
facing alkalinit nity. y. Conseq Consequen uently tly with high alkali
appr approa oach ch bloc bloc
geotextile
designed ed to provide required safe safety ty from from all actions nd environmental must be design conditions, (3)
Ground reinfor reinforcin cin
T en en s
co
ba ic ll
material material
m a te te r a l
defo deform rm
ground.reinforcing te
at rial rial ar
base base on pa
expe experi rien ence ce in rail railwa wa
work work
rods
steel rods rods used include fully threaded steel larg larg diam diamet eter er rein reinfo forc rcin in
mate materi rial als. s.ar ar
fully
fact
ay that they nfor in for-deformed re nfor [FRPP-3116j
ar
stan stan
fo bard bardia ia eter eter.) .)
structur turesc esconst onstruc ructed ted design of struc
c o d in in g
qu
us
p e o rm rm a c e a s
pe or
he ve
c a o n Figure.
ws
t h performance i te te m s a n verification indices
Assumingthe.shape a n d m a te te ri ri a s p ec ec if if ic ic at at io io n s co co n si si d er er in in g ' t h e' e' p re re m i se se s oftlie. oftlie. verific verificati ation on Computin'gthe
mp
es : a n response v a u es
mit va ue
design flow;
he
ge
required
S e n g h e p e o rm rm an an c performances
nk or
S e tttt in in g th perf perfor ormanc manc f oorr sa sa fe fe ty ty se se rv rv ic ic ea ea b l i y , De gn v ic ic e
er ifif ic ic at at io io n i nd nd ic ic e items items a n v er a n restorability
S af af eett y factor, combination of actions, characteristic v a u e o f a c i on on s a ct ct io io n facior,and environmental conditions
S et et titi n t h g en en er er a conditions
r -
mi
as been verified. Finally th
Setting the perfor performance mance rank
S et e t titi n
o nd nd u
Th
de l o r e qu qu a o n h a analysis m o de
a r u se se d
oi
uc ur
ma
by using
by s e n g h e p er er fo fo rm rm a nc nc e rank N ex e x t h e p e o rm rm a c e m s nd er on d i e s to
n fo fo r
S up u p po p o rt rt in in g g ro ro un un d c on on d t io io n s h ap ap e . o f 't't lili e r ei ei nf nf or or ce ce d s o i s tr tr uc uc tu tu r e As mi S et et titi n tbe m a te te ri ri al al s a n d es es ig ig n v a u e o f a c mem member ber
er vi vi ce ce ab ab ilil itit ya ya n d .•Computin .•Computin safe safety ty s er each. verification verification item
responseand.Jimit
'\.alues
r es es to to ra ra b ilil itit y for
Verifying the: required
No
SirucnrralDetails
P re re pa pa r n g d es es ig ig n d ra ra wi w i ng ng s
Figu Figure re 17 Reintorced Soil Soil De~ig De~ig Flpw Flpw
3) Re ui
er ws
m an a n ce ce s
nd pe
m an an c
mp
nk ma
ma
ma
r ei ei nf nf or or ce ce d s oi oi l T o v er er ifif yr yr eq eq u r e nd
ec es es sa sa r p er er fo fo rm rm a nc nc es es , it is generally n ec
o r b i y . P e o rm rm a c e
f o s er er v c ea ea b
ng e a r p a e ng
em d in in g
or af c om om fo fo r
setperformance c tu tu r
ai
d eg eg re re e o fd fd i c u
e,
.items for-safet for-safety, y, serviceabil serviceabilit ity, y,
bi
nd
ai
u nn nn ab ab i
os
o f a c maintenance, noise/vibration,
stability, deformability, damage, a n
e s d ua ua l s t u c u ra ra l
strength. ws
Table
nd ve
at
performances,
mp ms an
p d c e a pp pp l ¢ d
h ec ec k
ma
ms
p e o rm rm a c e
structures B la la d o f r e n fo fo rc rc e
ms
ab
E xa xa mp m p le le s
Re
e dp dp e
ma
es
an
Pe
ma
Ra
St
e s M ad ad e
Re
ed So k I
on di di t o n a n during ) n o rd rd in in ar ar y c on L ev ev e - I e ar ar th th qu qu ak ak ee- mo mo t o n s af af e mo u n de de rg rg o e e x trtr em em e l s m a l l deformation, so repai repai is u nn n n ec ec es es sa sa r a n no members reach yield.
Application examples
f roro m
undergoes extremely Small deformation, so repair unnecessary an no members reachyidd,
Ca a ck ck ,
a mp m p le le s
Performance erformance items
Object
an
ballasted
Verification' Indices to V e r
St bi
C a rb rb o ni ni za za titi o
Reinforcing material
Stahl lit')"
PUa-O!ltofreinfo~iI!& material Fracture of reinforcing m a t e r i a l
Suppo Support rtin in
," la titi ve ve de de fo fo rm rm a titi on on , d y na na m i Maintainab'iHty·2 C u m u la ;, ,d
grQun grQun
R,einfor R,einforced ced soil
Roadbed
concentration
R e qu q u irir e
P e r fo fo rm rm a nc nc e
o f use is wor
Actions
actions an service
Infrequent
their repetitive
life va
on
wi
arge effect
d e pt pt h e h lo lo ri ri de de io io n
passf,pn rriding com rt
I::N:-o-;'is'-e!";-'v-';ib;""ra-:-:'tio-n"1·~~V v -';ib;""ra-:-:'tio-n"1·~~V i:;:;)b;""ra-;:tio-n~.:;-le-v i:;:;)b;""ra-;:tiu-o""':j:-se-l;""e-ve""':I----i o-n~.:;-le-v ""':el:-,
Supporting ground
Reinforced soil" Restorability
Ctack.,vidth,
Stability
L i qu qu e fa fa c titi on on p re re d ic ic titi o
service lifetime h a t o c c u rrr r e lal a tit i v e l Actions t ha during-the design s e r v i c e
often lifetime
v a lu lu e
(sliding,
AC1~ons m? deSI?" service
C om om p e ss ss iv iv e
c ap ap ac ac i y , s he he a cl!Q.ac1!,y• Accidental.actions wltl~ ~xtremely lo o c c u r r e n c e probability, "'J' ll rty: actor WI OffOllnaatibn arge ec
'J
Stability soil. a b u t m e n t
du ng he
relainil!B_
Displacement
Deformation
St
repetitive o cc cc u r en en c
Stippoit Stippoitih~¢ll ih~¢llpacjt pacjty' y' ofeq'U~ted
Failure RCmemben;
. Pr Pr eq eq Jl Jl en en t actions a n d t h ei ei r
stress
Appea:raIice~"
Stability
(4
its p e e mp mp o a r
Capacity
Publih s a , f e t y " 2
*l':A typical reinforced necessary,
Case w h e r e mi ed purposes.
External stability (circularslipping) Consolidation. Consolidation.settl settlement ement Liquefaction p re re d ic ic titi o v a lu lu e r n t e r : : o ~ l stab stabil ilit it (s ipp' ipp'in ing, g, overturning, circlel Suppor Supporti ting ng caga cagaci city ty Of
", "';~ 'J ', retanung Failure Com~essive capacity;.. shear c~c1!,y t - R _ o _ a _ d b , ; _ c ; _ ; ; d ; _ ' - i , : , : T i . ; . ; r a . ; . ; ; ; i n ; . ; cU_ ' l l ; - : ' = . = a b : : :Dc" i"Y"Y; :U: 'I i _ ._ t:a: at y_ " ' m _ '_ i c . . . ; d ; . ; c i s , - " p ' " " j l a : : . . : c e . . : . m _- ', ,-~- e_n~_ _t -_ , _- _- '_ _ , . Foundation
Reinforcing
c o nd nd itit io io n , d u riri n L e ve ve l-l- l e a h qu q u ak ak ee- m o i on on , a n a in in ffaa l h a o cc cc u s ev ev e a l m e year, year, allo allows ws deformation, but is safe from all a i u r m oodd es es , a n no n em em b er er s e ac ac h y ie ie ld ld .
Examples Examples of'verif v erific icati ation on items or indices
Stabilitj'2'
oi
In o rd rd in in a r
rare.
em
Remembers
s,ervicea
modes
Case of'support. of'support.forbal forballastl lastless ess track.
Reinforced
.bilit .bilit
al fa ur
O vvee ra ra l s t u c u rraa l s ys ys te te m d oe oe s n o f ai ai l u nd nd e L ev ev el el ~ r :::: ar ar th th ql ql la la k motion nd extremely rainfall,
Supporting gro!lnd
Safety
c o nd nd itit io io n a n dd dd u titi n
Prevenl Prevenl excessi excessivede vedefor formati mation on Level-Z Level -Z earthq ear thquake uake-mot -motion ion under its and extre extremely mely rare-r rare-rai ainfa nfall ll.en .en f un un ct ct io io n c a b e e s o re re d quickly by r ep ep a w o rk rk .
ab Required performances
I n o rd rd in in a r
Level-l earthquake motio motion, n, safe safe
ov
Pi.£b.outofreinfor~ing material ofreinfort:in...1l material approach b lo b y th:is lo ck ck . * 2 Performance item
Acti Acti nsus nsused edto to designreinforced soU
acti acti
eart eart
ress ressur ur -act -actin in
])
the
mb
me
ma
characteristic me ho
earthpressuremust
o; wo
gh
ne
we
mp
w ed e d g m e h od od ) me
wn
slip p l n e (P
h e o i p re re s u r ma
he Ve
~p
ng
nd the
ffj.ciI;lg work
om
n ch ch o n g
of he
n fo fo r n g
and block 'B Then the
static ic bala balanc nceo eo o n th stat by
ma
me
d e of
ba
a c n g o n h e backof th
1.
obtained
h ow ow n b e o w
mp
from
c o nv nv e rg rg e nc nc e c o m p ut ut at at io io n s
Figu Figure re 18'~ 18'~ atIC atICOf Of tn
Where:
lnte lntern rnal al Stability of
Soil Wall Wall Reinforced Soil
s o1 o1 1p 1 p re re ss ss ur ur e a c i n o n a c n g PiY: ve
o mp m p on on en en t o f o r
of he
oi .p
Pili: horizontal component offeree o f h e o i p r
ur
ng on ur
ng
ng on
ng
we mp
bv
h o z on on ta ta l c om om p on on en en t o f force
bh
j: r ei ei nf nf or or ci ci n
8.
Rein Reinfo forc rced ed Soil Soil Reta Retain inin in
Ch pt
pr
be
we
n fo fo r
m a t er er ia ia l r es es is is ta ta n c
we
ari-th layer
Wall Wall
o i walls
on
n g o f m b n km km en en t m a
g eo eo t x t e an an d
R C walls.
(1) Th
wa
c on on s
o f e m ba ba nk nk m en en t m a te te r a l
by g eo eo te te x e , c a
me od
mb
o l o w in in g a r th characteristics Co ws
m eenn t wa wo
ma
g ra ra d e n
between
Ve
1 :0 :0 .
wi
m p y in in g me
ou
on wo
ke
th
n te te g a t o n o f h e e in in fo fo rc rc e
ve
ma when it is reinforced
ho r using s ho
tensile rigidity.
wi
design Th
he
application-to
a nd nd .o .o th th e
wa11s is
o rrm ma
locations with b a llll as as te te d t ra ra ck ck s It
o ca ca t o n
whe
Th
me
with
structure
with
wi
Th by
me
rneth od, reinf reinforc orced, ed, soi retaining wall rneth me
b)
n -p -p la la c
facing reinforced soil an method. It c on on c e t o r panel facing (see Figure 5),
d i p la la ce ce m en en t
e ve ve re re l
ma e s c te te d
ma
e in in fo fo rc rc in in g
uc ur s lili pp pp a g
1 J J ,g, g e
a n d o v er er tu tu rn rn in in g b y h e w o w e d g m e o d
ow
C h ap ap te te r
externalstability fo rc rc em em e n t h e e m b a n k m e n t r e n fo wh
syst system em
va ua
us ng
m e th th o
is verified by confirming
incl includ udin in
circular slip. slip. method using
mo
me
this
Bi
me is no
po nt
limited.
ve
ex
e e F ig ig u
na
ab
1 9 T h s ta ta b
slip p la la ue ue ih ih te te r e c
wh
yi
ve
e d a cc cc o d in in g
to
h e reinforcing m a e r
h e a nc nc ho ho r n g e f e c
h e e i o rc rc i
at
installed
ma
al
h e d e g n e s a nc nc e m o m en en t
Fi
De
he Sa et
Fa or by Ci
ar Sl
Work r ei ei nf nf or or ce ce d s o i wall is verified by t re re at at in in g t he he - s oi oi l
a c n g work
Th
wo
ma c on on t n uo uo u (6
b ea ea m
compute the secti section on force. force.
Veri Verifi fica cati tion on of deformation
Deformation
th
reinforced
eg
ba ca
s ur ur fa fa c e p ro ro d uc uc e d by the followi followingt ngtypes ypes
r es es po po ns ns e v al al (l(l e
computing th
er
of dcfor dcformatt matton on o r e s o ra ra b
settlement a t h e embankment
L ev ev e
e a h qu qu ak ak e m o t o n
ew m a r deformation analysismethod is h e N ew
that
quantity of displacementassuming
mb
method:
reinforeed
mono monoli lith thic ic mass mass (1
2) (3
Sl ppin ppin
disp displa lace ceme ment nt of th
O ve v e r u rn rn in in gd gd i p la la ce ce m en en t
einf einfor orce cedr dreg egio ion. n.
o f h e e in in fo fo rc rc ed ed re re g o n
Shear d ef ef or or m a o n o f h e r e n fo fo rc rc e
r eg eg io io n
(1) S lili pp pp ag ag e m o d
Figure 20 F a
(~) Overturning. Overturning.mode mode
an
De
ma
M od od e
Ri
( 3 S he he a mode
aC
Re
ed So Wal
pu ng
se
Soi Abutme Abutment nt
that appr approa oach ch bloc block, k, g eo eo te te x e ; a n R C wall,
ceme cement nt-t -tre reat ated ed-s -soi oill-ty type pe
F ig ig u
2 1 h ow ow sa s a sc sc he he ma ma t
d ia ia g a m o f a ce ce me me n
Generally, h e p o n t
of
we th
em
mb
en
me
k me me n
earthquake.
p ar ar t c u a r
it as
of
eh
wi
RC
Uc
constructiorr
through th
settlement occurring after
om
required. performances
an approach block.made
However, severe
o f g ra ra d s ta ta b z e
for safety
c ru ru sh sh e
measures using th approach
ma
me
such
e ve ve l d if if fe fe re re nc nc e 'often appears between a n a bu bu tm tm en en t a n
standard, it is possible
Un
serviceability
mb
reinforced soi abutment abutment
ea ed oi yp
an
o ne ne . k, Th
to
cement - tr tr ea ea te te dd- so so ilil - y p e r ei ei nf nf or or ce ce d s oi oi l a b ut ut m en en t
'Embankment
«,
L o n r ei ei nf nf or or ei ei n m a te te ri ri al al s p la la ce ce d o n l ay ay e i l e ve ve r
three three .laver .laver
T.,,6lYkN/m
FigUre 21 Cement -Treated-Soll-Type
(2)
intern rnal alst stab abil ilit it Verification of inte
R e i n fd fd rc rc ed ed S o
A bu bu tm tm e n
duri during ng construction
duri during ng construction is veri verifi fied ed by eval evalua uati ting ng th following tw item items. s.
Inte Intern rnal alst stab abil ilit it
stabili lity ty evalu evaluat atio io (1) Internal stabi
(2)Part:ial
ou b (slippage, overturning) by th d ou
stab stabil ilit itye yeva valu luat atio io
(pul (pulli ling ngou ou
oxfra oxfract ctur ur
w e dg dg e c om om p u a t o n m e th th o
of geotext geotextil ile) e) by h e d ou ou b
w ed ed g
c om om pu p u ta ta t o n
method (3
V e r f ic ic a o no no f
T he he e
the v e c a
of
ca
u pp pp o up or
of
abutment
performed according to h e f ou ou nd nd a o n s ta ta nd nd ar ar d H o w ev ev e
the abutment because consolidated by soil that is improved with cement.
the back of
pressure
me (4
Ve
Th
c a o n o f h e s ta ta b o f th
bi
a na na ly ly s
deforinabiHty
or on damage
pp d, r e a t o ns ns h
Th
o b a in in e
po
nd th
me en
This
mi
h -o -o v
value i$ computed by th
f ro ro m the'push-ovet
RC members as well
abutment
v er er ifif y n g the level
m em em b
c on on s d er er a o n n on on - n ea ea r p ro ro pe pe r e s an
the o ad ad -d -d is is p a ce ce m en en t
an
me
I S c on on du du c e d by m o
taking n t
nc
o f h e abutment
acco acco ding ding to the seismic standard, a n
memb member er
it is not
-25-
geotextile.
he
c o nd nd u ct ct e
by
analysis that sequentially
e qu qu a e ne ne rg rg y c r e r o n u s n g
a na na ly ly s s . V e r f ic ic a o n
level of foundational
ma
stab stabil ilit itya yare re
o f h e failure mode cond conduc ucte ted. d.
th stability of th cement-t cement-trea reate ted-s d-soil oil-t -type ype
Ve V e ri ri fi fi ca ca titi o Us
safetY (Level-l (Level-l.ea .eart rthquake hquake o f safetY
th
me
approacf approacf block
motion) approach block
cement-treated-soil-type
h o z on on ta ta l b ea ea r n g c ap ap ac ac i y , v er er t c a b ea ea r n g c ap ap ac ac i
'S
an: equated equated retaining w a
a n o ve ve r u rn rn in in g
a fe fe t a cc cc o d in in g
it fo
ve
h e o un un da da t o n
standard.
Re or bi
L ev ev e
It
me
d uc uc t
f aa- c o r a c c or or d n g
ar hq ak he se smi Slop Slop
--
ac ng wor wi
wa
s ta ta nd nd ar ar d
With With
prescribes the r e n fo fo rc rc e
m a te te r a l a n (1
approach block is an equated
the cement-tre cement-treate ated-so d-soilil-type type
10.
Chapter
mo on
ee
acin acin
slope with facing
cu
ground reinforcing
h ig ig h f le le xu xu ra ra l r ig ig id id i y ,
General
This stand standar ar
lc ln ln d presc prescri ribes bes th f o I lol o W 1 t 1 g w o lc
(a)
A n c ho ho re re d r et et ai ai ni ni n
(Q
R e n fo fo rc rc e
Th
n ch ch o e d
m a te te r a l T h
so
o f r ei ei nf nf or or ee ee d s o w a ground
wall; forself-supportingnatural
e ta ta in in in in g w a l
cuttings:
o r n a u ra ra l g ro ro un un d f o n on on -s -s e f - u pp pp o n g n a u ra ra l g rp rp u
e t n in in g ac
ma
()~.th,e w a
h o 4 th th eQ eQ ~ c
wh
earthquake
with c ob ob b e ba ba ck ck f reinforced soil retaining wall fo ground reinforcing materials me ab u t slopes. It permits s te te e g ra ra d e n a l o w in in g e la la t v e a rg rg e c a s te te ep ep l non-se non-self lf-s -suppo upport rting ing natur natural algro ground und tod)~,given g ra ra de de d c u n g e ve ve n o f non-s¢lf~upportirig natural g ro ro u d . F ig ig u h ow ow s tw s ch ch em em a t d ia ia gr gr am am s cutting retaining w a
conventional
ma
of t he he s m e th th o ds ds .
A n ch ch or or e
r et et ai ai n n g w a l
R e in in ffoo r ce ce d s o i r et et ai ai ni ni n
ig re 22
2)
V er e r i c a o n o f n te te rn rn a
To er
nt
al
h e m b n km km en en t
ab
mb c om om p u ta ta t o n m e th th o
me (see F i
Soli Soli
ground
Walls t'orCut t'orCutiiiinQs nQs
ab
y, he nt
ur ng co
info inforc rc
w a llll .f.f o rn rn a tu tu r a
uc on
al
form w i verified by !h circular slip m e h o bi
by 4)
h e c om om p e t
me wh
h e n te te rn rn a by
ab we
Centerofclr Centerofclrcul cular ar .sJip tsu.~bf'.''''b
View more...
Comments