Retos Matematicos 2
Short Description
Cuadernillo de Problemas Matematicos...
Description
RETOS MATEMÁTICOS 1
Dirección de contenidos y servicios profesionales
Lauren Robbins Publisher
Lauren Robbins Autores
Apolo Castañeda Alonso Rosa Isela González Polo Coordinación editorial
Ernesto Manuel Espinosa Asuar
Secundaria
2do grado
Dirección de contenidos y servicios profesionales
Lauren Robbins Publisher
Lauren Robbins Autores
Apolo Castañeda Alonso Rosa Isela González Polo Coordinación editorial
Ernesto Manuel Espinosa Asuar Edición
Macbeth Baruch Rangel Orduña, Cristóbal Bravo Marván Revisión técnica
José Cruz García Zagal Coordinación de corrección
Abdel López Cruz Corrección
Laura Martínez García Dirección de arte y diseño
Quetzatl León Calixto Diseño de portada
José Manuel Calvillo Diseño de la serie
Claudia Adriana García Villaseñor Coordinación de diagramación
Jesús Arana y César Leyva Diagramación
Maricarmen Martínez Muñoz Coordinación de iconografía e imagen
Ricardo Tapia Iconografía
Penélope Graciela Ubaldo Jurado Fotografía
© 2011, 2011, Carlos A. A . Vargas © 2011, Iván Meza © Thinkstock 2011 Archivo SM Digitalización e imagen
Carlos A. López, Uriel Flores Moreno Donovan Popoca Jiménez Eliana Castro Fernández Revisión técnica de evaluaciones
Instituto de Evaluación y Asesoramiento Educativo (IDEA) Producción
Carlos Olvera, Teresa Amaya
2
The trademark University of Dayton Publishing is the property of University of Dayton. Unauthorized copying, reproduction, hiring, and lending prohibited. University of Dayton 300 College Park Dayton, OH 45469 Retos matemáticos 2
Secundaria segundo grado Primera edición, 2012 D. R. © U. D. Publishing, S. A. de C. V., 2012 Magdalena 211, Colonia del Valle, 03100, México, D. F. Tel.: (55) 1087 8400 www.udaytonpublishing.com ISBN XX X-XXX-XXXX-XXX-XXX-XXX-X XXX-X Miembro de la Cámara Nacional de la Industria Editorial Mexicana Registro número 3263 No está permitida la reproducción total o parcial de este libro ni su tratamiento informático ni la transmisión de ninguna forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros métodos, sin el permiso previo y por escrito de los titulares del copyright . Impreso en México/Printed in Mexico
Presentación general
Retos Matemáticos 2 se 2 se creó para apoyar y acompañar al estudiante en su trabajo escolar mediante planteamientos didácticos cercanos a su vida cotidiana, en los
que se relacionan de manera dosificada los conocimientos previos con los nuevos, conforme al grado de complejidad matemática. matemática . Su propósito es generar reflexiones y argumentos para que el alumno desarrolle competencias matemáticas, habilidades habilidades
de comunicación y una actitud crítica ante su entorno. Para ello, ello, el libro se organiza en cinco cinc o bloques y cada uno de ellos en varias lecciones. Estas, Estas, a su vez, se dividen en tres apartados: situación problemática, “Un paso adelante” y “Profundiza", que están diseñados para analizar analizar,, discutir, discutir, reflexionar y establecer de forma colectiva conclusiones relativas a los contenidos tratados. En algunos casos, las lecciones comprenden más de un tema, por lo que “Un paso adelante” aparece más de una vez. Al término de cada lección se encuentra un
recuadro de tecnologías de la información y comunicación (TIC), donde se sugieren sitios de Internet para que el estudiante practique al interactuar con animaciones, juegos, videos y modelos matemáticos. Además, en la mayoría se presentan activiac tividades fuera del salón de clase para que el alumno consolide los conocimientos y habilidades de la lección. Cada bloque concluye con cuatro anexos cuyo objetivo es sistematizar, resumir y ampliar los temas vistos. vi stos. En la “Bitácora” hay planteamientos que permiten permite n consolidar
el conocimiento al resaltar las ideas relevantes de cada lección, así como verificar el nivel de adquisición de este y detectar dificultades. Por otra parte, en el “Laboratorio de matemáticas” se presentan retos, actividades y experimentos relacionados con el
contenido de las lecciones; en ellos es necesario aplicar lo aprendido para resolver los diversos planteamientos. En cuanto al anexo “En el tintero”, incluye incluye un problema que representa la posibilidad
de explorar nuevos escenarios, técnicas y procedimientos con el fin de afianzar lo estudiado. Por Por otro lado, en la “Evaluación” se reúnen preguntas con el formato de opción múltiple de tipo ENLACE para determinar los avances del alumno y acercarlo al estilo de esta prueba. Al final se ofrece un glosario y bibliografía tanto para el estudiante como para el profesor: en el primero se definen ciertos términos que podrían generar confusión, mientras que en la segunda se recomiendan documentos
impresos y digitales para ampliar los conocimientos. Por último, esta obra se diseñó como una guía para los profesores profeso res y padres de familia, pues el índice se adecuó para mostrar cada bloque con un color específico e identificar
el eje, tema y contenido correspondientes, así como la lección y semana de estudio, además de una columna para indicar el avance del trabajo escolar.
Los autores
3
Presentación Para el alumno Las matemáticas han contribuido al desarrollo del conocimiento científico y al avance de la tecnología, pero también han influido en otros ámbitos de la actividad humana, como el arte, la arquitectura y la música. músi ca. Sin embargo, otra de sus funciones es ayudar
a tomar buenas decisiones; por ejemplo, al comparar el precio de un producto en el supermercado, elegir el procedimiento para resolver un problema y opinar sobre los datos vertidos en una gráfica, entre otras situaciones. Esto significa que las matemáticas son útiles en la vida cotidiana; estudiarlas requiere emplear nuestras habilidades de razonamiento para solucionar problemáticas en
diversas situaciones. Pero, Pero, así como el ejercicio físico frecuente nos sirve para mantener una buena salud, practicar y dedicarse a resolver actividades de matemáticas nos ayuda a afianzar nuestro pensamiento. Por estas razones, en tu libro encontrarás problemas con diferente grado de complejidad en los que podrás aplicar conocimientos y repasar conceptos conceptos.. Asimismo, Asimismo, hallarás actividades en las que necesitarás reflexionar lo ya aprendido y explorar procedimientos o métodos de solución nuevos. Además de profundizar en los contenidos, de manera individual y grupal, indagarás otras rutas para resolver problemas en los retos matemáticos, formularás estrategias y desarrollarás habilidades.
Tu libro está estructurado en lecciones que se inician con un planteamiento; este relaciona el conocimiento matemático que se explicará con situaciones de la vida cotidiana. Deberás poner en práctica tu experiencia y tus conocimientos para responder las preguntas. Conforme avances, te darás cuenta de que hay varias maneras de resolver los problemas. Al terminar cada lección, encontrarás referencias en Internet para profundizar en los contenidos que estudiaste, así como para explorar y resolver otros retos matemáticos.
En las lecciones encontrarás actividades para trabajar en equipo o parejas; están diseñadas con la intención de que experimentes los beneficios del trabajo colec tivo, por ejemplo, al compartir ideas, llegar a acuerdos, etc., pero también con el fin de que desarrolles habilidades para comunicar información matemática. El libro fue creado para que fortalezcas tus habilidades de pensamiento matemático y tu autoconfianza al superar los retos los retos matemáticos que matemáticos que se presentan y aprovechar
este amplio campo de saber. saber. Esperamos que lo disfrutes.
Los autores
4
Presentación Para el profesor
En este libro se asume que la construcción de conocimiento es un proc eso en que la repetición y memorización son útiles mas no suficientes para desarrolla r y fortalecer las competencias matemáticas de los alumnos. Por esta razón, el contenido se basa en situaciones que integran una secuencia para contextualizar el conocimiento y
darle sentido, lo cual ocasiona que las matemáticas sean más cercanas a la realidad de los estudiantes y que se propicie un medio para facilitar el tránsito del lenguaje cotidiano al matemático. De este modo, no solo ampliarán sus conocimientos, sino que comprenderán y usarán con eficiencia los procedimientos y argumentos matemáticos al resolver problemas en diversas situaciones. El libro se escribió con la intención de apoyarlo en la construcción del conocimiento matemático de sus estudiantes. Su característica principal es presentar los contenidos mediante secuencias didácticas con las que se profundiza en el manejo de los conceptos a medida que se avanza en cada lección. Las situaciones propuestas también se han diseñado con esta perspectiva: involucran planteamientos que es posible usar en la vida cotidiana y refieren a actividades laborales y profesionales más cercanas a la realidad de los estudiantes. Además, el enfoque de las lecciones se basa, por un lado, en el carácter funcional del conocimiento matemático, matemáti co, en el desarrollo y perfeccionamiento perfecciona miento de técnicas y procedimientos, así como en el manejo y comunicación de la información matemática. Y por el otro, se apoya en el fortalecimiento del pensamiento matemático que conduce a la
buena toma de decisiones y al razonamiento a partir de la interpretación de datos. Las lecciones están conformadas por una actividad inicial con la que se introduce el contenido, se plantean cuestionamientos iniciales y se lleva a los estudiantes a reflexiones intuitivas; en el apartado Un paso adelante se adelante se aplican los conocimientos con mayor profundidad, enfatizando los conceptos clave; la sección Profundiza ,
en la que se plantean problemas más complejos, pero sin dejar de acompañar a los alumnos en el proceso resolutivo; la cápsula Oriéntate, en la que se agregan datos útiles para apoyar la solución de problemas; y finalmente, el recuadro de TIC, que integra enlaces a diversas páginas de Internet para que efectúen más ejercicios y obtengan información adicional sobre los conceptos abordados. Se agregó un recuadro de orientaciones relativas al contenido, al contexto del problema o sobre algún tecnicismo que pudieran representar un obstáculo para
los estudiantes, con el propósito de que tengan los conocimientos necesarios para desarrollar las actividades y no se distraigan en buscar información. Algunas de ellas
se diseñaron para trabajar en equipo con el fin de que los alumnos desarrollen y fortalezcan habilidades del pensamiento mediante el trabajo colaborativo. Por Por otra parte, el lenguaje que se maneja es simple y conciso; de esta manera, ellos pueden reconocer las variables involucradas en cada problema de forma directa. Esperamos que encuentre en el libro un apoyo para el óptimo desarrollo desar rollo de sus clases.
Los autores
5
Guía de uso consta de cinco bloques que contienen lecciones de cuatro páginas en que desarrollarás los contenidos de esta Retos matemáticos 2 consta asignatura. En tu libro encontrarás las siguientes secciones.
Una pregunta muy frecuente es ¿para qué sirven las matemáticas? Entre otras cosas, para resolver situaciones cotidianas;es decir,son útiles cuando las empleamos con un propósito, como explicar un hecho o evento,o bien para diseñar estrategias de solución.Es importante llevar a la práctica los nuevos conocimientos y aplicarlos como una herramienta de nuestro pensamiento. Por ejemplo, cuando analizamos información estadística en tablas o gráficas observamos patrones o comportamientos predecibles que nos permiten tomar decisiones;usamos el álgebra para generalizar y crear modelos adaptables a diversas situaciones;la proporcionalidad puede ayudarnos a calcular el precio justo de un bien o servicio; la jerarquía de operaciones sirve para evitar ambigüedades en el cálculo numérico;las medidas de capacidad se utilizan para comparar o estimar el tamaño de los recipientes;incluso la geometría es un medio para cierto tipo de manifestaciones artísticas como los teselados.Todos estos temas se presentan en este bloque.
Introducción. Breve texto en que se mencioIntroducción. nan situaciones cotidianas relacionadas con las ideas principales que se estudiarán con el fin de contextualizarlas y de activar tus conocimientos previos. Número de bloque
Aprendizajes esperados 1. Resuelve problemas que implican efectuar multiplicaciones o divisiones con expresiones algebraicas. 2. Justifica la suma de los ángulos internos de cualquier triángulo o polígono y utiliza esta propiedad en la resolución de problemas. 3. Lee y comunica información mediante histogramas y gráficas poligonales.
B l l o oq ue 3
Aprendizajes esperados. esperados. Conocimientos y habilidades
que debes alcanzar como resultado del estudio de los contenidos.
116
117
Lección 14 Adición 14 Adición y sustracción de monomios II
Lección. Número y título de la lección estudiada.
Eje: sentido numérico y pensamiento algebraico Tema: problemas aditivos Contenido
Resolución de problemas que impliquen adición y sustracción de monomios
Artesanías de madera Martín elabora un pedido especial de cubos de madera, los cuales a su vez están formados por cubos más pequeños; desea conocer la superficie total de cada pieza que forma al cubo más grande ya que requiere saber cuánto barniz para madera necesitará. 1. Responde lo siguiente. a) El primer modelo tiene ocho cubos pequeños, como se muestra en la imagen de la izquierda (figura 1).
Eje, tema y contenido.
i) Para obtener el área de una de las caras de un cubo se emplea la fórmula A = l 2, donde l es la
medida de la arista de cada cubo pequeño; entonces, entonces, para dos caras se usa: A = l 2 + l 2 = 2 l 2. ¿Cuál es la fórmula para obtener el área total (área de todas las caras) de un cubo pequeño?
ii) ¿Cuál es la fórmula para obtener el área total de dos cubos pequeños?
Situación
Figura 1
Situación. Título de la primera situación problemática en que aparece un nombre lúdico y después la denominación
iii) ¿Cuál es la fórmula para obtener el área de todos los cubos pequeños que conforman la figura 1?
iv) Martín decidió emplear dos tonalidades de barniz; pintará las caras exteriores del cubo grande
de un tono oscuro y las interiores de uno claro. Escribe una fórmula para obtener obtener el área de las caras que dan al exterior y otra para las que dan al interior.
formal del tema que estudiarás.
v) Martín quiere repetir la combinación de tonalidades con el cubo de la figura 2. Anota una fórmula
Figura 2
para obtener el área de las caras que dan al exterior y otra para las que dan al interior.
2. Reúnete con un compañero, analicen el siguiente planteamiento y respondan. 7.5r
a) Mauricio cercó un terreno con rollos de malla
metálica. La cantidad de rollos que usó para cada lado del terreno se muestra en la imagen de la izquierda; 7.5 r indica indica que para cercar ese lado uso 2r 7.5 rollos. i) Calculen la cantidad total de rollos.
_1_r 5 __ 3 r . 5 1 2
6 r
_1_ r (2 ii) Mauricio tiene 2 __ (2__14 de rollo de malla metálica) para cercar el terreno, 4
¿cuánto le falta? iii) Si cada rollo mide 8 m de largo, ¿cuántos metros tiene? iv) ¿Cuántos metros le faltan para cercar el terreno? v) Compartan sus respuestas con sus compañeros de grupo, analícenlas y escriban una conclusión. 8 Bloque 2 Lección 14
6
Guía de uso Oriéntate
Un paso adelante
Oriéntate. Pistas o información de apoyo para recordar algunos datos
Un paso adelante. La adelante. La lección es una secuencia que inicia con una situación cotidiana relacionada con co n las matemáticas. Una vez que la resuelves,
importantes que pueden servirte para resolver problemas matemáticos.
das un paso adelante al aplicar nuevos conocimientos y habilidades para solucionar problemas matemáticos.
TIC
Para la bitácora
TIC. Recomendación de actividades relacionadas con las TIC; principalmente TIC. Recomendación se te invita a profundizar en el contenido de las lecciones con algunos
Para la bitácora. Referencia a ejercicios de autoevaluación de los temas
vistos en el bloque.
ejercicios en la web.
Profundiza Profundiza. Sección que contiene problemas matemáticos más complejos
que puedes resolver porque ya desarrollaste los conocimientos y las habilidades necesarias para ello.
Pareja
Equipo
Grupo
Lección 17
i) ¿Cuántas veces cabe el contenido de una pirámide en un prisma con la misma base ? ii) Analicen la siguiente afirmación.
_
El volumen de toda pirámide se calcula con el cociente del producto del área de su base por la altura entre tres. A ·h = B V = 3 iii) ¿Qué relación hay entre la actividad efectuada y la afirmación anterior?
Lección. Recordatorio del número de la
lección.
iv) Comenten, grupalmente, su respuesta y concluyan. 6. Responde.
8.6 m
50 m
Recuadro de información. Información relevante que te guiará para desarrollar los conocimientos
x
10 m
10 m
y habilidades matemáticas necesarias.
8.6 m
a) ¿Cuál es el volumen del prisma hexagonal? b) Si la pirámide tuviera la misma altura que el prisma, ¿cuál sería su volumen? c) ¿Qué altura debe tener la pirámide para que su volumen sea igual al volumen del prisma?
d) Debatan, con el grupo, la respuesta anterior y lleguen a una conclusión. TIC
Explora www.e-sm.com.mx/matret2-093a www.e-sm.com.mx/matret2-093a,, donde se muestran actividades sobre cubos, prismas y pirámides. Explora www.e-sm.com.mx/matret2-093b, donde hay actividades acerca de cubos, prismas y pirámides. Consulta el video www.e-sm.com.mx/matret2-093c, donde se explica el cálculo de volumen de prismas.
Para la bi†ácora
Resuelve las actividades correspondientes entes a la lección 17 en la bitácora de la página 111.
Las Torres de Satélite son un conjunto escultórico de cinco prismas triangulares de distintos colores y tamaños, dispuestas en una explanada ubicada al norte de la Ciudad de México. Investiga sus medidas y obtén el volumen de cada una. Lección 17 Bloque 2 93
Actividad integradora. Actividad que se puede
llevar a cabo fuera del salón de clases. Su función es ayudarte a consolidar tus conocimientos, habilidades, actitudes y valores. 7
Guía de uso
Bitácora. Sección de dos páginas
en la que practicarás lo aprendido
a lo largo del bloque y repasarás las ideas más importantes de las lecciones.
Bitácora
Bitácora
3x 2x
A partir de un cubo se pueden formar seis pirámides como se muestra en la siguiente imagen.
b) ¿Cuál es la superficie de las paredes exteriores del edificio?
x x
También funciona como una autoevaluación en la que aplicarás los aprendizajes
Lección 17
Una escuela construirá un nuevo edificio para reubicar los laboratorios. La forma se muestra en la figura de la izquierda. a) ¿Qué perímetro tendrá el edificio?
x
x
Lecciones 13, 14 y 15
c) ¿Cuál es la superficie de la azotea del edificio? d) Calcula el perímetro de la zona de pesca que se muestra en la imagen. a) Escribe una fórmula que te permita determinar el volumen de tres pirámides anteriores si se sabe 2x – 6 2x – – 6
4x
que cada lado del cubo mide r . x
4x
desarrollados en el bloque.
b) Si r = = 5, ¿cuál es el volumen de una de las pirámides?
x
5.5x
2x + + 4 + x +
4x
x –
4
a) Considera la imagen de la derecha. Calcula el espacio vacio dentro del cubo. Las pirámides están
dentro del cubo; cada una tiene una altura de 4 cm y una base cuadrada que mide 4 cm de lado. El cubo mide 8 cm de arista.
2x + + 4
2x + + 4 4x – – 2
Lección 18
2
2x + + 4
Lección 19
2x + 4 x
x
4x
El gobierno municipal quiere construir una oficina de información como se muestra en la imagen.
Lección 16 El tapete de la izquierda está formado con algunas de las piezas geométricas que se muestran en la figura de abajo. El lado de un cuadro de la superficie cuadriculada mide 2x – – 2. a) Determina el perímetro y el área del tapete. b) ¿Qué figuras del tapete tienen mayor y menor perímetro? ¿Cuánto miden esos perímetros?
Un prisma hexagonal con 4 m de lado, apotema de 3.46 m y altura de 2 .3 m. El techo es una pirámide de base hexagonal de 6 m de lado, apotema de 5.19 m y altura de 4 m.
c) ¿Qué figura del tapete tiene área de 32x 2 – 64x + 32? a) ¿Cuál es el volumen total del edificio? b) Se desea pintar, pero se necesita saber cuál es la superficie exterior. Calcúlala.
Lección 20 a) Cinco pasteleros elaboran 20 pasteles en un turno de 8 h; si al siguiente día faltaron dos personas,
¿en cuánto tiempo elaborarán los 20 pasteles? Lección 21 a) Al lanzar dos dados, ¿qué probabilidad hay de que en ambos salga un número primo? b) Haz 20 veces el experimento anterior y contrasta tus resultados con la respuesta del inc iso anterior. Bloque 2 111
110 Bloque 2
En el tintero. Aquí podrás conocer temas cuyo propósito es introducirte a la cultura de las matemáticas mediante la propuesta de nuevos retos matemáticos.
Laboratorio de matemáticas.
En el tintero
Laboratorio de matemáticas
Anexo de actividades propuestas
Un cubo de pirámides (caleidociclo tridimensional)
Un iceberg en el océano
1. Este es un cubo formado por 24 pirámides, que puedes trazar a partir de las siguientes instrucciones.
para que lleves a cabo experimen-
tos. Con los retos seguirás cono-
a) Construye un cuadrado de
medida x . Traza sus diagonales, nombra O al punto donde se cortan las diagonales y
ciendo y disfrutando la naturaleza
b) Marca una circunferencia de centro O y radio OM.
ubica el punto medio de su base (M).
de las matemáticas.
D
C
X Diagonales
c) Traza los triángulos ABO,
YOB y XAO.
D
Y
Diagonales
Y
X
C Diagonales
Y
Ancho
O
Largo b) Busca una piedra que pueda ser cubierta en su totalidad por el agua que se encuentra en el reci-
Punto medio M Punto medio M
B
A
d) Marca una paralela al segmento YO pasando por B.Luego traza una circunferencia de centro en B y radio BA. Localiza Z en la intersección
de la circunferencia y la paralela. D
X
A x
B
Alto
las 24 pirámides. D
X
Diagonales
Y
C
Ancho
O
Largo
Z
c) Como podrás notar, el nivel del agua aumentó; ahora calcula el volumen del recipiente con la nueva
medida de la altura.
Punto medio M
Z
A
B
x
X x
piente y colócala dentro de este.
e) Traza el triángulo YBZ; este es la plantilla de
Y
O
A
B
x
Punto medio M
C Diagonales
partes de agua y calcula el volumen del recipiente tomando como altura el nivel del agua. Fíjate en el ejemplo. Alto
D
C
X O
x
a) Busca un recipiente en forma de prisma en el que puedas verter agua. Llena aproximadamente__34
Localiza X y Y, las intersecciones superiores de las diagonales y la circunferencia.
O
A
1. ¿Cómo 1. ¿Cómo se calcula el volumen de un objeto dentro del agua?
Y
B
Punto medio M
d) Resta los volúmenes. e) El resultado es el volumen de la piedra.
O
Z
2. Reúnete con un compañero y contesten. A
B
2. Sigue las siguientes instrucciones para armar el c ubo. Junta cuatro pirámides.
Pega sus bases con cinta. Une dos pirámides con Une el resto como se cinta. indica.
a) Si colocan, en lugar de la piedra, un hielo totalmente cubierto por el agua, ¿podrán obtener el
volumen del hielo?
Justifiquen su respuesta en su cuaderno.
b) Si dejan derretir el hielo, ¿qué ocurrirá con el nivel del agua?
c) Si el hielo no fuera totalmente cubierto por el nivel del agua, ¿podrían calcular el volumen del hielo?
Expliquen su respuesta en su cuaderno. 3. Arma las siguientes formas. d) Si dejan derretir el hielo que no fue cubierto en su totalidad por el nivel del agua, ¿qué sucederá a) Cubo
b) Pirámide truncada
con el nivel del agua?
112
Bloque 2
Bloque 2
1 13
Guía de uso
Bloque 4 Evaluación 4 Evaluación
Bloque 4 Evaluación 4 Evaluación
Lee con atención los planteamient planteamientos, os, elige la respuesta correcta y márcala en la sección de respuestas. 1. Si en una sucesión la diferencia entre dos términos consecutivos siempre es 6 y el cuarto término es –12, ¿cuál es su expresión general? a) 6n – 12
b) 6n – 36
c) 4n – 16
b) 8 000
c) 8 003
d) 8 005
b) 800x + + 1 200x = = 30 000x
c) 800x + 1 200 = 30 000x
d) 800x + + 1 200x = = 30 000
2
3
4
5
Distancia (km)
5
10
15
20
25
30
c)
5
al final de cada bloque. Te servirá a ti y al profesor para evaluar
Distancia
b) 15
tu desempeño en cuanto a los conocimientos y habilidades
10 5
0
1
2
3
Tiempo 4 5
0
Distancia
d)
5
4
4
3
3
2
1 2 Distancia
3
Tiempo 4 5
matemáticas adquiridas.
2
1
1
Tiempo
0
Tiempo
0
5 10 15 20 25 30 35 40
4. Juan tiene el doble de dinero que Luis y entre los dos j untan $36.00. ¿Cuánto dinero tiene Luis? c) $12.00
1
5
a) 800 + 1 200x = 30 000x
b) $16.00
0
10
3. Para comprar juntos un coche de $30 000, Andrea y Alejandro ahorran, respectivamente, x) juntarán $800.00 y $1 200.00 al mes. ¿Qué ecuación permite saber en cuántos meses (x el dinero?
a) $24.00
Tiempo (h)
Distancia
a) 15
d) 4n – 12
2. ¿Cuál es el milésimo término de la sucesión 3, 11, 19, 27, 35, 43, 51…? a) 7 995
Evaluación. Serie de preguntas
8. ¿Qué gráfica representa a la tabla?
5 10 15 20 25 30 35 40
9. En la figura, el punto rojo es el centro de la circunferencia. ¿Qué relación tienen los ángulos A y B?
d) $8.00 a) B = 3A
5. ¿Qué gráfica muestra una relación de proporcionalidad directa? a)
y
b)
b) B = 2A
y
A
B
c) A = B d) A = 2B x
c)
y
x
d)
10. Sofía obtuvo las siguientes calificaciones en su clase de español.
y
x
b) c = = 50(10n)
x
c) c = = 50(10 + n)
b) $55.00
c) $58.33
S eg eg un un do do pa pa rcrc ia l
T er er ce r pa rc ia l
7
9
8
d) c = = 50 + 10 n
d) $60.00
1. A
B
C
D
5. A
B
C
D
9. A
B
C
D
2. A
B
C
D
6. A
B
C
D
10. A
B
C
D
3. A
B
C
D
7. A
B
C
D
4. A
B
C
D
8. A
B
C
D
10
Utiliza los círculos para
colocar tus respuestas.
198 Bloque 4 Evaluación
Glosario.
F in alal
Respuestas de la evaluación correspondiente al bloque 3
7. Federico tiene una rosticería; el lunes vendió 20 pollos chicos a $40.00 cada uno; 20 medianos a $55.00 cada uno; y 10 grandes a $80.00 cada uno. ¿Cuál fue el precio promedio por pollo? a) $54.00
P riri me me r pa rcrc ia l
Si el examen final equivale a dos parciales y todos los parciales tienen el mismo valor, ¿cuál fue el promedio de Sofía? b) 8.5 c) 8.8 d) a) 8.3 9.2DCBACBDCBAAA
6. Un grupo de voluntarios organizó una feria para recaudar fondos; la entrada cuesta $50.00 y cada juego, $10.00. ¿Cuál es el costo total (c c ) de subirse a n juegos? a) c = = (50 + 10) n
Examen Calificación
Evaluación Bloque 4
Definiciones de algunos términos matemáti-
cos que se proporcionan con el fin de que te apoyes en ellos cuando necesites conocer su significado.
Glosario para el profesor Ángulo. Abertura, inclinación o amplitud que tienen los objetos geométricos. Lo anterior supone la posibilidad de cuantificarlos por medio de la unidad de medida específica.
199
Bibliografía. Referencias de libros, revistas o páginas
de Internet que se sugieren para apoyarte en caso de que desees o necesites profundizar en algunos temas del libro. Bibliografía Bibliografía para el alumno Allen, J. (2007). El hombre anumérico. Metatemas. anumérico. Metatemas. Barcelona: Tusquets Editores.
Ángulo central en un círculo. Divide Divide al círculo en dos sectores circulares y la suma de los ángulos de ambos sectores es igual a 360º.
Error. Las dificultades que experimentan los estudiantes. Los errores sirven de detonantes en el proceso de solución de un problema. Tienen un alto valor didáctico.
Alsina, C. (2008). Vitaminas matemáticas . Barcelona: Ariel. Andradas, C. (2006). Póngame un kilo de matemáticas . Madrid: Ediciones SM. Ball, J. (2005). Piensa un número. Una mirada fascinante al mundo de los números (2ª ed.). México: Ediciones SM.
Función. Relación que se establece entre el dominio y el codominio; se debe distinguir de ecuación, ya que tienen diferentes significados.
Coto, G. (2011). Matemáticas, trucos y estrategias para ejercitar tu mente . México: ST Editorial.
Gráfica. Dibujos o diagramas que muestran la información.
Paenza, A. (2005). Matemática… ¿Estás ahí? Sobre números, personajes, problemas y curiosidades. curiosidades. Ciencia Ciencia que ladra… Buenos Aires: Siglo XXI Editores.
Igualdad. Noción central en el tema de ecuaciones y funciones. No es solo un signo, es una característica relevante en el álgebra.
_________ (2007). Matemática… ¿Estás ahí? Episodio ahí? Episodio 2. Ciencia que ladra... Buenos Aires: Siglo XXI Editores.
Método de solución de un sistema de ecuaciones. La La diversidad de métodos son diferentes escenarios y
_________ (2008). Matemática… ¿Estás ahí? Episodio ahí? Episodio 100 . Ciencia que ladra... Buenos Aires: Siglo XXI Editores.
argumentos para encontrar la solución, deben coexistir simultáneamente y no privilegiarse uno sobre otro.
Porcentaje. Existe una variedad de situaciones que aportan diversos sentidos. Debe hacerse énfasis también en el uso de diversos procedimientos para su cálculo, esto complementa la dualidad situaciones-herramiensituaciones-herramientas conceptuales.
Productos notables. Los modelos gráficos para estudiar los productos notables, promueven la reflexión y la intuición para formular las reglas y comprobar su eficacia.
Regla de una sucesión. La La regularidad que guarda una sucesión se puede expresar mediante una regla que permite determinar cualquier elemento de la sucesión. Un argumento importante para determinar la regla es el concepto de diferencia.
Reproducir. Es diferente a copiar o repetir trazos, ya que implica adquirir habilidades para interpretar y expresar información visual.
Suceso probable. La certeza es el argumento central, ya que se puede expresar la seguridad de que ocurra
________ (2009). Matemática… ¿Estás ahí? Sobre ahí? Sobre números personajes, problemas y curiosidades . Ciencia que ladra... Buenos Aires: Siglo XXI Editores. _________ (2010). Matemática… ¿Estás ahí? La ahí? La vuelta al mundo en 34 problemas y 8 historias . Ciencia que ladra... Buenos Aires: Siglo XXI Editores. Recamán, B. (2006). Las nueve cifras y el cambiante cero . Barcelona: Gedisa Editorial. Stewart, I. (2004). Locos por las matemáticas . Barcelona: Crítica. Wells, D. (2000). El curioso mundo de las matemáticas . matemáticas . Barcelona: Gedisa.
Bibliografía electrónica para el alumno (fecha de consulta: enero de 2012) Abreu, J. L. Proyecto Arquímedes. Recursos educativos de Matemáticas y Física para todos los niveles arquimedes.matem.unam.mx Instituto de Tecnologías Educativas, Ministerio de Educación, España. Curso de Geometría. Recursos educativos vos de matemáticas para primero y segundo ciclos de la Educación Secundaria Obligatoria de España concurso.cnice.mec.es/cnice2006/material098/geometria/geoweb/indice.htm
un evento.
Simetría. Es una cualidad de las figuras geométricas. Variación. Análisis de cómo cambian o cómo se transforman los valores, y en general cualquier fenómeno.
Ministerio de Educación, España. Descartes. Materiales didácticos para el aprendizaje de las matemáticas de la enseñanza secundaria recursostic.educacion.es/descartes/web/index.html Matemáticas para la ESO. Enseñanza Digital a Distancia. Recursos de matemáticas para Educación Secundaria Obligatoria de España recursostic.educacion.es/secundaria/edad/index_mat.htm Proyecto Gauss. Recursos didácticos y applets de de GeoGebra que cubren los contenidos de matemáticas de la Educación Secundaria Obligatoria de España recursostic.educacion.es/gauss/web/index.htm
253
254
9
Dosificación Bloque
Eje
Sentido numérico y pensamiento algebraico
Tema
Problemas multiplicativos
Figuras y cuerpos Forma, espacio y medida
Medida
1 Proporcionalidad y funciones Manejo de la información Nociones de probabilidad Análisis y representación de datos
Contenido
Resolución de multiplicaciones y divisiones con números enteros Cálculo de productos y cocientes de potencias enteras positivas de la misma base y potencias de una potencia. Significado de elevar un número natural a una potencia de exponente negativo Identificación de relaciones entre los ángulos que se forman entre dos rectas paralelas cortadas por una transversal. Justificación de las relaciones entre las medidas de los ángulos interiores de los triángulos y paralelogramos Construcción de triángulos dados ciertos datos. Análisis de las condiciones de posibilidad y unicidad en las construcciones Resolución de problemas que impliquen el cálculo de áreas de figuras compuestas, incluyendo áreas laterales y totales de prismas y pirámides Resolución de problemas diversos relacionados con el porcentaje, tales como aplicar un porcentaje a una cantidad, determinar qué porcentaje representa una cantidad respecto a otra, y obtener una cantidad conociendo una parte de ella y el porcentaje p orcentaje que representa Resolución de problemas que impliquen el cálculo de interés compuesto, crecimiento poblacional u otros que requieran procedimientos recursivos Comparación de dos o más eventos a partir de sus resultados posibles, usando relaciones como: “es más probable que…”, “es menos probable que…” Análisis de casos en los que q ue la media aritmética o mediana son útiles para comparar dos conjuntos de datos
Lección Semana
1
1
2y3
2
4y5
3
6
4
7
5
8y9
6
10
7
11 8 12
Bitácora Laboratorio de matemáticas En el tintero Evaluación Bloque
Eje
Sentido numérico y pensamiento algebraico
2
Problemas aditivos Problemas multiplicativos
Contenido
Resolución de problemas que impliquen adición y sustracción de monomios Resolución de problemas que impliquen adición y sustracción de polinomios Identificación y búsqueda de expresiones algebraicas equivalentes a partir del empleo de modelos geométricos Justificación de las fórmulas para calcular el volumen de cubos, prismas y pirámides rectos
Forma, espacio y medida
10
Tema
Medida
Estimación y cálculo del volumen de cubos, prismas y pirámides rectos o de cualquier término implicado en las fórmulas. Análisis de las relaciones de variación entre diferentes medidas de prismas y pirámides p irámides
Fecha
9
Lección Semana
13 y 14
10
15
11
16
12
17
13
18 y 19
14
Fecha
Dosificación
Manejo de la información
Bloque
Proporcionalidad y funciones Nociones de probabilidad
Eje
Sentido numérico y pensamiento algebraico
Tema
Problemas multiplicativos
Identificación y resolución de situaciones de proporcionalidad inversa mediante diversos procedimientos Realización de experimentos aleatorios y registro de resultados para un acercamiento a la probabilidad frecuencial. Relación de esta con la probabilidad teórica Bitácora Laboratorio de matemáticas En el tintero Evaluación
Contenido
Resolución de cálculos numéricos que implican usar la jerarquía de las operaciones y los paréntesis, paréntesis, si fuera necesario, en problemas y cálculos con números enteros, decimales y fraccionarios Resolución de problemas multiplicativos que impliquen el uso de expresiones algebraicas, a excepción de la división entre polinomios
20
15
21
16
17
Lección Semana
22
18
23 y 24
19 y 20
Formulación de una regla que permita calcular la suma de los ángulos interiores de cualquier polígono
25
21
Análisis y explicitación de las características de los polígonos que permiten cubrir el plano
26
22
27 y 28
23
29
24
30
25
31
26
Fecha
Figuras y cuerpos
Forma, espacio y medida Medida
3
Proporcionalidad y funciones Manejo de la información
Análisis y representación de datos
Relación entre el decímetro cúbico y el litro. Deducción de otras equivalencias entre unidades de volumen y capacidad para líquidos y otros materiales. Equivalencia entre unidadades del Sistema Internacional de Medidas y algunas unidades u nidades socialmente conocidad, como barril, quilates, quintales, etcétera Representación algebraica y análisis de una relación de proporcionalidad y = kx , asociando los significados de las variables con las cantidades que intervienen en dicha relación Búsqueda, organización y presentación de información en histogramas o en gráficas poligonales (de series de tiempo o de frecuencia) según el caso y análisis de la información que proporcionan Análisis de propiedades de la media y mediana Bitácora Laboratorio de matemáticas En el tintero Evaluación
27
11
Dosificación Bloque
Eje
Sentido numérico y pensamiento algebraico
Forma, espacio y medida
Tema
Construcción de sucesiones de números enteros a partir de las reglas algebraicas que las definen. Obtención de la regla general (en lenguaje algebraico) de una sucesión con progresión aritmética de números enteros Patrones y ecuaciones
Medida
4 Manejo de la información
Contenido
Proporcionalidad y funciones
Lección Semana 32
28
Resolución de problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma: ax + + b = cx + + d y y con paréntesis en uno o en ambos miembros de la ecuación, utilizando coeficientes enteros, fraccionarios o decimales, positivos y negativos
33 y 34
29
Caracterización de ángulos inscritos y centrales en un c írculo y análisis de sus relaciones
35
30
Análisis de las características de una gráfica que represente una relación de proporcionalidad en el plano cartesiano
36
31
Análisis de situaciones problemáticas asociadas a fenómenos de la física, la biología, la economía y otras disciplinas, en las que existe variación lineal entre dos conjuntos de cantidades. Representación de la variación mediante una tabla o una expresión algebraica de la forma: y = = ax + + b
37
32
38
33
Análisis y representación Resolución de situaciones de medias ponderadas de datos
Fecha
Bitácora Laboratorio de matemáticas En el tintero
34
Evaluación Bloque
Eje
Sentido numérico y pensamiento algebraico
Forma, espacio y medida
5
Tema
Patrones y ecuaciones
Figuras y cuerpos
Medida
Manejo de la información
Proporcionalidad y funciones Nociones de probabilidad
12
Contenido Lección Semana Resolución de problemas que impliquen el planteamiento y la resolución de un sistema de ecuaciones 2 × 2 con coeficientes 39, 40 enteros, utilizando el método más pertinente (suma y resta, y 41 igualación o sustitución) 35 y 36 Representación gráfica de un sistema de ecuaciones 2 × 2 con coeficientes enteros. Reconocimiento del punto de intersección 42 de sus gráficas como la solución del sistema Construcción de figuras simétricas respecto de un eje, análisis y explicitación de las propiedades que se conservan c onservan en figuras 43 y 44 37 como: triángulos isósceles y equiláteros, rombos, rombos, cuadrados y rectángulos Cálculo de la medida de ángulos inscritos y centrales, así 45 y 46 38 como de arcos, el área de sectores circulares y de la corona Lectura y construcción de gráficas de funciones lineales 47 asociadas a diversos fenómenos Análisis de los efectos al cambiar los parámetros de la función 48 39 y = = mx + b , en la gráfica correspondiente Comparación de las gráficas de dos distribuciones (frecuencial 49 y teórica) al realizar muchas veces un experimento aleatorio Bitácora Laboratorio de matemáticas 40 En el tintero Evaluación
Fecha
Índice Bloque 1 Título
Lección Lección 1
Multiplicaciones y divisiones con números enteros
Lecc Le cció iónn 2
Prod Pr oduc ucto toss y co coci cien ente tess de de pot poten enci cias as
Lección 3
Cálculo de potencias
Lec ecci cióón 4
Rela Re laci cion ones es en entr tree áng ángul uloos
Lección 5
Contenido
Página
Resolución de multiplicaciones y divisiones con números enteros
18
Cálculo de productos y cocientes de potencias e nteras positivas de la misma base y potencias de una potencia. Significado de elevar un número natural a una potencia de exponente negativo
22
30
Ángulos interiores y paralelogramos
Identificación de relaciones entre los ángulos que se forman entre dos rectas paralelas cortadas por una transversal. Justificación de las relaciones entre las medidas de los ángulos interiores de los triángulos y paralelogramos
Lección 6
Construcción de triángulos dados ciertos datos
Construcción de triángulos con base en ciertos datos. Análisis de las condiciones de posibilidad y unicidad en las construcciones
Lecc Le cció iónn 7
Cálc Cá lcul uloo de de áre áreas as de de figu figurras com compu pues esta tass
Resolución de problemas que impliquen el cálculo de áreas de figuras comp co mpue uest stas as,, in incl cluuye yend ndoo ár área eass la late terral ales es y tot otal ales es de pri rism smas as y pi pirrám ámid ides es
Lección 8 Lección 9
Resolución de problemas de porcentaje Resolución de problemas diversos relacionados con el porcentaje, como aplicar I un porcentaje a una cantidad; determinar qué porcentaje representa una cantidad respecto a otra, y obtener una cantidad conociendo una parte de ella Resolución de problemas de porcentaje y el porcentaje que representa II
Lección 10
Interés compuesto y crecimiento poblacional
Lecc Le cció iónn 11 11
Comp Co mpar arac ació iónn de de dos dos o más más eve event ntos os
Lecc Le cció iónn 12
Medi Me diaa ari aritm tmét étic icaa o me medi dian anaa
Resolución de problemas que impliquen el cálculo de interés compuesto, crecimiento poblacional u otros que requieran procedimientos recursivos Comparación de dos o más eventos a partir de sus resultados posibles, usando relaciones como: “es más probable que…”, “es menos probable que…” Análisis de casos en los que la media aritmética o mediana son útiles para comparar dos conjuntos de datos
26
34 38 42 46 50 54 58 62
Bitácora
66
Laboratorio de matemáticas
68
En el tintero
69
Evaluación
70
Bloque 2 Lección
Título
Lecci Le cción ón 13
Adici Ad ición ón y sus sustr trac acció ciónn de de mon monom omio ioss I
Lección 14
Adición y sustracción de monomios II
Lecc Le cció iónn 15
Adic Ad ició iónn y su sust stra racci cción ón de po polilino nomi mios os I
Lecc Le cció iónn 16 16
Adic Ad ició iónn y su sust stra racc cció iónn de de pol polin inom omio ioss IIII
Lecció Lec ciónn 17 17 Lecció Lec ciónn 18 Lecc Le cció iónn 19 19
Contenido Resolución de problemas que impliquen adición y sustracción de monomios Reso Re solu luci ción ón de pr prob oble lema mass qu quee im impl pliq ique uenn ad adic ició iónn y su sust stra racc cció iónn de po polilino nomi mios os
Identificación y búsqueda de expresiones algebraicas equivalentes a partir del empleo de modelos geométricos Justificación de las fórmulas para calcular el volumen de cubos, prismas Vol olum umen en de cu cubo bos, s, pr prism ismas as y pir pirám ámid ides es I y pirámides rectos Vol olum umen en de cu cubo bos, s, pr prism ismas as y pir pirám ámid ides es II Estimación y cálculo del volumen de cubos, prismas y pirámides rectos o de cualquier término implicado en las fórmulas. Análisis de las relaciones de variación Medi Me dida dass de de pri prism smas as y pir pirám ámid ides es entre diferentes medidas de prismas y pirámides
Página 74 78 82 86
90 94 98
13
Índice Lecci Le cción ón 20
Situ Si tuaci acion ones es de de prop propor orci cion onal alid idad ad inv inver ersa sa
Identificación y resolución de situaciones de proporcionalidad inversa mediante diversos procedimientos
102
Lección 21
Probabilidad frecuencial y probabilidad teórica
Realización de experimentos aleatorios y registro de resultados para un acercamiento a la probabilidad frecuencial. Relación de esta con la probabilidad teórica
106
Bitácora Laboratorio de matemáticas En el tintero Evaluación
110 112 113 114
Bloque 3 Lección
Título
Contenido
Lección 22
Resolución de cálculos numéricos
Resolución de cálculos numéricos que implican usar la jerarquía de las operaciones y los paréntesis, si fuera necesario, en problemas y cálculos con números enteros, decimales y fraccionarios
Lección 23
Problemas multiplicativos con expresiones algebraicas I Problemas multiplicativos con expresiones algebraicas II
Resolución de problemas multiplicativos que impliquen el uso de expresiones algebraicas, a excepción de la división entre e ntre polinomios
Lección 25
La suma de los ángulos interiores de un polígono
Formulación de una regla que permita calcular la suma de los ángulos interiores de cualquier polígono
Lección 26
Para cubrir el plano
Lección 24
Lección 27 Lección 28 Lección 29 Lección 30 Lección 31
Página 118 122 126
Análisis y explicitación de las características c aracterísticas de los polígonos que permiten cubrir el plano Relación entre el decímetro cúbico Relación entre el decímetro cúbico y el litro. Deducción de otras equivalencias y el litro entre unidades de volumen y capacidad para líquidos y otros materiales. Equivalencia entre unidades del Sistema Internacional de Medidas y algunas Equivalencias entre unidades unidades socialmente conocidas, como barril, quilates, quintales, quintales, etcétera Representación algebraica y análisis de una rela ción de proporcionalidad y = = kx , Análisis de una relación de asociando los significados de las variables con las cantidades que intervienen proporcionalidad y = = kx en dicha relación Búsqueda, organización y presentación Búsqueda, organización y presentación de información en histogramas o en gráficas poligonales (de series de tiempo o de frecuencia), según el caso de información y análisis de la información que proporcionan Análisis de propiedades de la media Análisis de propiedades de la media y mediana y la mediana
Bitácora Laboratorio de matemáticas En el tintero Evaluación
130 134 138 142 146 150 154 158 160 161 162
Bloque 4 Lección
Título
Lecc Le cció iónn 32 32
Suce Su cesi sion ones es de nú núme mero ross ent enter eros os
Lección 33
Planteamiento y resolución de ecuaciones lineales
Lección 34
Resuelve al usar ecuaciones
14
Contenido Construcción de sucesiones de números enteros a partir de las reglas algebraicas que las definen. Obtención de la regla general (en lenguaje algebraico) de una sucesión con progresión aritmética de números enteros Resolución de problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma: ax + + b = = cx + + d y y con paréntesis en uno o en ambos miembros de la ecuación, utilizando coeficientes enteros, fraccionarios o decimales, positivos y negativos
Página 166 170 174
Índice Lección 35 Lecc Le cció iónn 36 36
Ángulos inscritos y centrales de un círculo
Caracterización de ángulos inscritos y centrales en un círculo, y análisis de sus relaciones Análisis de las características de una gráfica que represente una relación Anál An ális isis is de gr gráfi áfica cass de de pro propo porc rcio iona nalilida dadd de proporcionalidad en el plano cartesiano
Lección 37 37
Variación lilineal
Análisis de situaciones problemáticas asociadas a fenómenos de la física, la biología, la economía y otras disciplinas, en las que existe variación lineal entre dos conjuntos de cantidades. Representación de la variación mediante una tabla o una expresión algebraica de la forma: y = = ax + + b .
Lección 38
Resolución de situaciones de medias ponderadas
Resolución de situaciones de medias ponderadas.
178 182
186
190
Bitácora Laboratorio de matemáticas
194 196
En el tintero Evaluación
197 198
Bloque 5 Lección
Título
Contenido
Sistemas de ecuaciones 2 × 2, método de sustitución Sistemas de ecuaciones 2 × 2, método de suma y resta Sistemas de ecuaciones 2 × 2, método de igualación
Resolución de problemas que impliquen el planteamiento y la resolución de un sistema de ecuaciones 2 × 2 con coeficientes enteros, utilizando el método más pertinente (suma y resta, igualación o sustitución)
Lección 42
Representación gráfica de un sistema de ecuaciones 2 × 2
Representación gráfica de un sistema de ecuaciones 2 × 2 con coeficientes enteros. Reconocimiento del punto de intersección de sus gráficas como la solución del sistema
Lección 43
Construcción de figuras simétricas respecto a un eje
Lecci Le cción ón 44
Prop Pr opie ieda dade dess de fig figur uras as si simé métr tric icas as
Lección 39 Lección 40 Lección 41
Lección 45 Lección 46 Lección 47
Ángulo inscrito y central, arco, sector circular y corona Cálculo del área de una corona circular Lectura y construcción de gráficas de funciones lineales
Lecc Le cció iónn 48
Par arám ámet etro ross de la fu func nció iónn y = = mx + + b
Lecci Le cción ón 49 49
Gráfi Gr áficas cas de de dist distriribu bucio cione ness frec frecue uenc ncial ial y teó teóririca ca
Página 202 206 210 214
Construcción de figuras simétricas respecto de un eje, análisis y explicitación de las propiedades que se conservan en figuras como: triángulos isósceles y equiláteros, rombos, cuadrados y rectángulos
218
Cálculo de la medida de ángulos inscritos y centrales, así como de arcos, el área de sectores circulares y de la corona
226
Lectura y construcción de gráficas de funciones lineales asociadas a diversos fenómenos Análisis de los efectos al cambiar ca mbiar los parámetros de la función y = = mx + + b , en la gráfica correspondiente Comparación de las gráficas de dos distribuciones (frecuencial y teórica) al realizar muchas veces un experimento aleatorio
2222 22
230 234 238 242
Bitácora Laboratorio de matemáticas
246 248
En el tintero Evaluación
249 250
Glosario alumno Glosario profesor Bibliografía
252 253 254
15
View more...
Comments