Rivolta Miguel y Lucas Benavides 2016.Apunte de Cátedra Unidad 5. Bases Físicas de Los Fenómenos Bioeléctricos
Short Description
Descripción: FEnomenos bioelectricos...
Description
Física e Introducción a la biofísica
Apunte de Cátedra Unidad 5. Bases físicas de los fenómenos bioeléctricos
En la mayoría de las especies animales los mensajes en el organismo llegan por dos mecanismos, el hormonal y el nervioso. El hormonal viaja por vía sanguínea desde la glándula secretora de la hormona hasta el órgano que recibe el mensaje hormonal. Es lento, pudiendo tardar segundos o minutos. El mecanismo nervioso consiste en un impulso eléctrico a través de la membrana celular de las fibras nerviosas y es muy rápido, tarda milisegundos en llegar desde el cerebro hasta el órgano receptor del mensaje. En esta unidad vamos a trabajar las bases físicas de la bioelectricidad para poder comprender los cambios eléctricos en la membrana celular y los procesos de conducción en las fibras nerviosas. Los contenidos que se trabajarán en esta unidad son:
Carga eléctrica. Ley de Coulomb. Diferencia de potencial. Condensador plano. La membrana biológica como condensador plano. Corriente eléctrica. Medios conductores. Resistencia y conductancia. Ley de Ohm. Capacidad eléctrica. Circuitos eléctricos. Los fenómenos bioeléctricos. Potencial de acción.
1
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
Electroestática 1) Carga eléctrica Al peinarnos es posible observar que al frotar un peine varias veces contra el pelo, el mismo es atraído y se pega al peine. Lo mismo ocurre cuando frotamos una lapicera contra la ropa y la apoyamos sobre un papelito, este se pega a la lapicera. Comúnmente decimos que el peine y la lapicera están cargados, pero ¿qué significa esto? La estructura atómica moderna puede explicar este fenómeno. Recordemos que el átomo está constituido por un núcleo con protones (carga positiva) más neutrones (carga cero) y electrones (carga negativa) que giran en orbitales definidos alrededor del núcleo, y que les resulta fácil liberarse del átomo. Por ejemplo por efecto de la fricción algunos electrones del papel pasan a la lapicera y, de esta manera, tienen un exceso de cargas negativas la lapicera y positivas al papel. En su estado natural, la materia es eléctricamente neutra (carga 0, no tiene carga), tiene la misma cantidad de protones que de electrones. Cuando decimos que un cuerpo tiene carga negativa, es porque tiene un excedente de electrones. En el caso de un cuerpo con carga positiva, asumimos que ha perdido electrones. Cuando dos cuerpos cargados se encuentran a una determinada distancia surge una fuerza entre ellos que puede ser de atracción o de repulsión, dependiendo del signo de las cargas de cada uno.
Cargas de distinto signo se atraen, cargas de igual signo se repelen.
Cuando dos cargas interactúan, la fuerza es ejercida sobre cada una de ellas con igual intensidad y ambas se calculan con la misma ecuación: la
Ley de Coulomb cuya expresión matemática
es:
F = K Q1 . Q2 d2
F: Fuerza de atracción o repulsión sobre cada carga. Se mide en Newton (N). Q1 y Q2: son los valores de cada carga. Se mide en Coulombs (C). d: distancia entre las cargas. Se mide en metro (m). K: constante de Coulomb. Vale 9 . 109 N . m2 C2
Q1
Q2 d
En realidad, la intensidad de la fuerza electrostática se modifica según el medio donde se encuentran las cargas. Para obtener un valor más real de la fuerza de interacción se introduce
2
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
en la ley de Coulomb una constante que denominamos
constante dieléctrica y se
representa con la letra r. La ley de Coulomb quedaría representada así:
F = K Q1 . Q2 r .d2 (r) en el aire o en el vacío vale 1. Para los ejercicios tomaremos el medio de interacción al aire, por lo tanto no utilizaremos a la constante r. La constante dieléctrica
2) Campo eléctrico Imaginemos que sobre una superficie hay una carga grande (Q) que está quieta y no se mueve. Si tomamos una pequeña carga de prueba o exploradora (q) de signo positivo, con carga de 1 Coulomb y la ubicamos a diferentes distancias de Q vemos que sobre la carga q aparece una fuerza generada por la presencia de la carga Q. La fuerza será repulsiva o atractiva dependiendo del signo de Q. Según la distancia a la que ubiquemos la carga de prueba, la fuerza será mayor
campo eléctrico: es un vector, tiene dirección, sentido y módulo y se representa con la letra E. o menor. Podemos decir que la carga Q genera un campo de fuerzas que llamamos
Se calcula con la siguiente ecuación:
E=
F q
F: Fuerza de atracción o repulsión. En Newton (N). q: carga de prueba. En Coulomb (C). E: campo eléctrico. Se mide en N/C.
Si reemplazamos F en la ecuación, nos queda:
E=
k .Q .q d2 . q
E=
k .Q d2
Al calcular el campo eléctrico a una distancia d de una carga, lo que estamos calculando es la fuerza que actuaría en ese punto si se pusiera ahí una carga de prueba.
3
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
3) Líneas de fuerza Definimos al campo eléctrico como un vector, por lo tanto debemos ver cuál es su sentido. Las líneas de fuerza o líneas de campo alrededor de una carga indican para donde apunta el vector campo. Las líneas de fuerza en un punto muestran hacia dónde apunta la fuerza que actúa sobre una carga de prueba puesta en ese punto. Por convención la carga de prueba siempre es positiva. Por lo tanto los esquemas de líneas de fuerza serán así:
+
-
Si una carga de prueba se coloca sobre una línea de fuerza, esa carga de prueba se va a mover siguiendo la dirección de la línea de fuerza. Será atraída por la carga negativa y caso contrario por la carga positiva. En el caso de los dipolos (sistema formado por dos cargas) separados por una determinada distancia, el esquema queda así:
4) Capacitadores Si tomamos dos placas metálicas y las colocamos en forma paralela una frente a otra, y hacemos que una se cargue con cargas positivas y la otra con cargas negativas, obtenemos un
capacitor, anteriormente se lo llamaba condensador. A causa de la presencia de las cargas, se genera un campo eléctrico uniforme y constante en el interior del capacitor. Un condensador puede representarse de la siguiente forma:
4
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
+ + + + + + +
d
Si prestamos atención al esquema, podemos asociar la membrana celular con un capacitor. La membrana tiene una doble capa lipídica que separa el exterior del espacio intracelular. En la superficie de la membrana se ubican iones que cargan en forma positiva la cara externa de la membrana y con carga negativa la cara interna. Entonces, de esta manera, la membrana actúa como un capacitor. La transmisión del impulso nervioso se debe a cambios en las cargas de la superficie de la membrana. En el apartado que sigue explicaremos diferencia de potencial y volveremos a ver impulso nervioso.
5) Diferencia de potencial Si queremos mover una carga q desde una de las caras del capacitor a la otra, deberíamos realizar un trabajo. Dicho trabajo para mover una carga de 1 C (coulomb) desde un punto a otro se llama diferencia de potencial (V) y se mide en volts (V). La unidad de trabajo es joule (J) y la de carga coulomb (C), por lo tanto:
V=
J C
Al mover la carga, aparece una fuerza sobre ésta que depende del valor del campo eléctrico. Como vimos, el campo eléctrico se representaba como:
E=
F q
Si despejamos la fuerza nos queda: F=E.q
En la unidad 1 habíamos definido al trabajo como:
W=F.d
5
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
Si vemos la ecuación anterior puedo reemplazar la fuerza y queda:
W=E.q.d
W=E.d q
Si definimos diferencia de potencial (V) como el trabajo (W) para mover una carga (q) nos queda la siguiente ecuación:
V = E . d V: diferencia de potencial. E: campo eléctrico del capacitor. d: distancia entre las placas del capacitor.
En resumen, en un capacitor se origina una diferencia de potencial (V) entre las dos placas que depende de la cantidad de cargas y la distancia entre las capas. Como ya mencionamos, la membrana celular se comportaba como un capacitor, por lo tanto también se origina una diferencia de potencial entre las dos caras de la misma. Todas las membranas celulares tienen una diferencia de potencial que se denomina potencial de membrana y es originada por una distribución especial de los iones. El valor del potencial de membrana es en promedio de -70 mV. Como vemos el valor del voltaje puede tomar valores positivos o negativos:
1 V = 1000 mV 1 mV = 0,001 V 1KV = 1000 V
La corriente eléctrica domiciliaria tiene un valor de 220 V. Los trenes del ferrocarril Roca funciona con un voltaje de 25 KV (25.000V) y la membrana celular tiene -70 mV (-0,07 V). Es importante mantener una correcta distribución de iones en la membrana celular para que exista una diferencia de potencial adecuada. En caso de déficit o exceso de algún ion, como sodio (Na+) o potasio (K*) podría provocar cambios drásticos en el valor del potencial de membrana que podría llevar a la muerte de una persona por paro cardíaco. En las película vemos que el asesino quiere matar al testigo internado en el hospital con una inyección endovenosa, y si prestamos atención, a veces vemos que es una sobre dosis de ion potasio (K +). ¡El asesino aprobó la unidad 4 de Biofísica!
6
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
Corriente eléctrica Cuando hablamos de corriente eléctrica enseguida pensamos en los cables y enchufes de nuestras casas. Y está bien que lo hagamos porque nuestro estilo de vida depende principalmente de la corriente eléctrica. Pero, ¿qué es la corriente eléctrica? Podemos definirla como el movimiento, flujo o traslado de cargas por un conductor que, comúnmente, es un cable metálico. En general las cargas eléctricas que circulan son electrones. Si pudiéramos ver el pasaje de los electrones por el cable, podríamos contarlos y de esa manera ver cuántos pasan en un determinado tiempo. Al hacerlo estamos calculando lo que llamamos
intensidad de corriente que es la cantidad de cargas que pasan por una sección del cable en un tiempo determinado. La intensidad se representa con la letra y su unidad es el ampere (A). Se calcula como:
Q t
I=
A=
C s
A: ampere C: Coulomb s: segundo O sea la cantidad de cargas (Q) que pasan en un tiempo (t).
1) Ley de Ohm Para que las cargas transiten por el cable, debe aplicarse una diferencia de potencial (V). Cuando más grande sea la V, mayor será la cantidad de cargas que circulen. Por otro lado, todo sistema conductor ofrece una resistencia al desplazamiento de las cargas por el cable. Esa oposición a la corriente de las cargas se denomina
resistencia eléctrica. La
resistencia se representa con la letra R y su unidad es el Ohm (). Cuanto mayor sea la resistencia, menor será la corriente eléctrica. Observamos que hay una relación entre la diferencia de potencial (V), la resistencia (R) y la intensidad () de la corriente eléctrica. Esa relación se expresa en la ley de Ohm, cuya expresión matemática es:
𝐈=
𝐕 𝐑
Vemos que la intensidad de la corriente que circula por un cable es directamente proporcional a la diferencia de potencial (V) e inversamente proporcional a la resistencia del cable. Como mencionamos antes, a mayor voltaje, mayor corriente pasa y a mayor resistencia, menor corriente circula.
7
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
Ahora, veamos cómo es la relación de unidades para la ley de Ohm.
I=
V R
A=
V = I . R
R=
V
𝑉 = 𝐴 .
V I
=
V A
En un circuito eléctrico las resistencias se pueden ubicar de dos formas: en serie o en paralelo. 2) Resistencias en serie Cuando una resistencia se presenta a continuación de otra, se dice que las resistencias están en paralelo. Las cargas pasan primero por una y, luego, por la otra. Gráficamente, se representan de la siguiente manera:
Las cargas sufren una resistencia al desplazamiento cuando pasan por R 1 y R2. ¿Pero cuál es la resistencia total del circuito? La
resistencia total o equivalente (Rt) de resistencias
en serie es la suma de cada una de ellas.
Rt = R 1 + R 2
En el caso que se presenten más resistencias se suman todas. Ahora, observemos cómo es la diferencia de potencial en un circuito con resistencias en serie. Si la diferencia de potencial del circuito es de 20 volts, significa que en un extremo del circuito el voltaje es 20 volts y en el otro 0 volts, la diferencia (V) es 20 V. Cuando la corriente llega a una resistencia llega con un voltaje y sale con uno menor, es decir que en la resistencia hay una caída del voltaje. Cuando pasa por sucesivas resistencias se va a producir una caída del voltaje en cada una. La diferencia de potencial total será la suma de la diferencia de potencial en cada resistencia. Imaginemos que, por ejemplo, tenemos dos resistencias en serie, iguales y aplico un voltaje de 20 V. A la primera resistencia llega la corriente con 20 V y sale con 10 V, a la segunda entra con
8
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
10 V y sale con 0 V. En la primer resistencia cayo la resistencia 10 V y en la segunda también 10 V, por lo tanto la caída o diferencia de voltaje total es 20V. Este ejemplo, lo representamos gráficamente de la siguiente manera:
Matemáticamente lo expresamos así:
Vt = V1 + V2
La intensidad de corriente () es la misma en todo el circuito, la cantidad de cargas por segundo que pasan por un extremo del circuito es igual a la que llegan al otro extremo. Podemos decir entonces que:
t = 1 + 2
3) Resistencia en paralelo Para que haya resistencias en paralelo, el circuito se debe de ramificar. De este modo, la corriente se divide y viaja por caminos diferentes hasta unirse, nuevamente, antes de llegar al otro extremo del circuito. El esquema gráfico correspondiente es así:
Para obtener la resistencia total de las resistencias en paralelo, utilizamos la siguiente relación:
𝟏 𝟏 𝟏 𝟏 = + + 𝐑𝐓 𝐑𝟏 𝐑𝟐 𝐑𝐧 Recordemos que el valor obtenido es la inversa de la resistencia total o equivalente. Hay que calcular la inversa de ese resultado para llegar al valor de la resistencia total (RT). Pongamos un ejemplo: tenemos un circuito con dos resistencias en paralelo de 4 (ohm) cada una.
1 1 1 = + RT 4 4 9
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
1 1 = RT 2
𝐑𝐓 = 𝟐 Como mencionamos recientemente, la corriente se divide y pasa por cada una de las resistencias, por lo tanto la intensidad () de la corriente en cada tramo dependerá de la resistencia de cada tramo. Es decir, la intensidad total (T) será la suma de las intensidades de cada ramificación.
T = 1 + 2 Así es su representación gráfica:
La diferencia de potencial en cada resistencia es igual a la diferencia de potencial (VT) de todo el circuito. La diferencia de voltaje entre la bifurcación y el retorno al circuito es igual para R 1 y R2 y es la misma que VT.
Si tomamos varias resistencias del mismo valor (4) y armamos dos circuitos con la misma cantidad de resistencias, uno en serie y el otro en paralelo, veremos que en el circuito en serie la resistencia total será mayor que el circuito con resistencias en paralelo. Observemos el siguiente ejemplo:
En serie: R T = R 1 + R 2 + R3
10
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
RT = 4 + 4 + 4
RT = 12 En paralelo: 1 1 1 1 = + + RT R1 R 2 R 3 1 1 1 1 = + + RT 4 4 4
1 3 = RT 4
𝐑 𝐓 = 𝟏, 𝟑𝟑
Fenómenos bioeléctricos. Potencial de acción En el cuerpo existen ciertas células, llamadas excitables, que tienen la capacidad de cambiar su potencial de membrana. Cuando esto ocurre comienzan a moverse los iones (difusión, concepto ya analizado en la Unidad 4) a través de la membrana. De esta forma, se origina un cambio en el potencial de membrana que se llama
potencial de acción. El mismo se va trasladando
a lo largo de la membrana de las fibras nerviosas y es lo que se conoce como conducción nerviosa. El impulso nervioso es un cambio en el valor del potencial de membrana que viaja a lo largo de la membrana de la fibra nerviosa. Cada vez que late el corazón, o cuando movemos un dedo, o hablamos, es debido a cambios en el voltaje que origina el impulso nervios. En resumen, el mensaje a través de un nervio es un cambio en el potencial (V) de la membrana de la fibra nerviosa, que se traslada a lo largo de la misma. ¡Qué parecido a la conducción eléctrica!
Para seguir trabajando…
Al finalizar la lectura de la Unidad 5, en primer lugar, les sugerimos que realicen el Autotest disponible en la pestaña Evaluación del Campus Virtual. Utilizar esta herramienta, les permitirá corroborar la comprensión de los principales conceptos desarrollados en la unidad.
11
Apunte de Cátedra: Bases físicas de los fenómenos bioeléctricos - Física e Introducción a la biofísica - UBA XXI
En segundo lugar, luego del Autotest, les proponemos que realicen los Ejercicios de aplicación, que proponen resolver diferentes problemas y que les permitirán integrar diferentes temas trabajados en la unidad. Estos problemas están disponibles en la pestaña Recursos, donde también encontrarán el documento con las soluciones para que puedan analizar su propia resolución.
Recuerden que habrán completado el trabajo con la Unidad 5 una vez que hayan finalizado la lectura del Apunte de Cátedra y realizado la totalidad de los ejercicios propuestos para esta unidad.
Para citar este documento: Rivolta, Miguel y Lucas Benavides (2016), Apunte de cátedra: Unidad 5. Bases físicas de los fenómenos bioeléctricos, Buenos Aires, UBA XXI. Disponible en el campus virtual www.ubaxxicampusvirtual.uba.ar.
Este material se utiliza con fines exclusivamente educativos.
12
View more...
Comments