Revision Plan-II (Dpp # 4)_mathematics_english

August 20, 2017 | Author: BhriguKansra | Category: Abstract Algebra, Physics & Mathematics, Mathematics, Numbers, Mathematical Analysis
Share Embed Donate


Short Description

Resonance revision plan for jee advanced special dpp...

Description

MATHEMATICS DPP

DPP

TARGET : JEE (Advanced) 2016 T EST INFORM ATION

Course : VIJETA(ADP) & VIJAY(ADR)

Date:17-04-2016

NO.

04

DAILY PRACTICE PROBLEMS

TEST INFORMATION DATE : 20.04.2016

PART TEST-02 (PT-02)

Syllabus : Sequence & Series and Binomial Theorem

REVISION DPP OF SEQUENCE & SERIES AND BINOMIAL THEOREM Total Marks : 135 Single choice Objective ('–1' negative marking) Q.1 to Q.17 (3 marks 3 min.) Multiple choice objective ('–1' negative marking) Q.18 to Q.32 Subjective Questions ('–1' negative marking) Q.33 to Q.37 Comprehension ('–1' negative marking) Q.38 to Q.40

Max. Time : 120 min. [51, 51]

(4 marks 3 min.) (3 marks 3 min.) (3 marks 3 min.)

[60, 45] [15, 15] [9, 9]

3 4 2016  +....+ is equal to 1! 2! 3! 2! 3! 4! 2014! 2015! 2016! 1 1 1 1 1 1 1 (A) – (B) – (C) (D) – 2 2014! 2 2016! 2016!– 2018! 2017! 2018!

1.

The sum

2.

Let A,G,H are respectively the A.M., G.M. and H.M. between two positive numbers. If xA = yG = zH where x, y, z are non-zero quantities then x, y, z are in (A) A.P. (B) G.P. (C) H.P. (D) A.G.P.

3.

The sum of the coefficients of the polynomial obtained by collection of like terms after the expansion of (1 – 2x + 2x2)743(2 + 3x – 4x2) 744 is (A) 2974 (B) 1487 (C) 1 (D) 0 ai If ai, i = 1, 2, 3, 4 be four real numbers of same sign then the minimum value of aj

4.



where i, j  {1,2 3, 4} and i  j is (A) 6 (B) 8 5.

6.

(D) 24

1  1  1  1   The value of  1    1  2   1  4   1  8  .........to  is 3  3  3  3   (A) 3 (B) 6/5 (C) 3/2

(D) 2

The remainder, when 1523 + 2323 is divided by 38, is (A) 4 (B) 17 (C) 23

(D) 0

20

7.

(C) 12

The value of

 r  20 – r  

20

Cr



2

is equal to

r 0

(A) 400 . 39C20

8.

9.

(B) 400 . 40C19

(C) 400 . 39C19

 The term independent from ‘x’ in the expansion of  1  x   (A) 30C20 (B) 0 (C) 30C10

  x – 1 1

(D) 400 . 38C20 –30

If cos(x – y), cos y, cos(x + y) are in H.P. , then the value of |cos y . sec (A) 2

(B) 1

(C)

2

is (D) 30C5 x | is equal to (x  2n) 2 (D) None of these

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Website : www.resonance.ac.in | E-mail : [email protected] Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

PAGE NO.-1

10.

If the sum of n terms of an A.P. is cn(n + 1), where c  0, then sum of cubes of these terms is 2 2c 3 2 (A) c3n2(n + 1)2 (B) 2c3n2(n + 1)2 (C) n (n+1)(2n+1) (D) c3n2(n–1)(2n– 1) 3 3

11_.

Sum to n terms of the series tansec2 + tan2.sec22 + ........ + tan2n–1.sec2n. n–1 n n (A) tan2 – tan2  (B) tan2  – tan (C) tan – tan2  n

12_.

Let f(n) =

n–1

(D) tan2

 – tan2

n



k

Cr . The total number of divisors of f(9) is :

r 0 k r

(A) 7

(B) 8

(C) 9

(D) 6

13.

Concentric circles of radii 1, 2, 3, ......100 cm are drawn. The interior of the smallest circle is coloured red and the annular regions are coloured alternately green & red, such that no two adjacent regions are of the same color. Then the total area of green regions is Xgiven by (A) 1000  sq. cm (B) 5050  sq. cm (C) 4950  sq. cm (D) 5151  sq. cm

14.

The coefficient of xn in the expansion of (1 – 9x + 20x2)–1 is given by (A) 5n – 4n (B) 5n + 1 – 4n + 1 (C) 5n + 1 – 4n – 1

15.

 1 x –1 1  log3 (9 7) If ninth term in the expansion of  3 3  1 x –1 log 1) 3 (3  38  (A) 4 (B) 1 or 2 (C) 0 or 1 50

16.

C0 – 3

The value of

50

C1  4

1

(A)

50

C2 ......... 5

x

1– x 

50

(B)

dx

0

 x 1– x 

50

11

    

is 660, then the value of x is (D) 3

50

C50 is equal to 53

1 3

(D) 5n – 1 – 4n + 1

dx

0

(C)

1 2652

(D)

1 70278

17_.

The value of n C0. cosn + nC1. cos(n – 2) + nC2. cos(n – 4) + ........ + nCn. cos(n – 2n) is : (A) 2ncosn (B) 2nsinn (C) 2n+1cosn (D) 2n+1sinn

18.

If tn denotes the nth term and Sn denotes sum to first n terms of the series 3 + 15 + 35 + 63 + . . . . . ., then (A) t50 = 502 – 1 (B) S20 = 11460 (C) t50 = 4.502 – 1 (D) S20 = 11640

19.

If a =

20

20

9



20

Cr , b =

r 0



20

Cr , c =

r 0

19

20_.

Cr , then

r 11

(B) b = 2 – 1 2

20

C10

(D) a – 2c =

1 20 C10 2 210 1.3.5.....19  10!

Consider the series 2016.n + 2015.(n – 1) + 2014.(n – 2) + 2013.(n – 3) + ........ , where Sn is the sum of first n terns of the series. Which of the following is/are true n(n  1)(6049  n) 6 (C) S20 = 422030

(A) Sn =

21.

20

19

(A) a = b + c (C) c = 2 +



n(n  1)(3025  n) 3 (D) S20 = 420700

(B) Sn =

The natural numbers are written as a sequence of digits 123456789101112 . . . , then in the sequence (A) 190th digit is 1 (B) 201st digit is 3 th (C) 2014 digit is 8 (D) 2013th digit is same as 2014th digit Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Website : www.resonance.ac.in | E-mail : [email protected] Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

PAGE NO.-2

22.

If N = 72014, then (A) sum of last four digits of N is 23 (B) Number of divisors of N are 2014 (C) Number of composite divisors of N are 2013 (D) If number of prime divisors of N are p then number of ways to express a non-zero vector coplanar with two given non-collinear vectors as a linear combination of the two vectors is p + 1.

23.

Consider the sequence of numbers 0, 1, . . . . , n where 0 = 17.23, 1 = 33.23 and r+2 =

r  r 1 . 2

Then 1 32 (C) 0 – 2, 2(1 – 2), 1 – 3 are in H.P.

(A) |10 –9| =

(B) 0 –  1, 1 – 2, 2 – 3, . . . are in G.P. (D) |10 – 9| = |8 – 7|

24.

Given 'n' arithmetic means are inserted between each of the two sets of numbers a, 2b and 2a, b where a, b  R. If mth mean of the two sets of numbers is same then a m a n a a (A)  (B)  (C)  n (D)  m b n –m 1 b n –m 1 b b

25.

If a, b, c are any three terms of an A.P. such that a  b then (A) 0

26.

(B)

(C) 1

3

(D) 2

1 5 11 19 29 41       ........ is sum of n terms of sequence then 3! 4! 5! 6! 7! 8! 10099 1 1 (A) t100 = (B) S2016 = – 102! 2 2018  2016! 

If Sn =

(C) S2016 =

27.

b–c may be equal to a–b

1 1 – 4 2018  2016!

(D) lim Sn  n

1 2

If a1, a2, a3, . . . . . , are in A.P. with common difference d and bK = aK + aK+1 + . . . + aK+n–1 for K N then n

(A)



n

bK  n2 an

(B)

K 1

2

b

K

  n  1 an

K 1 n

n [an + a1 + 2d(K – 1)] 2

(C) bK =

(D)

b

K

= n(n + 1)an

K 1

28.

If 100C6 + 4(100C7) + 6(100C8) + 4(100C9) + 100C10 has value xCy then x + y can take value (A) 112 (B) 114 (C) 196 (D) 198

29.

(2 – 3x + 2x2 + 3x3)20 = a0 + a1x + . . . + a60x , then

60

30

(A)

30

a

2r –1

(B)

0

r 1

If f(m) =

2r

 240  220

19

(C) a0 = 2

(D) a59 = 40(3 )

r 1

m

30.

a



30

20

C30–r Cm–r , then (if n < k then take nCk = 0)

r 0

(A) Maximum value of f(m) is 50C25

(B) f(0) + f(1) + f(2) + . . . . + f(25) = 249 +

(C) f(33) is divisible by 37

(D)

50

  f(m)

2

1 50 . C25 2

= 100C50

m 0

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Website : www.resonance.ac.in | E-mail : [email protected] Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

PAGE NO.-3

31.



If 8  3 7

n



= I + f, where 'I' is an integer, n N and 0 < f < 1, then

(A)  is an odd integer

(B)  is an even integer (C) ( + f) (1 – f) = 1

(D) ( + f) (1 – f) = 2n

32.

Given four positive numbers in A.P. If 5, 6, 9 and 15 are added respectively to these numbers, we get a G.P. , then (A) Common ratio of G.P. is 3/2 (B) Common ratio of G.P. is 2/3 (C) Common difference of A.P. is 3 (D) First term and common difference of AP are equal

33.

If S = 1 +

34.

The value of Lim

4 9 16   + . . . . . . . , then find the value of [S] (where [.] is G.I.F.) 3 9 27 n

n

35.

 r 1 1 n r  t C C 3  is equal to r t n  r 1  t  0 

   5

If ,  are roots of the quadratic equation ax2 + bx + c = 0 and ,  are roots of the quadratic equation cx2 + bx + a = 0. Such that , , ,  is an A.P. of distinct terms, then find the value of a + c. 10

36.

37.

3x   If only 4th term in the expansion of  2   8   integral values of x.

has greatest numerical value, then find the number of

If 25C0 25C2 + 2 . 25C1 25C3 + 3 . 25C2 . 25C4 + . . . . + 24 . 25C23 . 25C25 = k . 49C + 50C , then find the value of 2k –  – . (where , < 25)

Comprehension (Q. No. 38 to 40) Let f(n) denotes the nth term of the sequence 2, 5, 10, 17, 26, . . . . . and g(n) denotes the nth term of the sequence 2, 6, 12, 20,30, . . . . Let F(n) and G(n) denote respectively the sum of n terms of the above sequences. 38.

39.

f(n) = n g(n) (A) 1

(B) 2

(C) 3

(D) does not exist

F(n) = n G(n) (A) 0

(B) 1

(C) 2

(D) does not exist

lim

lim

n

n

40.

 f(n)   F(n)  lim   – nlim   = n  G(n)    g(n) 

(A)

e –1

e 1

(B)

e 2

(C)

e e

1– e

(D)

e e

e e 1 e

ANSWERKEY OF DPP # 03



1.

(D)

2.

(C)

3.

(A)

4.

(A)

5.

(B)

6.

(C)

7.

(C)

8.

(C)

9.

(B)

10.

(D)

11.

(C)

12.

(C)

13.

(C)

14.

(D)

15.

(C)

16.

(A)

17.

(C)

18.

(ABD)

19.

(AC)

20.

(ABCD) 21. (ABCD)

22.

(ABC) 23.

(ABC) 24.

(ACD)

25.

(CD)

26.

(AB)

27.

(AC)

28.

(BCD) 29.

(BD)

30.

(CD)

31.

(AC)

32.

(AD)

33.

(ACD)

34.

(BC)

(AB)

36.

(ACD)

37.

(B)

38.

(C)

39.

(ABC) 40.

35.

(ABC)

Corporate Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005 Website : www.resonance.ac.in | E-mail : [email protected] Toll Free : 1800 200 2244 | 1800 258 5555 | CIN: U80302RJ2007PLC024029

PAGE NO.-4

View more...

Comments

Copyright ©2017 KUPDF Inc.
SUPPORT KUPDF